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Summary

Modern Systems Biology Is greatly concerned with using
post-genomic experimental data sources in order to “fit”
dynamic and predictive computer models of complex
non-linear biological processes. If this is successful,
scientists will be able to conduct “in silico” biological
experiments that would be impossible to carry out “in
vivo” and these could, in turn, transform our
understanding of molecular biology. Unfortunately there
are a great many obstacles in the way of this grand
vision, and many are fundamentally statistical in nature.
Here, an outline will be presented of the key issues
Involved in model calibration, and the advantages that
Bayesian calibration offers over other commonly used
approaches. The methodology is applied to a case study
concerning the cell-cycle in frog eggs.

1 Introduction

e Large, complex, quantitative biological models are gaining
Increasing significance for research hypothesis formulation in
biological and medical science (Kirkwood et al., 2003; Proctor
et al., 2005).

e These models are typically quantified using a set of
parameters, such as kinetic rate constants.

e Determining appropriate values for these parameters directly
from experiments can be a challenging task.

e The process of determining parameter values based on a
comparison of experimental data with output from a computer
model is known as calibration (Kennedy and O’Hagan, 2001).

e Calibration of complex computer codes is a well-studied
problem in a range of different scientific disciplines. It turns out
that the calibration problem is particularly well-suited to a
Bayesian non-parametric statistical analysis.

2 Example: cell cycle Iin frog eggs

We demonstrate a Bayesian calibration approach by analysing a
model of the cell cycle in frog eggs (Zwolak, Tyson and Watson,
2005).

e The model consists of eight Michaelis-Menten type kinetic
equations describing four reversible reactions.

e The total number of parameters in the model is 12, out of which
four parameters are Michaelis K,,-constants which were
preset. The collection of the eight parameters is denoted
0= (0,...,08).

¢ Using the experimental data, made up of eight 2-4 timepoint
short time series (n = 25 datapoints in all), we were interested
In determining values for the eight parameters.

e The computer model (simulator) for this system is a set of
ordinary differential equations (ODESs), for which a fast
numerical solver was available.

2.1 Bayesian calibration

e The computer model Is fast to run and so can be evaluated at
many sets of parameter values.

e It can therefore be treated as a deterministic (non-linear)
function, f(x; @), of the parameter values 8 and any covariate
Information a, such as initial quantities, experimental
conditions, etc.

e This deterministic function is embedded into a stochastic
model, which relates the experimental data y = (y1,y2, ..., yn)
to the computer model via the regression relationship:

yi = f(z4;0) + o¢;.

We take ¢; ~ ¢, (independently) for: =1,2,...,n, thatis, the
stochastic component of the model is independent, zero mean
Student t—distributed noise. We present results for v = 3
degrees of freedom — a distribution with much heavier tails
than a Gaussian distribution.

¢ With the above stochastic model, the likelihood L(0, 0;y, x) is
easy to write down.

¢ Prior uncertainty about parameter values is expressed through
uniform U(—10, 10) distributions for log(6;), i = 1,2, ..., 8, and for
log(o).

e Standard Markov chain Monte Carlo (MCMC) methods can be

used to sample from the (analytically intractable) posterior
distribution of the unknown parameters (0, |y, x).

2.2 Results

Results for two of the eight model parameters are shown In
Figure 1.
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Figure 1: Scatterplot of sampled values from the joint posterior
distribution of parameters ¢, = v, and 6, = v/}, together with histograms
representing their marginal posterior densities. The blue dots represent
the values estimated in Zwolak et al. (2005).

The marginal posterior distributions highlight the uncertainty
about the values of the parameters after observing the data in a
way that is not easily obtained from a non-Bayesian analysis.

Our inference for the parameters vél and vg IS largely consistent
with that of Zwolak et al. (2005). This is true for most, but not all
of the eight parameters.

However, our main focus is on predicting the output of the model,
whilst accounting for the posterior uncertainty in the parameters.
This allows us to perform in silico experiments; investigating the
range of plausible outputs for a given set of experimental
conditions.

Figure 2 illustrates how posterior uncertainty in the 6 values
impacts on the output of the deterministic model f(x; 0), for
experimental conditions C and D from Zwolak et al. (2005).
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Figure 2. The red dots are the experimental data. The blue line is the
simulator output corresponding to the set of parameters which gave the
best match to the data (in terms of likelihood). The red dashed line is
the output corresponding to the estimated parameters from Zwolak et al.
(2005). The green line is the point-wise posterior mean of f(x;0), and
the blue shading gives point-wise 95% posterior probability intervals for

f(z;0).

As well as uncertainty, a point estimate of the parameter values
can be obtained from the parameter values giving the best fit to
the experimental data over the course of the MCMC simulation.
The values we obtain give a better fit to the data (in terms of

loglikelihood) than the estimated parameters from Zwolak et al.
(2005).

Overall, this simple Bayesian approach seems to work well, even
In this case-study involving sparse data, from different sources.
The Bayesian approach allows the uncertainty in the parameter
values and model output to be quantified in an appropriate way.

3 Inferential challenges

e The Bayesian calibration approach described in Section 2
relied on the fact that the computer model was fast to run, and
so could be evaluated many times. For large and/or complex
biological models, running the simulator at many input points
can be prohibitive.

¢ Biological processes are intrinsically stochastic, and as such
deterministic models can not always be used for making
Inferences. Perhaps the main obstacle in the way of calibration
of stochastic simulators is the fact they are likely to be too slow
to be used in a calibration process where many stochastic
simulations are required.

When a (deterministic) simulator is slow to evaluate, one possible
solution is to emulate it using a Gaussian process (GP) model.

3.1 Emulation via Gaussian processes

e Gaussian processes provide a flexible model for the output
from a deterministic computer simulation model that can be
fitted on relatively few data points.

e The GP can then be used as a (fast) emulator of the computer
model.

e To illustrate this, we fit a Gaussian process to simulated data
from the frog model using the software PEr K (Santner et al.,
2003).

e The scatterplot in Figure 3 indicates that based on only 650
evaluations of the computer model, the GP can be used to
emulate the computer model reasonably well.

e In the case of the frog model, evaluating the GP model at a set
of parameter values @ is approximately 4 times faster than
running the fast ODE solver. The speed improvement will
become larger for more complex models.

e Once estimated, the GP can be used as a surrogate for the
computer model in methods to estimate model parameters.
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Figure 3: Scatterplot of predicted against true agreement with experi-
mental data for a set of 1500 input parameters sampled uniformly from
the parameter space.

4 Future work

e The ultimate goal of the CaliBayes project is to develop fully
Bayesian methods which allow us to quantify all sources of
uncertainty in the calibration process.

e The Bayesian calibration of stochastic models is of particular
Interest due to the inherent variability in biological processes
which cannot be represented by a deterministic model.

e Progress has been made using exact and approximate
Bayesian models (e.g. Boys et al. (2004), Golightly and
Wilkinson (2005)) but these methods are not likely to be
applicable when data are sparse, from different sources and of
different types, and when the models are large and contain a
mixture of low and high copy-number species.

e When a (black box) stochastic simulator is too slow to make
many thousands of simulations, some form of emulation using
a fast surrogate will almost certainly be required.
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