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Abstract

This manuscript contains supplemental material on therg&as/esian emulation and calibration of
a stochastic computer model of mitochondrial DNA deletimnsubstantia nigra neurons”.

1 Commentson hazardsin the biological model

The hazard rates corresponding to the five chemical reaclisted in equation (1) in the paper are
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Each cell is initiated (at birth) with a population of 1000rm@l mtDNA. The synthesis rates; and
¢4, are set such that the cell tries to maintain homeostasis mtiDNA copy number by always trying
to keep the number of mtDNA at the initial level of 1000. Theadhere is that if the total number of
MtDNA molecules in the cell at any time is equal to the iniaahount, that isY; + Y, = 1000, then
each molecule type is synthesised at the same hazard ratelesutes are degraded. Any reduction in
total mtDNA copy number causes a disproportionate incrgafee synthesis rate for all molecule types
thereby maintaining equilibrium. So we takg = 1000c3 andcy = 1000c¢5. Additionally we make the
simplifying assumption that the degradation rates for thienal and mutated mtDNA are equal, that is
¢5 = c3. Thus the reaction hazard rates become
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as given in equation (2) in the paper.

2 Further details of the modd for the deletion accumulation data

In this section we describe in more depth the dataset onialel@tcumulation and how we model it.

The proportion of mMtDNA deletions in each sample of 25 nesinemmeasured indirectly using one of
two real-time polymerase chain reaction (RT-PCR) expemialetechniques. In very simple terms, a



PCR experiment starts off with an initial unknown quantiffpdNA, Y, and the experiment proceeds by
doubling the quantity of DNA in cycles. The output is a measuent of the number of cycles; until

a prespecified threshold levé&lis exceeded, as measured in terms of fluorescence when teubjeca
laser. In theory the relationship between these quanitgigs= Y x 2¢* and so the initial quantity of
DNA can be estimated fro = T x 2=,

The mtDNA molecule is circular and approximately 16kb ingém It has a major arc (approximately
11kb) and a minor arc (approximately 5kb). Deletions arg @sisumed to occur in the major arc, not
in the minor arc. Two genes are targeted in the PCR expersnm@&iD1 from the minor arc and ND4
which resides on the major arc. For a given sampleYleb, and Yy p4 denote the number of copies
of mtDNA with the ND1 gene and ND4 gene present (respectjvahyl assume that deletions will only
affect ND4 and not ND1. Then there are a total¥ofp; copies of mtDNA in the sample and only
Ynp1 — Ynpa copies of mtDNA with deletions (because the deleted copi@stDNA in ND4 do not
show up). Therefore we can estimate the proportion of mtDNIA deletions by

_ Yyp1—Ynps _ . YD
Ynp1 Ynp1

The first experimental technique is called the simplex nmetttbis corresponds to technique 2 in our
notation). The DNA from the sample of 25 neurons is split &vémo two samples. On one sample
RT-PCR is run targeting the ND1 gene, and on the other samipRER is run targeting the ND4 gene.
The other experimental technique is called the multiplexhme and this involves running RT-PCR on
both genes simultaneously from the combined sample of nsuro

Focussing on the simplex method for the purposes of expaosithe rationale behind the use of the
RT-PCR method for determining the proportion of deletiohgs follows. First we assume that there
are Yyp1 and Ynps copies of ND1 and ND4 in the initial samples respectively #mat the threshold
fluorescence level is reached afte€np; cycles for the ND1 probe and aftélypa cycles for the ND4
probe. Hence
T = QCNMYNDl and T = 2CND4YND4.

Therefore,

T
2CnNpa’

T
Ynp1 = 2Cvor and Ynps =

and plugging these values into the expression for the ptiopoof deletions gives

Yy T /2Cnos
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whereAC; = Cnps — Chp1. Rearranging the above expression gives
AC; = —logy(1 —p),

and for a given sampléthis corresponds to the quantigy in the paper.

The measurement error model is derived from the followingidassumptions. The quantities that
are actually measured in the PCR experiments are the nunilogcles till fluorescence is reached.
As noted in the paper, Larionost al. (2005) suggest that a normal distribution adequately nsodel
these measurements. Specifically, we assume that the etdsammnbers of cycles are biased and noisy
measurements of the true numbers of cycles, that is

C¥51 ~ N(Cnp1 +bs,02) and O3y ~ N(Cnpa + by, 02).

HereC%S, andCSPS, are the observed values©fvp1 andCy p4, respectively. We assume a fixed bias
denotedh, and a fixed variance denoted. The subscrips is used to denote the simplex method. We
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further assume thafPs, andC3P3, are independent since they are obtained from separate esnfipl
follows that the observed value ¥C; has a normal distribution,

ACE™ = C585, — Oy ~ N(Cpa + b, = Cxp — be, 20,

that is
ACS ~ N(ACy, 202).

For a particular sampléthe above equation is the measurement error model givereipdper since
AC?"s corresponds te;, AC; corresponds tg;, and2o2 corresponds t%‘l. Therefore even when we
allow for systematic bias in the measurement process we gmdthh a measurement error model which
does not include a bias term explicitly.

Both experimental techniques are based on this so-call&d,™ method. The main difference between
the techniques is that in the multiplex method we start othviivice as many copies of ND1 and ND4
as in the simplex method (as the sample has not been halvb®) nikeans that the threshold should be
reached in one fewer cycle for each probe. The multiplex otes8hould in theory reduce the sources
of uncertainty in the experimental procedure. Howevemiitains an element of “competition” between
the two probes as they compete for the limited resource wisithe laser. We model this element of
competition through the following bivariate normal stuuret

(cﬁéi’b) ~N<< Crot — 1+ b ) ( o2 pol >>
Cﬁézbs Cnpa — 1+ by, ’ pU?n 0'7271
The mean vector of the observations results from the fatttiiese is twice as much DNA in the mul-
tiplex sample as in the simplex sample and this correspandsié fewer doubling cycle. We assume
a systematic bias df,,, which may be different to that from the simplex proceduree 860 assume a
fixed variance ob2, and a correlation gf. It might be thought that competition would lead to a negativ

correlation between the observations and henee0.

From the above bivariate normal model we have that
ACHO = LS _ ClLO N (Chpa — 14 by — Cnpt + 1 — b, 2(1 — p)o2,)

that is,
ACMPS N (AC,2(1 - p)a?),

m

which has the same mean as, but a different variance fto@f°S. If we further assume that the indi-
vidual measurement error variances are the same in the meegures, that is§ = afn, then the only
difference in the variances of the observ®d; measurements is caused by the correlation in the samples
p. In terms of the notation used in the paper, we hcayé = 2(1 — p)o2,. Note that we do not make
the assumption that? = o2, in the paper and so we have not explicitly estimated the lzdive p by

p=1—¢2/d1.

Thus allowing for different levels of bias in the two sets adasurements results in a measurement error
model which has the same mean in the two experimental tewbsidput possibly different variances. The
model does account for technique-specific biases in theursagnts but these biases cancel out in the
derivation of the measurement error model. Because thaitpadrspecific biases in the measurements
cancel out in the derivation of the measurement error maatgl,differences between the means of the
two experimental techniques that may be suggested by tadrdat Figure 1 in the paper should be due
to random variation according to our model. We have theeefmt included an additional technique-
specific bias term into the model.

The data on deletion accumulation are tabulated in Table dr. ekample, there are 10 observations
for individual 1, three made using technique 1 (“multiplex”), the other sen&@de using technique 2
(“simplex”).



3 Detailsof MCMC scheme for exact Bayesian calibration

In Section 3.2 of the paper, we state that it is possible topgafnom the posterior density of the cali-
bration parameter8, the measurement error parameteérand the latent datg using a Markov chain
Monte Carlo scheme, despite the fact that the density oftieat data can not be computed directly. The
details are as follows.

The joint posterior density is given by

™0, ¢, y|z, x) < w(0)7 ()7 (y|0, x)7(2]y, D),

whereg = (¢1, $2)T. We sample fromr (8, ¢, y|z, ) using a Metropolis-Hastings within Gibbs pro-
cedure. This entails sampling each unknown quantity orkbtaelated quantities from their full con-
ditional distribution using a Metropolis-Hastings traiei kernel when direct sampling is not possible.
We split the scheme into two blocks of full conditionalg| --- and@,y|---, where *- -’ denotes all
the other variables in the model. Because of our choice ohgaufistribution for the precisions we can
sample directly from the full conditional distributiapy - - - . The full conditional distributior®, y| - - - is
not available in closed form and so a Metropolis-Hastingp & used. Specifically, at iteratién- 1,

1. sample¢§k)\y,z ~ GammdC}, D;), for j = 1,2, where

1 — , 1« ,
Cj = ag, + 5 D loi=3),  Dj=bg, + B > AMoi = )z = wi)}
i=1 i=1

andI(z) is the indicator function which equals Lifis true and equals 0 otherwise.

2. (a) generate a candidate valiérom the distribution with transition kerng(8(6);

(b) generate a candidate vector of latent datam the stochastic kinetic model using the candidate
parametef. This proposal has density(y|0, x).

(c) Seto 1) = g, y(:+1) = g with probability min(1, A), otherwise retain the current values by
settingg* 1) = %) y(*k+1) — 4(*) The acceptance ratio is given by

A T(O) 7(g]0, ) 7(2(9, $) 4(0]0) 7(y|0, ) _ 7(0) n(2|5, $) 4(6]6)

() n(y|0,x) n(z|y, d) ¢(0]0) = (y|0,x) 7(O) w(z|ly,P) q(0]6)

Note that proposing the latent dagaby using a sample from the computer model means that all terms
involving the density of the latent datgy|0, =) cancel out of the acceptance ratio. This cancellation
means that computation afy |0, ) (which we assume to be prohibitive or impossible) is not negu

as part of the MCMC scheme. So, in theory, we can always safrgtethe exact posterior distribution
provided that we can sample from the distribution of theriatiata, even when we cannot compute the
density of the latent data. Note also that we can upgdtem its full conditional distribution (that is,

not jointly with 8) by using independence proposals from the computer moddéct, the conditional
independence in the latent data means that we can sampleyetiom its full conditional. However,

we cannot sample from the full conditional f@because of the presence of the density|0, ) in the
acceptance ratio, and so a joint updatééfy ) is essential.

4 Further details on experimental design

This section gives more details of the simulation design eagted for fitting the emulator in Section 4.3
in the paper.



Thenp-point simulation design we have used is in fact the uniorhodeé designs. The first component
design is &*-factorial design on the extreme points of the input space.take the extreme points for
#, and#f, to be the 0.0005-quantile and 0.9995-quantile of their @byonior distributions; the extreme
points forfs are0.5 and1, which are the limits of its uniform prior distribution; atige extreme points of

x were taken to be 1 and 110. A major consideration with thiggdes that we would like the emulation
model to be a useful surrogate for the simulation model adtws whole prior parameter space, as well
as being able to predict well for a realistic range of age® &tireme points fa#; andéd, contain 99.9%

of the prior probability for each parameter marginally. dtunlikely that we will need predictions for
ages over 110 years, since so few people survive past that age

The second component design is the Cartesian product ofp@m8iatin hypercube sample fér, and
the 13 unique ages at which we have observations

z* = (19,20, 32,42, 44, 51,56, 72, 75,77, 81,89,91)T.

Designs based on Latin hypercubes were popularised by MeKaly (1979) and have become widely
used throughout the computer experiments literature. Haee good space-filling properties whilst
maintaining uniform coverage of the univariate inputs; Saatneret al. (2003) for further details. Our
choice of a Cartesian product of thes@alues and a Latin hypercube sample is motivated by Kennedy
and O’Hagan (2001) who comment that it is intuitively reasae to include the: values at which we
have experimental data into the simulation design.

The third component design consists of a sample of 130 p&iots the prior distribution ford. The
corresponding 13@-inputs are sampled uniformly from the integéts2, ..., 110}. This design aims to
give good coverage over the support of the prior distributibhe subsequent large number of inter-point
distances may be beneficial when estimating Gaussian grepegameters, as pointed out by Rougier
(2001).

5 Integrated emulation and calibration

Given the model for the emulator and the simulation trainitaga, we can construct an integrated
Bayesian model for joint emulation and calibration. Thejgdosterior density function correspond-
ing to the integrated model is

7r(07 ¢7 wn? 1/)777 /”’7 57 ny? €y7 p|z7 w? D*7 W)
o w(0)m(P)m(nlipy, D*)m(&lbe, D) (ny|n, by, 0,27, D7)
x 7(§,€ ¥e, 0,27, D*)m(plny, §,, )7 (Wn, y)m(z|y, ¢), (1)

in which the uniform joint densities of the GP parametgrsandq), are subsumed into the proportion-
ality sign.
We use the notation; = n(u;) and¢; = {(u;) for j = 1,...,np, and therefore) = (1, . .. 777nD*)T
and¢ = (&, ... ,an*)T. Herenp, is the number of design points at which we have training data.
The density of the latent means and the latent log standasidtaes is multivariate normal (from the
definition of a GP), with
1 1
*\ __ = _ Ty —1 _
Tr(n‘/(#n?D ) - (QW)HD*/Q‘Zn‘l/Q exp{ 2(77 I“l"n) 277 (TI l“l"n)}
1
(2m)m0r 2S¢V

r(€lbe. D7) = exp {56~ 1= (€~ me) |

wherep,,, is a vector of lengt - with each element equal 9, ; andX,, is annp+ x np+ positive
definite covariance matrix witfi, j)th element,, (4, j) = ¢, (u;, u;); and similarly for¢ replacingn.
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The vectors of ‘predictive’ means and log standard dewviatiorresponding to the unique ages at which
we have observations;*, are denoted byy, = (1,,1,...,7ym,.)" and€, = (y1,...,&ym,. )", Te-
spectively, wherer,~ = 13 is the number of unique ages. The conditional densitiesesd predictive
means and log standard deviations are derived from standalttvariate normal distribution theory and
the properties of the relevant Gaussian process prior.amnple,

ny‘,’% ¢n7 0, :B*a D* ~ an* (/J‘nyma 277y|"7)’

that isn+-dimensional multivariate normal with conditional meamctos

—1
Hn,n = Hg, + Y, mEn (M= Ky,
and conditional covariance matrix

_ _ —1§T
2]77‘1,|77 - Eny Enymzn Eny,n

Here,p,ny is a vector of lengtm,~ with each element equal 0, ; andX,, is anng+ x ng+ positive
definite covariance matrix witfy, j)th element

2]’I’ly (Zaj) = Cn{(OT, x;)Tv (eTv x;)TL

wherex? is theith element ofe* andX is ann.« x np« Matrix with (7, j)th element
1 "va'rl

Enyy’ﬂ(imj) = Cn{(aT, x;)Tv uj}
The structure of the density fq, is identical to that of;, but with an obvious change of notation.

The density of the latent daja = (py,...,p,)" is simply the product of = 90 independent normal
densities with means and log standard deviations seletadthe appropriate predictive means and log
standard deviations, namely

SFINPRRES SR R T
vy i=1 2m exp (Sy,](a:i)) 2 €xp (2€y71($z))
where the function (z;) = {j : z; = 27} is needed to map individual agesto the unique ages™.

The density of the emulator training data is the product dépendent normal densities,

SUTIRIRS | § ) [y Ty
e 1\/ﬁeXp (&) 2exp (2§5) J

The densities of the experimental datez|y, ¢), the calibration parameterg @) and the measurement
error parameters(¢) follow from the definition of the Bayesian model in Sectiod 8f the paper.

A Metropolis-Hastings within Gibbs scheme can be used tgpsawalues from the joint posterior dis-
tribution (1). Each component value or vector of values m@ad in turn conditional on the current
sampled values of the other components via an appropriateoptdis-Hastings transition kernel. We
take the transition kernels to be the appropriate dimensiohivariate normal density centered on the
current sampled value when a Gibbs update is not availabieeagh iteration of the scheme, the em-
ulation model is constructed by augmenting the design mdi with the input corresponding to the
current value of. This feature should lead to an increase in the accuracyeoéithulator in regions of
the input space with high posterior support.

However, sampling from the posterior distribution is faichallenging, and this is due in no small part
to the large number of often highly correlated unknown qitiast Calculations on large matrices are

6



required throughout the algorithm and this leads to therétga being slow to run. Together with the
long run lengths that are required to sample from such a e sterior distribution this effectively
prohibits the fitting of the full integrated model in this for

Separating the emulation stage from the calibration stagakis down the inference problem into two
more computationally feasible tasks, albeit at the expehadack of shared information and ‘borrowing
of strength’ between the two tasks. In particular, sincegras information about likely values éfis no
longer included in the fitting of the emulation model, the ¢atr is likely to be a slightly less accurate
model for the simulator in regions of the input space withtpggsterior support. However, the drawback
of this potential small reduction in accuracy is more thampensated by the computational benefits of
teating the emulation and calibration tasks separately.

6 Emulator ssimulation

The role of the fitted emulation model is to act as a fast suibstfor the simulation model in the cali-
bration scheme and for studying output in prediciivailico experiments. Both tasks require predictive
simulations from the fitted emulation model, as outlinedhel

Suppose we require simulationsrat input configurationsu?, for j = 1,...,n,. Let D, denote the
prediction design matrix, withith row equal tou?. A sample ofK values from the posterior predictive
distribution of the emulator at these inputs can be obtaassfbllows. Fok = 1,..., K

1. samplezpﬁ,k), ék)m,gfrom the joint posterior distribution (equation (5) in thaper);

2. samplen( [, 4", D, ~ N (i) 30);

QI ) - (k) s (k) .
3. sampleg,7IE, pe, Do ~ N (“.sv\? Esvwz)’
k k k k k .
4, Sampleoz()’ﬂm()’},ff)’} ~ N (né),exp{%&}}), ji=1,...,n,.

This procedure returns” sampled values of the logit transformed proportion of detetin 25 cells from
PN, & Dy, forj =1,...,n,. Inthe aboven, = (N1, Mun, )T ANAE, = (Ep1y- -+ Eony) - IN
step 2, standard multivariate normal distribution theanyg ¢he properties of the relevant GP give the
mean vector and covariance matrix as

(k

k k k k -1 k
e = b + 0 (E%) + exp(wfi})f) (A — 1),

o, im =

k k k k k -1 k) \T
S = S0~ 205 (30 +en@iDI) - (25)5)

whereuﬁfv) is ann,—vector with each element equal zlé?k) 257'“)

variance matrix with(i, j)th eIementESf;) (i,7) = cp(uf, uy), and

is ann, x n, positive definite co-
(k)
Ty
(,4)th eIementZ(k)ﬁ(z',j) = ¢y(u},u;). Similar results hold for the mean vector and covariance

. . nv
matrix in step 3.

v

7 is ann, x np« Matrix with

7 External validation: neuron survival data

The data used for external validation are taken from Tal#¢ i&(Fearnley and Lees (1991) and comprise
the number of neurons surviving in samples from the caudadtantia nigra of 36 individuals without
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Figure 1: Neuron survival data. Observed number of neunmotisai substantia nigra of 36 individuals of
varying ages.

Parkinson’s disease. Figure 1 shows a scatterplot of nuafls&urons surviving against the age of these
individuals and indicates that the number of neurons prigtigrreases with age. Note that the data used
in this paper are a corrected version of that in Fearnley aes1(1991): the total number of surviving
neurons for the 22-year-old individual is 792, not 692. Eh@e®rrected) data are tabulated in Table 2.

We now formulate the observational model for these data imkditl with the biological model under
scrutiny.

7.1 Bayesian model

Suppose that individual hasy; neurons surviving in the region of their substantia nigearfwhich the
sample was taken{ = 1,...,36). However, due to observational error, onfy neurons are recorded
as present. Assuming that each neuron is observed indaggndéth probability ¢, the observational
model is binomial, that is

z;, ~ Bin(y; . ¢s).
We represent our uncertainty about the observation prbtygbarametery, through a beta distribution

gbs ~ Betda%, b¢s)

whose parameters are chosen to reflect the belief that theuneeaent process is reasonably accurate

We model the number of neurons in the substantia nigra oftheindividual, y; , using the stochastic
kinetic model of mtDNA deletion and cell death described act®n 2 of the paper. Recall that the
marginal distribution of/; is analytically intractable and that, although it is relaly straightforward to
sample from this distribution, such simulation can be ticoasuming. To obtain a single realisation of
the true number of neurong for individual i using the calibration paramet@r we must simulatev;,
independent realisations from the computer model, onedodn substantia nigra neuron that individual
i starts out with at birth. Thev;, neurons are simulated until time years. If at any time up ta;
years, the proportion of deletions in a neuron attains oeeds the lethal threshofid then that neuron is
deemed not to have survived. The number of neurons ol¥; othat survive till timez; is a realisation
of y? .



In order to complete the model description, we need plagisidlues for théV;_, the number of neurons
at birth in the region of the caudal substantia nigra usedhénRearnley and Lees study. Their study
assumes that each individual starts out with the same nuafb®zurons, so thaV,, = N for all ;.
They then estimaté&v to be N* = 795 by fitting a straight line to the data®, z*) using ordinary least
squares. In the absence of any other information regardingon numbers at birth, we model our beliefs
about its value by using a fairly diffuse Poisson distribat{with meanV* = 795).

7.2 Emulating the survival output

Obtaining values for thg; from the simulation model is slow, typically taking tens ofites. This is
due to having to trace the outcome of a large number of indalideurons, and here we have (roughly)
a 32-fold increase in the number of neurons compared to tiereanalysis. Therefore, we again turn
to the computational advantages of using an emulator.

The key output for the simulation model at input= (07, ) is the binary outcome describing whether
the neuron has survived until aggéwhereS(u) = 1 denotes survival). Let*(u«) denote the probability
of survival using inputu. As cells are simulated independently, it follows that thenber of surviving
cells in a sample of siz& is

y*(u) ~ Bin(N,p*(u)).

This simple parametric model for the output from the simatatnodel can be used to construct an em-
ulator by assuming the survival probability is a smooth fiorcof the inputsu. As in Section 4.2 of
the paper, we work on an (unconstrained) logit scale and @auasian process prior with parameters
¥ ,» to modelp®(-) = logit{p°()}. For reasons of brevity, we omit the details on fitting the ket
but follow essentially the same procedure as describeddtidds 5.1 to 5.3 of the paper. For instance,
we reduce the complexity of the model substantially by fiximgnp = 250 logit-transformed survival
probabilities,p?, at their estimated values from the simulator output. Tlkeiced and simplified emula-
tion model was fitted using MCMC in a manner analogous to teatibed in Section 5.2 of the paper.
The fitted model fop*(-), which we denote by*(-), is based on Monte Carlo estimates of the posterior
means ofy . and on the conditional mean of the Gaussian process, as eaask for the fitted models
for the simulation output on deletion accumulation. We rtbt these simplifications in the emulation
model had little effect in terms of its predictive accuracy.

7.3 Model validation
The Bayesian model has the following hierarchical structur

2 yi. s ~ Bin(y;, ¢s), ig=1,...,36
ys [N, 0,25 ~Bin(N,expitlp*{(67,25)"}]),  is=1,...,36
¢s ~ Betdag,, bs,),
N ~ PoissorfiN*),

wherep®(-) is the fitted emulation model described in Section ¢,2,= 90, b,, = 10 and N* = 795.

External validation (or out-of-sample prediction) is pered by simulating from the predictive distri-
bution of 2. 2, 2 , that is, from the posterior predictive distribution f for individual i; calculated
using the posterior distribution of the paramet@rfsom the dataset on deletion accumulation. Realisa-
tions are obtained by first sampling from the posterior iigtron whose density is given by equation (6)
in the paper and then, for each individual, simulating fréwa Bayesian model above. Specifically, for
k=1,...,K:



sampleg®) |z, a sample from the posterior distribution;

sampleN %) ~ PoissofiN*);

samplegbgk) ~ Betdag,, by, );

sampley; ™ |N®), 0®) 25 ~ Bin(N®), expit(p,[{(0")T, 25 }T]}),  is=1,...,36;

ls

o samplez; ) |ys¢*

1s

)7 ¢gk) ~ Bln(yfs(k)> qbgk))v is = 17 e 736
Here, sampling from the posterior distribution is achietgdusing the converged and thinned output
reported in Section 6.1 of the paper. Thus the predictiveptairior each individual consists df =
5000 (essentially) uncorrelated values. Figure 5 in the papgplays summaries of these predictive
distributions.
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Table 1. Measurements of deletion accumulation data in dbviguals. Listed for each sampleis
the experimental technique;, the individual on whom the measurement is takén,the age of the
individual, z;, and the RT-PCR measurement of deletion accumulation,

(3 0; Ii xX; Zi 1 0; Ii xX; Zi 1 0; I@ Z; Zi
1 1 1 19 —-0.14343 |31 2 4 42 11161 2 10 75 1.19
2 1 1 19 -01393 (32 2 4 42 051362 2 10 75 1.18
3 1 1 19 -0.01207 {33 2 4 42 091963 2 10 75 0.25
4 1 2 20 —-0.13376 |34 2 5 44 1676 64 2 11 75 1.052
5 1 2 20 021135 2 5 44 1078 65 2 11 75 0.896
6 1 2 20 0.1578q 36 2 5 44 0928 66 2 11 75 1.211
7 1 3 32 —-038716 |37 2 5 44 1645 67 2 11 75 0.95
8 1 3 32 —-0.00574|38 2 6 651 1.023 68 2 11 75 1.54
9 1 3 32 0.2758§ 39 2 6 51 1142 69 2 12 77 1.397
10 1 5 44 0.5198740 2 6 51 1403 70 2 12 77 1.856
11 1 5 44 0.6865 41 2 6 51 0871y 71 2 12 77 2.426
12 1 5 44 1124 42 2 6 51 013 72 2 12 77 1.898
13 1 7 51 -0.23206 |43 2 7 651 125 73 2 12 77 0.655
14 1 7 51 0221744 2 7 51 —-0918|74 2 13 81 1481
15 1 7 51 0.24086 45 2 7 51 0512 75 2 13 81 1.21
16 2 1 19 0.625 46 2 7 51 102 76 2 13 81 0.79
17 2 1 19 0.105 47 2 8 56 0558 77 2 14 89 2.269
18 2 1 19 1421 48 2 8 56 0.8971 78 2 14 89 1.993
19 2 1 19 117749 2 8 56 0539 79 2 14 89 0.693
20 2 1 19 088 50 2 9 72 1573 80 2 14 89 2716
21 2 1 19 10351 2 9 72 1133 81 2 14 89 142
22 2 1 19 04952 2 9 72 118482 2 14 89 2.06
23 2 2 20 0413 53 2 9 72 0.985 83 2 14 89 237
24 2 2 20 0611154 2 9 72 238 84 2 15 91 1.719
25 2 2 20 056455 2 9 72 169 8 2 15 91 2.055
26 2 3 32 080656 2 9 72 149 86 2 15 91 1.995
27 2 3 32 10634 57 2 10 75 1712 87 2 15 91 2.564
28 2 3 32 0989 58 2 10 75 1243 88 2 15 91 2.128
29 2 3 32 1138 59 2 10 75 103589 2 15 91 224
30 2 4 42 0965 60 2 10 75 1.044 90 2 15 91 1.36

Table 2: Neuron survival data. The rows are: individual, mggears, and observed number of neurons.
is 1 2 3 4 5 6 7 8 9 10 11 12
5120 22 29 31 44 47 53 54 55 56 58 58
z7 1692 792 695 657 633 583 613 692 653 658 588 544
is 13 14 15 16 17 18 19 20 21 22 23 24
;160 61 61 65 65 69 70 70 71 75 75 77
z; | 642 587 585 403 518 702 406 615 558 493 504 390
1g 25 26 27 28 29 30 31 32 33 34 3 36
;1 78 79 8 8. 81 84 8 8 87 89 91 91
z; | 503 520 556 543 448 648 616 471 540 578 426 394
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