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Abstract

Stochastic models are often used when modelling chemical species that have
low numbers of molecules (see [1]). However, as these models become large,
it can become computationally expensive to simulate even a single realisa-
tion of the system. Since even efficient simulation techniques have a high
computational cost. One possible technique to approximate the stochastic
system is moment closure. The moment closure approximation is used to
provide analytic approximations to non-linear stochastic models. Until now,
this approximation has only been applied to models with polynomial rate
laws. In this paper we extend the moment closure method to cover models
with rational rate laws.
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1. Introduction

Stochastic population models are becoming increasingly useful in a va-
riety of fields (see for example [2, 3, 4, 1]). For most stochastic models of
interest the transition probabilities are non-linear, which makes the resultant
stochastic process intractable.

To gain insight into the stochastic process we simulate from the model.
Exact realisations from the stochastic model can be obtained using the dis-
crete event simulation method described by Kendall and later by Gillespie
[5, 6]. However, for large models this leads to computational problems even
for simulating a single realisation, let alone the many repeated realisations
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that are needed in order to understand the stochastic variation inherent in
the process.

Other simulation methods have been proposed. The next-reaction method
[7] is a modification of a variant of the first reaction method [8]. This al-
gorithm can increase the speed of the simulation. This increase in speed is
achieved by minimising the recalculation of hazards and reducing the random
numbers needed per step. However this increase depends on the model and
the random number generator used. Approximate methods are also possi-
ble. The 7-Leap Method was developed by Gillespie [9] as an approximate
method to accelerate the simulation process with an acceptable loss of ac-
curacy, by moving ahead by a variable amount of time 7 and approximating
the number of reactions in the interval 7 with a Poisson random variable.
For each leap, 7 is selected to give a trade-off between speed and accuracy,
where an increase in speed is given by a large 7 and the accuracy is measured
by the difference between the reaction hazards at each end of the interval,
as this affects the assumption of constant hazard over the interval 7. The
original 7-Leap algorithm has been improved over the years [10, 11].

In contrast, moment closure methods derive moment or cumulant ODEs
which can be solved numerically to obtain estimates of the moments at a
particular time ([12, 13, 14, 15, 16, 17, 18]). Typically for non linear models,
the ODEs for the moments form an infinite set, i.e. the 7 moment depends
on at least the (i + 1) moment. This results in a set of ODEs that can
not be solved analytically or numerically. Moment closure is a technique
to ‘close’ this set, by eliminating the dependence on higher order moments,
allowing us to get a solvable set of coupled ODEs. This is usually done by
setting moments or cumulants above a certain order to zero, and solving the
remaining coupled ODEs. For instance [19] and [20] set all third and higher
order cumulants to zero, therefore obtaining a normal approximation.

Moment closure yields a large speed up in computational time for the sim-
ulation of systems with large populations. For example, in calcium-induced
calcium release in cardiac myocytes [21], an algebraic relationship (based on
the beta-binomial distribution) is used to express the third moment in terms
of lower moments.

However all previous research applies moment closure to models where
the rate laws are of polynomial form. This is the first paper that generates
and analyses systems using rational rate laws. In this paper we consider three
specific models, which can be used as building blocks in other systems. This
extension to the moment closure method now allows us to apply moment



closure techniques to models with more complex propensity functions.

2. Example 1: a simple rational rate law

To illustrate our method we will first look at the simplest rational rate
law. In this model, we have a single species and a single reaction

X =0 (1)

with propensity function v
x
alw) = = )

where k£ > 0, V' > 0 and x is the number of individuals of X at time t. Thus
the probability of (1) occurring in the interval (¢,t + 0t) is a(x)dt + o(dt).

Holling [22] proposed (1) with propensity function a(z) as the Holling type
IT response function. Holling used this function form to describe the uptake
of substrate. It should be noted that this reaction system also describes the
Michaelis-Menten system (see [23]).

The associated forward Kolmogorov equation for (1) with propensity
function a(z) is

dP(x;t)
dt

W Vi(r+1) LV

where P(z;t) is the probability of observing x individuals at time ¢ (see
[1]). To find the associated moment equations of (1) we first multiply (3) by
(k+2+1)(k+x) to give

dP(x;t)
dt

(k+x+1)k+z)=Plx+ 1Lt)V(z+1)(k+x) (4)
— P(x;t)Vs(k +x+1).

The univariate moment generating function is defined as

M(0,t) = iP(m; t)e®? = io: uz(t')ﬁl

: 1
1=0




where

pi(t) = BIX(t)] = Z P(x;t)x(t)

Multiplying equation (4) by e*® and summing over all possible values of x
gives

i—+1 % 7
Zh 9IM(6,1) _Zfia M(@,t)e_e_zgia M(0,1) )

otoo? 00' 00
where
k2 +k fori=0;
* o Z ’ V(k—1) fori=1,
2k+1 fori=1; ,
h; = , fi=V for i = 2;
1 for ¢ = 2; .
. 0 otherwise,
0 otherwise,
and

V(k+1) fori=1;
9=V for i = 2;
0

otherwise.

By equating coefficients of 6 in equation (5) we get expressions for each of
the moments. For example, extracting coefficients of 6° gives an expression
for the first moment

dpn d#z
2k+1 = -2V 6
2k + 1) = —2Vpu - 2. (6)

By rewriting equation (6) in terms of cumulants we obtain

d:‘fl V/‘fl d’iQ
dn _ Ve dm (7)
dt k+1/2+r  dt

where k; is the mean and k, is the variance. Setting ko = 0 in equation
(7) gives an approximation to the deterministic equation (2). When we have
polynomial rate laws, the deterministic equation is identical to the moment
closure equation with ko set equal to zero. However, for rational rate laws



Distribution Moments Cumulants

Normal s = piapy — 243 k3 =0
Poisson 3 = puy + 3p2 + ud K3 = Ko = K1

Log-Normal ps = (p2/ )’ Ky = (Ka/k1)® + 3K3 /K

Table 1: Table showing some options for closing second order moment for different distri-
butional assumptions.

this equality does not hold. Instead, equation (7) has an additional term
“1/27, in the denominator.

If we equate coefficients of 6! and 6% we retrieve expressions for the second
and third moments respectively,

dps dpy - dus
2%k +1)—= = —V(k— 1) — — ) e
(2k+1)— VI(k =D =3Vips = k(k +1)—= = —
d
(2k + 1)% = V(k =1+ V(3= 2k)p — 4V

duy  d
(k1)

dt dt’

where p; = p;(t).

The ODE for p(t) (see equation (6)) is not closed as it depends pus(t),
similarly the ODE for s () depends on u3(t) etc. Whenever a model includes
non-linear rate laws this dependence structure appears. Table 1 shows three
distributions that could be used to close the moment equations. Throughout
this paper we will use the normal approximation. Figure 1 shows the mean
with an approximate 95% confidence interval from the moment closure ap-
proximation and from 100,000 Monte Carlo simulations. We can see that the
moment closure approximation gives a good estimate of the true mean and
variance, although between t = 35 and t = 45 the approximation deviates
slightly from the true mean and variance.

3. General form

In this section we develop general multivariate results, for forward Kol-
mogorov equations that contain rational rate coefficients, allowing the calcu-
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Figure 1: (a) The mean + 2 standard deviations obtained from 100,000 simulations (———)
and the approximate mean + 2 standard deviations from the moment closure approximation
(solid), where x(0) = 180 and {V,k} ={4.8,5/8}. (b) The error (approrimation —
exact) for the mean (solid), the upper 95% (— — —) and the lower 95% (— — —).

lation of moment equations up to any order.
Suppose we have N species {y1,...,yn} and [ reactions {Ry,...,Rp},
where reaction R; corresponds to

Spy1+ ...+ SINYN — Suyr + ...+ SNy,

where s, and §; are the number of reactants and products of each species
involved with reaction [.

Let y be a column vector of species numbers, s; = §;—s; and s;; = 5; — 5
be the stoichiometric coefficient of species y; in reaction R;. Then when
reaction R; occurs y; — y; + s;;. Thus we can write the propensity function
for reaction Ry as, ay(y)/5i(y), where o and /3 are polynomials.

Let p(y)(t) = p(y) be the probability of being in state y at time ¢, with

initial conditions of y(0). The time evolution of y can be formulated as the



forward Kolmogorov equation

Ay _N" pro_ Ay =s) o)
EP(}’)—;P(Y Vaty s T 5 (8)

where f;(-) # 0 and 5;(0,0,...,0) # 0. If we take §;(-) = 1 in (8) then we
have the standard form for the CME. Multiplying (8) by

[166 —s)5()

Z P(y - Sl)al(y - Sl) (H 5r(y - Sr)) (H 55(}/))]

a1 L -y ok
- éP(Y)az(Y) (li[l BT(Y)) (f[l Bs(y — Sl))] :

On extracting coefficients of y' and (y — s;)! for each reaction [, yields

SP()h(y) = Z Ply—s)fly sl = PB)gly). )
where 7
hiy) = lﬁﬂz(y —s)B(y) = Dy, (10)
fly—s) = éaz(y —s)) li[lﬁr(y —sr) ﬁlmy) = éz fiily =)',

()
g(y) = éaz(w]i[lﬁr(y)ﬁlﬁs(y —s) =Dy (12)

with h; and ¢; being the respective coefficients of y' = 3/ x ... x yj{,v, and fj;
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being the coefficients of (y — s1)! = (y1 — s11)® X ... X (yy — sv)™¥ for each
reaction /. On multiplying (9) by e¥? and summing over all values of y, we
get a PDE for the m.g.f, viz

FTIM(0,t) & M (0, t) SM (0, 1)
(13)

Since h and g are coefficients of P(y), they are independent of [. On expand-
ing the partial derivatives in (13), we get

0 > Qj_i © 9.]— S19k
o1 21 2 it Z[thz .%Z(M (14)

k=0
o0 6-] 1
_ Z‘gl j;l (j . l)'lu’.h
where
(s10) _ (s1161) (sinOn)" Y
k! kq! k!
and

Hj = Hjija,...in (t)

Extracting the coefficients of 6 from (14) yields

0o 00 L n
Z 0" Z hi%ﬂim = Z o" {Z [Z fii Z s (E) Mnk+i] - Z giNnJri} :
n—0 i n—0 =1 L i k=0 i
(15)

where



and

Hn—k+i = Mny—ki4i1,...ny—kn+in (t)

To obtain an equation for a particular moment, we extract the coefficients of
01,...,0y from each side of equation (15). Hence equation (15) is a general
result that can be applied to a wide class of stochastic models. For example,
to obtain the moment equation for the marginal mean, we extract the coeffi-
cients of 8; to get an equation for the first moment of species j. If we required
an equation for p; o = pj, we extract coefficients of 6; only, yielding

L
Z hi%ﬂi—&-n = Z <Z fl,islnﬂn—k+i> - Zgiﬂmia (16)
i =1 \ i i

where n = 1,0,...,0. On extracting du;/0t we gain the following expression
a,UJ aﬂl
h o —Zanul 2 i = ) iy (17)
i i#j

where /LJ = H1,0,...,0 and hJ = h1,07...70 # 0.

Single species case
If there is only a single species, equation (15) simplifies to

oo N o0 a oo . o0
S0 b = 30 {z [z w3y () )u] : ZWW} |
n=0 1=0 n=0 =1 L=0 =0

(18)
This allows us to gain a simple approximation for the first moment, which
cannot be done for multiple species. In the single species case to find the

equation for the first moment we extract the coefficients of 6y, hence the
equation for the first moment is

hl alul - [Z Z fl z,uz] Z gilbi — Z h 8H2 (19)

=1 i=0 i#1



and the equation for the n* moment (n > 2) is

an L
-

o

fl ) Z ( )/Jkarz] Z Gilbnyi — Z h alun I—H
0

1#£1
(20)

=

This simplification is not possible for models with more than one species as
this approximation to the first moments from the coefficients of 6?9, gives one
equation with NV (number of species) unknowns.

4. Further Examples

In this section we will apply our method to two further examples which
have rational rate laws. To test the speed and accuracy of our moment
closure approximations, we have simulated ‘exact’ means and variances for
each of the examples. The means and variances are calculated from 100,000
simulations of a Gillespie algorithm coded in C. Each of the moment closure
approximations was also coded in C. The moment equations were solved using
the Runge Kutta Cash Karp (rkck) method from the GSL ODE libraries. All
examples are run on a Intel Xeon E5345 2.33GHz processor.

4.1. Example 2: rate laws involving powers

In this example we consider rational rate laws involving powers. This
model contains a single species Y and a single reaction:

Y =0

with rate law
Vy?

k + 12
This is a fairly standard reaction rate and is known as Holling Type III
response function for modelling vertebral predators. The rate has in a variety
of scenarios, such as modelling the outbreak of budworms in forests and
predator-prey systems (see [22, 24, 25]).

The forward Kolmogorov equation for this reaction is

)~ ply s

aly = s1)
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Figure 2: (a) The mean £ 2 standard deviations for Example 2 obtained from 100,000

simulations (— — —) and the approzimate mean + 2 standard deviations from the moment
closure approzimation (solid), where y(0) = 180 and {V,k} ={4.8,5/3}. (b) The error
(approzimation — exact) for the mean (solid), the upper 95% (— — —) and the lower 95%
()

where a(y) = Vy?, B(y) = k + y* and s; = —1. From relationship (19), we
obtain an equation for the first moment is

dﬂl = <Z fl/’bl Z gi,U/z Z h dﬂz >

dﬂz() du3() dpa(?)
@ a ] (22)

1
T 2%k

[ AVpis(t) — (28 + 1)

Similarly, from relationship (20) we obtain an equation for the second mo-
ment

2k (1 1)pa(t) — 2palt) + 5ps(0)
IR ;t(t) ~ k) ;’t(t) L ;t(t) - d”;ft).

This slightly more complicated rate law leads to the ODE for the mean
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Figure 3: The exact mean + from 100,000 simulations 2 standard deviations (— — —)

and the approximate mean + 2 standard deviations from the moment closure approxima-
tions (—) for Example 3. The initial conditions are y(0,0) = {300,0} and parameters
{NE, Vi, Ve, Cs, Cy ={1,0.01,5,5,2,2}.

(equation (22)) depending on ps(t), us(t) and py(t), whereas in Example 1
(§2), the ODE for u4(t) (equation (6)) only depends on ps(t). We can again
apply a normal approximation to close the set of ODEs, allowing us to solve
numerically for given initial conditions and rate constants.

Figure 2 shows a plot of the exact mean and variance against the mo-
ment closure approximations of the mean and variance. We can see that the
moment closure approximation gives a good estimate of the true values. As
we saw in Example 1 the moment closure approximation is furthest from the
true values as the population of species Y approaches zero.

4.2. Example 3: rate laws with multiple species

We now consider a Michaelis-Menten type system where the product (P)
can reform the substrate enzyme complex (SE). We also consider that the
product can be removed from the system and the substrate immigrates into
the system. Thus we have the following reactions,

R12®—>S, RQZP—>®, RgiS-)P, R41P—)S,

12



with rates A, kP, (V4.5)/(Cs + S + C.P) and (C.V,P)/(Cs + S + C,.P) re-
spectively. The associated forward Kolmogorov equation is

4

dP(y) iy — s1) ()
i~ 2PV T PGy %)

where y = (y1,y2) are the numbers of molecules of substrate and product
respectively. From equations (10-12) we can calculate the coefficients h;, fi;
and g;. Equation (16) thus allows us to form expressions for moments of
our choice. We have once again used a normal approximation to close the
moment equations, yielding five coupled ODEs (two means, two variances
and covariance). These can be solved numerically to give estimates of the
means and variances. We will consider three approximations to the means,
variances and covariance,

Full Model (Full)

All terms for the means, variances and covariance in the moment equa-
tions are included.

Deterministic means (Approzimation 1)

By assuming the variance and covariance are zero in the moment equa-
tions for the means, we can gain an approximation to the deterministic solu-
tion. We can combine this approximation with the equations for the variances
and covariance to get a first approximation.

Assume all differentials on the LHS equal zero (Approzimation 2)

We assume that the rate of change for each moment is small compared to
the moment itself, equivalently all h; = 0 Vi # 1. That is we only consider
the differential on the LHS that we are interested in.

For each of these schemes we must solve five moment ODEs. Figure 3
shows the mean and variance estimates for each scheme, along with a Monte
Carlo estimate of the true values. We observe that the full model and both
approximations estimate match the Monte Carlo estimates fairly closely. As
we would expect, Approximation 2 performs the poorest of the three schemes.

Table 2 shows the CPU time taken (in seconds) for each of the three
schemes for different simulation times. Overall, using approximations {1, 2}
compared to the full moment closure ODES gives a speed increase of about

13



Simplification ~ Simulation time CPU time(s)

Full 50 0.57
Approximation 1 50 0.088
Approximation 2 50 0.004

Full 5000 48.75
Approximation 1 5000 7.52
Approximation 2 5000 0.14

Table 2: Comparison of simulation times for different moment closure schemes, where
yv(0,0) ={300,0} and {\k, V;, Vs, Cs,C.} ={1,0.01,5,5,2,2}.

a factor of {10,100} respectively. The CPU time scales linearly with the
increase in simulation time.

5. Conclusions

It is becoming increasingly recognised that to accurately capture the
fundamental characteristics of many systems, the associated mathematical
model should contain stochastic features. For example, Proctor et al. [26]
modelled DNA damage-response mechanisms in Saccharomyces Cerevisiae.
This model highlighted the interaction between DNA repair and checkpoint
pathways. Cellular damage, by its very nature, is a stochastic event. Proctor
et al. highlights that while an ODE representation of the model captures the
average behaviour, it fails to highlight the variability of the number of cell
divisions in the cdcl13-1 mutant strains. Even though this model was based
on mass-action kinetics, it was necessary to make some limiting assumptions
leading to rational laws.

Waldherr et al. [27] considered stochastic and deterministic models which
linked cellular decisions taking place on a time scale of years to decades to
cellular decisions that were measured in minutes to hours. By using stochastic
bistable switch models (involving rational rate laws) they demonstrated that
population traits could be predicted from noisy stochastic systems. In their
paper they considered only basic models, so future work involving stochastic
models will, by necessity, involve approximations (possibly using moment
closure) of the system.

Stochastic hybrid systems (SHS) are increasingly being used by modellers
(see [28] for an review). SHS decompose the state space of the model into

14



a continuous part and a discrete part. Singh and Hespanha highlight that
moment closure approximations would be ideal in this setup. The general
idea is that fast reactions could be simulated using a fairly accurate moment
closure approximation, whilst the slow reaction be simulated separately. The
key point is that we are not ignoring the stochasticity of the fast reactions.
The method described in this paper provides another tool for stochastic mod-
ellers, allowing moment closure techniques to be applied to a wider class of
models.
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