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Summary

We consider kernel-type methods for estimation of a density on [0, 1]
which eschew explicit boundary correction. Our starting point is the suc-
cessful implementation of beta kernel density estimators of Chen (1999). We
propose and investigate two alternatives. For the first, we reverse the roles of
estimation point x and datapoint Xi in each summand of the estimator. For
the second, we provide kernels that are symmetric in x and X; these kernels
are conditional densities of bivariate copulas. We develop asymptotic theory
for the new estimators and compare them with Chen’s in a substantial sim-
ulation study. We also develop automatic bandwidth selection in the form
of ‘rule-of-thumb’ bandwidths for all three estimators. We find that our sec-
ond proposal, that based on ‘copula kernels’, seems particularly competitive
with the beta kernel method of Chen in integrated squared error performance
terms. Advantages include its greater range of possible values at 0 and 1,
the fact that it is a bona fide density, and that the individual kernels and
resulting estimator are comprehensible in terms of a direct single picture (as
is ordinary kernel density estimation on the line).

Some key words: Boundary behaviour; Copula; Kernel density estimation.
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1. Introduction

Let X1, ..., Xn be a random sample from a univariate distribution with
density f having support I ≡ [0, 1]. Suppose it is desired to estimate f at
each point 0 < x < 1 by means of a kernel-type estimator

f̂(x) = n−1
n∑

i=1

K(x, Xi; h) (1)

where h is the smoothing parameter, called the bandwidth. The usual version
of f̂ for density estimation on the whole real line R takes K(x, X; h) =
h−1KR(h−1(x − X)) where KR is a symmetric unimodal probability density
function with support R or some finite interval such as [−1, 1]. This is,
however, not available for estimation on the unit interval without correction
for boundary effects, although many boundary correction schemes exist by
now (e.g., Müller, 1991, Jones, 1993, Cheng et al., 1997, Zhang et al., 1999,
Karunamuni & Alberts, 2005). See Silverman (1986), Wand & Jones (1995)
and Simonoff (1996) for general background on kernel density estimation.

In important and insightful work, Chen (1999) introduces and develops
— and in Chen (2000a,b, 2002) widely applies and adapts — kernel-type
estimators of the form (1) tailored to the unit interval by choosing K(x, X; h)
to be a density in X with support I. Specifically, in his estimator f̂1, Chen
takes K to be K1, say, a beta density in X with parameters (x/h2) + 1
and {(1 − x)/h2} + 1, where we have replaced Chen’s smoothing parameter
b > 0 by h2 to better fit with our later development. While it may seem
‘obvious’ that one might base kernel-type density estimators for support I
on ‘beta kernels’, details of how properly to do so are by no means obvious
and a successful implementation of this idea proved elusive until Chen’s work.
Background details of Chen’s work are provided in Section 2.

In this paper, we investigate two novel approaches to the problem of
kernel-type density estimation on I (plus some variations thereon) which are
also, by and large, ‘direct’ and not explicitly making corrections for boundary
effects. Each will be seen to have some practical merit, especially the second
of these two, as does the best version of the estimators proposed by Chen
(1999).

As our starting point, we note that the form of Chen’s K1 is such that
(i) the kernel estimators displayed in Chen’s (1999) Fig. 1 for use at several
values of x cannot be superimposed and averaged out to provide a density
estimate based on those values of x as if they were datapoints, and (ii) Chen’s
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estimator does not integrate to one. This is because K1 is not a density in
x. A first natural remedy for both points (i) and (ii) is to swop the roles of
x and Xi in the summands of the beta kernel estimator: this is considered
in our first new estimator, discussed in Section 3.

An attractive property of the standard real line kernel KR is that it is
symmetric in x and X and is therefore a density in both x and X. No ‘ker-
nel’ considered in Sections 2 or 3 has this property. So, in Section 4, we ask
that K be symmetric in x and X so that the ordinary kernel density esti-
mator’s indifference between consideration as a function of estimation point
x or datapoint X is maintained. As well as the argument that such an es-
timator might be regarded as the ‘fullest’ analogue of the standard kernel
density estimator, this proves to afford particularly good behaviour at the
boundaries. The new requirement leads to an intimate connection to bi-
variate copulas i.e. symmetric bivariate distributions with uniform marginals
(e.g. Joe, 1997, Nelsen, 2006). Indeed, our new kernel will be the conditional
density of a (certain type of) symmetric bivariate copula. Moreover, the
bandwidth proves to be intimately related to the dependence parameter of
the copula. We will focus our efforts on one particular choice of copula-based
kernels, that corresponding to the Gaussian copula, which may be regarded
as a ‘natural’ adaptation of Gaussian kernels to the unit interval.

It should be noted that both of the new density estimators considered
in this paper are bona fide probability densities. This is by no means the
default in sophisticated kernel-type density estimation, one or other of the
properties of nonnegativity and integration to unity (the latter in the case of
Chen’s estimator) often being sacrificed for otherwise improved performance.

The estimators of Section 2 to 4 are compared in a substantial simulation
study in Section 5. In this section, the bandwidth is computed optimally (in
integrated squared error terms) for each dataset, an option unavailable in
practice. In these terms of practical potential, the estimators of Sections 2
and 4 will be seen to be preferred to that of Section 3. Practical bandwidth
selection rules based on the ‘rule-of-thumb’ approach are then developed in
Section 6.1 and their performance assessed in further simulations in Section
6.2. Our concluding remarks (Section 7) summarise the outcomes of this
paper and look forward to similar developments for closely related topics.

For theoretical purposes, assume throughout this paper that f has two
continuous derivatives. As is usual in kernel density estimation (e.g. Wand
& Jones, 1995, Section 2.5), asymptotic results correspond to the smoothing
parameter h = h(n) → 0 as n → ∞ in such a way that nh → ∞.
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2. Chen’s estimators and their asymptotic biases and variances

We will rename Chen’s (1999) first density estimator f̂1 as f̂C1 and note
that it is given by

f̂C1(x) =
1

nB((x/h2) + 1, {(1 − x)/h2} + 1)

n∑

i=1

X
x/h2

i (1 − Xi)
(1−x)/h2

(2)

where B(·, ·) is the beta function. Chen (1999) shows that the asymptotic
bias of f̂C1(x) is

ABias{f̂C1(x)} = h2
{
(1 − 2x)f ′(x) +

1

2
x(1 − x)f ′′(x)

}
.

Note that the asymptotic bias is of order h2 for all values of x, showing that
f̂C1 is, in bias terms, asymptotically free of boundary effects. (Boundary
effects usually show up as terms of O(h), or even sometimes O(1), in the
asymptotic bias.) This boundary bias behaviour is, however, achieved at the
expense of an increased boundary variance:

AVar{f̂C1(x)} =






f(x)

2nh
√

π
√

x(1−x)
if x/h2 and (1 − x)/h2 → ∞,

f(x)Γ(2κ+1)
2nh24κΓ2(κ+1)

if x/h2 → κ or (1 − x)/h2 → κ ,

κ ≥ 0. This is a somewhat unusual boundary effect albeit with increased
variance only over a particularly small boundary region (of O(h2)). Chen
notes, however, that “the impact of the increased variance near the boundary
on the mean integrated squared error [MISE] is negligible” and the practical
importance of this asymptotic result is arguable. (For more on asymptotic
theory for f̂C1, see Bouezmarni & Rolin, 2003.)

With a view to removing (most of) the dependence of the asymptotic bias
on f ′(x), Chen (1999) also proposed a modified estimator, his f̂2, which we
shall call f̂C2. Introduce the function

ρh(x) = 2h4 +
5

2
−
√

4h8 + 6h4 +
9

4
− x2 − (x/h2).

Then,

f̂C2(x) =






1
nB(x/h2,(1−x)/h2)

∑n
i=1 X

(x/h2)−1
i (1 − Xi)

{(1−x)/h2}−1 if x ∈ [2h2, 1 − 2h2],
1

nB(ρh(x),(1−x)/h2)

∑n
i=1 X

ρh(x)−1
i (1 − Xi)

{(1−x)/h2}−1 if x ∈ [0, 2h2),
1

nB(x/h2,ρh(1−x))

∑n
i=1 X

(x/h2)−1
i (1 − Xi)

ρh(1−x)−1 if x ∈ (1 − 2h2, 1].
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The asymptotic bias of f̂C2(x) differs between boundary and interior regions,
but is always of order h2:

ABias{f̂C2(x)} =






1
2
h2x(1 − x)f ′′(x) if x ∈ [2h2, 1 − 2h2],

h2ξh(x)f ′(x) if x ∈ [0, 2h2),
−h2ξh(1 − x)f ′(x) if x ∈ (1 − 2h2, 1].

where ξh(x) = (1 − x){ρh(x) − (x/h2)}/{1 + h2ρh(x) − x} = O(1). Also,

AVar{f̂C2(x)} = AVar{f̂C1(x)} for x/h2 and (1 − x)/h2 → ∞

while the multiplier of (nh2)−1 in the case of x/h2 → κ or (1 − x)/h2 → κ,
κ ≥ 0, “has a slightly different form” (Chen, 1999, p.136).

For fixed h, X1, ..., Xn > 0,

f̂C1(0) =
1

n

(
1 +

1

h2

) n∑

i=1

(1 − Xi)
1/h2

and f̂C2(0) =
1

nh2

n∑

i=1

(1 − Xi)
(1/h2)−1

suggesting a propensity, in practice, for estimating f(0) by a non-zero value
in all cases (and similarly when x = 1). It is, therefore, the case that these
estimators are better in situations where f(0) > 0 than when f(0) = 0; see
Section 5.

While it is perhaps unfortunate that the simplicity of f̂C1 has been sacri-
ficed in f̂C2 and, indeed, that explicit boundary correction has been resorted
to even when using beta kernels, it is the case that f̂C2 is a successful es-
timator of f on [0, 1]. Chen (1999) shows that it has smaller asymptotic
MISE than f̂C1 and that its simulation performance is also superior and “is
a serious competitor with the existing density estimators”; f̂C2 will also play
an important role in this paper and will prove to be a difficult estimator to
improve upon.

3. Swopping the roles of x and X

3·1. Our first new estimator

Swopping the roles of x and Xi in (2) yields the new estimator

f̂Xx(x) =
1

n

n∑

i=1

xXi/h2

(1 − x)(1−Xi)/h2

B((Xi/h2) + 1, {(1 − Xi)/h2} + 1)
. (3)
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Clearly,
∫ 1
0 f̂Xx(x)dx = 1. The beta densities which comprise f̂Xx are shown

in Fig. 1 for the case h =
√

0.1 and the following pseudo-dataset of 11 points:

0.1, 0.16, 0.25, 0.34, 0.42, 0.5, 0.58, 0.66, 0.75, 0.84, 0.9.

The bolder line on Fig. 1 is the resulting f̂Xx, formed simply by averaging
the individual curves. Note that there is no comparable single picture for
either f̂C1 or f̂C2; for those estimators, a different such picture is required for
each point of evaluation x. However, for fixed h, X1, ..., Xn > 0, f̂Xx(0) =
f̂Xx(1) = 0. This propensity towards zero boundary values is alleviated a
little by the observation that non-zero values arise when both x and Xi

approach the boundary. For example, if x = Xi → 0, the ith summand of
f̂Xx is n−1(1 + h−2).

* * * Fig. 1 about here * * *

3·2. Theory: asymptotic bias and variance

From (3), for x 6= 0, 1,

E{f̂Xx(x)} =
∫ 1

0
f(z) exp

[
(z/h2) log x + {(1 − z)/h2} log(1 − x)

− log B((z/h2) + 1, {(1 − z)/h2} + 1)
]
dz.

By Stirling’s approximation,

log B((z/h2) + 1, {(1 − z)/h2} + 1) ≃ (1/h2){z log z + (1 − z) log(1 − z)} + log h

+
1

2
log 2π +

1

2
log z(1 − z) +

h2(z2 − z + 1)

12z(1 − z)

and so

E{f̂Xx(x)} ≃ 1

h
√

2π

∫ 1

0
g(z) exp

[
z

h2
log

x

z
+

(1 − z)

h2
log

(1 − x)

(1 − z)
− h2(z2 − z + 1)

12z(1 − z)

]

dz

where g(z) ≡ f(z)/
√

z(1 − z). Making the usual kernel density estimation

substitution of w = (x − z)/h yields

E{f̂Xx(x)} ≃ 1√
2π

∫ x/h

−(1−x)/h
g(x − hw) exp

[

− w2

2x(1 − x)
+

hw3(2x − 1)

6x2(1 − x)2
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− h2w4(3x2 − 3x + 1)

12x3(1 − x)3
− h2(x2 − x + 1)

12x(1 − x)

]

dw

≃ 1√
2π

∫ x/h

−(1−x)/h
g(x − hw) exp

{

− w2

2x(1 − x)

}[

1 +
hw3(2x − 1)

6x2(1 − x)2

− h2w4(3x2 − 3x + 1)

12x3(1 − x)3
− h2(x2 − x + 1)

12x(1 − x)
+

h2w6(2x − 1)2

72x4(1 − x)4

]

dw.

Making the further substitution v = w/
√

x(1 − x) and writing φ for the
standard normal density function gives

E{f̂Xx(x)} ≃
√

x(1 − x)
∫ √

x/(1−x)/h

−
√

(1−x)/x/h
g
(
x − h

√
x(1 − x)v

)
φ(v)



1 +
hv3(2x − 1)

6
√

x(1 − x)

− h2v4(3x2 − 3x + 1)

12x(1 − x)
− h2(x2 − x + 1)

12x(1 − x)
+

h2v6(2x − 1)2

72x(1 − x)

]

dv.

Now, (very) close to the boundary, when x/h2 → κ or when (1−x)/h2 → κ,
κ > 0, E{f̂Xx(x)} ≃ f(x)Φ(

√
κ) where Φ is the standard normal distribution

function. There is, therefore, an O(1) boundary bias. In the interior of [0, 1],

E{f̂Xx(x)} ≃
√

x(1 − x)
[
g(x) +

1

2
h2x(1 − x)g′′(x) − 1

2
h2g′(x)(2x − 1)

− h2g(x)(3x2 − 3x + 1)

4x(1 − x)
− h2g(x)(x2 − x + 1)

12x(1 − x)
+

5h2g(x)(2x − 1)2

24x(1 − x)

]

= f(x) − 1

2
h2
√

x(1 − x)(2x − 1)g′(x) +
1

2
h2{x(1 − x)}3/2g′′(x)

− h2 g(x)

8
√

x(1 − x)

and a little further manipulation shows that

ABias(f̂Xx(x)) =
1

2
h2x(1 − x)f ′′(x) if x/h2 and (1 − x)/h2 → ∞.

This interior asymptotic bias is simple, attractive and the same as the interior
asymptotic bias of f̂C2 (and holds for a slightly wider definition of ‘interior’).

The asymptotic variance of f̂Xx(x) is n−1{E(J2(Xi)}−E{f̂Xx(x)}2 where
J(Xi) is the ith summand in (3). A development parallel to that above leads

7



to

E{J2(Xi)} ≃ 1

h2π

∫ x/h

−(1−x)/h
G(x − hw) exp

{

− w2

x(1 − x)

}

≃
√

x(1 − x)

h2
√

π

∫ √
2x/(1−x)/h

−
√

2(1−x)/x/h
G
(
x − h

√
x(1 − x)v/

√
2
)

φ(v)dv

where G(x) ≡ f(z)/{z(1 − z)}. We therefore arrive at

AVar{f̂Xx(x)} =






f(x)

2nh
√

π
√

x(1−x)
if x/h2 and (1 − x)/h2 → ∞,

f(x)Φ(
√

2κ)
2nh2

√
πκ

if x/h2 → κ or (1 − x)/h2 → κ,
f(x)

4nh1+2m
√

πκm
if x/hm → η or (1 − x)/hm → η ,

κ, η > 0, m > 2. This is broadly parallel with the case of Chen’s estimators:
an o((nh)−1) inflated variance very close to the boundary, precisely the same
asymptotic variance as f̂C1 and f̂C2 in the interior.

However, the deleterious effects of the density estimate at the boundary
having a propensity towards zero values will show through into practical
performance (Section 5) and so we next pursue a second alternative approach.

4. Copula-based kernels

4·1. General considerations

We have already argued, in Section 1, for K(x, X; h) to be the conditional
density c(x|X), or equivalently c(X|x), where c, which depends on h, is the
density of a symmetric copula. Further, it is natural to expect the kernel used
at 1−X to be a reflected version of the kernel used at X, and hence therefore
for that used at X = 0.5 to be symmetric in X; ditto with x replacing X.
This demands reflective symmetry (as well as ordinary symmetry) of the
copula: c(x, y) = c(y, x) = c(1 − x, 1 − y) = c(1 − y, 1 − x).

Some families of copulas interpolate between the case of independence and
the Fréchet upper bound which corresponds to perfect positive dependence;
in simple cases, a single ‘dependence’ parameter θ controls that interpolation,
typically increasing from θ = 0 at independence. This, too, is just what we
want. If we take h to be a simple decreasing function of θ such that h = 0
at the Fréchet upper bound, this corresponds precisely to kernels reducing
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to Dirac delta functions as h → 0, and hence to no smoothing. On the other
hand, when h is large, corresponding to θ = 0, all kernels are uniform on
[0,1] and a uniform distribution is fitted to the data, the ultimate case of
oversmoothing.

While K(0, X; h) = K(x, 0; h) certainly need not be zero, neither should
it be infinite for x, X, h > 0; any such infinite value would persist into the
density estimate. Absolute continuity of the copula is also a strict require-
ment for us, as is unimodality of the resulting kernels. A certain amount of
continuous differentiability, at least to the second derivative, is desirable to
avoid artefactual jumps or kinks in the density estimate, while tractability
will help computationally.

There remain just a few families of copulas which satisfy the above: see
e.g. Joe (1997, Section 5.1). We concentrate on what we think is the most
appealing one, the Gaussian copula, in the next section (and the remainder
of the paper), although some interesting alternatives will also be mentioned
briefly.

4·2. Our second new estimator and other copula-based kernels

The copula associated with the bivariate normal distribution with corre-
lation ρ is given by

c(x, y; ρ) =
1√

1 − ρ2
exp

(

− [ρ2{Φ−1(x)}2 − 2ρΦ−1(x)Φ−1(y) + ρ2{Φ−1(y)}2]

2(1 − ρ2)

)

(4)
where Φ−1 is the standard normal quantile function. As well as Joe (1997),
see Sungur (1990), Klaassen & Wellner (1997), Song (2000) and Demarta &
McNeil (2005). We use this only for ρ ≥ 0 and set h2 = 1 − ρ. Then our
Gaussian copula-based density estimator has the form

f̂GC(x) =
1

n

n∑

i=1

c(x, Xi; 1 − h2)

=
1

nh
√

2 − h2
exp

[

−(1 − h2)2{Φ−1(x)}2

2h2(2 − h2)

]

×
n∑

i=1

exp

(

− (1 − h2)

2h2(2 − h2)

[
(1 − h2){Φ−1(Xi)}2 − 2Φ−1(x)Φ−1(Xi)

])

. (5)
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The copula (4) is shown in Fig. 2 for ρ = 0.9 and hence h =
√

0.1.
The associated kernel functions are shown in Fig. 3 for the pseudo-dataset
introduced in Section 3.1. The solid line on Fig. 3 is the resulting density
estimate which, like the estimate in Fig. 1, is formed simply by averaging the
individual curves. Figs 1 and 3, which use the same value of h, are pretty
similar. There appears to be a slightly greater degree of smoothing in the
latter towards the centre and a slightly greater degree of smoothing in the
former towards either end.

* * * Figs 2 and 3 about here * * *

Since, for fixed h, X1, ..., Xn > 0, f̂GC(0) = f̂GC(1) = 0, it at first glance
seems that we have the same problem as with f̂Xx. However, for x = Xi, the
ith summand in f̂GC(x) is

1

nh
√

2 − h2
exp

[
ρ

1 + ρ
{Φ−1(x)}2

]

→ ∞,

even for fixed h. In practice, such greater limiting values translate into a
more widespread distribution of values of f̂GC(0) compared with f̂Xx(0).

Copulas associated with elliptically symmetric distributions more gener-
ally (Fang et al., 2002, Frahm et al., 2003, Demarta & McNeil, 2005) are also
good candidates to form the basis for kernels on I. In kernel density estima-
tion on R, the most popular kernels are probably the Gaussian density and
several symmetric beta (or Pearson Type II) densities on [−1, 1], notably the
uniform, “Epanechnikov” and “biweight” kernels which correspond to both
beta parameters, a say, equalling 1, 2 and 3, respectively. The copulas based
on the bivariate elliptically symmetric beta (or bivariate Pearson Type II)
distribution now form ‘natural’ analogues of the ordinary symmetric beta
kernels for use on [0, 1]. Adapting formulae in Example 2.3 of Fang et al.
(2002), we have c(x, y; ρ) = b(Qa(x), Qa(y)) where

b(u, v) =
Γ2(a)

Γ(a − (1/2))Γ(a + (1/2))

{1 − (1 − ρ2)−1(u2 + v2 − 2ρuv)}a−(3/2)

√
1 − ρ2 (1 − u2)a−1(1 − v2)a−1

and Qa(x) is the quantile function of the Beta(a, a) distribution on [−1, 1].
Again, set h2 = 1 − ρ. Like their real-line counterparts, the resulting ker-
nels on I are (further) restricted in their support. Another copula with the
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right properties but not based on an elliptically symmetric distribution is the
Plackett (1965) copula:

p(x, y) =
(η + 1)(1 + η(x + y − 2xy))

{(1 + η(x + y))2 − 4η(η + 1)xy}3/2
,

taking h = 1/(1 + η) and η > 0. Neither this nor the beta copula-based
kernels appear to have any great advantage over the Gaussian copula-based
kernels in practice, so we do not pursue them further here. (We implemented
the Plackett-based estimator in our simulations and found its performance
to be similar to, but overall a little inferior to, that of the Gaussian-based
estimator.)

4·3. Theory: asymptotic bias and variance

Asymptotic bias manipulations are, in this case, much more similar to
those of Chen (1999). First, note that

E(f̂GC(x)) =
∫ 1

0
c(x, z; 1 − h2)f(z)dz = E(f(Z)),

where Z ∼ c(z|x; 1 − h2), and that

E(f(Z)) ≃ f(x) + (µx − x)f ′(x) + [{σ2
x + (µx − x)2}/2]f ′′(x)

where µx and σ2
x are the mean and variance of the distribution of Z. Now

specialise to the case of the Gaussian copula. Then, Z = Φ(Y ) and Y ∼
N((1 − h2)Φ−1(x), h2(2 − h2)) so that

µx ≃ Φ{(1 − h2)Φ−1(x)} + {h2(2 − h2)/2}φ′{(1 − h2)Φ−1(x)}
≃ x − h2Φ−1(x)φ(Φ−1(x)) + h2φ′(Φ−1(x))

= x − 2h2Φ−1(x)φ(Φ−1(x)).

Also,

σ2
x ≃ h2(2 − h2)

[
Φ′{(1 − h2)Φ−1(x)}

]2 ≃ 2h2φ2(Φ−1(x)).

It follows that

ABias(f̂GC(x)) ≃ −2h2Φ−1(x)φ(Φ−1(x))f ′(x) + h2φ2(Φ−1(x))f ′′(x)

= h2(pf ′)′(x)
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where p(x) = φ2(Φ−1(x)). This holds for all x ∈ [0, 1].
It is also the case that
∫ 1

0
c2(x, z; 1 − h2)f(z)dz = E{c(x, Z; 1 − h2)f(Z)}

≃ c(x, x; 1 − h2)f(x)

=
1

h
√

2 − h2
exp

[
(1 − h2)

(2 − h2)
{Φ−1(x)}2

]

f(x)

and hence that

AVar{f̂GC(x)} =






f(x)
nh2

√
πφ{Φ−1(x)} if x/hm and (1 − x)/hm → ∞,
f(x)

nh1+2m
√

2η2
if x/hm → η or (1 − x)/hm → η ,

η, m > 0. We have used the facts that Φ−1(x) ∼ −
√
−2 log x and Φ−1(1 −

x) ∼
√
−2 log(1 − x) for x → 0.

4·4. A theoretical comparison

We have already stressed that the asymptotic bias and variance properties
of f̂C2 and f̂Xx are very similar and now we add that those of f̂GC are of very
similar form too. A precise comparison is possible in terms of asymptotic
MSE at the point x0 = 1/2 (where f̂C1 has the same properties as f̂C2 and
f̂Xx too). In fact,

ABias2{f̂C1(x0)} = ABias2{f̂C2(x0)} = ABias2{f̂Xx(x0)} =
1

64
h4{f ′′(x0)}2

while

ABias2{f̂GC(x0)} =
1

4π2
h4{f ′′(x0)}2.

The former is smaller than the latter. Also,

AVar{f̂C1(x0)} = AVar{f̂C2(x0)} = AVar{f̂Xx(x0)} = (nh
√

π)−1f(x0)

while
AVar{f̂GC(x0)} = (nh

√
2)−1f(x0).

The former is, again, smaller than the latter and so the Gaussian copula esti-
mator performs less well at x0 than do any of the estimators of Sections 2 and
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3. To quantify this further, with asymptotic MSE of estimator j, say, being of
the usual kernel density estimation form Bj{f ′′(x0)}2h4 + Vjf(x0)/(nh), the
estimator-specific multipliers of the otherwise common optimal bandwidth
formulae are h0(x0) = (Vj/Bj)

1/5 and the estimator-specific multipliers of
the optimal MSEs are M0(x0) = (BjV

4
j )1/5. We have that

h0{f̂C1(x0)} = h0{f̂C2(x0)} = h0{f̂Xx(x0)} = (64/
√

π)1/5 = 2.049

and h0{f̂GC(x0)} = (2
√

2π2)1/5 = 1.946. This chimes with what was said in
Section 4.2 about the relative degrees of smoothing in the centres of Figs 1
and 3. However,

M0{f̂C1(x0)} = M0{f̂C2(x0)} = M0{f̂Xx(x0)} = (64π2)−1/5 = 0.275

and M0{f̂GC(x0)} = (16π2)−1/5 = 0.363; the estimators of Sections 2 and 3
asymptotically outperform f̂GC at x0 = 1/2 by an MSE factor of 4−1/5 =
0.758.

5. Simulation study I

In our initial simulation study, reported in this section, we divorce the
issue of potential quality of estimator per se from that of bandwidth selection
by comparing estimator performances optimised over choice of bandwidth.
The latter choice would be unavailable in practice; the effects of (one version
of) bandwidth selection will be explored in Section 6.

* * * Table 1 and Fig. 4 about here * * *

We compare performance of the four estimators f̂C1, f̂C2, f̂Xx and f̂GC

for samples simulated from a testbed of some 16 densities on [0, 1]. These
densities are listed in Table 1 and depicted in Fig. 4. For each density, 1000
datasets of size n = 50 and n = 500 were simulated. All density estimates
were evaluated on an equally spaced grid of 999 points: 0.001(0.001)0.999.
The (global) ISE of each f̂ was approximated by ISE(f̂) ≃ 0.001

∑999
j=1{

f̂(j/1000) − f(j/1000)
}2

. The density estimates were evaluated over ap-
propriate grids of values of h > 0 and the value of h that gave the minimum
ISE for each density/estimator was calculated. ‘ISEs’ in this section therefore
refer to ISEs minimised over h and represent a version of ‘best case’ perfor-
mance for each density estimator. We only present results for the n = 50

13



case here because, qualitatively, results for n = 500 are similar. These are
given in Table 2 which includes simulated values of MISE×103 (and their
standard errors) for each estimator along with their median percentage re-
ductions in ISE compared with that of f̂C2. Minimum values of MISE and
values not significantly different from those minima are highlighted in bold
type. Also in Table 2, the line labelled ‘All’ gives the results averaged over
all 16 densities. A graphical depiction of the ISE results is given in Fig. 5.

* * * Table 2 and Fig. 5 about here * * *

Now, from Table 2, it can be seen that f̂C2 either ‘wins’ or ‘shares the
lead’ on 8 (out of 16) occasions while the same is true for f̂Xx on 9 occasions;
f̂GC , on the other hand, wins only twice (and f̂C1 once). However, in terms
of the average MISE over all 16 densities, the ranking from best to worst
is f̂GC , f̂C2, f̂C1, f̂Xx! The explanation is that while f̂C2 and f̂Xx are ‘best’
for quite a wide range of densities each, their performance for densities for
which they are not optimal can be very far from optimal (especially in the
case of f̂Xx). On the other hand, while f̂GC is rarely best it is rarely hugely
suboptimal either. The consistent improvement of Chen’s estimator f̂C2 over
his initial estimator f̂C1 seems to be confirmed.

Consideration of the nature of the densities which each estimator prefers
appears to come down largely to their boundary behaviour. To investigate
this further, we provide Table 3 in which the quality of estimation of each of
the 16 densities of Table 1 at the specific points x = 0.01 and x = 0.99 near
each boundary is investigated. MSEs (and standard errors) are given there
for the case n = 500, the larger overall sample size being taken to provide
a more reasonable amount of data near the boundaries. We also use the
same bandwidth values as in Table 2 and do not attempt to make bandwidth
selection specific to estimation at 0.01 or 0.99; this is because we are really
more interested in the overall quality of density estimation on (0, 1) than
very specifically in density estimation at a boundary. An increased number
of ‘equally good winning’ estimators is observed. (In an attempt to overcome
possible problems caused by skewed sampling distributions, bootstrap stan-
dard errors were calculated in addition to the normal theory ones provided
here, but with almost no effect on the qualitative results.)

* * * Table 3 about here * * *

The situation proves to be fairly clear. First, f̂GC ’s two (‘easy’) wins occur
for the two densities (5 and 10) with asymptotes at one or both boundaries,
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the latter being coped with by f̂GC much better than by the other estima-
tors. Second, best performances near boundaries where the densities have
finite non-zero values are shared mostly between the two versions of Chen’s
estimator. Third, when the density is zero at the boundary, f̂Xx wins most,
but both f̂C2 and f̂GC win sometimes too. Overall — for this particular com-
bination of boundary density values — f̂C1 and f̂GC win, the former being
(surprisingly) in front of f̂C2 by dint largely of better performance for den-
sities 5 and 10. It seems to us that f̂Xx cannot be recommended for general
use on [0, 1] because — as mentioned at the end of Section 4 — it really
cannot cope very well with non-zero densities at boundaries.

6. Bandwidth selection

6·1. Rules-of-thumb

In this section, we explore the development and use of the simplest form of
asymptotics-based bandwidth selection methodology, the ‘rule-of-thumb’ (or
reference distribution) bandwidth. This consists in choosing h to minimise
estimated versions of the asymptotic weighted mean integrated squared error
(WMISE) of each estimator, obtained by replacing f by a suitable parametric
fitted distribution. Weightings are introduced here to ensure finiteness of
integrals. In fact, this bandwidth selection methodology is: (a) driven by
global and to a large extent ‘central’, as opposed to boundary, estimation
quality; and, as with all rule-of-thumb bandwidth selectors, (b) tends to yield
a fairly high degree of smoothing which may not fare well for complicated
multimodal densities.

The rule-of-thumb bandwidth for f̂C2 and f̂Xx (and f̂C1, although we do
not pursue this case) is taken to minimise

WMISE1 ≡
1

4
h4
∫ 1

0
z5(1 − z)5(f ′′

1 )2(z)dz +

∫ 1
0 z5/2(1 − z)5/2f1(z)dz

2nh
√

π
; (6)

here, WMISE1 arises from squared bias of the form h4z2(1 − z)2(f ′′)2(z)/4,

variance f(z)/{2nh
√

π
√

z(1 − z)} and weight function z3(1 − z)3, while f1

is the reference distribution. We take the latter to be the beta distribution
with parameters a and b estimated by their method of moments estimators
â and b̂. The resulting formulae for the rule-of-thumb bandwidth h1 is given
in the Appendix.
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Similarly, for f̂GC ,

WMISE2 ≡ h4
∫ 1

0
p1/2(z){(pf ′

2)
′}2(z)dz +

1

2nh
√

π
(7)

where p(z) = φ2(Φ−1(z)) as in Section 4.3. In this case, we take the weight
function to be p1/2(z) and the reference distribution to have density

f2(z) =
σ̂−1φ(σ̂−1(Φ−1(z) − µ̂))

φ(Φ−1(z))
.

This distribution is that of X = Φ(Y ) where Y ∼ N(µ, σ2); the parameters
are therefore estimated by the sample mean and standard deviation of Y1 =
Φ−1(X1), ..., Yn = Φ−1(Xn). Density f2 is one of many natural generalisations
of the transformation approach of Johnson (1949) which the first author of
this paper is currently exploring. The resulting bandwidth formula (see the
Appendix) turns out to be the simple

h2 = σ̂
{
2µ̂2σ̂2 + 3(1 − σ̂2)2

}−1/5
n−1/5. (8)

6·2. Simulation study II

We now incorporate the rule-of-thumb bandwidth selections in place of
the ISE-optimal bandwidths in each of the estimators f̂C2, f̂Xx and f̂GC and
look at their performance on the simulated data from Section 5; the test
concentrates on the difficult n = 50 case. Results are given in Table 4, where
median % reductions are given relative to f̂C2,h1

(in an obvious notation),
and depicted in Fig. 6.

* * * Table 4 and Fig. 6 about here * * *

‘Winners’ on this occasion are f̂C2 5 times, f̂Xx 6 times and f̂GC 6 times
(the lead is shared for density 16). There is a contrast here with the earlier
results, suggesting that f̂GC with its rule-of-thumb bandwidth selection is
more competitive with f̂C2 and f̂Xx with their rule-of-thumb bandwidth se-
lections than it was in the ISE-optimal bandwidth case. In terms of average
MISE over all 16 densities, however, the performances of f̂GC and f̂C2 are
now comparable whereas f̂GC ‘won’ (fairly narrowly) previously! Patterns of
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results remain much the same within many of the densities of the simulation
testbed (compare Figs 5 and 6), levels of ISE and MISE necessarily being
somewhat higher in Table 4/Fig. 6 than in Table 2/Fig. 5, with the increases
being most marked for f̂Xx.

There are four exceptional densities for which f̂GC has taken over as
best in the rule-of-thumb bandwidth case. Two of these, numbers 2 and
14, are the clearest bi- and tri-modal densities in the collection. Results
for all three estimators are bad in these cases because the rule-of-thumb is
selecting bandwidths that are too large; indeed, the multimodality feature
is being obscured in the corresponding density estimators. When n = 500
(results not shown), the estimates do much better reflect the bimodality
in Density 2 (though in oversmoothed form) but they do not capture the
trimodality in Density 14. For that density, f̂GC tends to suggest two modes,
but that is better than the other estimators. The two densities for which
rule-of-thumb bandwidth selection has profited f̂GC in the context of good
estimation quality are numbers 7 and 11.

We also briefly compared our results with those of a standard kernel
density estimator with rule-of-thumb bandwidth (Silverman, 1986) applied
to probit-transformed versions of the data (and then transformed back) and
found that it did not compete well except for a small number of densities
including those with bi- and tri-modal structure.

7. Concluding remarks

The general good performance of Chen’s (1999) main beta kernel esti-
mator, which we have called f̂C2, has been confirmed, but we believe that
we have proposed an equally, if not more, attractive alternative in f̂GC . A
practical advantage of the latter is that f̂GC(0) ≥ 0 while f̂C2(0) > 0 (sim-
ilarly for values at 1). Conceptually, f̂GC shares the property of the kernel
density estimator on R of its components begin symmetric in x and Xi and
hence: (i) integrates to unity; and (ii) is understandable in terms of a direct
single picture like Fig. 3. Both estimators perform well in our simulations.
The third estimator, f̂Xx, while proving particularly good when boundary
effects do not come into play (!), is more generally not competitive with the
other two because of its propensity towards f̂Xx(0) = f̂Xx(1) = 0. (However,
it might therefore have a role in the rather unorthodox approach to kernel
density estimation of Clements, Hurn & Lindsay, 2003.)
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We have provided novel rule-of-thumb bandwidth selectors for our estima-
tors. f̂C2 and f̂GC continue to perform well using such practical bandwidth
selectors and, indeed, the practical performance of f̂GC suffers a little less
than that of f̂C2 when using such bandwidths, making f̂GC that bit more
attractive again. Of course, there remains scope for much further research
on the bandwidth question. Sophisticated plug-in bandwidth selectors (e.g.
Sheather & Jones, 1991) provide a natural avenue down which to travel.
(Chen, 1999, briefly utilised cross-validation with f̂C2, did not trust its re-
sults and opted for subjective adjustment in one case out of three.)

The fact that a beta density with parameters a and b scaled to the interval
[0, b] tends to a unit gamma density with parameter a as b → ∞ yields a
natural analogue of f̂C1 and f̂C2 for data Y1, ..., Yn on R+ = [0,∞): see Chen
(2000a). (Scaillet, 2004, proposes alternative inverse Gaussian and reciprocal
inverse Gaussian kernels in the same framework.) Swopping the roles of point
of estimation y and datapoint Yi in Chen’s (2000a) estimator f̂1 immediately
yields, as analogue of f̂Xx, an alternative gamma kernel density estimator of
the form

f̂Y y(y) =
1

n
e−y/h2

n∑

i=1

yYi/h2

h2{(Yi/h2)+1}Γ((Yi/h2) + 1)
.

This can be shown to have theoretical properties similar to those of Chen’s
estimator (in a way analogous to how Section 3.2 and Section 2 are related
to one another in this paper). However, we do not pursue it here because we
have f̂Y y(0) = 0. We have been unable to come up with an analogous esti-

mator to f̂GC on R+ based on limiting or similar arguments. An alternative
— available to anyone with a good estimator on I — would be to transform
using the odds ratio i.e. set Xi = Yi/(1+Yi), i = 1, ..., n, estimate the density
of the X’s by f̂GC and transform back by using (1 + y)−2f̂GC(y/(1 + y)).

Finally, the potential impact of this work on kernel-based nonparametric
regression with a predictor variable on finite support is considerable but
would require a major new project to investigate fully. See Chen (2000b,
2002) for work in this area utilising his beta kernel approach.

Appendix

Derivation of rule-of-thumb bandwidths

Let a, b and µ, σ denote the estimated parameters of f1 and f2, respec-
tively. Writing I1 =

∫ 1
0 z5(1−z)5(f ′′

1 )2(z)dz and J1 =
∫ 1
0 z5/2(1−z)5/2f1(z)dz,
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from (6), h1 = {J1/(2n
√

πI1)}1/5. It is immediate that

J1 = B(a + 5/2, b + 5/2)/B(a, b).

Second,

B(a, b)f ′′
1 (z) = za−3(1 − z)b−3

{
(a − 1)(a − 2)(1 − z)2 − 2(a − 1)(b − 1)z(1 − z)

+ (b − 1)(b − 2)z2
}

.

It follows that

B2(a, b)I1 =
∫ 1

0
z2a−1(1 − z)2b−1

{
(a − 1)(a − 2)(1 − z)2

− 2(a − 1)(b − 1)z(1 − z) + (b − 1)(b − 2)z2
}2

dz

= (a − 1)2(a − 2)2B(2a, 2b + 4)

− 4(a − 1)2(a − 2)(b − 1)B(2a + 1, 2b + 3)

+ 2(a − 1)(b − 1)(3ab − 4a − 4b + 6)B(2a + 2, 2b + 2)

− 4(a − 1)(b − 1)2(b − 2)B(2a + 3, 2b + 1)

+ (b − 1)2(b − 2)2B(2a + 4, 2b)

=
4Γ(2a)Γ(2b)

Γ(2a + 2b + 4)

[
(a − 1)2(a − 2)2(2b + 3)(b + 1)(2b + 1)b

−8(a − 1)2(a − 2)(b − 1)a(b + 1)(2b + 1)b

+2(a − 1)(b − 1)(3ab − 4a − 4b + 6)(2a + 1)a(2b + 1)b

−8(a − 1)(b − 1)2(b − 2)(a + 1)(2a + 1)ab

+(b − 1)2(b − 2)2(2a + 3)(a + 1)(2a + 1)a
]
.

For h2,

pf ′
2(z) = −σ−2f2(z)φ(Φ−1(z))

{
(1 − σ2)Φ−1(z) − µ

}
.

Then,

{pf ′
2}′(z) = σ−4f2(z)

[
(1 − σ2){Φ−1(z)}2 + µ(σ2 − 2)Φ−1(z) + µ2 − σ2(1 − σ2)

]

and so, with I2 ≡
∫ 1
0 p1/2(z){(pf ′

2)
′}2(z)dz,

I2 =
1

σ8

∫ ∞

−∞

{
1

σ
φ
(

w − µ

σ

)}2 {
(1 − σ2)w2 + µ(σ2 − 2)w + µ2 − σ2(1 − σ2)

}2
dw
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=
1

σ92
√

π

∫ ∞

−∞
φσ/

√
2 (w − µ)

(
(1 − σ2)2w4 + 2µ(1 − σ2)(σ2 − 2)w3

+
[
µ2(σ2 − 2)2 + 2(1 − σ2)

{
µ2 − σ2(1 − σ2)

}]
w2

+ 2µ(σ2 − 2){µ2 − σ2(1 − σ2)}w + {µ2 − σ2(1 − σ2)}2
)

dw.

Now, for the particular normal distribution involved,

E(W ) = µ, E(W 2) =
1

2
σ2 + µ2,

E(W 3) =
3

2
σ2µ + µ3, E(W 4) =

3

4
σ4 + 3σ2µ2 + µ4.

So,

I2 =
1

σ92
√

π

(
(1 − σ2)2

(
3

4
σ4 + 3σ2µ2 + µ4

)
+ 2µ2(1 − σ2)(σ2 − 2)

(
3

2
σ2 + µ2

)

+
[
µ2(σ2 − 2)2 + 2(1 − σ2)

{
µ2 − σ2(1 − σ2)

}] (1

2
σ2 + µ2

)

+ 2µ2(σ2 − 2){µ2 − σ2(1 − σ2)} + {µ2 − σ2(1 − σ2)}2
)

=
1

σ58
√

π

{
2µ2σ2 + 3(1 − σ2)2

}
.

Formula (8) follows since h2 = (8n
√

πI2)
−1/5.
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Table 1. The densities in the simulation testbed

f(x), x ∈ [0, 1] Description

1 140x3(1 − x)3 Beta(4, 4)

2 1120
[
x3(1 − 2x)3I{x≤1/2}

1
2
Beta[0,1/2](4, 4) + 1

2
Beta[1/2,1](4, 4)

+8
(
x − 1

2

)3
(1 − x)3I{x≥1/2}

]

3 3x2 Beta(3, 1)
4 3

2
{x2 + (1 − x)2} 1

2
Beta(3, 1) + 1

2
Beta(1, 3)

5 {π
√

x(1 − x)}−1 Beta(1
2
, 1

2
)

6 231
463

(1 + 3x)5(1 − x)5 Truncated Beta[−1/3,1](6, 6)
7 2e−2x(1 − e−2)−1 Truncated Exponential(2)

8 2240
1759

{
1 −

(
x − 1

2

)2
}3

Truncated Beta[−1/2,3/2](4, 4)

9 35
16

(1 − x2)3 Truncated Beta[−1,1](4, 4)

10 2{π
√

x(2 − x)}−1 Truncated Beta[0,2](1/2, 1/2)

11 2e−2x2
[√

2π
{
Φ(2) − 1

2

}]−1
Truncated 2φ(2x)

12 1
2

+ 280
(
2x − 1

2

)3 (
3
2
− 2x

)3
I{1/4≤x≤3/4}

1
2
Beta(1, 1) + 1

2
Beta[1/4,3/4](4, 4)

13 294x(1 − x)19 + 33x9(1 − x) 7
10

Beta(2, 20) + 3
10

Beta(10, 2)

14 102060
[∑3

i=1

{
x − (i−1)

3

}3
1
3

∑3
i=1 Beta[(i−1)/3,i/3](4, 4)

×
(

i
3
− x

)3
I{(i−1)/3≤x≤i/3}

]

15 c(x, 0.7; 0.7) Gaussian copula

16 5e−|x− 1

2 |(1 − e−5)−1 Truncated Laplace(1/2, 1/10)

In the table, I{A} is the indicator function which equals 1 if A is true and 0

otherwise, c(x, y; ρ) is specifically the Gaussian copula given by (4), Beta(a, b)

denotes the beta density with parameters a and b, Beta[c,d](a, b) denotes the beta

density rescaled to the interval [c, d] and “truncated” means truncated to [0, 1].



Table 2. Simulation results for density estimation over I when n = 50. The
first line for each density gives the simulated 1000×MISE (with standard
error in parentheses) where, for each simulated dataset, h is chosen to min-
imise its ISE. The second line gives the median percentage reduction in ISE
compared with that of f̂C2 (negative values correspond, of course, to worse
performance). Figures in bold denote values of MISE that are within two
standard errors of the minimum MISE for that density
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Density Estimator

f̂C1 f̂C2 f̂Xx f̂GC

1 52.13 (1.28) 40.53 (0.97) 35.49 (0.91) 46.00 (1.14)
−26.80 0.00 13.13 −13.58

2 111.65 (2.03) 102.42 (1.82) 102.10 (1.85) 112.90 (1.96)
−7.99 0.00 0.83 −10.35

3 44.02 (1.26) 33.49 (1.14) 94.94 (1.95) 58.11 (1.38)
−30.49 0.00 −278.66 −77.41

4 30.84 (0.51) 29.44 (0.53) 82.53 (1.32) 31.45 (0.46)
−4.12 0.00 −190.39 −3.99

5 241.09 (2.69) 263.03 (2.49) 333.01 (3.20) 133.66 (2.80)
8.08 0.00 −27.78 53.25

6 53.43 (1.37) 44.99 (1.18) 33.95 (0.78) 60.16 (1.41)
−20.83 0.00 18.72 −33.13

7 36.57 (1.11) 28.58 (0.95) 77.84 (1.50) 40.29 (1.10)
−24.91 0.00 −255.37 −43.26

8 28.44 (0.53) 26.35 (0.54) 5.40 (0.10) 27.32 (0.49)
−7.44 0.00 77.47 −1.62

9 33.85 (0.93) 21.35 (0.78) 64.98 (1.49) 51.52 (1.11)
−91.39 0.00 −254.76 −220.27

10 226.69 (3.29) 237.46 (2.77) 299.72 (3.58) 103.91 (3.26)
2.90 0.00 −27.14 66.70

11 26.90 (0.87) 18.77 (0.72) 54.98 (1.18) 33.98 (0.84)
−54.65 0.00 −265.14 −124.41

12 99.81 (1.81) 99.36 (1.83) 95.42 (1.71) 135.60 (2.20)
−1.50 0.00 1.65 −29.73

13 189.14 (3.35) 186.66 (3.11) 152.21 (3.34) 170.40 (3.37)
−2.93 0.00 13.11 10.25

14 167.15 (2.48) 159.08 (2.33) 159.48 (2.35) 179.16 (2.49)
−4.40 0.00 −0.01 −12.67

15 44.58 (0.92) 39.10 (0.77) 25.30 (0.86) 34.22 (0.87)
−12.61 0.00 35.37 14.34

16 128.64 (2.43) 125.08 (2.37) 124.67 (2.34) 134.62 (2.50)
−2.67 0.00 0.40 −6.48

All 94.68 (0.74) 90.98 (0.76) 108.88 (0.87) 84.58 (0.63)
−7.82 0.00 −2.78 −12.09



Table 3. Simulation results for estimation of density at points near boundary
for n = 500. The table gives estimates of 1000×MSE (with standard errors in
parentheses) for x = 0.01 and x = 0.99. h is still chosen, for each simulated
dataset, to minimise overall ISE. Figures in bold denote values of MSE that
are within two standard errors of the minimum MSE for that density. †The
values for Density 6, x = 0.99, are 1.487 × 10−3 (8.388×10−4), 1.003×10−3

(4.344×10−4), 1.984 × 10−4 (1.357×10−4) and 2.107 × 10−6 (2.014×10−6)
for f̂C1, f̂C2, f̂Xx and f̂GC , respectively
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x Estimator

f̂C1 f̂C2 f̂Xx f̂GC

1 0.01 0.084 (0.011) 0.064 (0.007) 0.018 (0.004) 0.023 (0.014)
0.99 0.085 (0.012) 0.067 (0.009) 0.019 (0.005) 0.055 (0.031)

2 0.01 0.322 (0.044) 0.125 (0.025) 0.128 (0.026) 0.312 (0.133)
0.99 0.313 (0.052) 0.138 (0.033) 0.134 (0.031) 0.327 (0.149)

3 0.01 0.101 (0.008) 0.274 (0.016) 0.006 (0.003) 0.021 (0.006)
0.99 68.997 (3.022) 72.128 (3.041) 251.339 (10.123) 139.059 (5.574)

4 0.01 30.549 (1.285) 31.462 (1.285) 150.171 (4.752) 47.047 (1.948)
0.99 32.175 (1.411) 32.159 (1.402) 156.305 (5.317) 51.618 (2.163)

5 0.01 264.498 (11.557) 835.462 (32.774) 667.592 (26.936) 165.822 (7.280)
0.99 299.808 (12.773) 822.084 (34.023) 674.043 (29.993) 176.373 (7.555)

6 0.01 30.507 (1.565) 28.578 (1.573) 36.308 (1.125) 64.576 (3.524)
0.99† 0.001 (0.001) 0.001 (0.000) 0.000 (0.000) 0.000 (0.000)

7 0.01 55.273 (2.283) 60.657 (2.155) 255.215 (7.994) 84.127 (3.398)
0.99 6.678 (0.306) 6.052 (0.277) 19.702 (0.700) 14.752 (0.662)

8 0.01 15.807 (0.711) 16.083 (0.707) 31.108 (0.242) 25.929 (1.301)
0.99 18.610 (0.837) 18.974 (0.829) 30.564 (0.238) 29.997 (1.497)

9 0.01 35.187 (1.354) 19.159 (1.002) 231.672 (7.731) 120.006 (5.206)
0.99 0.056 (0.005) 0.457 (0.021) 0.003 (0.002) 0.011 (0.008)

10 0.01 411.634 (18.819) 1296.837 (47.484) 1073.052 (45.339) 252.764 (12.230)
0.99 69.380 (3.288) 73.218 (3.583) 81.589 (4.074) 36.657 (1.697)

11 0.01 20.572 (0.842) 12.014 (0.610) 220.065 (5.750) 66.094 (2.652)
0.99 6.762 (0.330) 9.745 (0.337) 11.588 (0.416) 11.687 (0.613)

12 0.01 32.319 (1.539) 43.412 (2.257) 35.757 (1.553) 100.275 (5.282)
0.99 32.029 (1.442) 41.002 (1.849) 33.590 (1.329) 95.345 (4.856)

13 0.01 453.246 (19.042) 206.258 (8.579) 175.697 (7.466) 369.517 (19.012)
0.99 36.247 (1.830) 23.364 (1.134) 20.008 (0.944) 41.570 (2.206)

14 0.01 0.629 (0.082) 0.240 (0.042) 0.297 (0.050) 0.469 (0.195)
0.99 0.935 (0.113) 0.510 (0.082) 0.544 (0.080) 1.524 (0.393)

15 0.01 3.455 (0.151) 3.066 (0.144) 0.506 (0.038) 1.745 (0.175)
0.99 99.816 (2.823) 74.783 (2.280) 16.727 (0.601) 41.799 (2.392)

16 0.01 4.581 (0.481) 4.863 (0.491) 4.503 (0.433) 10.227 (1.345)
0.99 5.063 (0.385) 5.733 (0.417) 5.256 (0.381) 16.611 (2.162)

All 0.01 84.923 (2.167) 159.910 (4.608) 180.131 (4.108) 81.810 (1.791)
0.99 42.310 (1.053) 73.776 (2.652) 81.338 (2.417) 41.087 (0.837)



Table 4. Simulation results for density estimation over I when n = 50 and
rule-of-thumb bandwidth selectors are utilised in the estimators. The first
line for each density gives the simulated 1000×MISE (with standard error
in parentheses). The second line gives the median percentage reduction in
ISE compared with that of f̂C2,h1

(negative values correspond, of course, to
worse performance). Figures in bold denote values of MISE that are within
two standard errors of the minimum MISE for that density
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Density Estimator

f̂C2,h1
f̂Xx,h1

f̂GC,h2

1 47.94 (1.11) 45.24 (1.12) 53.95 (1.24)
0.00 7.35 −16.89

2 595.93 (1.20) 513.78 (1.28) 460.64 (1.46)
0.00 14.27 23.08

3 64.05 (2.33) 166.94 (3.05) 73.05 (1.59)
0.00 −243.87 −25.94

4 40.09 (0.83) 122.19 (1.69) 42.49 (0.68)
0.00 −280.24 −9.48

5 362.91 (2.16) 513.47 (3.01) 169.00 (3.21)
0.00 −42.77 57.83

6 55.11 (1.31) 43.19 (0.96) 68.87 (1.50)
0.00 14.39 −25.24

7 67.21 (1.96) 139.71 (2.27) 53.21 (1.31)
0.00 −176.18 1.87

8 34.96 (0.67) 23.53 (0.65) 35.08 (0.67)
0.00 37.19 1.68

9 45.46 (1.68) 101.05 (1.88) 65.30 (1.51)
0.00 −213.47 −77.64

10 373.94 (2.66) 526.96 (3.57) 151.56 (3.86)
0.00 −43.29 66.30

11 63.29 (1.52) 91.89 (1.36) 44.98 (1.05)
0.00 −61.36 8.86

12 181.90 (2.87) 167.05 (2.17) 305.08 (3.54)
0.00 4.54 −67.99

13 342.47 (3.09) 382.82 (4.96) 737.03 (5.09)
0.00 −15.24 −124.39

14 636.44 (0.48) 625.93 (0.69) 591.16 (0.66)
0.00 0.89 7.40

15 60.71 (1.29) 36.53 (0.97) 42.64 (1.02)
0.00 38.64 31.14

16 183.64 (3.00) 178.11 (2.86) 234.59 (3.82)
0.00 2.87 −23.51

All 197.25 (1.63) 229.90 (1.69) 195.54 (1.78)
0.00 −11.57 −2.09



Fig. 1. The basic beta kernel functions in (3) using h =
√

0.1 (dashed lines)
for the eleven pseudo-datapoints listed in the text, and the estimator f̂Xx of
their density based on the pseudo-datapoints (solid curve) which arises from
averaging these kernel functions.
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Fig. 2. The Gaussian-based copula for ρ = 0.9.
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Fig. 3. The kernel functions c(x, Xi; 0.9) (dashed lines) associated with the
Gaussian-based copula for the eleven pseudo-datapoints listed in the text,
and the estimator of the density based on the pseudo-datapoints (solid curve)
which arises from averaging the kernel functions.
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Fig. 4. Densities used in the simulation study. Their formulae are given in
Table 1.
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Fig. 5. Boxplots of ISEs corresponding to the simulation results with ISE-
optimal bandwidths summarised in Table 2 (n = 50).
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Fig. 6. Boxplots of ISEs corresponding to the simulation results with rule-of-
thumb bandwidths summarised in Table 4 (n = 50).
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