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Part 1
MATLAB

1 Matlab basics

1.1 Owuverture

Firstly, create a folder (directory) in your Windows system of name mas2106.
All your files and all work which you do will be in this folder. To start up
Matlab, go to a university computer cluster and login to your account. From the
Start button, select A11 programs, Scientific software and Matlab2010b
(the version number may change from year to year). Matlab starts greets you
with a number of windows. The most important window, the command window,
gives access to Matlab’s command line, a prompt which looks like this:

>>

(hereafter, framed text shows what appears on the computer screen).
To get a taste of Matlab, type the following commands followed by return:

>> x=[0:pi/100:10%pil;
>> y=x.*sin(x);
>> plot(x,y)

What you see is a plot of the function y = zsinxz computed from z = 0 to
x = 107 in steps of size Az = 7/100. Try the above commands changing
numbers and formulae (for example, try to plot another function) to see if you
understand what each command does. In particular, see what happens if you
remove the semi colon at the end of a line.

To get a taste of 3-dim plots, type the following commands:

>> [x,y]=meshgrid(-4:0.1:4, -4:0.1:4);
>> z=sin(x) .*sin(y);
>> surf(x,y,z)

What you see is a plot of the function z = sin(z)sin(y) for —4 < x < 4,
—4 <y <4, computed on a grid with spacing Az = 0.1, Ay = 0.1.



1.2 Calculator

The symbols for the arithmetic operations are +, —, x and /. The symbol " is
used for exponents, for example 4" 2=16. Type 2+3/4:

>> 2+3/4
ans =
2.7500

Note that the result of the calculation is called ans. The value of ans is kept
and can be used in a second calculation:

>>2*ans
ans =
5.5000

1.3 Record the session

If you type the command

>> diary session

everything which appears on the screen will be saved to a file called session
(or any other name that you want), providing you with a record of what you
have done, until you type the command

>> diary off

which turns off the diary. The file session can be edited using using a text
editor, for example Notepad.

1.4 Help

If you need help, click the help button on the toolbar. You can also type
the command help followed by a keyword, for example >> help plot or help
sin. Another option is to Google Matlab followed by a keyword: there is a huge
amount of Matlab examples on the internet.



1.5 Variables

Names and values of variables are kept, and can be used over and over again in
subsequent calculations (until you type the command >> clear to remove all
variables from the workspace). Here is an example:

>> x=3.1
X =
3.1000
>> y=17
y =
17
>> z=X+y
z =
20.1000
>> z+x
ans =
23.2000

Names of variables can contain any combination of letters and numbers (do not
use symbols), but must start with a letter. Avoid special names such as ”pi” and
"eps” which are respectively reserved for = (Greek pi) and the largest number
such that 1 + € is not distinguishable from 1:

>> pi

ans =
3.1416

>> eps

ans =
2.2204e-16

Matlab uses the ”e” notation for very large and very small numbers. For exam-
ple:

—1.2345¢ + 03 = —1.2345 x 103 = —1234.5

—5.6789% — 01 = —5.6789 x 10~ = —0.56789.

Matlab does all computations with about 15 significant digits.



1.6 Intrinsic functions

Matlab has many built-in functions, such as sqrt, exp, log, logl0, the trigono-
metric functions sin, cos, tan (the argument must be in radians), and the

inverse trigonometric functions asin, acos, atan. For example try:

>> cos(pi),sin(pi/2),log(exp(2))
ans =

-1
ans

ans

NI~

1.7 Suppressing the output

If you do not want to see the result of an intermediate calculation, terminate

the command with a semi colon:

>> x=1;
>> y=sqrt(4);
>> z=x+y
z =
3

To keep your screen tidy, you can write more than one command on the same

line:

>> x=1; y=3;
>> z=X+y
z =

4.0000




1.8 Complex numbers

To define complex numbers use the the symbol ¢ = +/—1 in the usual way:

>> x=1+2i;
>> y=3+4i;
>> z=x+y
z =
4.0000 + 6.00001

2 Vectors

2.1 Row vectors

To create a row vector, enter the components one by one, separating them either
by a blank or by a comma. Enclose the components in square brackets:

>> x=[1, sqrt(2), 3]
x =
1.0000 1.4142 3.0000
>> y=[0.1 4 6]
y =
0.1000 4.0000 6.0000

The command >> length returns the number of components of a vector:

>> length(x)
ans =
3

Tt is easy to create a linear combination of vectors (careful: they must have the
same length). Using the vectors x and y defined above, we have for example:

>> X+y

ans =
1.1000 5.4142 9.0000




>>>3xx+2%y
ans =
3.2000 12.2426  21.0000

A longer row vector can be built using existing row vectors:

>> z=[x y]
z =
1.0000 1.4142 3.0000 0.1000  4.0000 6.0000

Let us change the first component of the last vector:

>> z(1)=0
z=
0.1000 1.4142 3.0000 0.1000 4.0000 6.0000

The commands a:b and a:b:c are short cuts to create vectors of components
starting from the value of a, incrementing by 1 or by the value of b, until we get
to the value ¢ (not beyond ¢). For example:

>> 0.3: 0.05: 0.5
ans=
0.3000 0.3500 0.4000 0.4500 0.5000
>> 0.3:0.05:0.41
ans =
0.3000 0.3500 0.4000




2.2 Column vectors

To create a column vector, separate the components with a semi colon or with
a new line:

>> x=[pi; 0; sqrt(2)]
x =
3.1415
0
1.4142
>> y=[0.1
0.01
0.001]

2.3 Transpose

The transpose command (an apostrophe) turns a row vector into a column
vector or viceversa:

>> y?
ans =
0.1000 0.0100 0.0010

2.4 Scalar product of vectors
Consider a row vector u of components
u = [ug, up, -+ UN]
and a column vector v (of the same length) of components

U1

U2
VvV =

UN



The usual scalar (or dot, or inner) product of the two vectors is a number defined

as
j=N

u-vV=1uvy + ugvs + -+ unvny = Zujvj
j=1
In Matlab we calculate it with the command * as in the following example:

>> u=[2,1,4]
u =
2 1 4
>> v=[3;5;6]
v =
3
5
6
>> zZ=u*xv
z =
35

If the second vector v is also a row vector, we must first transpose it to get a
column vector. For example

>> u=[2,1,4]
u =

2 1 4
>> v=[3,5,6]
v =

3 5 6
>> z=uxvy’
z =

35

The norm of a vector can be calculated in two ways:

>> sqrt(uxu’)
ans =

4.5826
>> norm(u)
ans =

4.5826
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2.5 Hadamard product of two vectors

If u and v are two vectors of the same type (both row vectors or both col-
umn vectors) and of the same length N, their Hadamard product is the vector
of components [ujvy,usve, - ,unyvy]. In Matlab, the Hadamard product is
calculated using the operator .* as in the following example:

>> u=[2,1,4]
u =

2 1 4
>>v=[3,5,6]
v =

3 5 6
>> u.*xv
ans =

6 5 24

Do not confuse the scalar product of vectors (which is a number) with the
Hadamard product (which is a vector).

2.6 Zero and unit vectors

The command >> ones(m,n) creates an m X n matrix of 1’s. Similarly, the
command >> zeros(m,n) creates an m X n matrix of 0’s. Therefore, a zero row
vector of length 3 and a unit colum vector of length 4 are obtained by typing

>> x=zeros(1,3)
x =
0 0 0
>> y=ones(4,1)
y =

e

2.7 Solved exercises

Exercise 2.1
Given two vectors [10,12,20] and [5,4,10], find the vector whose components are
the ratios of the corresponding components.

11



Solution:

>> u=[10,12,20]; v=[5,4,10];
>> u./v
ans =

2 3 2

Exercise 2.2
Find the angle (in radians) between x = [3,0,0] and y = [2,2,0].

Solution: Since x -y = |x||y|cos 6, then

>> x=[3 0 0]
X =
3 0 0
>> y=[2 2 0]
y =
2 2 0
>> theta=acos ((x*y’)/(norm(x)*norm(y)))
theta =
0.7854

which is 7 /4.

Exercise 2.3
Use the Hadamard product to make a table of the values of the function y(z) =
x cos (mx) for =0 to 1.0 in steps of 0.01.

Solution:

>> x=[0:0.25:1.0]";
>> y=x.*cos(pi*x)

12



3 Graphics

3.1 Simple plots

We want to plot the function y = sin (27z) for 0 < 2 < 1. To achieve the aim,
we compute the function at a large number of points and then join the points
by straight lines. Let us define a row vector x which consists of N + 1 points
spaced the distance h apart. For example, let N = 5:

>> N=5; h=1/N; x=0:h:1
X =
0 0.2000 0.4000 0.6000 0.8000 1.0000

Another way to create the row vector is to use the command linspace(a,b,N),
which generates N + 1 equidistance points between a and b included. For ex-
ample, for N + 1 = 6 we have:

>> x=1linspace(0,1,6)
X =
0 0.2000 0.4000 0.6000 0.8000 1.0000

Then we compute the vector y of components y, = sin (27xy) (K =1,2,---6)
and plot yx vs x:

>> y=sin(2*pi*x); plot(x,y)

A windows opens with the required plot, shown in Fig. 1(top). As you can see,
the plot is bad: there are too few points. An improved plot is obtained if we
set N = 100 (suppress the output of the x-points with a semi-colon, otherwise
there will be too many numbers on the screen). We also add a title and labels
on the x and y axes; the result is shown in Fig. 1(bottom).

>> x=linspace(0,1,100);

>> y=sin(2*pi*x); plot(x,y)
>> title(C’y vs x’)

>> xlabel(’x’)

>> ylabel(y’)

13
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Figure 1: Top: Plot of y = sin (27rz) with too few (N + 1 = 6) points. Bottom:
Improved plot with N + 1 = 101 points, title and labels.
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Figure 2: A curve added to the previous graph

3.2 The hold command

To add material to an existing graph, we use the command >> hold on, which
retains the plot in the graphics window and lets us execute more commands on
it, until we type >> hold off. For example, let us add the curve y = sin (47x)
to the existing graph of y = sin (27z), and also change the title and the y-label:

>> hold on

>> yl=sin(4*pix*x); plot(x,yl)

>> ylabel(’y and y1’)

>> title(’Graph of y=sin(2*pi*x) and yl=sin(4*pi*x)’)

Fig. 2 shows the result.

3.3 Clear figure

The command >> c1f clears the figure, emptying the graphics window.

15



3.4

#=2 cos(2), y=2 sin(2h), z=0.11

Figure 3: Helical curve x = 2cos (2t),y = 2sin (2t), z = 0.1¢.

Three-dimensional plots

The following commands plot the helical curve

z(t) = acos (wt), y(t) = asin (wt), z(t) = bt,

witha=1,b=0.1 and w =2, for 0 <t < 127.

>>
>>
>>
>>
>>
>>
>>
>>
>>

a=2; b=0.1; w=2;
t=linspace(0,12*pi,500);

x=ax*xcos (w*xt) ;

y=a*sin(w*t) ;

z=b*t;

comet3(x,y,2z)

plot3(x,y,z)

xlabel(’x’); ylabel(’y’); zlabel(’z’);
title(’x=2 cos(t), y=2 sin(t), z=0.1 t’)

The outcome is shown in Fig. 3. Note that the-range has been divided in 500
points, enough to draw a smooth curve. Left-click Tools on the toolbar and
choose Rotate 3D to rotate the helix and look at it from a different angle.

16



3.5 Colour and linetype

A third argument added to the plot command controls the colour (first char-
acter) and the line type (second character) according to the table below. For
example, the command >> plot(x,y,’rx’) marks the data points with a red
Cross.

y yellow . point

r red 0 circle

b blue + plus

g green - solid

c cyan X Cross

m | magenta | : dotted

k black -. | dash-dotted
w white — dashed

Compare what you get with the different options:

>> t=linspace(0,1,100);
>> x=sin(2*pixt);

>> plot(t,x)

>> plot(t,x,’ro’)

>> plot(t,x,’bo’)

>> plot(t,x,’-.7)

17
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Figure 4: Multiple curves.

3.6 Multiple curves

If we want to plot more than one curve on the same graph, we proceed as in the
following example, where the sine function is plotted as a solid red line and the
cosine function as a dashed blue line, see Fig. 4. Note that we have also added
a legend.

>> x=linspace(0,1,100);

>> yl=sin(2*pi*x)

>> y2=cos (2*pi*x)

>> plot(x,yl,’r-’,x,y2,’b-=")
>> legend(’sine’,’cosine’)

>> xlabel(’x’)

>> ylabel(’y?)

18
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Figure 5: Plot with subplots.

3.7 Subplots

Another strategy is to split the graphics windows into an array of m x n smaller
windows, each containing one graph. The windows are numbered row by row
starting from the top left. In the following example we take m = 2, n = 2 and
make plots of sin(nz), sin (2rz), sin (37x) and sin (4rz) for 0 < a < 1; the
resulting multiple plot is shown in Fig. 5.

>> x=linspace(0,1,100);

>> yl=sin(pi*x);

>> y2=sin(2*pi*x) ;

>> y3=sin(3*pi*x) ;

>> y4=sin(4*pi*x);

>> subplot(221), plot(x,yl)

>> xlabel(’x’),ylabel(’sin(pi x)’)
>> subplot(222), plot(x,y2)

>> xlabel(’x’),ylabel(’sin(2 pi x)’)
>> subplot(223), plot(x,y3)

>> xlabel(’x’),ylabel(’sin(3 pi x)’)
>> subplot(224), plot(x,y4)

>> xlabel(’x’),ylabel(’sin(4 pi x)’)

19



Figure 6: Controlling line thickness and symbol size.

3.8 Linewidth and symbol size

The thickness of the curves and the size of symbols can be controlled. For
example the following commands produce the plot shown in Fig. 6:

>> x=linspace(0,1,100);

>> y=sin(2*pi*x);

>> plot(x,yl,’r-’,’linewidth’,3)
>> title(’CFB’,’fontsize’,16)

>> xlabel(’x’,’fontsize’,16)

>> ylabel(’y’,’fontsize’,16)

20



Figure 7: Controlling the limits of the axes and adding a grid.

3.9 Axes limits, grid

To control the limits of the axes and to add a grid to Fig. 6 we use the command
>> axis and >> grid; for example, if we type

>> axis([-0.2 1.2 -1.2 1.2]), grid

we obtain Fig. 7.

3.10 Zoom, print, save

To see details of a graph, position the mouse where you want and type the
command >> zoom. Then clicking the left (right) mouse button will zoom in
(out). The command >> zoom off will switch off the zoom.

To print the graph, select Print on the window’s toolbar. To save the graph
into a file, select Save as ...; different formats are available.

21
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Figure 8: Solution to Exercise 3.1

3.11 Solved exercises

Exercise 3.1

Make a graph of the two functions y; () = x sinz and y(x) = x cos x, evaluating
the values at 1000 points from z = 0 to x = 100. The axes must be limited by
0 <z<100,0 <y <100. The first function must be a solid blue line, the
second a dashed red line. The title should contain your name. The labels of the
horizontal and vertical axis should be x and y respectively.

Solution: The Matlab commands are:

>> x=linspace(0,100,1000) ;

>> yl=x.*sin(x);

>> y2=x.*cos(x);

>> plot(x,yl,’b-’,x,y2,’r-=")

>> title(’CFB’); xlabel(’x’); ylabel(’y’);

Fig. 8 shows the result.
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CFB

Figure 9: Solution to Exercise 3.2

Exercise 3.2
Make a three-dimensional graph of the parametric curve

sin (wt) —at

W= Arae

() = cos (wt) () =

- T 55 = =7

Vitaee! V14 a?t?
fora=02and w=2and —12 <t <12.
Solution: The Matlab commands are:

a=0.2; w=2;

t=linspace(-12*pi, 12*pi,500) ;

x=cos (wxt) ./sqrt(1+a”2*t."2);

y=sin(w*t) ./sqrt(1+a~2*t."2);
z=-axt./sqrt(1+a”2*t."2);

comet3(x,y,z)

plot3(x,y,z)

xlabel(’x’); ylabel(’y’); zlabel(’z’); title(’CFB’)

The result is shown in Fig. 9.
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4 Loops and if

4.1 For loop

A for loop is used to repeat a command a number of times. It has the form

>> for n = n1:n2:n3
[commands to be executed]
end

where the counter n takes its values from a given row vector. Here are some
examples:

>> for n=1:4 means that n = 1,2, 3,4;

>> for n=0:2:8 means that n = 0,2,4,6,8;

>> for n=[3 12 5 20] means that n = 3,12, 5, 20.

Let us use a for loop to find the sum of the first 10 integers:

k=10
y=>_ k
k=1
The commands are:
>> y=0;
>> for k=1:10
y=y+k;
end
>>y
y:
55

Note that at the beginning the variable y is initilised to zero. At the first
iteration (k=1) we add 1 to y (getting y=1); at the second iteration (k=2) we
add 2 to y (getting y=3); etc. When we exit the loop after k=10 y contains the
required answer, the number 55.

24



4.2 If statement
The if command can have various forms:

>> if [test]
[command to be executed if test is truel
end

or

>> if [testl]
[command] to be executed if testl is true]
else
[command to be executed otherwise]
end

The test can be whether a number is bigger or smaller than another number.
The syntax is

X ==y Isxequal toy ?

T ~=y Is x not equal to y?

>y Is x greater than y?

r<y Is x less than y?

T>=19 Is x greater than or equal to y?
T <=1y Is x less than or equal to y?

The following is an example:

>> a=1; b=2;
>> if (b>=a)
c=b
else
c=a
end
c =
2

4.3 While loop

The general form of the while loop is

>> yhile [test]
[commands to be executed]
end

25



for example, let us use a while loop to find the greatest number n such that the
sum y = 12 4+ 22 4 ... + n? is less than 100.

The commands are the following:

>> n=1; y=1;
>> while y+(n+1) < 100
n=n+1; y=y+n;
end
>> [n,y]
ans =
13 91

Note that at each iteration we add 1 to n and n to y; we also test that if
we add another number we do not exceed 100. We result is n = 13 because
y=14+2+3+---4+13 =91: if we added 14, the sum would exceed 100.

4.4 Solved exercises

Exercise 4.1
The Fibonacci numbers are defined by the recursion relation

fn = fn—l +fn—2

with initial conditions f; = 1 and fo = 2. Use a for loop to find the fist ten
Fibonacci numbers.

Solution: The commands are:

>> f(1)=1; £(2)=2;

>> for n=3:10
f(n)=f(n-1)+f(n-2);
end

>> f

f =

Exercise 4.2

Use a while loop to find the root of the equation z = cosz. The idea is to start
from a guess z1, say 1 = 1, and iterate the sequence of values x,,11 = cos z,, for
n = 2,3,--- until the difference beteen two successive values, d = |241 — 2y,
is smaller than, say, 0.0001.

Solution: The commands are:

26



>> xnew=1;
>> d=1;
>> n=1;
>> while d>0.0001 & n< 1000
n=n+1;
xo0ld=xnew;
xnew=cos (xo0ld) ;
d=abs (xnew-xo0ld) ;
end
>> [n,xnew,xold]
ans =
23.0000 0.7391 0.7391 0.0001

Note that at each iteration we test that d does not become smaller than 0.0001.
We also test that n does not exceed a large number, say 1000, to stop the loop if
for unexpected reasons it fails to converge. We conclude that after 23 iterations
we converge to the root z = 0.7391, which is thus the solution of the equation
T = COSZ.

27



5 Script files

5.1 Where is my file ?

Make sure that you are working in the folder mas2106. To check in which folder
you are, at Matlab’s prompt type the command

>> pwd

where pwd means ”print working directory”. If you are in the home folder rather
than in the mas2106 folder, you need to move down into mas2106: type

>> cd mas2106

where cd means ”change directory”. To move up one level in the directory tree,
type

>> cd ..

where the double dot means ”the folder above” in the directory tree.

5.2 M-files

Script files, also known as m-files, are text files with the extension .m which
contain Matlab commands. When choosing names of m-files, avoid symbols
or names which are built-in Matlab functions. Script files are created using an
editor, for example Notepad. In a script file, any text which follows the % symbol
is ignored: the purpose of such text is to include comments which explain the
commands, reminding you (or anybody else using your m-file) of the aim of the
script file.

For example, let us write a Matlab program which asks for a number z, and
computes the number y = x + 10.

Using Notepad, we create the file simple.it which contains the following lines:
% simple.m

% given x, computes y=x+10

x=input (’Enter x = ’);

y=x+10

28



We save the file and leave Notepad. We check that the file is in the directory
mas2106. (to see which files are present in the directory where you are working,
type what). Then, at Matlab’s prompt, we execute the script file by typing
simple. If we input # = 3 when asked, we get the following result on the
screen:

>> simple
Enter x = 3
y:

13

5.3 Solved exercises

Exercise 5.1
Write a Matlab program which computes the sum of the first IV integers:

k=N
y=_ k
k=1
where N is input by the user.
Solution: We have already seen how to solve this problem by typing directly

Matlab’s commands. Here we do it with a script file. Using Notepad, we create
the following file called sumN.m:

% sum.mN
% to sum the first N numbers
N=input (’Enter N = )
y=0;
for k=1:N;
y=y+k;
end
text=’The sum of the first N number is ’;
fprintf (’%s \t %d \n’,text,y)

We save the file and exit Notepad. To execute the m-file, at Matlab’s prompt
we type sumN:

>> sumN
Enter N = 5
N =
5
The sum of the first N number is 15
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6 Controlling the output

The >> fprintf command is used to control the output and write numbers or
text to the screen or to a file. Here we are concerned only about writing to
screen; the syntax is

fprintp(format,variables)

where format is a text string that determines the appearance of the output,
and variables is a comma-separated list of variables to be displayed according
to format. The format codes are:

Yos string

%d integer

%f | floating point
%e scientific
%n | insert new line
%t insert tab

In the following example we define three variables a, b and ¢ (respectively integer,
real, and text) and explore writing them in different ways:

>> a=5; b=2"7; c=’moon’;
>> fprintf(’%d\n’,a)

5
>> fprintf (°%f\n’,b)
128.000000

>> fprintf (’%e\n’,b)

1.280000e+02

>> fprintf (’%d\n’,b)

128

>> fprintf (°%s\n’,c)

moon

>> fprintf (°%d %f %s \n’,a,b,c)

5 128.000000 moon

>> fprintf (°%d \t %f \t %s \n’,a,b,c)
5 128.000000 moon
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Part 11
CHAOS

7 The logistic map

The logistic map

Tpa1 = r2n(1 — x4p),
is used in biology to model how a population x,, (of birds or insects for example)

changes with the seasons (time is represented by the integer numbers n); here
21 is the initial condition and r is a parameter.

The equation can be solved with a pocket calculator, at least in principle. For
example, suppose that r = 2.8 and x; = 0.4 and that we want to predict the
population up to season n = 20. We time-step from x; to x5 to x3 etc in the
following way:

r1=04atn=1;

xo =2.8%x04x(1—-04)=0.6720 at n = 2;

x3 = 2.8 x 0.6720 x (1 — 0.6720) = 0.6172 at n = 3;
etc

Clearly a computer allows us to proceed much faster than a pocket calculator.

7.1 Steady solution

To solve the logistic map using Matlab we use the following commands:

>> nn=20; r=2.8; x(1)=0.4;

>> for n=1:nn-1
x(n+1)=r*x(n)*(1-x(@));
end;

>> plot(1l:nn,x)

Note that the for loop goes from n = 1 to n = nn — 1 so that the lengths of
the two vectors which are plotted (the vector with the integers from 1 to nn
and the vector with the real numbers x1, xo, --+ Zn,) is the same, nn. The
result is shown in Fig. 10. Note also that the solution of the logistic map is a
discrete set of points z,, not a continuos line; the straight segments which join
the points z,, in Fig. 10 are only a guide to the eye.
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Figure 10: Solution z,, of the logistic map vs n = 1,2,---,20 for r = 2.8 and
initial condition x = 0.4 at n = 1.

CFB: r=28

Figure 11: Solutions of the logistic map for » = 2.8 and various initial conditions:
x1 = 0.1, 0.3, 0.5, 0.6 and 0.8. Note that they tend to the same value
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Fig. 11 shows that, for large n, the solution x,, is the same, no matter what is
the initial condition. To produce this figure, which contains more than one plot,
we use the >> hold on command, as in the example below:

>> nn=20; r=2.8; x(1)=0.1;

>> for n=1:nn-1
x(n+D)=r*x(n)*(1-x(n)) ;
end

>> plot(l:nn,x,’b’); title(’CFB: r=2.8’); axis([1 20 0 1]);

>> hold on

>> x(1)=0.3;

>> for n=1:nn-1
x(n+1)=r*x(n)*(1-x(n));
end

>> plot(1l:nn,x,’r’)

A quicker way to proceed is to use Notepad to create the following script file
r28.m, which time-steps three different solutions z,, ,, (m =1, ---5) correspond-
ing to three different initial conditions z,, 1 up to time n = 20:

nn=20; r=2.8;
x(1,1)=0.1; x(2,1)=0.3; x(3,1)=0.5;
for k=1:5

for n=1:nn-1

x(k,n+1)=r*x(k,n)*(1.0-x(k,n));

end
end
plot(l:nn,x(1,1:nn),1:nn,x(2,1:nn),1:nn,x(3,1:n0n)
title(°CFB: r=2.8"); axis([1 20 0 11);
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7.2 Period-doubling transition to chaos

Computer experiments reveal that, for < 3, the solution x,, of the logistic map
is steady. If r > 3, x,, oscillates between two values (irrespectively of the initial
condition) with period T' = 2, see Fig. 12. This kind of oscillation in which z,,
repeats every two steps is called a period-2 cycle.

CFB:1=3.3

Figure 12: Period-2 solution of the logistic equation for » = 3.3, plotted for
80 < n < 100, after the initial transient

A further increases of r, for example to r = 3.5, brings the solution into a regime
where z,, repeats after T' = 4, as shown in Fig. 13. This is called a period-4
cycle.

CFB:r=35
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Figure 13: Period-4 solution of the logistic equation for » = 3.5, plotted for
80 < n < 120, after the initial transient.
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Further smaller increases of r induce more period-doubling transitions, until, if
r exceeds the critical value r. = 3.569946, the period T becomes infinite. This
means that the values z,, never repeat exactly, and depend on the precise initial
condition. We call this regime chaos.

In summary we have the following period-doubling sequence:

e At r = 3 period 2 is born

At r = 3.449 period 4 is born

Ar r = 3.54409 period 8 is born
e At r = 3.5644 period 16 is born

At r = 568759 period 32 is born

.-
e At r =r.=3.569946 period oo (chaos) is born

Fig. 14 shows two chaotic solutions at » = 3.9: the blue line corresponds to
the initial condition x; = 0.1, the red line to x; = 0.100001. The two initial
conditions differ by one part in one million only; the corresponding solutions
cannot be distinguished if n < 20, but for n > 25 they are very different. This
extreme sensitivity on the initial conditions is the hallmark of chaos.

CFB:r=34
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Figure 14: Solutions z,, and y,, of the logistic map for r = 3.9 corresponding to
the initial conditions x; = 0.1 and y; = 0.100001. Note that initially z,, and y,
are essentially the same, but at later times they are very different.
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Figure 15: Semilog plot of the separation d,, = |z, — y»| of the two solutions x,,
and y, plotted in Fig. 14.

The difference d,, = |z, —y,| between the solution z,, (which corresponds to the
initial condition 1 = 0.1) and the solution y,, (which corresponds to the initial
condition y; = 0.100001) is plotted vs n in Fig. 15. The logscale highlights the
initially rapid (exponential) increase of d,,. Fig. 14 is created using the following
script file:

nn=100; r=3.9;

x(1)=0.1;

y(1)=0.100001;

d(D=abs(x(1)-y(1));

for n=1:nn-1
x(n+D)=r*x(n)*(1.0-x(n));

\texnoindent
y+D)=r*xy(@)*(1.0-y(@));
d(n+1)=abs(x(n+1)-y(n+1));

end

plot(l:nn,x(1:nn),’r-’,1:nn,y(1:nn),’b-")

title(’CFB: r=3.9’)

axis([1 100 0 11);

xlabel(’n’)

ylabel(’x(n) and y(n)’)

Fig. 15 is then obtained by typing:

>> plot(1:nn,logl0(d(1:nn)))
>> ylabel(’logl0(abs(x-y))’)
>> xlabel(’n’)

>> title(°CFB: r=3.9’)
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Fig. 16 plots the long-term values of z,, (that is to say the values past any
initial transient) against the parameter r. The transitions from steady solution
to period-2, from period-2 to period-4, from period-4 to period-8 are clearly
visible. Further period-doubling transitions take place in a narrow range of r-
space, just before r. = 3.569946, and are not visible on this scale. Fig. 17 zooms
into the previous figure to show more details: period-16 is visible at the right:

CFE: lngistic map

L L L L L L L L L \
z 2z 24 28 2.8 3 3z 34 36 3.8 4

Figure 16: Long-term values z,, corresponding to r.
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Figure 17: Detail of Fig. 16.
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The script file which produces Fig. 16 is

nn=1000;
r=linspace(2.0,3.9,1000)
hold on
for k=1:length(r);
x(1)=0.1;
for n=1:nn-1
x(n+1)=r (k) *x(n)*(1.0-x(n));
if (n>0.9%nn)
plot(r(k),x(n),’b.’, ’MarkerSize’,1)
end
end
end
title(’CFB: logistic map’); xlabel(’r’); ylabel(’x’);

8 Numerical solution of differential equations

8.1 Euler’s method

Consider the following differential equation for x(t)

dx

dat = (tv x)»
where ¢ is time and the function f is assigned. Given the initial condition z(0)
at time ¢ = 0, we want to find the solution z(t) at later times.

We discretize the time span of interest into a large number of small time steps
t, (n=1,2,---) of size h < 1. Let x,, = x(t,) be the approximate (numerical)
solution to the differential equation at time t,,. We need a rule to time-step the
solution, starting from the initial value, to values at later times.

A simple recursion formula is derived in the following way. Integrate dz/dt =
f between time t,, and time ¢,,41:

tnel d.’L' tnei
—dt = t,x)dt
|G [ s

The definite integral at the left-hand-side can be evaluated exactly and we have
Tpyl — Tp = j;i”“ f(t,z)dt. The right-hand-side is the area under the curve
f(t,z(t)) between t,, and tna1. Since tpy1 — tp, = h < 1, this area is approx-
imately equal to the area of the rectangle of base h and height f, = f(t,,zn)
(see Fig. 18), hence xp41 — Tpn = hf,. We obtain Euler’s method:

Tntl = Tp + hfn
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Figure 18: The pink area is the approximation to the true area, which is indi-
cated by the diagonal lines.

8.2 Euler’s method with Matlab

We want to solve the equation dx/dt = —xt with initial condition z(0) = 1 at
t = 0. We apply Euler’s formula and obtain x,,11 = x,, + hf,, = z, + h(—xz,t,).
Using Notepad, we create the following script file called euler0.m:

% To solve dx/dt=-xt with Euler method

clear all; % Clear all variables

nn=10; % Number of time steps

h=0.1; % Time step

x(1)=1; % Initial x

t(1)=0; % Initial t

for n=1:nn-1 % Time loop
fun=-x(n) *t (n) ; % Get RHS at old time
x(n+1)=x(n)+hx*xfun; % Get new x
t(n+1)=t(n)+h; % get new t

end

plot(t,x) % Plot x vs t

title(’CFB’); xlabel(’t’), ylabel(’x’)

At Matlab’s prompt we type >> euler0 and obtain the graph shown in fig. 19:
The last value computed (at n = 11) is the solution x = 0.6282 at ¢ = 1. The
exact solution of the equation is x(t) = 96(0)6"52/27 hence z(1) = e7%5 = 0.6065.
So the relative difference between the approximate (numerical) solution and the
exact (analytical) solution is (0.6282 — 0.6065),/0.6065 ~ 6%. If we reduce the
time step h the relative error is less, that is to say our numerical solution is
more accurate.
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Figure 19: Numerical solution of dz/dt = —at with initial condition x(0) = 1;
the time step is h = 0.1, hence 11 values (marked by the small circles) cover the
range from t =0 to t = 1.

8.3 Euler’s method for a system of equations

It is easy to generalise what we have done to a system of differential equations.
Consider the 2-dimensional dynamical system

v _ 0 a2
e~ dt
Create the following script file called eulerl.m:

= —x1 — 0.21’2,

% To solve the system
% dx1/dt=x2

% dx2/dt=-x1-0.2%x2

% with Euler’s method

clear all % Clear all variables

nn=1000; % Number of time steps

h=0.05; % Time step

x1(1)=1.0; % Initial x1

x2(1)=0.0; % Initial x2

t(1)=0; % Initial t

for n=1:nn-1 % Time loop
fun1=x2(n); % Get RHS of 1st eq at old time
fun2=-x1(n)-0.2*x2(n); % Get RHS of 2nd eq at old time
x1(n+1)=x1(n)+h*funi; % Get new x1
x2(n+1)=x2(n) +h*fun2; % Get new x2
t(n+1)=t(n)+h; % get new t

end

plot(t,x1) % Plot x1 vs t

title(’CFB’); xlabel(’t’), ylabel(’x1’)
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At Matlab’s prompt, type eulerl, and obtain the graph shown in Fig. 20, which
shows 1 vs t. The corresponding plot of x2 vs x1, shown in Fig. 21, is generated
in a similar way.

CFE

bl

Figure 20: Numerical solution of dzy/dt = xo, dxg/dt = —x1 — x5/5 with initial
condition z1(0) = 1, z2 = 0.; the time step is h = 0.05. Plot of z; vs t.

®Z

Figure 21: Plot of x5 vs 1 corresponding to Fig. 20.

9 The Lorenz equations

The Lorenz equations for z(t), y(t) and z(t) are

dr _ (y — ) @_7‘:6— —xz %—x — bz
dt_ay ’ - Y ) dt_ Yy )
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where o, r and b are parameters. We choose o = 10, b = 8/3 and r = 28 and
let the initial conditions be 2(0) = y(0) = z(0) = 0.1 at ¢ = 0. We choose time
step be h = 0.001 and total number of steps be nn = 10000. Using Notepad, we
create the following script file eulerlorenz.m:

% Aim: to solve the Lorenz equations
% dx/dt=sigma*(y-x); dy/dt=-—x*z+r*x-y; dz/dt=x*y-b*z

sig=10.0; b=8/3; r=20; %» Parameters
t(1)=0.0; % Initial t
x(1)=0.1;i y(1)=0.1; z(1)=0.1; % Initial x,y,z
dt=0.005; % Time step
nn=10000; % Number of time steps
for k=1:nn % Time loop
fx=sig*(y(k)-x(k)); % RHS of x equation
fy=-x(k)*z (k) +r*x (k) -y (k) ; % RHS of y equation
fz=x (k) *y (k) -b*z (k) ; % RHS of z equation
x(k+1)=x(k)+dt*fx; % Find new x

y (k+1) =y (k) +dt*fy; % Find new y
z(k+1)=z (k) +dt*fz; % Find new z

t (k+1)=t (k) +dt; % Find new t

end % Close time loop
plot(t,x) % Plot x vs t
title(°CFB’) % Title
xlabel(’t’); ylabel(’x’); % Label axes

At Matlab’s prompt we type eulerlorenz and obtain the graph shown in
Fig. 22. If we type plot3(x,y,z) we obtain a three-dimensional plot, see
Fig. 23. which we can rotate byy clicking the button on the toolbar of the
graphics window.
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Figure 22: Solution of the Lorenz equations for ¢ = 10, b = 8/3, r = 28,
initial condition z(0) = y(0) = 2(0) = 0.1, using Euler’s method with time step
h = 0.005 for 7000 steps.

CFB

Figure 23: Three-dimensional plot of 2(t), y(¢) and z(¢) corresponding to Fig. 22.

43



10 Using ode45

Euler’s method is simple but not very accurate. Matlab has better built-in func-
tions to solve differential equations. The most popular is ode45. For example,
let us solve the differential equation dx/dt = = — x?. First we use Notepad
to create the following file tutol.m which contains the right hand side of the

equation:

function dx=tutol(t,x)

dx=x-x"2

Secondly, we create the following file called maintutol.m:

% To solve the equation dx/dt=x-x"2; It uses the file tutol.m

t=[0 10]; % Time span
xinit=[0.1]; % Initial condition
[t,x]=o0ded45(@tutol,t,xinit); % Integrate equation
plot(t,x) % Plot solution

title(’CFB’); xlabel(’t’); ylabel(’x(t)’);

maintutol.m sets the time span of integration and the initial condition, calls
ode45 using the function tutol.m, and plots the solution. In general, the call
to ode45 has the form

[t,x]=ode45(@fname, tspan, xinit, options)

where fname is the name of the function (the m-file which contains the right
hand side of the equation), tspan is a vector which defines the beginning and
the end limits of integration, xinit is a vector of initial conditions, and options
is not used here.

Thirdly, at Matlab’s prompt we type maintutol and obtain the graph shown
in Fig. 24.

Figure 24: Solution of dz/dt = x — x? using Matlab’s ode/5.
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Let is use ode45 to solve the Lorenz equations. First, using Notepad, we create
the following file lorenz.m:

function dx=lorenz(t,x)

% Parameters

sigma=10; r=28; b=8/3;
%Right hand sides
dxl=sigma*(x(2)-x(1));
dx2=r*x(1)-x(2)-x(1)*x(3);
dx3=x(1)*x(2)-b*x(3);

#Put togther the RHS vector
dx=[dx1;dx2;dx3];

Secondly, again using Notepad, we create the following file mainlorenz.m:

% To solve the Lorenz equations. It uses the file lorenz.m

clear all % Clear all variables
t=[0 50]; % Time window
xinit=[0.1;0.1;0.1]; % Initial condition
[t,x]=oded45(@lorenz,t,xinit) ; % Integrate in time
plot3(x(:,1),x(:,2),x(:,3)) % Plot solution

title(’CFB’); xlabel(’x’); ylabel(’y’); zlabel(’z’);

Thirdly, at Matlab’s prompt, we type mainlorenz and obtain a 3-dimensional
plot of z(t), y(t) and z(t).

It is apparent that ode45, besides being more accurate than Euler’s method, is
faster to use.
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10.1 Solved exercises

Exercise 10.1
Use ode45 to solve the system of differential equations

dl’l dl’g

ﬁ = T2, E = —I,

for 0 < ¢ < 10 given the initial condition x1(0) = 1, 22(0) = 0. (the solution is
at the end of the section).

Solution: Firstly, using Notepad, create the following file tuto2.m:

function dx=tuto2(t,x)
dx1=x(2);

dx2=-x(1);
dx=[dx1;dx2];

Secondly, again with Notepad, create the following file maintuto2.m:

% To solve the system of equations dx1/dt=x2; dx2/dt=-x11
% It uses the file tuto2.m

clear all % Clear all

t=[0 10]; % Time span
xinit=[1;0]; % Initial condition
[t,x]=0de45(@tuto2,t,xinit); % Integrate equations
plot(t,x(:,1)) % Plot x1 vs t
title(’CFB’); xlabel(’t’); ylabel(’x1’);

wplot(t,x(:,2)) % Plot x2 vs t
%title(°CFB’); xlabel(’t’); ylabel(’x2’);
wplot(x(:,1),x(:,2)) % Plot x2 vs x1

%title(’CFB’); xlabel(’x1’); ylabel(’x2)’);

Thirdly, at Matlab’s prompt type >> maintuto2 and obtain the graph shown
in Fig. 25. By using the lines at the bottom of maintuto2 which at the moment
are blanked out, we can generate the graphs shown in Fig. 26 and 27.

cFB

Figure 25: Solution of dz1/dt = xs, dxa/dt = —x4 with initial condition x4 (0) =
1, z2(0) = 1 using Matlab’s ode45. Plot of x1 vs t.
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Figure 26: Plot of x5 vs t corresponding to Fig. 25.

)

Figure 27: Plot of x5 vs 1 corresponding to Fig. 25.
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Exercise 10.2

Solve the Lorenz system using ode45 for ¢ = 10, r = 28, b = 8/3, first with initial
condition x(0) = 0.1, y(0) = 1.2, 2(0) = 1.2, then for perturbed initial condition
z(0) = 0.101, y(0) = 1.2, 2(0) = 1.2. In both cases the tipe span should be from
t = 0tot = 50. Plot zvs t corresponding to the two diffeent initial conditions on

the same graph. Then plot log;, (d(t)) vs t,

where d(t) is the distance between

the two trajectories at time ¢, that is d = \/(scl —22)2 4+ (y1 —y2)? + (21 — 22)2.

Solution:
The following script file

% To solve the Lorenz equations and show the butterfly effect

% It uses the file lorenz.m

clear all pA
t=[0 50]; pA
x1init=[0.1;1.2;1.2]; %
[t,x1]=0de45(@lorenz,t,x1init); %
x2init=[0.101;1.2;1.2]; yA
[t,x2]=o0de45(@lorenz,t,x2init) ; yA
nn=length(t); YA
for n=1:nn pA

dx=x2(n,1)-x1(n,1); %

dy=x2(n,2)-x1(n,2);
dz=x2(n,3)-x1(n,3);
d(n)=sqrt (dx*dx+dy*dy+dz*dz) ;
end
% Plot x1 and x2 vs t
%plot(t,x1(:,1),°b?)
%hold on
%plot(t,x2(:,1),’r’)

Clear all variables

Time window

Initial condition for x1

Find first trajectory x1

Initial condition for x2

Find second trajectory x2

Number of time steps used
Loop to find the separation d
between x1 and x2

%title(°CFB’); xlabel(’t’); ylabel(’x1 and x27’);

% Plot log(d) vs t
plot(t,logl0(d)) A

Plot log(d) vs time

title(’CFB’); xlabel(’t’); ylabel(’logl0(d)’);

is used to produce the graphs shown in Figs. 28 and 29.
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1 and %2

Figure 28: Solution of the Lorenz equation for o = 10, r = 28, b = 8/3 and initial
condition z(0) = 0.1, y(0) = 1.2, 2(0) = 1.2 (in blue), and then with perturbed
initial condition x(0) = 0.101, y(0) = 1.2, 2(0) = 1.2 (in red), obtained using
Matlab’s ode45 function.

1og10(c)

Figure 29: Separation d(t) vs t between the two solutions shown in Fig. 28.
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