Suppose we have \(N\) chemical species \(\{X_1, \ldots, X_N\}\) and \(L\) reactions \(\{R_1, \ldots, R_L\}\). Reaction \(R_l\) corresponds to \[
\underline s_{l1} X_1 + \ldots + \underline s_{lN} X_N \overset{k_l}{\longrightarrow} \overline s_{l1} X_1 + \ldots + \overline s_{lN} X_n,
\] where \(\mathbf{ \underline{s}_{l}}\) and \(\mathbf{ \overline s_{l}}\) are the number of reactants and the products in each species involved in reaction \(l\). The associated moment pde is \[
\frac{\partial M(\theta; t)}{\partial t} =
\sum_{{\bf n}={\bf 0}}^{\infty} {\bf \theta}^{{\bf n}} \sum_{l=1}^L \sum_{{\bf i}} a_{l, {\bf i}}
\sum_{{\bf k}={\bf 0}}^{{\bf n}} {\bf s_l}^{\bf k} {\bf n \choose \bf k} \mu_{{\bf n} - {\bf k} + {\bf i}}(t)
\] where \(k_1+\ldots + k_N \ne 0\), \[
{\bf s_l}^{\bf k} {\bf n \choose \bf k} = s_{l1}^{k_1} {n_1 \choose k_1}\times \ldots \times s_{lN}^{k_N} {n_N \choose k_N}
\] and \[
\mu_{{\bf n} - {\bf k} + {\bf j}}(t) = \mu_{n_1 - k_1 +j_1, \ldots, n_N- k_N+j_N}(t)
\]