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SUMMARY

This paper is concerned with the modelling of the latent structure of a Bayesian spatio-temporal model
with a view to improving parameter inference, smoothing and prediction. The equilibrium distribution
of a time stationary system will be examined, paying particular attention to edge-effects and the effect
of grid-coarsening. In order to develop an effective MCMC algorithm, the latent process is integrated
out of the model. These techniques will be illustrated using North Atlantic ocean temperature data.
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1. INTRODUCTION

This paper concerns Bayesian inference for dynamic lattice-Markov models with a latent process
of Spatio-Temporal Auto-Regressive (STAR) form (Cressie 1991, Pfeifer and Deutsch 1980),
observed irregularly, and with error. Attention focuses on the 2+1-D case. A point at location s
and time t+1 is influenced by the point s and 8 neighbours at time t. Well-known “edge-effects”
destroy the spatial stationarity of finite lattices, and this can lead to biased inferences. In order
to reduce bias, the autoregressive weights at the edges are adjusted using multivariate Normal
methods since the “usual” solution of embedding the area of interest into a much larger lattice
is computationally prohibitive.

The problem of estimating the model parameters from data is explored. Gibbs and block-
Gibbs sampling methods suffer from poor mixing due to the high dependence between the
parameters and the latent process. Integrating out the latent process leads to an MCMC scheme
with good mixing properties. Other approaches to hierarchical modelling in a similar context
can be found in Wikle et al. (1998). Our technique is applied to Atlantic sea temperatures
measured at a depth of 100m, within the region 20 to 30 degrees latitude and −80 to −20
degrees longitude, for 1978–1988. The data is collected by ships trawling the area and thus
occurs irregularly within space and time.

The method described above is computationally intensive. One method for reducing the
computation time is to consider modelling on a coarser grid (Higdon et al. 2003); here a grid
based on one in four spatial locations is considered. The coarse model has second-order time
dependence, but the parameters have the same interpretation as for the fine model.

2. THE MODEL

Consider a Dynamic Linear Model (DLM) which can evolve through space and time (West
and Harrison 1997). The model is described using two equations:
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(i) System equation

θ(t+1) | θ(t) ∼ N(Gθ(t),W ), W = τ−1
s I

(ii) Observation equation

X(t) | θ(t) ∼ N(Ftθ
(t), V ), V = τ−1

o I

Where θ(t) = (θt1, θ
t
2, . . . , θ

t
n) is the vector of latent points in space at time t. Point θ(t)

i represents
location i at time t and G is the matrix which captures the evolution of the the points in space
through time. Corresponding to each vector θ(t) we have a vector of observations X(t), related
by the observation matrix Ft. Typically Ft will consist of a subset of rows of the identity matrix
corresponding to the points in space for which data is available at time t.

2.1. 2+1-D Model

Consider the case where we have data on a 2-dimensional regular square lattice in space evolving
through discrete time. Initialise the latent structure as a grid of independent spatial observations
at time t = 0. For t > 0, the latent points at time t + 1 depend on a linear combination of the
points at time t. In this model, the vector of latent points θ(t) is defined to be
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The obvious first order (five-neighbour) model suffers badly from lattice co-ordinate system
artifacts. These can be reduced by considering a second order (nine-neighbour) model with
carefully chosen weights. This corresponds to a dynamic space-time version of the “second
order” neighbour system described by Besag (1974). The model is defined by
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where
∑

i,j pij = 1. This model therefore has five free parameters. The three free pij parameters
control the degree of anisotropy, α is an autoregressive parameter, and τs controls the degree of
innovation noise. Stationarity of this system for α ∈ [0, 1) is established in Pfeifer and Deutsch
(1980). The precise form of the weight structure is motivated by considering an additional
“hidden” layer at time t+1/2 which is also a square lattice, but perfectly offset from the lattices
at times t and t + 1. If a first order (four-neighbour) model with edge weights pij is imposed
on the full lattice structure, marginalising out the hidden layer leads to model (1).

2.2. Correcting for Edge-effects

This paper considers only the isotropic case of the model defined by (1) with weights pij = 1/4
giving
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The above equation only defines the distribution of the internal nodes. Along the edges and
at the corners of the system some neighbours are missing. Standard approaches either simply
drop terms corresponding to missing neighbours, or drop terms and then re-scale the remaining
weights so that they sum to one. Both of these strategies lead to prominent “edge-effects” which
affect the time stationary distribution of the process in space. In the purely spatial context, such
effects are often reduced by embedding the region of interest into a much larger lattice. However,
in the spatio-temporal context, such an approach is typically computationally infeasible. In the
context of a purely spatial Gaussian Markov random fields, more sophisticated approaches to
edge weight adjustments have been examined in detail by Besag and Kooperberg (1995). Here
we adopt a related approach, better suited to the context of dynamic spatio-temporal models.
For a given value of α, the process is linear Gaussian and the time-stationary joint distribution
may be computed using numerical linear algebra. From this, the joint distribution of any edge
point and its neighbours may be computed, leading to the conditional distribution of the point
given available neighbours. This process only needs to be carried out for one typical edge node
and one typical corner node, but must be re-computed for each possible α. In practice, the
conditional distribution is computed for 100 different values of α in the range [0, 1), and linear
interpolation is used for other values of α. Note that the conditional distribution does not need
to be re-computed for every possible (α, τs) pair as the conditional distributions re-scale in the
obvious way for varying τs. Figure 1 shows an example of the time-stationary spatial variance
surface for the three described modelling strategies with α = 0.99 on a 10 × 10 spatial grid.
The first plot represents the model with no edge adjustments (dropping terms corresponding to
non-existent neighbours), the second plot has had the edge weights adjusted in a simple way
(drop terms and re-scale edge weights to sum to one), whereas the third plot shows the results
for adjusting both the edge weights and correcting the variance according to the time stationary
distribution. This latter plot is much “flatter” than the previous two, and hence closer to the
desired spatial stationarity.
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Figure 1. Spatial variance surfaces for time-stationary distributions based on un-adjusted, scaled and
adjusted edge weights.
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2.3. Coarsening the Model

For given parameter values, the model described in the previous subsection performs well for
spatio-temporal smoothing and interpolation on reasonably fine lattices. However, as the model
underlying a good MCMC scheme for parameter inference, it is computationally demanding.
One way to reduce the computing time required is to consider a coarser model resulting from
considering only one in every four points in space. Unfortunately, if the original fine model is
marginalised to the coarser lattice the resulting process is not Markovian, of any order, but can
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be well approximated by a Markov process of order 2. Each point in space and time t + 2 is
regarded as depending on the nearest neighbour at time t+ 1 and the nine neighbours at time t,
as shown in Figure 2.

Figure 2. Circled nodes represent the neighbours in a 2+1-D Coarse Model

Time t Time t + 1 Time t + 2

As is the case for the edge-effect corrections, analysis of the stationary distribution can
uncover the appropriate weights and conditional variances for the coarse model in a manner
which makes parameters consistent and share interpretations between the coarse and fine scales.

3. PARAMETER ESTIMATION

In this model we have three unknown parameters, τs, τo, andα, and latent process θ = {θ(t) | t =
1, 2, . . . , T}. Naive MCMC techniques (such as univariate Gibbs samplers) perform particularly
poorly for problems of this type due to the very high-dimensional nature of the missing data.
A two-block data augmentation scheme which alternately samples σ | θ,X and θ |σ,X , where
σ = (τs, τo, α), performs much better than the naive techniques (Wilkinson and Yeung 2002a),
but still suffers from poor mixing due to the high posterior dependence between σ and θ
(Papaspiliopoulos et al. 2003). Fortunately a sampler with good mixing properties can be
constructed by integrating θ out of problem and directly constructing a Metropolis-Hastings
scheme for σ |X .

The following independent priors are adopted for the parameters:

τi ∼ Ga(bi, di), i ∈ {s, o}, α ∼ Be(γ, δ).

The beta prior ensures that α remains between zero and one (the intuitively plausible range for
temporal dependence). Using these priors, the Metropolis-Hastings acceptance probability for
the proposed update σ∗ = (τ ∗s , τ

∗
o , α

∗) is min{1, A}, where

A =
[τ ∗s ][τ ∗o ][α∗][X |σ∗]f(σ |σ∗)
[τs][τo][α][X |σ]f(σ∗ |σ)

, (2)

and f(σ∗ |σ) is the proposal density for the parameters. If a symmetric density is used (2)
becomes

A =
[τ ∗s ][τ ∗o ][α∗][X |σ∗]
[τs][τo][α][X |σ]

.

To obtain a rapidly mixing chain, normal random walk updates on the log-precisions work well,
and so the density of the log of a gamma is used in the the acceptance probability. The marginal
log-likelihood ratio can be calculated in a variety of ways (for example, using the Kalman filter
or causal tree propagation), but is computationally demanding whatever strategy is adopted.
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The authors recommend using sparse matrix techniques, such as those implemented in the C
software library GDAGsim (Wilkinson 2001). The proposal is constructed by independently
sampling

log τ ∗o | τo ∼ N(log τo, g
−1),

log τ ∗s | τs ∼ N(log τs, g
−1),

α∗ |α ∼ N(α, e),

where e and g are Metropolis-Hastings tuning parameters. For a more detailed discussion of
the MCMC techniques which can be used for large linear models, see Wilkinson and Yeung
(2002b).

4. EXAMPLE: ATLANTIC OCEAN TEMPERATURE DATA

We illustrate these techniques with spatio-temporal data obtained from the National Oceano-
graphic Data Center (http://www.nodc.noaa.gov/). The data used in this example
were taken from a rectangular region of the Atlantic ocean 20 to 30 degrees latitude and -80
to -20 degrees longitude. Ocean station data (NANSEN) was considered for the time period
1979-1988 inclusive. Observations were indexed according to their time and location for depths
of approximately 100m. The location of the data in space and time is illustrated graphically
in Figure 3. Similar data have been analysed previously by Lavine and Loizier (1999) and
examined at one location over time. They also looked at data from a different spatial location
between 1905 and 1988, as in Higdon (1998) and Stroud et al. (2001).
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Figure 3. Sites in space for which data is available (shade indicates time)

In this example we consider a fixed α of 0.9 as there is very little information regarding α in
this data set. Expert subjective priors for all three parameters would improve on this analysis,
and should reduce the confounding between α and τs. For illustrative purposes, we adopt vague
proper prior distributions for the precisions

τs ∼ Ga(1, 0.001), τo ∼ Ga(1, 0.001)

and consider a N(0, 400−1) random walk update on each component independently. We model
the data on a 12 × 60 × 10 grid, but carry out MCMC on the coarsened version of the model,
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Table 1. Posterior means and associated standard errors from an MCMC run of 10,000 with 1,000
iterations discarded as burn-in and no thinning (conditional on α = 0.9).

Mean SD Naive SE Time-series SE

log (τs) -0.5573 0.09848 0.0010381 0.001836
log (τo) -0.8682 0.04005 0.0004222 0.000759

Table 2. Posterior quartiles for the parameters from an MCMC run of 10,000 iterations with 1,000
iterations discarded as burn-in and no thinning (conditional on α = 0.9).

2.5% 25% 50% 75% 97.5%

log (τs) -0.7477 -0.6243 -0.5582 -0.4911 -0.3613
log (τo) -0.9499 -0.8941 -0.8677 -0.8424 -0.7886

which uses a 6× 30× 10 grid. Point estimates (posterior means) of the parameters are computed
from the MCMC run, and these are then input into the fine model for smoothing/interpolation.

4.1. Results
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Figure 4. Trace and density plots for log(τs) and log(τo) with α fixed at 0.9, based on 10,000 iterations
and no thinning.

The results from a typical MCMC run are given in Tables 1 and 2 and Figures 4 and 5. Note,
in particular, the rapid decay in autocorrelations and convergence to stationarity signifying a
rapidly mixing chain. The posterior mean parameter estimates are log(τs) = −0.56, and
log(τo) = −0.87, based on 9,000 iterations. Due to the consistency between the coarse and
fine formulations, these parameter estimates can be used as plug-in estimates for the parameters
of a fine model for the purposes of smoothing and interpolation. This allows the computation
of posterior mean temperature surfaces on the fine scale, as shown in Figures 6, 7 and 8. The
height represents the posterior mean temperature conditional on the plug-in parameter estimates
from the coarse model MCMC run.
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Figure 5. Autocorrelation plots for for log(τs) and log(τo) with with α=0.9

The surface plots below show how the temperature field varies both in space and in time.
The original data set had far more data points associated with the earlier years in the study, and
this could account for the increased smoothness in the plots for later time periods.
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Figure 6. Surface plot for 1984.
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Figure 7. Surface plot for 1986.
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Figure 8. Surface plot for 1988.
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5. CONCLUSIONS

Using a STAR model to capture the dynamics of a stationary spatio-temporal process and then
using the DLM formulation to relate the process to available data provides a powerful and flexible
framework for inference. Because of the computationally intensive nature of spatio-temporal
models it is desirable to reduce the edge-effects associated with lattice-Markov systems, and this
can be carried out via numerical analysis of the time-stationary distribution of the STAR process.
Similar computational considerations motivate the use of coarsened models constructed so as
to remain consistent with the original fine formulation, and this can be tackled in a similar way
to the edge-effects.
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