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Abstract: Although stochastic population models have proved to be a powerful tool in the study of process
generating mechanisms across a wide range of disciplines, all too often the associated mathematical
development involves nonlinear mathematics, which immediately raises difficult and challenging analytic
problems that need to be solved if useful progress is to be made. One approximation that is often employed
to estimate the moments of a stochastic process is moment closure. This approximation essentially truncates
the moment equations of the stochastic process. A general expression for the marginal- and joint-moment
equations for a large class of stochastic population models is presented. The generalisation of the moment
equations allows this approximation to be applied easily to a wide range of models. Software is available from
http://pysbml.googlecode.com/ to implement the techniques presented here.
1 Introduction
As a result of recent advances in experimental techniques,
biology has become much more of a quantitative science. The
capacity to answer questions ranging from cell and molecular
functions, through to population dynamics requires an
increasing ability to acquire, store and manipulate large
volumes of raw data in a flexible, efficient manner. Moreover,
there is a growing realisation that complex biological
processes cannot be understood through the application of
ever-more reductionist experimental programmes.

There is a developing perception that mathematical
modelling may provide some of the necessary tools required
to understand this mass of biological data. Indeed, there are
distinct advantages of modelling a biological process with the
rigour needed to build a mathematical model. First, when
constructing a model, gaps in current knowledge are
highlighted quantitatively [1, 2]. Even the very process of
model specification will highlight important unknowns. Also,
when building a model, verbal hypotheses are made specific
and conceptually rigorous [3, 4]. Finally, as [5] shows, models
can yield quantitative as well as qualitative predictions.

A model can be generally classed as deterministic or
stochastic. A deterministic model is one that takes no
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account of random variation and therefore gives a fixed and
precisely reproducible result. Deterministic models are often
mathematically described by sets of differential equations
and are most (but not always) appropriate when large
numbers of individuals of a species are involved and
statistical variations in the average behaviour of the system
are relatively unimportant.

However, for many biological systems, this assumption may
not be valid. A stochastic model should be used when either the
number of a particular species is small or when there is reason
to expect random events to have an important influence on the
behaviour of the system. The essential difference between
a stochastic and a deterministic model is that in a stochastic
model, different simulation runs can result from the same
initial conditions and model parameters (see [6] for
a detailed discussion on stochastic models).

A stochastic model, that is, a continuous time Markov
process on discrete state space, takes into account every
molecule and every reaction. This poses a large
computational problem. Typically, to obtain a realisation of
a process of interest, one would implement the Gillespie
algorithm [7]. This algorithm chooses at random an event
to occur (weighted by the hazard function), and then
updates the event time. The Gillespie algorithm has the
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useful property of generating exact independent realisations
from the underlying stochastic model. The next-reaction
method (also known as the Gibson–Bruck algorithm) is a
modification of a variant of the Gillespie algorithm known
as the first-reaction method [8, 9]. This algorithm can
increase the simulation speed by efficiently working out
event times. However, the speed-up is likely to depend on
the precise structure of the model and the speed of the
random number generator used. A number of other
approximation simulators have been suggested. For
example, Gillespie and Petzold [10] divide the time axis
into small discrete chunks and updates multiple species at
once. However, when the number of molecules are low,
problems can arise since mass updating of species can cause
the number of species to become negative. Hybrid
simulators combine an exact stochastic framework with
traditional deterministic ODE methods, that is, by
partioning the species into two groups: a group with a low
number of individuals to be treated exactly (stochastically)
and a group of species that can be treated with an ODE
solver [11, 12]. Alternatively, the model could be
formulated as a stochastic differential equation, which is
considered valid for large numbers of molecules.

This paper considers the moment-closure approximation.
This technique constructs a set of ODEs for the model
moments, that is, the mean, variance, skewness and so on.
Typically for nonlinear models, the ODE for the ith moment
will depend on higher-order moments, that is, the (iþ 1)th
moment. This results in a set of differential equations that
may be impossible to solve analytically or numerically. The
usual procedure to circumvent this dependency problem
involves setting the moments or cumulants above a certain
order equal to zero, and solving the remaining coupled set of
differential equations either numerically or algebraically (if
possible). For instance Goodman and Whittle [13, 14] set all
third- and higher-order cumulants to zero, thereby obtaining
a normal approximation. In general, moment-closure
techniques have been applied with considerable success in a
number of different situations. For example, Matis and Kiffe
[15] model the spread of the African honey bee through
South America via a logistic process, with moment-closure
techniques used to estimate moments, and Marion et al. [16]
model a nematode infection in ruminants.

All applications of the moment-closure approximation
have so far only been applied to models with a relatively
small number of interacting populations. In this paper, an
efficient method of obtaining moment equations up to any
order is developed along with software that performs the
moment-closure approximation. The results are illustrated
by examining a model that contains 23 reactions and 17
chemical species.

2 Approach
Typically moment-closure techniques are applied in a model
specific manner, that is, for a given model, higher-order
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moments are calculated [6, 13, 16–18]. Recently, more
general frameworks have been proposed, for example, using
symbolic mathematics engines [19] or general second-order
moment equations [20, 21]. In this section, general
multivariate results are developed, which enable moment
equations up to any order to be easily calculated.

Suppose, one has N chemical species {X1, . . . , XN } and L
reactions {R1, . . . , RL}. Reaction Rl corresponds to

sl1X1 þ � � � þ slN XN �!
kl

�sl1X1 þ � � � þ �slN Xn (1)

where sl and s̄l are the number of reactants and the products
in each species involved in reaction l. The reaction occurs
with rate kl. In this paper, it is assumed that all reaction
rates follow the polynomial rate laws (which would include
all mass-action kinetic rate laws).

Denote x to be the column vector of molecule numbers,
and sl ¼ s̄l � sl and sli ¼ �sli � sli to be the stoichiometric
coefficients of species Xi in reaction Rl. Then, when
reaction Rl occurs, xi ! xi þ sli .

Let p(x)(t) ¼ p(x) be the probability of being in state x at
time t, with initial conditions of x(0). The time evolution of x
can be formulated as the chemical master equation (or
Kolmogorov’s forward equation), viz

dp(x)

dt
¼
XL

l¼1

p(x� sl )al (x� sl )� p(x)al (x) (2)

where al (x) is the propensity function of reaction Rl. ai, j is
denoted to be the coefficient of x1

j1 � � � � � xN
jN in

reaction i. For example, if the first propensity function was

a1(x1, x2) ¼
lx1x2(x1 � 1)

2

then, a1,(1,1) ¼ �l=2, a1,(2,1) ¼ l=2, and 0 otherwise.

The ith univariate moment is defined as

mi(t) ¼ E[X i] ¼
X1
x¼0

p(x)(t)xi

for i ¼ 0, 1, 2, . . .: The associated univariate moment
generating function is defined as

M(t) ;
X1
x¼0

p(x)(t)eux
¼ m0(t)þ

m1(t)u1

1!
þ
m2(t)u2

2!
þ � � � :

Likewise, the multivariate moment generating function is
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defined as

M(t) ;
X1

x1,...,xN¼0

p(x)(t)eu1x1þ���þuN xN ¼
X1
x¼0

p(x)(t)exu

¼
X1
x¼0

mx(t)ux

x!

where

x! ¼ x1!x2! . . . xN !

and

mx(t) ¼ E[X
x1
1 . . . X

xN
N ] ¼

X1
x¼0

p(x)(t)xi

are the moments. On multiplying (2) by exu and summing
over x, one obtains

@M(t)

@t
¼
XL

l¼1

X
i

al ,i

@iM(t)

@u i [ exp(slu)� 1] (3)

where

i ¼ {i1, i2, . . . , iN } and
@iM(t)

@u i ¼
@i1þ���þiN M(t)

@u
i1
1 . . . u

iN
N

On expanding the partial derivative in (3), one obtains

@M(t)

@t
¼
XL

l¼1

X
i

al ,i

X1
j¼i

u j�i

( j � i)!
mj(t)

X1
k¼0

(slu)k

k!

( )
� 1

 !

(4)

where

(slu)k

k!
¼

(sl1u1)k1

k1!
� � � � �

(slNuN )kN

kN !

and

mj(t) ¼ mj1, j2,..., jN
(t)

Extracting the coefficients of u from (4) yields

@M(t)

@t
¼
X1
n¼0

un
XL

l¼1

X
i

al ,i

Xn

k¼0

sl
k n

k

� �
mn�kþi(t) (5)

where k1 þ � � � þ kN = 0

sl
k n

k

� �
¼ s

k1
l1

n1

k1

� �
� � � � � s

kN
lN

nN

kN

� �
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and

mn�kþj ¼ mn1�k1þj1,...,nN�kNþjN

Thus, to obtain an equation for a particular moment, one
extracts the corresponding coefficient of u1, . . . , uN from (5).
Hence, (5) is a general result that can be applied to a wide
class of stochastic models. In particular, when there is only a
single species in the population, expression (5) simplifies to

@M(t)

@t
¼
X1
n¼1

un
1

XL

l¼1

X1
i¼0

al ,i

Xn

k¼1

sk
l ,1

n
k

� �
mn�kþi(t) (6)

Thus, the equation for the first moment is

dm1(t)

dt
¼
XL

l¼1

X1
i¼0

al ,i sl ,1 mi(t) (7)

where as for the nth moment one obtains

dmn(t)

dt
¼
XL

l¼1

X1
i¼0

al ,i

Xn

k¼1

n
k

� �
sk
l ,imn�kþi(t) (8)

3 Computer software
A Python library, has been constructed which applies
expression (5) to a model with polynomial rate laws. It
reads in a systems biology mark-up language (SBML) file
[22] and outputs a MapleTM file with moment equations
up to any order. This library can be used as stand alone
software or incorporated into other tools, such as pysbml or
PySceS [23, 24]. The library can be downloaded from
http://pysbml.googlecode.com/ along with other example
SBML models and MapleTM output.

Although the library is written in a scripting language, the
module is very fast, portable and extendable. For example,
a model with 23 reactions and 17 species takes about five
seconds to generate a MapleTM file with all first- and
second-order differential moment equations. Maple can
then solve these differential equations in a few minutes.

4 Examples
4.1 Immigration-death model

Consider a system that contains the following two reactions

0=�!
a

X and X �!
n

0= (9)

This is simply the classic immigration-death process and has
the following chemical master equation

dpx(t)

dt
¼ apx�1(t)þ n(xþ 1)pxþ1(t)� (aþ nx)px(t) (10)
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where px(t) is the probability of having x molecules at time t
(see [25] for an overview of this process). This system has the
following propensity functions

a1(x) ¼ a and a2(x) ¼ nx

thus,

ai, j ¼

a for i ¼ 1 and j ¼ 0
n for i ¼ 2 and j ¼ 1
0 otherwise

8<
:

The associated stoichiometric coefficients are

s1,1 ¼ 1 and s2,1 ¼ �1

From expression (7), the equation for the first moment, that
is, the mean, is

dm1(t)

dt
¼
X2

l¼1

X1

i¼0

al ,i sl ,1 mi(t)

¼ a1,0s1,1 þ a2,1s2,1m1(t)

¼ a� nm1(t) (11)

Likewise, on using expression (8), one obtains equations for
higher-order moments, namely

dm2(t)

dt
¼ a[1þ 2m1(t)]þ n[m1(t)� 2m2(t)]

dm3(t)

dt
¼ a[1þ 3m1(t)þ 3m2(t)]� n[m1(t)

� 3m2(t)þ 3m3(t)] (12)

The equivalent deterministic formulation of the
immigration-death process, that is, the deterministic
equation corresponding to a1(x) and a2(x) is

dX (t)

dt
¼ a� nX (t) (13)

where X(t) is the population at time t. Since the immigration-
death model is linear, (13) and (11) are identical.

4.2 Dimerisation process

The simple dimerisation process has the following set of
relations

2X �!
k1

Y and Y �!
k2

2X (14)

On noting that

X þ 2Y ¼ X0 (15)

where X0 is the number of molecules of X that would be
present if they were fully disassociated, one obtains the
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propensity functions

a1(x) ¼
k1x(x� 1)

2
and a2(x) ¼

k2(x0 � x)

2
(16)

Hence

ai, j ¼

�k1

2
for i ¼ 1 and j ¼ 1

k1

2
for i ¼ 1 and j ¼ 2

k2x0

2
for i ¼ 2 and j ¼ 0

�k2

2
for i ¼ 2 and j ¼ 1

0 otherwise

8>>>>>>>>>>><
>>>>>>>>>>>:

The associated stoichiometric coefficients are

s1,1 ¼ �2 and s2,1 ¼ 2

The chemical master equation for the dimerisation process is

dpx(t)

dt
¼ pxþ2(t)k1(xþ 2)(xþ 1)=2þ px�2k2(x0 � xþ 2)=2

� px[k1x(x� 1)=2þ k2(x0 � x)=2] (17)

and the corresponding deterministic model is

dX (t)

dt
¼ �k1X (t)[X (t)� 1]þ k2[X0 � X (t)] (18)

On using expression (8), one obtains the following moment
equations

dm1(t)

dt
¼ k1[m1(t)� m2(t)]þ k2[x0 � m1(t)] (19)

dm2(t)

dt
¼ �2k1[m1(t)� 2m2(t)þ m3(t)]þ 2k2[x0(m1(t)þ 1)

� m1(t)� m2(t)] (20)

dm3(t)

dt
¼ k1[4m1(t)� 10m2(t)þ 9m3(t)� 3m4(t)]

þ k2[4(x0 � m1(t))þ 6(x0m1(t)� m2(t))

þ 3(x0m2(t)� m3(t))] (21)

Unlike the moment equation in (11), (19) is not closed, that
is, the differential equation for m1(t) depends on the m2(t),
likewise the ODE for m2(t) depends on m3(t) and so on.
This dependency structure occurs whenever there are
nonlinear rate laws in the model.

By rewriting (19) in terms of cumulants, one obtains

dk1(t)

dt
¼ �k1k1(t)[k1(t)� 1]þ k2[x0 � k1(t)]

� k1k2(t) (22)
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where the first cumulantk1(t) is the mean, and second cumulant
k2(t) is the variance. On comparing (22) with (18), it is observed
that the stochastic equation for the mean has an additional k2(t)
term. Hence, the deterministic equation in this case can be
considered as a first-order approximation to the stochastic
where all higher-order cumulants are assumed to be zero.

Fig. 1 shows a stochastic realisation of the dimerisation
model with an estimated mean and an approximate 95%
confidence interval (+2 standard deviations). The
estimates for the mean and variance were obtained by
setting m3(t) ¼ 3m2(t)m1(t)� 2m1(t)3, that is, the normal
approximation that corresponds to setting cumulants of
order 3 and above to be 0. It is observed that the realisation
oscillates around the mean and remains within the
uncertainty bands (except briefly at time t ’ 6).

Third- and fourth-order closure schemes for this model
were also investigated. In both cases, the estimates for the
mean and variance were almost identical to the standard
normal approximation (the results can be obtained from the
author’s website). By investigating higher-order closure in
this manner, the sensitivity of this approximation can be
assessed, since similar estimates for the mean and variance
across closure levels indicate that the underlying
distribution may be approximately normal.

4.3 Chaperone model

Molecular chaperones have many cellular functions but are often
involved in the folding of nascent proteins, re-folding of
denatured proteins and prevention of protein aggregation and
in assisting the targeting of proteins for degradation by the
proteasome and lysosomes. They also have a role in apoptosis
and are involved in modulating signals for immune and
inflammatory responses. The induction of heat shock proteins
is impaired with age and there is also a decline in the
chaperone function. Aberrant/damaged proteins accumulate

Figure 1 Single stochastic realisation of the dimerisation
process, where X(0) ¼ 301 and {k1, k2} ¼ {0.00166, 0.2}

The moment closure approximation for the mean (dotted) and an
approximate confidence region of the mean +2 standard
deviations (dashed) is also shown
The Institution of Engineering and Technology 2009
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with age and are implicated in several important age-related
conditions (e.g. Alzheimer’s disease, Parkinson’s disease and
cataract). Therefore the balance between damaged proteins
and available free chaperones may be greatly disturbed during
ageing. Here, this framework is applied to such an example
that describes the heat shock system and its implications in
ageing (see [26] for further details).

The model is coded in SBML and is available to download
from the author’s website or from the Biomodels website with
model id BIOMD0000000091 (see [27] for a description of
the Biomodels website). The system contains 23 reactions
and 17 chemical species. To simulate the model up to time
t ¼ 2000 using an efficient Gillespie simulator would take
approximately 50 min. Thus, to calculate the estimated
values in Fig. 2 would take approximately 69 days when
executed using a single machine with a 3.0 GHz processor.
There are eight first-order reactions involving a single
species, eight first-order reactions involving two species,
two second-order reactions and three zeroth-order reactions.

Fig. 2 show a stochastic realisation of the model for species
ADP and NatP (native protein). From the realisation, one
can observe that there is an initial dip in both populations;
however, the ADP population recovers. The other point
to note is the difference in scales. ADP is measured in
hundreds of molecules, whereas NatP is measured in
millions of molecules. If the number of NatP molecules
is increased by a factor of ten, this will cause a large
increase in simulation time and possibly make exact
simulation impossible.

Also shown in Fig. 2 are the moment-closure
approximations to the mean and variance of ADP along
with the associated exact values (obtained via 2000 Monte
Carlo simulations). There is very little difference between
the estimated and the exact moments. It is seen that
although the mean is fairly constant throughout, the
variance increases in the time period (0, 1000), and then

Figure 2 Stochastic realisation of the chaperone model
(solid)

The approximate (dashed) and estimated (dotted) mean and +2
standard deviations of ADP are also shown
The estimated values were obtained from 2000 realisations of the
an exact simulation algorithm
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begins to level off for time t . 1000 (although it is still
increasing). A similar result is obtained for NatP (shown in
Fig. 2).

Whereas the Monte Carlo estimates would take 69 days to
run on a single CPU machine, the moment-closure
approximation takes a few minutes. Overall, the
approximations of the mean and variance are excellent,
with the moment-closure approach capturing the initial
drop in population at time t ¼ 10 (Fig. 2).

It is also possible to approximate the actual distribution at
any given time point. Since a normal approximation, has
been assumed, it is natural to describe the distribution with
a normal distribution. Shown in Fig. 3 is the normal
approximation for species ADP compared with the exact
distribution (obtained through simulation). Again, the
moment-closure approximation seems to capture the key
aspects of the distribution. Fig. 4 shows similar results for
NatP.

5 Discussion and conclusion
Mathematical models can give one a deep insight into real
systems; however, with large models, it is difficult to gain

Figure 3 Distribution of ADP at times t ¼ 200 and t ¼ 2000

The filled line is the value obtained by 2000 stochastic realisations
The dashed line is the moment-closure approximation

Figure 4 Distribution of NatP at times t ¼ 200 and t ¼ 2000

The filled line is the value obtained by 2000 stochastic realisations
The dashed line is the moment-closure approximation
Syst. Biol., 2009, Vol. 3, Iss. 1, pp. 52–58
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an understanding of this behaviour, particularly in a
stochastic framework. Nevertheless, stochastic models are
essential if one intends to successfully model processes
where small fluctuations have a large impact on the system,
for example, as in the ageing context [28]. When large
stochastic models take a prohibitively long time to simulate
a single realisation, then the stochastic approach can lose its
appeal. This paper presents a possible solution to explore
such large complex models. By developing results for the
general multivariate process, a fast approximation to the
underlying stochastic process is presented.

Recent developments suggest that one can increase the
accuracy of the moment-closure approximation by
considering non-zero closure schemes. For example,
Krishnarajah et al. [29] suggest that a log-normal closure
scheme may improve accuracy, whereas Singh and
Hespanha [19] suggest a more general moment matching
approach for higher-order moments. Either of these
techniques can be easily incorporated into the results of this
paper.

With the increasing acceptance and usage of standard
model formats such as SBML, it is now becoming feasible
for modellers to use a variety of tools easily and quickly.
This paper presents an approach that will benefit many
stochastic modellers and will provide another technique
when building large, detailed models.
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