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Abstract

This chapter considers the assessment and refinement of a dynamic stochastic process model
of the cellular response to DNA damage. The proposed model is a complex nonlinear continuous
time latent stochastic process. It is compared to time course data on the levels of two key
proteins involved in this response, captured at the level of individual cells in a human cancer
cell line. The primary goal of this study is to “calibrate” the model by finding parameters of the
model (kinetic rate constants) that are most consistent with the experimental data. Significant
amounts of prior information are available for the model parameters. It is therefore most natural
to consider a Bayesian analysis of the problem, using sophisticated MCMC methods to overcome
the formidable computational challenges.

1 Introduction

1.1 Overview

Systems biology is an exciting new paradigm for life science research in the post-genomic era. It is
a development of molecular biology in which the focus has moved from trying to understand the
function of individual biomolecules (or pairs of biomolecules) to understanding how collections of
biomolecules of varying types act together to accomplish the observed dynamic biological system
behaviour. Systems biology involves a combination of mathematical modelling, biological experi-
mentation and quantitative data generation. In particular, it crucially depends on the ability to
adjust models in the light of experimental data. Further, there is now overwhelming evidence that
intrinsic stochasticity is an important feature of intra-cellular processes. Statistical methods are
therefore likely to play an increasingly important role in systems biology as models become more
realistic and quantitative dynamic data becomes more routinely available (Wilkinson, 2009).

This chapter considers the assessment and refinement of a dynamic stochastic process model of
the cellular response to DNA damage. The proposed model is compared to time course data on
the levels of two key proteins involved in this response, captured at the level of individual cells in
a human cancer cell line. The primary goal of this study is to “calibrate” the model by finding
parameters of the model (kinetic rate constants) that are most consistent with the experimental
data. The model is a complex nonlinear continuous time latent stochastic process model and so
Markov chain Monte Carlo (MCMC) methods are a natural way to approach the inferential analysis
from a computational perspective. In addition to being computationally difficult, the problem is also
conceptually hard as the data-poor scenario means that some parameters of interest are only weakly
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identifiable. Fortunately, the mechanistic nature of the model means that all of the parameters are
clearly interpretable, and a significant level of prior information is available for many of these from
biological experts or the biological literature. The problem is therefore ideally suited to a Bayesian
analysis using MCMC for computation.

The model concerns oscillations observed in the levels of two proteins in single living cancer cells
subsequent to gamma irradiation. The two proteins, p53 and Mdm2, appear to oscillate out of phase
with one another — system behaviour typically associated with some kind of negative feedback loop.
This is consistent with current biological knowledge as p53 is known to enhance the production of
Mdm2, and Mdm2 is known to inhibit p53. However, these oscillations are only observed at the
single cell level and are not present in data derived from cell populations. It is therefore of interest
to develop a simple mechanistic model, consistent with current biological knowledge, which explains
the oscillatory behaviour and also explains why it is observed only at the single cell level (Proctor
and Gray, 2008). Stochasticity is the key feature required to reconcile the apparent discrepancy
between the single cell and population level data, with noisy oscillations being “averaged out” in
the population level data. The stochastic process model contains several parameters whose values
are uncertain. This chapter considers the problem of using time course data on levels of p53 and
Mdm2 in several individual cells to improve our knowledge regarding plausible parameter values,
and also to assess the extent to which the proposed stochastic model is consistent with the available
data.

1.2 Biological background

The p53 tumour suppressor protein plays a major role in cancer as evidenced by the high incidence
of TP53 gene mutations in human tumours (Hainaut and Hollstein, 2000). The TP53 gene encodes
a transcription factor with target genes that are involved in DNA repair, cell cycle arrest and
apoptosis. It has been described as the “guardian of the genome” (Lane, 1992), blocking cell cycle
progression to allow the repair of damaged DNA. Under normal homeostatic conditions, the cellular
levels of p53 protein are kept at a low level. There is basal transcription of the p53 gene (TP53) even
in unstressed cells but the protein product does not accumulate as it has a short half-life of about
15-30 minutes (Finlay, 1993) and is usually bound to Mdm2, an ubiquitin E3 ligase, which targets
p53 to the proteasome for degradation (Haupt et al., 1997; Clegg et al., 2008). Mdm2-binding
prevents the transcriptional activity of p53 (Thut et al., 1997), a phenomenon that is dependent on
the catalytic activity of Mdm2 (Christophorou et al., 2005). Mdm2 also has a short half-life and
is a substrate of its own E3 ligase activity in vitro (Fang et al., 2000). The transcription of Mdm2
is regulated by p53 (Barak et al., 1993) and so under normal conditions, both p53 and Mdm2 are
kept at low levels.

It is well known that stress induces an increase in levels of p53 which in turn leads to an increase
in the transcription of Mdm2 (Mendrysa and Perry, 2000). One pathway for stabilization of p53 is
via the kinase ATM, which is activated by DNA damage and phosphorylates p53 close to its Mdm2
binding site, so blocking its interaction with Mdm2 (Vogelstein et al., 2000). In addition, ATM
phosphorylates Mdm2 which not only interferes with its ability to bind to p53 but also enhances
the degradation of Mdm2 (Pereg et al., 2005; Khosravi et al., 1999), providing an additional route
for p53 stabilization. Another mechanism for the increase in p53 levels is the activation of ARF
(known as p14ARF in humans), a nucleolar protein that senses DNA damage (Khan et al., 2004).
Although ARF responds to DNA damage, it is better known for its response to aberrant growth
signals which are triggered by oncogenes (mutated forms of normal cellular genes which when
activated can induce cancer). ARF binding enhances the degradation of Mdm2, resulting in p53
stabilisation (Khan et al., 2004; Zhang et al., 1998). Since an increase in p53 leads to an increase
in Mdm2 transcription, and Mdm2 targets p53 for degradation, p53 levels are again inhibited,
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providing a negative feedback loop.

Negative feedback loops have been found in several systems of interacting proteins (e.g. Hes1 in
Notch signalling (Hirata et al., 2002), NF-kB signalling system (Nelson et al., 2004)) and have
attracted the attention of mathematical modellers. In particular, models have been produced to
analyse the oscillations of p53 and Mdm2 in previously published single-cell fluorescent reporter
assays (Ciliberto et al., 2005; Geva-Zatorsky et al., 2006; Lev Bar-Or et al., 2000; Ma et al., 2005;
Tiana et al., 2007; Zhang et al., 2007). The single cell assays have been very informative, revealing
that increasing DNA damage results in an increased number of oscillations, but not an increased
magnitude in the response (Geva-Zatorsky et al., 2006; Lahav et al., 2004). The data also show
that there is large intercellular variation with a fraction of cells showing no response or a slowly
fluctuating signal. In the cells in which oscillations were detected, there was a wide fluctuation in
the amplitude (about 70%) and smaller variations in the period of the peaks (about 20%) (Geva-
Zatorsky et al., 2006). The oscillations in these data showed a period of about 5.5 hours with a
delay of about 2 hours between p53 and Mdm2 peaks (Geva-Zatorsky et al., 2006).

All previous models to date have used a deterministic approach to analyse the oscillatory behaviour.
These models have used differential equations and mathematical functions requiring a fairly large
number of parameters with the generation of oscillations being very dependent on the range of
parameter values chosen. Geva-Zatorsky et al. (2006) constructed six different models and found
that the simplest model, which contained one intermediary and one negative feedback loop with a
delay, was unable to produce multiple oscillations and that it was necessary to either introduce a
positive feedback loop or a time delay term (see Figure 6 of Geva-Zatorsky et al. (2006)). However,
these additions were not sufficient for robustness over a wide range of parameter values. The
addition of a non-linear negative feedback loop, a linear positive feedback loop or a second negative
feedback loop produced models that were able to demonstrate sustained oscillations over a wide
range of parameters. As the models are deterministic, the outcome only depends on the initial
conditions and so they cannot easily be used to investigate inter- and intra-cell variability. Geva-
Zatorsky et al. (2006) incorporated some random noise in protein production in their models and
found that the introduction of low-frequency noise resulted in variability in the amplitude of the
oscillations as observed experimentally. Ma et al. (2005) also incorporated a stochastic component
for the DNA damage component of their model which resulted in variability in the number of
oscillations. However, for a simulated dose of 2.5Gy, they found that the majority of cells had only
one peak and that a step input of DNA damage was required to obtain sustained oscillations.

We built a mechanistic model (Proctor and Gray, 2008) within a discrete stochastic chemical
kinetic framework (Wilkinson, 2006), so that the intercellular variability could be accounted for in
a natural way. Our approach meant that we did not need to include complex rate laws — mass
action stochastic kinetics were assumed throughout — or any forced time delay terms.

1.3 Construction of the stochastic kinetic model

We assume that p53 production consists of two steps: transcription to form messenger RNA
(p53 mRNA in the model) and then translation to form protein (p53). Under normal conditions
p53 is usually bound to Mdm2 to form a complex, Mdm2–p53 (Mdm2 p53). Mdm2 targets p53
to the proteasome for degradation. We assume that p53 is only transcriptionally active when not
bound to Mdm2, and so the production of Mdm2 mRNA (Mdm2 mRNA) is dependent on the pool
of unbound p53. The synthesis of Mdm2 depends on the level of Mdm2 mRNA and so is also
dependent on the level of unbound p53. Thus Mdm2 mRNA provides the intermediary link be-
tween p53 and Mdm2 to provide the necessary delay in the negative feedback loop. We also include
degradation of Mdm2, Mdm2 mRNA and p53 mRNA. ATM is included in the model in two states:
either inactive (ATMI) or active (ATMA). Initially all ATM is in its inactive state. After DNA

3



damage, ATM is activated and is then able to phosphorylate both p53 and Mdm2. Phosphorylated
p53 and Mdm2 are presented in the model by the species p53 P and Mdm2 P respectively. We
assume that the phosphorylated proteins are unable to bind to one another and so phosphorylated
p53 is not degraded. However, phosphorylation of Mdm2 leads to its enhanced degradation and
p53 P is transcriptionally active. We also include steps for de-phosphorylation. Further details of
the model are given in Proctor and Gray (2008). To carry out a “virtual experiment”, whereby the
cell is subject to irradiation, the species that represents DNA damage (damDNA) is set to a large
value for the initial period of the simulation. Damaged DNA is repaired at a rate determined by
the parameter krepair.

The model was encoded using SBML-shorthand (Wilkinson, 2006) and then converted into the
Systems Biology Markup Language (SBML) (Hucka et al., 2003). SBML is a well-known modelling
standard, allowing models to be shared in a form that other researchers can use in different hardware
and software environments.

1.4 The experiment and data

The experiments were carried out in the laboratory of Uri Alon (Department of Molecular Cell
Biology, Weizmann Institute of Science, Israel). Full details of the experimental procedure can
be found in Geva-Zatorsky et al. (2006). The cell line used was MCF7, which are human breast
cancer epithelial cells. They used a clone (all cells genetically identical) which was stably transfected
with p53 fused to cyan fluorescent protein (CFP) and Mdm2 fused to yellow fluorescent protein
(YFP). They irradiated the cells with different doses of gamma irradiation and obtained time-lapse
fluorescence microscopy movies of the cells over time periods of about 30 hours. Images were
captured every 10-20 minutes. Overall they collected data for 1000 individual cells in different
experiments with different doses of irradiation. We were supplied with raw data for the cells which
were irradiated at a dose of 2.5 Gy (141 cells) and at 5 Gy (146 cells). The units for the raw data
are relative fluorescence units and the values for Mdm2 had been normalized (by multiplying the
YFP fluorescence by a constant) so that the values for p53 and Mdm2 lie in the same range; see,
for example, the time-course data for the seven cells in the second movie displayed in Figure 1.

2 Stochastic kinetic model

The stochastic kinetic model describes the evolution of k = 10 species by using 19 reactions. Each
reaction occurs at a rate governed by the numbers of molecules of the reacting species and associated
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Figure 1: Measured (normalized) fluorescence levels for the seven cells in movie 2; p53 (black) and
Mdm2 (grey).

rate constants. The list of reactions is

Mdm2 mRNA −→ Mdm2 mRNA + Mdm2 rate = ksynMdm2 × Mdm2 mRNA

Mdm2 −→ Sink rate = kdegMdm2 × Mdm2 × kproteff

p53 mRNA −→ p53 + p53 mRNA rate = ksynp53 × p53 mRNA

Mdm2 p53 −→ Mdm2 rate = kdegp53 × Mdm2 p53 × kproteff

p53 + Mdm2 −→ Mdm2 p53 rate = kbinMdm2p53 × p53 × Mdm2

Mdm2 p53 −→ p53 + Mdm2 rate = krelMdm2p53 × Mdm2 p53

p53 −→ p53 + Mdm2 mRNA rate = ksynMdm2mRNA × p53

p53 P −→ p53 P + Mdm2 mRNA rate = ksynMdm2mRNA × p53 P

Mdm2 mRNA −→ Sink rate = kdegMdm2mRNA × Mdm2 mRNA

damDNA + ATMI −→ damDNA + ATMA rate = kactATM × damDNA × ATMI

Mdm2 P −→ Sink rate = kdegATMMdm2 × Mdm2 P

ATMA −→ ATMI rate = kinactATM × ATMA

p53 + ATMA −→ p53 P + ATMA rate = kphosp53 × p53 × ATMA

p53 P −→ p53 rate = kdephosp53 × p53 P

Mdm2 + ATMA −→ Mdm2 P + ATMA rate = kphosMdm2 × Mdm2 × ATMA

Mdm2 P −→ Mdm2 rate = kdephosMdm2 × Mdm2 P

damDNA −→ Sink rate = krepair × damDNA

Source −→ p53 mRNA rate = ksynp53mRNA × Source

p53 mRNA −→ Sink rate = kdegp53mRNA × p53 mRNA
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It will be convenient to work with the rate constants (eg. ksynp53mRNA) on a log scale and so we
denote the collection of the r = 19 “calibration” parameters by θ = (θ1, θ2, . . . , θr)

′, where θj is the
log of the jth rate constant.

Let Yt = (Yt,1, . . . , Yt,k) denote the state of the system at time t, where Yt,j is the number of
molecules of species j at time t. The k = 10 species (and their corresponding index used in the
notation) are listed in Table 1. Note however that these 10 species are not linearly independent
due to the presence of a conservation law in the system that makes species 6 and 7 linearly related.
Such conservation laws need to be preserved by inference algorithms — an example of how this is
achieved is presented in Section 5. Also let Y = (Yt0 , Yt1 , . . . , Ytn) denote the state of the system
at the time points (t0, t1, . . . , tn). The kinetic model is a Markov jump process and so the joint
probability of Y factorises as

p(Y |θ) = p(Yt0 |θ)
n

∏

i=1

p(Yti |Yti−1
, θ),

where we assume that the initial state Yt0 is independent of the reaction constants θ, that is,
p(Yt0 |θ) = p(Yt0).

Given full information on the process, that is, the times and types of each reaction that take place,
closed form expressions can be found for the conditional probabilities p(Yti |Yti−1

, θ), and hence for
the joint probability p(Y |θ). However, in the present application (as with many other practical
scenarios) experimental techniques do not provide this full information, perhaps only giving the
levels of some species at a limited number of time points. Here different strategies are required
for analysing such partial information; see Boys et al. (2008) for details. The strategy we employ
in this chapter is based on the fact that, for given reaction constants θ, it is possible to forward
simulate realisations Yt of the model exactly using, for example, the Gillespie algorithm (Gillespie,
1977).

3 Data

Suppose that the data available consist of time-course information on C cells. Specifically, the data
on cell i are the scaled fluorescence measurements of two quantities, p53 and Mdm2, measured at ni

time points t1, . . . , tni
. We will sometimes refer to the p53 and Mdm2 measurements by the colours

of the fluorescent proteins used, namely the “cyan channel” and the “yellow channel” respectively.
In these data, measurements are taken every τ = 1200 seconds, that is, at times tj = jτ, j =
0, 1, 2, . . . and so we simplify the notation by referring to time by its index, j = 0, 1, 2, . . . . Also

Species index Species name

1 Mdm2

2 p53

3 Mdm2 p53

4 Mdm2 mRNA

5 p53 mRNA

6 ATMA

7 ATMI

8 p53 P

9 Mdm2 P

10 damDNA

Table 1: Species names and their corresponding index.
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the measurement pair at the tth time point in the ith cell is denoted by zi
t = (zi

t,c, z
i
t,y)

′, where the
subscripts c and y refer to the channel colours.

The data on cell i is denoted by zi ≡ zi
1:ni

= {zi
1, . . . , z

i
ni
}, and the full dataset for all C cells is

denoted by z = {z1, . . . , zC}. Finally, an additional complication in these data is that the observed
measurements of Mdm2 (yellow) have been scaled so that the maximum value is the same as the
maximum observed value of p53 (cyan). This post-processing step adds an extra layer of complexity
into the modelling task.

4 Linking the model to the data

4.1 Modelling the raw measurements

Let Y i
t,c and Y i

t,y denote the total amount of p53 and Mdm2, respectively, in the ith cell at the tth
time point. Each of these amounts is the sum of three species counts (at time point t), namely

Y i
t,c = Y i

t,2 + Y i
t,3 + Y i

t,8 and Y i
t,y = Y i

t,1 + Y i
t,3 + Y i

t,9.

Note that Y i
t,3 is common to both Y i

t,c and Y i
t,y. Let Y i

c = (Y i
1,c, . . . , Y

i
ni,c) and Y i

y = (Y i
1,y, . . . , Y

i
ni,y)

denote the amounts (by channel) for cell i, and let the amounts over all cells be denoted by
Yc = (Y 1

c , . . . , Y C
c ), Yy = (Y 1

y , . . . , Y C
y ) and Y = {Yc, Yy}.

The true fluorescence levels in the cyan and yellow channels are assumed to be directly proportional
to the numbers of molecules of p53 and Mdm2, respectively, with unknown proportionality constants
βj , j ∈ {c, y}, that is

γi
t,c = βcY

i
t,c and γi

t,y = βyY
i
t,y.

The raw measurements of these true fluorescence levels (after adjusting for background noise),
denoted by ζi

t,c and ζi
t,y, are assumed to be independent and normally distributed with means γi

t,c

and γi
t,y respectively. The measurement processes in the cyan and yellow channels are sufficiently

similar that we will assume a common precision φ to these processes. Thus

ζi
t,c|Y

i
t,c, βc, φ ∼ N(βcY

i
t,c, φ

−1) and ζi
t,y|Y

i
t,y, βy, φ ∼ N(βyY

i
t,y, φ

−1).

Prior beliefs about φ are modelled through a gamma Ga(aφ, bφ), distribution, with density

p(φ) =
b
aφ

φ φaφ−1 exp(−bφφ)

Γ(aφ)
,

where Γ(·) denotes the gamma function. We take aφ = 2 and bφ = 50 and this reflects fairly strong
beliefs that the prior precision is close to its mean of E(φ) = 1/25.

4.2 Modelling the scaling process

Beliefs about the scaling constants βc and βy are modelled via independent normal distributions

βc ∼ N(aβc
, b2

βc
) and βy ∼ N(aβy

, b2
βy

).

Prior means of aβc
= aβy

= 1, representing no scaling, were adopted. The prior standard deviations
bβc

and bβy
were chosen to be 1/3, so that the central 95% prior probability interval for βc is

approximately (0.347,1.653). Strictly speaking, these prior distributions are not consistent with the
requirement that the scaling constants should take positive values. However, there is a significant
benefit in choosing this form for the prior distributions, as we shall see shortly. Also, for these prior
distributions, the probability of the scaling constants taking negative values is negligibly small.
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4.3 Marginal model for the data

The scaling constants βc and βy are essentially nuisance parameters and their values are not of direct
interest. Our choice of normal distributions for βc and βy allows us to marginalise them analytically
from the normal models for the raw measurements, and this may result in computational benefits.
This gives the marginal distributions of the raw measurements as

ζi
t,c|Y

i
t,c, φ ∼ N(aβc

Y i
t,c, b

2
βc

(Y i
t,c)

2 + φ−1) and ζi
t,y|Y

i
t,y, φ ∼ N(aβy

Y i
t,y, b

2
βy

(Y i
t,y)

2 + φ−1).

Note that the variance of the marginal measurement error distribution now depends on the signal,
that is, on the true numbers of molecules.

Unfortunately the available data are not simply a collection of raw measurements: the data have
been normalized so that the values for the two channels lie on the same scale. However, only
data recorded for the yellow channel (Mdm2) is affected. The data recorded for the cyan channel
(p53), zi

t,c, are the raw measurements for that channel and so zi
t,c = ζi

t,c. However, the data
recorded for the yellow channel (Mdm2), zi

t,y, are normalized versions of the raw measurements.
The normalized measurement for Mdm2 in the ith cell at time t, zi

t,y, is obtained from the raw
measurement ζi

t,y by dividing by the maximum raw Mdm2 measurement in the ith cell, (ζi
y)

max =
max(ζi

1,y, . . . , ζ
i
ni,y), and then multiplying by the maximum measurement in the cyan channel,

(zi
c)

max = max(zi
1,c, . . . , z

i
n,c). Thus

zi
t,y = s(ζi

y, z
i
c) ≡ ζi

t,y

(zi
c)

max

(ζi
y)

max
.

The probability of the observed scaled measurements zi
y is

p(zi
y|ζ

i
y, z

i
c) =

{

1, if s(ζi
y, z

i
c) = zi

y,

0, otherwise,

and this depends on zi
c only through (zi

c)
max. The joint density of the observed data (the likelihood

function) is therefore

p(zc, zy|ζy, Yc, φ) = p(zc|Yc, φ)p(zy|ζy, zc)

= p(zc|Yc, φ)

C
∏

i=1

p(zi
y|ζ

i
y, z

i
c),

where p(zc|Yc, φ), the joint density of the raw p53 measurements, is

p(zc|Yc, φ) =
C

∏

i=1

ni
∏

t=1

p(zi
t,c|Y

i
t,c, φ)

=
C

∏

i=1

ni
∏

t=1

(2π)−1/2{b2
βc

(Y i
t,c)

2 + φ−1}−1/2 exp

{

−

(

zi
t,c − aβc

Y i
t,c

)2

2{b2
βc

(Y i
t,c)

2 + φ−1}

}

.

When constructing the posterior distribution (given by Equation (2) in Section 5) we will also need
the joint density of the raw Mdm2 measurements:

p(ζy|Yy, φ) =

C
∏

i=1

ni
∏

t=1

p(ζi
t,y|Y

i
t,y, φ)

=

C
∏

i=1

ni
∏

t=1

(2π)−1/2{b2
βy

(Y i
t,y)

2 + φ−1}−1/2 exp

{

−

(

ζi
t,y − aβy

Y i
t,y

)2

2{b2
βy

(Y i
t,y)

2 + φ−1}

}

.
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Parameter name Value

ksynMdm2 -7.611
kdegMdm2 -7.745
ksynp53 -5.116
kdegp53 -7.100
kbinMdm2p53 -6.764
krelMdm2p53 -11.369
ksynMdm2mRNA -9.210
kdegMdm2mRNA -9.210
kdegATMMdm2 -7.824
kproteff 0.000
ksynp53mRNA -6.908
kdegp53mRNA -9.210

Table 2: Values (on a log scale) for known model calibration parameters.

Index Parameter name Lower limit Upper limit
aθi

bθi

1 kactATM -18.210 -0.210
2 kinactATM -16.601 1.399
3 kphosp53 -13.601 -1.601
4 kdephosp53 -8.996 0.702
5 kphosMdm2 -7.609 2.088
6 kdephosMdm2 -8.996 0.702
7 krepair -13.820 -7.820

Table 3: The lower and upper limits of the uniform prior distributions for the unknown model
calibration parameters (on a log scale).

4.4 Prior specification for the model calibration parameters

Information on likely values for these parameters can be found in Proctor and Gray (2008). We
found that the parameters naturally grouped into four classes, ranging from those that were known
fairly accurately to those with a fair amount of uncertainty. We have fixed the parameters that
were known fairly accurately to their suggested values and these are given (on a log scale) in
Table 2. This reduces the complexity of the analysis to finding plausible values for the remaining
r∗ = 7 parameters. We have taken independent uniform prior distributions for these calibration
parameters (the logged kinetic rate constants) θ, with

θi|aθi
, bθi

∼ U(aθi
, bθi

), i = 1, . . . , r∗

and used the information in Proctor and Gray (2008) to determine reasonable values for the upper
and lower limits of these distributions; see Table 3.

Therefore, suppressing dependence on the fixed hyperparameters aθi
and bθi

, the joint prior density
is

p(θ) =
r∗
∏

i=1

p(θi) =
r∗
∏

i=1

(bθi
− aθi

)−1.
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4.5 Prior specification for the initial species counts

The joint probability of the states Y |θ is given by the product

p(Y |θ) =

C
∏

i=1

{

p(Y i
0 )

ni
∏

t=1

p(Y i
t |Y

i
t−1, θ)

}

, (1)

in which the conditional probabilities are determined by the dynamics of the stochastic kinetic
model. We model the unobserved initial state of the system in cell i using independent Poisson
distributions

Y i
0,j |λj ∼ Po(λj), j = 1, . . . , 10.

Note that this imposes the same prior distribution for the initial state in each of the C cells.
Therefore the marginal probability of the initial state of the system for cell i is

p(Y i
0 ) =

C
∏

i=1

10
∏

j=1

p(Y i
0,j) =

C
∏

i=1

10
∏

j=1

λ
Y i
0,j

j e−λj/Γ(Y i
0,j + 1).

The means of these Poisson priors (λj) have been chosen using information in the literature
(e.g. Proctor and Gray (2008)) on the most likely initial state of the system: (λ1, . . . , λ10) =
(6, 6, 96, 11, 11, 1, 201, 1, 1, 76).

5 Posterior computation

Inferences about the values of the unknown quantities in the model are based on their joint posterior
distribution, which has density proportional to the product of the joint prior density and the
likelihood, that is

p(θ, φ, Y, ζy|zc, zy) ∝ p(θ)p(φ)p(Y |θ)p(ζy|Y, φ)p(zc|Y, φ)p(zy|ζy, zc), (2)

where all the terms on the right-hand side of (2) have been described previously.

Posterior computation is made difficult by the intractability of the conditional probabilities
p(Y i

t |Y
i
t−1, θ) from the stochastic kinetic model, which enter the Bayesian model through Equa-

tion (1). It is possible to avoid computation of the p(Y i
t |Y

i
t−1, θ) by constructing an algorithm which

uses realisations from the stochastic kinetic model; see, for example, Henderson et al. (2009). How-
ever, such algorithms require the generation of many model realisations and so, for this approach
to work well, each model realisation must be quick to simulate. Unfortunately, this is not the case
for the stochastic kinetic model considered here. For example, simulating Y i

t |Y
i
t−1, θ for some values

of Y i
t−1 and θ takes a matter of milliseconds, yet for other values it can take several seconds, even

on a reasonably powerful computer (2.2GHz, 8GB RAM) using an efficient C implementation of
Gillespie’s exact discrete event simulation algorithm.

One way of dealing with the slow simulation speed of the Gillespie algorithm is to use a fast
approximate simulation algorithm, such as the τ -leap method; see Wilkinson (2006). Here there
is a trade-off between simulation speed (and therefore speed of the inference procedure) and the
exactness of the inferences made. Initial investigations with some fast approximate algorithms
revealed that none were able to provide the sort of improvements in simulation speed needed for
this analysis.

An alternative to using an approximate simulation algorithm is to use an exact simulation algorithm
for an approximation to the stochastic kinetic model. Various authors have sought solutions along
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these lines. For example, Golightly and Wilkinson (2005) use an approximation based on the
chemical Langevin equation (CLE; Gillespie, 2000), namely, the diffusion process that approximates
most closely the Markov jump process defined by the stochastic kinetic model. These authors build
on this work (in Golightly and Wilkinson (2006b)) and demonstrate how a combination of particle
filtering and MCMC methods can be used to sample from the posterior distribution of the rate
constants given the CLE approximation model and data observed partially, discretely and with
error.

A different strategy, and one we adopt in this chapter, is to emulate the stochastic kinetic model.
We do this by constructing a tractable approximation to the conditional probability distribution
of the stochastic kinetic model, p(Y (t + τ)|Y (t), θ), where Y (t) denotes the state of the system
at any particular time t (seconds), and Y (t + τ) denotes the state of the system τ seconds in
the future. For the data in this application, the time step is τ = 1200 seconds. The approximate
probability distribution, which we refer to as the emulator, is denoted by p⋆(·|·, θ), and the objective
is to use it in place of the probability distribution p(·|·, θ) in Equation (1). The construction of
emulators is commonplace in the computer models literature where complex deterministic functions
are modelled via tractable stochastic processes; see Kennedy and O’Hagan (2001), O’Hagan (2006),
Santner et al. (2003), and references therein. In this application, the function to be emulated
is discrete, multivariate and stochastic. The emulator is constructed by fitting simple statistical
models to output obtained by simulating the stochastic kinetic model for τ seconds from a designed
collection of values of the model inputs {Y (t), θ}. The approach to fitting the emulator that we
follow is described in more detail in Appendix B.

Based on the emulator, the joint probability of the states is

p⋆(Y |θ) =

C
∏

i=1

{

p(Y i
0 )

ni
∏

t=1

p⋆(Y i
t |Y

i
t−1, θ)

}

,

and this replaces the exact probability p(Y |θ) in (2) to give an expression for the posterior density
based on this approximation, namely

p⋆(θ, φ, Y, ζy|zc, zy) ∝ p(θ)p(φ)p⋆(Y |θ)p(ζy|Y, φ)p(zc|Y, φ)p(zy|ζy, zc). (3)

Here the superscript ⋆ distinguishes probabilities (or densities) based on the emulator approximation
rather than the true stochastic kinetic model. Also note that all terms in the right-hand side of (3)
are tractable and so this formulation leads to a workable solution.

Sampling from the posterior distribution (3) is possible using a Metropolis-Hastings (MH) within
Gibbs MCMC scheme. In the scheme, we update each set of unknown quantities in turn from
their full conditional distribution by using a MH step if the full conditional distribution cannot be
sampled from directly. The MCMC algorithm is constructed so that the distribution of sampled
values tends to the posterior distribution as the number of iterations increases. The sampled values
are then used to approximate features of the posterior distribution. For computational reasons, we
find it beneficial to work with transformed values of the calibration parameters θ. Specifically we
work with transformed parameters Λ = (Λ1, . . . ,Λr∗), where Λi = log(θi − aθi

)− log(bθi
− θi). This

corresponds to a logit transformation of θi after it has been re-scaled to lie on the unit interval. It
follows that the Λi have independent (standard) logistic distributions, and therefore that the joint
density of Λ is

p(Λ) =

r∗
∏

i=1

p(Λi) =

r∗
∏

i=1

exp(Λi)

{1 + exp(Λi)}
2
.

The sampled values of Λi are simply back transformed to give sampled values of θi.

In outline, one iteration of the MCMC scheme entails the following steps:
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• Update Λ| · · · by using a MH step with a symmetric multivariate normal random walk pro-
posal, centred at the current sampled value. The acceptance ratio for the proposed move
from Λ to Λ̃ is

AΛ =
p(Λ̃)

p(Λ)

p⋆(Y |θ̃)

p⋆(Y |θ)
,

where, for instance, θi = {aθi
+ bθi

exp(Λi)}/{1 + exp(Λi)}.

• Update φ| · · · by proposing a new value φ̃ from a proposal distribution with density q(φ̃|φ).
The acceptance ratio for the proposed move from φ to φ̃ is

Aφ =
p(φ̃)

p(φ)

p(ζy|Y, φ̃)p(zc|Y, φ̃)

p(ζy|Y, φ)p(zc|Y, φ)

q(φ|φ̃)

q(φ̃|φ)
.

• Update YS\{6,7}| · · · , where S = {1, 2, . . . , 10} as follows. Here YS\{6,7} denotes the values of
the states (in each cell) excluding those for species 6 (ATMA) and 7 (ATMI). Species 6 and 7
are treated separately as their sum is fixed throughout the time course.

For cells i = 1, . . . , C:

– for t = 0, propose independent Poisson candidate values Ỹ i
t,j|Y

i
t,j ∼ Po(Y i

t,j + aY ) for
j ∈ S \ {6, 7}, where aY > 0 is a positive tuning constant which is chosen to be small.
Denote the proposal probability by q(Ỹ i

t,i|Y
i
t,i). The acceptance ratio for the proposed

move from Y i
t,S\{6,7} to Ỹ i

t,S\{6,7} is

AY i
0,S\{6,7}

=

∏

j∈S\{6,7} p(Ỹ i
t,j)

∏

j∈S\{6,7} p(Y i
t,j)

p⋆(Y i
t+1|Ỹ

i
t , θ)

p⋆(Y i
t+1|Y

i
t , θ)

∏

j∈S\{6,7} q(Y i
t,j|Ỹ

i
t,j)

∏

j∈S\{6,7} q(Ỹ i
t,j|Y

i
t,j)

,

where Ỹ i
t denotes the vector of proposed candidate values together with the current

values for species 6 and 7.

– For t = 1, . . . , n− 1, propose independent Poisson candidate values Ỹ i
t,j |Y

i
t,j ∼ Po(Y i

t,j +

aY ) for j ∈ S \ {6, 7}. Denote the proposal probability by q(Ỹ i
t,j |Y

i
t,j). The acceptance

ratio for the proposed move from Y i
t,S\{6,7} to Ỹ i

t,S\{6,7} is

AY i
t,S\{6,7}

=
p⋆(Ỹ i

t |Y
i
t−1, θ)

p⋆(Y i
t |Y

i
t−1, θ)

p⋆(Y i
t+1|Ỹ

i
t , θ)

p⋆(Y i
t+1|Y

i
t , θ)

p(zi
t,c|Ỹ

i
t , φ)p(ζi

t,y|Ỹ
i
t , φ)

p(zi
t,c|Y

i
t , φ)p(ζi

t,y|Y
i
t , φ)

∏

j∈S\{6,7} q(Y i
t,j |Ỹ

i
t,j)

∏

j∈S\{6,7} q(Ỹ i
t,j |Y

i
t,j)

.

– For t = n, propose independent Poisson candidate values Ỹ i
t,j |Y

i
t,j ∼ Po(Y i

t,j + aY ) for

j ∈ S \ {6, 7}. Denote the proposal probability by q(Ỹ i
t,j|Y

i
t,j). The acceptance ratio for

the proposed move from Y i
t,S\{6,7} to Ỹ i

t,S\{6,7} is

AY i
n,S\{6,7}

=
p⋆(Ỹ i

t |Y
i
t−1, θ)

p⋆(Y i
t |Y

i
t−1, θ)

p(zi
t,c|Ỹ

i
t , φ)p(ζi

t,y|Ỹ
i
t , φ)

p(zi
t,c|Y

i
t , φ)p(ζi

t,y|Y
i
t , φ)

∏

j∈S\{6,7} q(Y i
n,j|Ỹ

i
t,j)

∏

j∈S\{6,7} q(Ỹ i
t,j |Y

i
t,j)

.

• For cells i = 1, . . . , C, update Y i
t,{6,7}| · · · for t = 0, 1, . . . , ni as follows. First, for t = 0 and

j = 6, 7, propose independent Poisson candidate values Ỹ i
t,j|Y

i
t,j ∼ Po(Y i

t,j + aY ). Denote

these proposal probabilities by q(Ỹ i
0,j |Y

i
0,j). This gives a proposal for the new sum of the two

species in the ith cell, Ñ i = Ỹ i
t,6 + Ỹ i

t,7. Then for t = 1, . . . , ni propose

Ỹ i
t,6|Y

i
t,6, Y

i
t,7, Ñ

i ∼ Bin(Ñ i, (Y i
t,6 + aY6

)/(Y i
t,6 + Y i

t,7 + aY6
))
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where aY6
> 0 is a positive tuning constant which is chosen to be small. Then set Ỹ i

t,7 =

Ñ i − Ỹ i
t,6. Denote these proposal probabilities by q(Ỹ i

t,6|Y
i
t,6). The acceptance ratio for the

proposed move from Y i
{6,7} to Ỹ i

{6,7} is

AY i
{6,7}

=
∏

j∈{6,7}

{

p(Ỹ i
0,j)

p(Y i
0,j)

q(Y i
0,j |Ỹ

i
0,j)

q(Ỹ i
0,6|Y

i
0,6)

}

ni
∏

t=1

{

p⋆(Y i
t |Ỹ

i
t−1, θ)

p⋆(Y i
t |Y

i
t−1, θ)

q(Y i
t,6|Ỹ

i
t,6)

q(Ỹ i
t,6|Y

i
t,6)

}

.

Note that there is no contribution from the data in the above acceptance ratio since species
6 and 7 do not contribute to the total amounts of p53 or Mdm2.

• Update ζy| · · · by proposing a candidate ζ̃max
y using a symmetric multivariate normal random

walk centred at the current value ζmax
y = {(ζ1

y)max, . . . , (ζC
y )max}, the density of which is

denoted q(ζ̃max
y |ζmax

y ). Then, for each cell i, set

ζ̃i
t,y = zi

t,y

(ζ̃i
y)

max

(zi
c)

max
, t = 1, . . . , ni.

The acceptance probability for the proposed move from ζy to ζ̃y is

Aζy =
p(ζ̃y|Y, φ)

p(ζy|Y, φ)

p(zy|ζ̃y, zc)

p(zy|ζy, zc)

q(ζy|ζ̃y)

q(ζ̃y|ζy)
.

The proposal ratio q(ζy|ζ̃y)/q(ζ̃y|ζy) = 1 as the proposal is symmetric. The term p(zy|ζ̃y, zc)
checks the validity of the proposal for ζy, in the sense that it is compatible with the observed
zy. Because of the form of the proposal, ζ̃y is always compatible with zy as we use zy as part
of the proposal. Therefore the acceptance ratio reduces to

Aζy =
p(ζ̃y|Y, φ)

p(ζy|Y, φ)
.

6 Inference based on single cell data

We begin our analysis by studying the time-course information in a single cell. This cell has been
chosen at random and is the third cell from the second movie. The time-course covers 38 hours
and 40 minutes with data sampled every 1200 seconds, giving 116 time points; see Figure 1.

Several independent Markov chains were simulated from different starting points using the MCMC
algorithm outlined in the previous section (with C = 1). We report here the results of one of these
chains. The MCMC algorithm was run for 250,000 iterations after discarding an initial 250,000
iterates as burn-in. The output was then thinned to remove some of the high autocorrelation by
taking every 25th iterate, leaving 10,000 sampled values from the posterior distribution on which
to base inferences.

Figure 2 shows density histograms of the MCMC output for the model calibration parameters.
Recall that each of these parameters has been given a constant (uniform) prior density. Estimates
of posterior means and standard deviations are given in Table 4. Clearly, uncertainty regarding all
seven model calibration parameters has reduced and the ranges of plausible values have narrowed
significantly. An image plot representing the posterior correlations between pairs of calibration
parameters is displayed in Figure 3. It shows that several pairs of parameters are highly correlated
and, in particular, there is a strong positive correlation between kactATM and kinactATM and a
strong negative correlation between kdephosp53 and kphosMdm2.
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Figure 2: Model calibration parameters: marginal posterior densities.
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Figure 3: Model calibration parameters: posterior correlations.
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Index Parameter name Mean Standard deviation

1 kactATM -16.314 0.3269
2 kinactATM -8.320 0.3496
3 kphosp53 -13.599 0.0030
4 kdephosp53 -8.996 0.0001
5 kphosMdm2 2.071 0.0255
6 kdephosMdm2 -8.977 0.0256
7 krepair -13.813 0.0087

Table 4: Model calibration parameters: posterior means and standard deviations.
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Figure 4: Marginal posterior densities of the measurement error precision φ (left panel) and the
true maximum value in the yellow (Mdm2) channel for cell 3, (ζ3

y)max (right panel). The marginal
prior density for φ is shown by the grey curve.

Figure 4 displays a histogram of the sampled values from the marginal posterior distributions of
the measurement error precision φ and the true maximum value in the yellow (Mdm2) channel,
(ζ3

y)max. The posterior density for φ is fairly similar to its prior density, indicating that the data
have not been particularly informative about likely values of φ. The true maximum value for Mdm2,
(ζ3

y)max, has posterior mean 330.8 and equal-tailed 95% credible interval (310.1, 352.7). Note that
these values are considerably larger than the observed scaled maximum value of 145.0667.

We can gain some confidence in the validity of our fitted model by comparing predictive simulations
from the model with the observed data z. This model validation by predictive simulations is
advocated by Gelman et al. (2004). Figure 5 shows a plot of the time-course data for cell 3 (circles),
together with shading representing point-wise equal-tailed 95% posterior predictive probability
intervals, and a line representing the estimated posterior predictive mean. From Figure 5 we see
that the model fits the data reasonably well. There is room for improvement in the fit of the p53
data, in terms of both the predictive mean, and the predictive variance. Despite the fact that the
Mdm2 data have been normalised, we still achieve an acceptable fit to the Mdm2 data, although
the predictive mean lies above the majority of the datapoints.
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Figure 5: Time course data (circles) together with (posterior) predictive means (lines) and equal-
tailed point-wise 95% predictive intervals (shading); (a) p53 fluorescence and (b) Mdm2 fluores-
cence.

7 Inference based on multiple cells

Although it is useful to look at what is learned about the model calibration parameters and the
other unknown quantities in the model from the data on a single cell, it is natural to try and use
all the available experimental data (or as much of it as is feasible) in order to make inferences.

A full Bayesian calibration of the model based on all 141 available cells is not computationally
feasible at this time so here we look at all the cells in one particular movie. We chose the second
movie, which consists of seven cells. The seven time-courses are all of different lengths, ranging
from 4 hours 20 minutes (for cell 1) to 41 hours (for cell 2), and are shown in Figure 1.

Several independent Markov chains were simulated from different starting points, using the MCMC
algorithm outlined in Section 5, with C = 7. We report here the results of one of these chains.
The MCMC algorithm was run for 100,000 iterations after discarding an initial 150,000 iterates as
burn-in. The output was thinned by taking every 25th iterate, leaving a sample of 4,000 iterates
on which to base inferences.

Figure 6 displays histograms of the sampled values of the model calibration parameters. A compar-
ison of this figure with Figure 2 shows that the marginal inferences for these parameters based on
all seven cells are not too dissimilar to those based only on the third cell. However these densities
are less butted up against the boundaries imposed by the prior distributions than those obtained
in the single cell analysis. Also the data from the additional six cells have helped to reduce further
the uncertainty about these parameters. These comments are reinforced by a comparison of the
values for the posterior means and standard deviations in the seven cell analysis, given in Table 5,
with those for the single cell analysis in Table 4. Overall, the data have dramatically reduced
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Figure 6: Model calibration parameters: marginal posterior densities based on all seven cells from
movie 2.

Index Parameter name Posterior (prior)
Mean Standard deviation

1 kactATM -16.621 (-9.210) 0.1015 (5.1962)
2 kinactATM -8.982 (-7.601) 0.1046 (5.1962)
3 kphosp53 -13.600 (-7.601) 0.0004 (3.4641)
4 kdephosp53 -8.996 (-4.147) 0.0002 (2.8000)
5 kphosMdm2 2.086 (-2.761) 0.0013 (2.8000)
6 kdephosMdm2 -8.990 (-4.147) 0.0045 (2.8000)
7 krepair -13.817 (-10.820) 0.0028 (1.7321)

Table 5: Model calibration parameters: prior and posterior means and standard deviations based
on all seven cells in movie 2.
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Figure 7: Model calibration parameters: posterior correlations based on all seven cells from movie
2.

uncertainty about the model calibration parameters. In comparison to their prior means, the data
have been strongly suggestive that the kinetic rate constants are around two (or more) orders of
magnitude smaller (on the original non-logged scale), with the exception of kphosMdm2 which is
around two orders of magnitude larger.

An image plot representing posterior correlations between pairs of calibration parameters is shown
in Figure 7. This plot reveals that incorporating the data on all seven cells has increased the already
high posterior correlation between kphosp53 and kdephosp53. In addition, it highlights the strong
negative posterior correlation between kdephosp53 and kphosMdm2 that was found in the single
cell analysis. Further, it now shows that there is a strong negative posterior correlation between
kphosp53 and kphosMdm2 that was not evident in the single cell analysis.

Figure 8 displays histograms of sampled values from the marginal posterior distribution of the
measurement error precision φ and the true maximum values of fluorescence in the yellow channels
for each of the seven cells. Our inferences about the value of the measurement error precision φ have
changed considerably after incorporating data from multiple cells into the analysis. In particular,
the data from all seven cells have been much more informative about φ than that from the third
cell alone, suggesting that the measurement process is much less precise than expected a priori,
though this could simply be a comment on an overall lack of fit of the model. Inferences on the
maximum fluorescence values in the yellow (Mdm2) channels (Figure 8, panels (b)-(h)) confirm
that they take posterior mean values, ranging from 294.1 for cell 4 to 495.3 for cell 5, which are
much larger than their observed scaled maximum values.

How well does the model fit the data? Figures 9 and 10 show the data for the seven cells together
with summaries of the posterior predictive distributions obtained by sampling replicate data from
the calibrated model (in a similar fashion to Figure 5). The fit of the model to the data on
cells 1 and 3 seems satisfactory, but the fit to data on the other cells shows considerable room
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Figure 8: Marginal posterior densities of (a) the measurement error precision φ and (b)-(h) the
true maximum values in the yellow (Mdm2) channel for cells 1 to 7.

for improvement. The predictive means are almost always larger than the observed datapoints,
and there is considerable predictive uncertainty. The lack of fit in these predictive plots goes some
way to explain the preference for small values of the measurement error precision φ. However,
the lack of fit may not be too surprising given the inferential challenges posed by the scaling and
normalisation of the data.

Another issue that may go some way to explaining the smaller than anticipated measurement error
precision (suggestive of some lack of fit) is the distinction between endogenous p53 and Mdm2
and the exogenous fluorescent fusion proteins that are actually measured. The distinction between
these is ignored in the model as it is argued in Geva-Zatorsky et al. (2006) that they should
behave similarly in vivo. However, ideally these different species would be modelled separately in
the stochastic kinetic model and the data linked only to the fusion proteins. Explicit modelling of
fusion proteins separately from the targets being reported on is currently in its infancy, and is the
subject of on-going modelling work.

8 Further Discussion

In this chapter we have demonstrated how it is possible to develop computationally intensive
MCMC-based procedures for conducting a Bayesian analysis of an intra-cellular stochastic systems
biology model using single-cell time course data. The information provided by this analysis is very
rich. However, there are clearly several extensions of this work that merit further study. First, the
model for multiple cells would benefit from the introduction of a random-effects layer in order to
allow for the separation of inter- and intra-cell variation. Second, an integrated analysis allowing the
comparison of competing model structures would be extremely valuable. For example, it is possible
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Figure 9: Time course data for p53 (circles) together with posterior predictive means (lines) and
equal-tailed point-wise 95% predictive intervals (shading).
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Figure 10: Time course data for Mdm2 (circles) together with posterior predictive means (lines)
and equal-tailed point-wise 95% predictive intervals (shading).
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to develop an alternative (competing) model by replacing the role of ATM with ARF. In this
alternative model, the species ATMA and ATMI are removed, along with the reactions involving
these species. The species p53 P and Mdm2 P are also removed as ARF works by a different
mechanism to phosphorylation. ARF is initially set to zero but its level increases in the presence of
damaged DNA. ARF binds to Mdm2 with a higher affinity than p53 and so levels of unbound p53
increase. This results in an increase of p53 transcriptional activity and so it is reasonable to predict
an increase in levels of Mdm2 mRNA, followed by an increase in Mdm2. Since it is known that ARF
increases the degradation rate of Mdm2, this model assumes that Mdm2 which is bound to ARF
is degraded at a higher rate than normal. ARF is also degraded which allows the damage signal
to decline as the damaged DNA is repaired. However, this mechanism seems to play a minor role
in response to irradiation compared to ATM and so it is generally believed that this model is less
appropriate for the experimental data. Nevertheless, there is genuine interest in knowing whether
the data provide support for the ATM-based model considered here in favour of an ARF-based
model considered less plausible by some biological experts. Extension of the algorithm to allow
computation of the relevant Bayes factor ought to be straightforward in principle, but is likely to
be quite difficult computationally.

More generally, the problem of constructing MCMC algorithms for models of this type is currently
expensive in terms of both development and computation time. It is therefore natural to seek more
straightforward and more automated approaches. Sequential Monte Carlo approaches may well
offer considerable advantages in this area, given the Markovian nature of the underlying processes.
Such sequential algorithms have already been considered for models of this type (Golightly and
Wilkinson, 2006b), but considerable work remains to be done before they can be applied routinely
to this general class of problems. Moreover, the normalisation that has been applied to the data
described in this chapter means that these data do not lend themselves well to analysis via sequential
methods. These and other related problems are the subject of current study within the CaliBayes
project (http://www.calibayes.ncl.ac.uk).
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Appendices

A: Broader Context and Background

The problem considered in this chapter is a special case of the general problem of conducting
inference for the parameters of a Markovian stochastic process model using time course data.
Although it is possible to consider stochastic processes that are intrinsically non-Markovian, it
turns out that the Markovian class is very large, covering the vast majority of models that are
derived from physical considerations. The class of Markov process models that may be considered
is itself very large, but can be further categorised into sub-classes in various ways. It turns out that
the most important attribute for classification purposes is whether the underlying stochastic process
model is naturally formulated in discrete or continuous time. Time course data is typically discrete
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in time, but as is the case in this chapter, it is nevertheless often natural to formulate the model
in continuous time. Discrete time models have been studied more widely as they are technically
simpler to work with, and often quite adequate if prediction is more important than parameter
inference. The class of discrete time models can be further divided depending on whether the state
space of the discrete time stochastic process is discrete or continuous. If it is discrete, then the
model most likely falls into the general class of hidden Markov models (HMMs). Bayesian inference
for HMMs is a well-studied problem, with Scott (2002) providing a comprehensive review and
details of computation; also see Boys and Henderson (2004) and Fearnhead (2006). Alternatively,
if the state space is continuous, then the model is often referred to as a linear or non-linear state
space or dynamic model. The linear case is referred to as the dynamic linear (state space) model
(DLM), and is studied in detail in West and Harrison (1997).

Clearly the problem considered in this chapter falls into the class of problems concerned with pa-
rameter inference for continuous time Markov process models. Here again it is helpful to subdivide
this class depending on the state space of the model. If the state space is discrete and finite, then the
model is a continuous time hidden Markov model (CTHMM), and can be tackled using techniques
very similar to those used for discrete time HMMs (Fearnhead, 2008). If the state space is infinite,
then inference is less straightforward (Fearnhead and Meligkotsidou, 2004). A very large class of
such models (including stochastic kinetic models, and non-spatial Markovian stochastic epidemic
models) is covered (in principle) by the algorithms developed in Boys et al. (2008), though the
techniques described there do not scale well to problems of realistic size and complexity. For large
and complex problems, several alternative possibilities exist. One approach is to exploit stochastic
emulators of the process of interest, as advocated in Henderson et al. (2009) and this chapter.
Another possibility is to exploit a combination of sequential Monte Carlo (Doucet et al., 2001)
methods and likelihood-free MCMC (Marjoram et al., 2003). A rather different solution to the
problem is to approximate the discrete state continuous time model with a continuous state model
(the diffusion approximation), and then use methods for models described by stochastic differential
equations (Golightly and Wilkinson, 2005).

Markovian models continuous in both time and state are typically described by stochastic differen-
tial equations. Inference for stochastic differential equation models is a rather technical topic, and
problematic due to the fact that “obvious” MCMC algorithms are subject to pathological mixing
problems. An excellent introduction to the topic, describing the essential structure of basic algo-
rithms, the inherent problems with the obvious approach, and an elegant solution for the univariate
case, is given in Roberts and Stramer (2001). An effective sequential Monte Carlo algorithm for the
multivariate case is described in Golightly and Wilkinson (2006a) and applied to realistic systems
biology scenarios in Golightly and Wilkinson (2006b). An effective global MCMC algorithm is de-
scribed in Golightly and Wilkinson (2008) and more generally in Golightly and Wilkinson (2009).
See Wilkinson (2006) and Wilkinson (2009) for further details of stochastic process models in the
context of systems biology.

B. Construction of an emulator

Our emulator is a tractable approximation to the conditional probability distribution given by
p(Y (t + τ)|Y (t), θ), where τ = 1200 seconds is the time difference between each of the datapoints.
It is constructed based on methodology developed in the deterministic computer models literature
and successfully applied to a stochastic computer model in Henderson et al. (2009). In essence, we
model the joint distribution by carefully chosen univariate marginal and conditional distributions,
each having the form of a standard probability distribution, but whose parameters are smooth
functions of the model calibration parameters and other additional inputs.

In order to construct the emulator, the stochastic kinetic model was forward simulated for τ = 1200
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seconds from 2000 randomly chosen state vectors Y (t) and parameter values θ, and the output in the
form of the values of the 10 species was recorded. The 2000 design points were generated by using
an approximate maximin Latin hypercube sample. Latin hypercube sampling was popularized as a
strategy for generating input points for computer experiments by McKay et al. (1979). A maximin
Latin hypercube sample is a Latin hypercube sample which maximises the minimal distance between
pairs of design points. Maximin Latin hypercube designs are described in more detail in Santner
et al. (2003).

As the model we are approximating is stochastic rather than deterministic we ran the model
independently 100 times at each of the 2000 design points. The total simulation took around 3
days of CPU time. This was split over 50 2.2GHz processors, and so took less than two hours of
real time.

The main complicating issue is that the conditional distribution Y (t + τ)|Y (t), θ is 10-dimensional.
A common practice when emulating multivariate outputs is to build an emulator for each output
independently of all the others (although there have been recent developments on the construction
of dynamic, multivariate emulators (Conti and O’Hagan, 2007; Conti et al., 2007)). Independent
emulators naturally ignore any correlations between the outputs and so are likely to be poorer
approximations to the underlying stochastic kinetic model when such correlations exist. The ap-
proach we have used in this chapter is to construct an emulator for each univariate component of
the factorisation of the joint conditional probability of the form

p(Y (t + τ)|Y (t), θ) = p(Y1(t + τ)|Y (t), θ) × p(Y2(t + τ)|Y1(t + τ), Y (t), θ)

× · · · × p(Y10(t + τ)|Y1(t + τ), . . . , Y9(t + τ), Y (t), θ).

This reduces the task to that of fitting 10 univariate emulators to the output of the stochastic kinetic
model. There is no natural ordering of the 10 species in the factorisation of the joint distribution,
and so we focus on a particular ordering based on computational considerations. Because of the
discrete nature of the output from the stochastic kinetic model we model the univariate component
probabilities using Poisson distributions, with species 6 (ATMA) and 7 (ATMI) being modelled using
a binomial distribution because their sum is constrained. By looking at the means and variances
of the simulator output over the 100 replications we found that the Poisson assumption was not
totally appropriate. However, since the output showed both over- and under-dispersion relative to
the Poisson we decided to stick with the Poisson as a highly tractable compromise. The parameters
of the Poisson or binomial distributions were assumed to be functions of the covariates (which are
the species and model calibration parameters that they are conditioned on). For example, we model

Y10(t + τ)|Y1(t + τ), . . . , Y9(t + τ), Y (t), θ ∼ Po(exp{f(Y1(t + τ), . . . , Y9(t + τ), Y (t), θ)}),

where the Poisson mean is a function of the covariates. We have found that taking the function f(·)
to be a low-order polynomial (quadratic or cubic) in the covariates to be adequate. In particular, we
have found for this particular example that no improvement in fit (to some independent validation
data) was obtained by additionally allowing for code uncertainty through inclusion of a Gaussian
process term in f(·). It would appear that allowing for stochastic variation in the output through
our construction of simple probability models can account for several of the standard sources of
uncertainty encountered in the analysis of complex computer models and outlined in Section 2.1
of Kennedy and O’Hagan (2001). Each component distribution in the resulting emulator is either
Poisson or binomial with parameters that are deterministic functions of the appropriate set of
covariates. Therefore, we have a tractable approximation to the joint distribution of interest which
we denote p⋆(·|·, θ).
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likelihoods. Proceedings of the National Academy of Sciences, USA, 100, 15,324–15,328.

McKay, M. D., Beckman, R. J. and Conover, W. J. (1979) A comparison of three methods for se-
lecting values of input variables in the analysis of output from a computer code. Technometrics,
21, 239–245.

Mendrysa, S. M. and Perry, M. E. (2000) The p53 tumor suppressor protein does not regulate ex-
pression of its own inhibitor, MDM2, except under conditions of stress. Molecular Cell Biology,
20(6), 2023–2030.

Nelson, D. E., Ihekwaba, A. E. C., Elliott, M., Johnson, J. R., Gibney, C. A., Foreman, B. E.,
Nelson, G., See, V., Horton, C. A., Spiller, D. G. and et al (2004) Oscillations in NF-kappaB
signaling control the dynamics of gene expression. Science, 306(5696), 704–708.

O’Hagan, A. (2006) Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering
and System Safety, 91, 1290–1300.

Pereg, Y., Shkedy, D., de Graaf, P., Meulmeester, E., Edelson-Averbukh, M., Salek, M., Biton, S.,
Teunisse, A. F. A. S., Lehmann, W. D., Jochemsen, A. G. and et al (2005) Phosphorylation
of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage.
Proceedings of the National Academy of Sciences, 102(14), 5056–5061.

Proctor, C. J. and Gray, D. A. (2008) Explaining oscillations and variability in the p53–Mdm2
system. BMC Systems Biology, 2, 75.

Roberts, G. O. and Stramer, O. (2001) On inference for non-linear diffusion models using
Metropolis-Hastings algorithms. Biometrika, 88(3), 603–621.

Santner, T. J., Williams, B. J. and Notz, W. I. (2003) The Design and Analysis of Computer
Experiments. New York: Springer.

Scott, S. L. (2002) Bayesian methods for hidden Markov models: recursive computing in the 21st
Century. Journal of the American Statistical Association, 97, 337–351.

Thut, C. J., Goodrich, J. A. and Tjian, R. (1997) Repression of p53-mediated transcription by
MDM2: a dual mechanism. Genes & Development, 11(15), 1974–1986.

Tiana, G., Krishna, S., Pigolotti, S., Jensen, M. H. and Sneppen, K. (2007) Oscillations and
temporal signalling in cells. Physical Biology, 4(2), R1–R17.

Vogelstein, B., Lane, D. and Levine, A. J. (2000) Surfing the p53 network. Nature, 408(6810),
307–310.

West, M. and Harrison, J. (1997) Bayesian Forecasting and Dynamic Models. New York: Springer,
2nd edn.

26



Wilkinson, D. J. (2006) Stochastic Modelling for Systems Biology. Boca Raton, Florida: Chapman
& Hall/CRC.

——— (2009) Stochastic modelling for quantitative description of heterogeneous biological systems.
Nature Reviews Genetics. In press.

Zhang, L. J., Yan, S. W. and Zhuo, Y. Z. (2007) A dynamical model of DNA-damage derived
p53-Mdm2 interaction. Acta Physica Sinica, 56(4), 2442–2447.

Zhang, Y., Xiong, Y. and Yarbrough, W. G. (1998) ARF promotes MDM2 degradation and stabi-
lizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
Cell, 92(6), 725–734.

27


