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Abstract – Quantum turbulence, easily generated in superfluid helium, consists of a disordered
tangle of thin, discrete vortex lines of quantised circulation which move in a fluid without viscosity.
In this report we show that, in very intense quantum turbulence, the vortex tangle contains small
coherent vortical structures (bundles of quantised vortices) which arise from the fundamental Biot-
Savart interaction between vortices, and which are similar to the intermittent, coherent structures
(“worms”) observed in ordinary viscous turbulence. Our result highlights the similarity between
quantum turbulence and ordinary turbulence, and sheds new light into the origin of the “worms”
in ordinary turbulence.

Copyright c© EPLA, 2012

Introduction. – It has been known since the 1980s
that homogeneous isotropic turbulence contains intermit-
tent, worm-like regions of concentrated vorticity [1–5].
Their origin is often attributed to the roll-up of vortex
sheets by the Kelvin-Helmholtz instability [6,7]. Their role
in the dynamics of turbulence is not clear [8]: there is no
consensus as to whether they are responsible for the main
properties of turbulence (for example, the Kolmogorov
energy spectrum) or only affect secondary features (for
example, the tails of statistical distributions and the expo-
nents of high-order structure functions).
Turbulence is also studied at temperatures near absolute

zero in both isotopes (4He and 3He-B) of superfluid
helium [9–13]. Here the viscosity is zero, the velocity
field v is proportional to the gradient of the quantum
mechanical wave function Ψ, and vorticity is constrained
to one-dimensional line singularities at which the real and
the imaginary parts of Ψ vanish simultaneously. The key
property of these quantum fluids is that the circulation
integral

∮
C v ·dr is either zero if the path C does not

enclose a line singularity, or is equal to the quantum of
circulation κ= h/m if it does; here h is Planck’s constant
and m is the mass of the relevant boson (one atom for
bosonic 4He, or two atoms to form a Cooper pair for
fermionic 3He-B). The hollow, vortex core region where
the condensate density (proportional to |Ψ|2) drops from
its bulk value to zero is very small: the vortex core
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radius a0 is approximately 0.1 nm in
4He and 10 nm in

3He-B. The fact that the vorticity can only assume the
form of thin, discrete vortex lines of fixed core radius and
circulation is in sharp contrast to vortices in ordinary
fluids, which are viscous, have any arbitrary size and
strength, and decay due to viscous diffusion. Turbulence
in superfluid helium consists of a tangle of such quantised
vortices, and can easily be created in the laboratory by
stirring the liquid helium. Experiments show that this
“quantum turbulence” shares important properties with
ordinary (classical) turbulence [10,14,15], from the drag
force [16] to the Kolmogorov energy spectrum [17,18].
In this report we show that, in intense quantum turbu-

lence, quantised vortices tend to bundle together and form
coherent structures, similar to the “worms” of ordinary
turbulence. Since there are no vortex sheets in super-
fluid helium (only vortex lines are possible), our result
not only highlights a remarkable similarity between quan-
tum turbulence and ordinary turbulence, but also ques-
tions the traditional Kelvin-Helmoltz explanation of the
origin of the “worms” in ordinary turbulence.

Method. – Since the superfluid vortex core radius a0
is orders of magnitude smaller than the typical distance
between vortex lines in turbulence experiments, �≈ 10−3
to 10−6m, we follow the approach of Schwarz [19] and
describe vortex lines as space curves s(ξ, t) of infinitesimal
thickness, where t is time and ξ is arclength. To model
quantum turbulence in its simplest form, we consider 4He

26002-p1



A. W. Baggaley et al.

at temperatures below 0.7K, so that thermal excitations
are negligible and the governing equation of motion [9]
reduces to the Biot-Savart law

ds

dt
=− κ
4π

∮
L

(s− r)
|s− r|3 ×dr, (1)

where κ= 10−7m2/s in 4He, and the line integral extends
over the entire vortex configuration L. Equation (1)
expresses Euler dynamics in integral form [20]. However,
unlike classical Euler vortices, quantised vortices recon-
nect if they come very close to each other, as demon-
strated using the Gross-Pitaevskii equation (GPE) for the
Bose-Einstein condensate [21] and seen directly in recent
experiments [22]. To account for this effect, again follow-
ing Schwarz [19], the Biot-Savart law is complemented by
an algorithmic reconnection procedure.
The numerical techniques to discretise the vortex lines,

regularise the Biot-Savart integrals, compute them with
a tree algorithm, time step the vortex lines and perform
reconnections are described in the literature [19,23] and
in our previous papers [24–26]. Our numerical algorithm
which controls the discretization enforces the given sepa-
ration ∆ξ between points on the vortex line to remain
between 2× 10−6m and 4× 10−6m during the evolution.
We have tested that our result does not depend on the
numerical resolution.
Our vortex reconnection procedure [27] guarantees that

a small amount of vortex length (as a proxy for kinetic
energy) is lost at each reconnection, in agreement with
numerical calculations of vortex reconnections performed
using the GPE [28]. The reconnection procedure and
the enforcement of the minimum distance ∆ξ provide
the numerical dissipation mechanism which plays the
rôle of phonon emission in 4He [10,24] or of the Caroli-
Matricon [29] mechanism in 3He-B.
It must be stressed that, unlike classical vortex meth-

ods [30–32], Schwarz’s model allows neither intensification
of vorticity by vortex stretching nor core diffusion: the
values of the circulation κ around a vortex line and of the
vortex core radius a0 are fixed by the value of Planck’s
constant.

Quantum turbulence. – The first step of our numer-
ical experiment consists in creating a sample of homoge-
neous isotropic quantum turbulence at zero temperature.
The computational domain is a cubic periodic box of size
D= 7.5× 10−3m. The initial condition, shown in fig. 1,
consists of randomly oriented, randomly located straight
vortex lines, each carrying one quantum of circulation κ;
in this way we enforce isotropy and enough energy at the
large lengthscales. We found that the results described
below do not depend on the detailed choice of initial condi-
tion which lead to the Kolmogorov spectrum.
During the time evolution of the vortex configuration,

we monitor various quantities, such as the total length Λ
and the isotropy of the vortices, the vortex reconnection
rate, the minimum, maximum and average values of the

Fig. 1: Initial vortex configuration at t= 0 s.
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Fig. 2: Time evolution of the average curvature C, m−1 (top)
and of the vortex line density L, m−2 (bottom) vs. time t, s.

curvature (C(ξ) = |d2s/dξ2| being the local curvature), the
total energy E and the energy spectrum E(k).
We find that, after a transient, the vortex configuration

saturates to a statistical steady state which is independent
of the details of the initial conditions, in agreement with
similar calculations in the literature. The evolution of
the average curvature C and of the vortex line density
L=Λ/D3 (vortex length per unit volume), from the initial
time t= 0 to the final time t= T = 0.06 s when we stop
the calculation, are shown in fig. 2. Note that T is much
greater than the turnover time τ of vortex lines around
each other, which can be estimated to be of the order of
τ ≈ �2/κ because the superfluid velocity at distance r from
a vortex is κ/(2πr). Note also that, over the time scale
T , the total energy is essentially constant; the dissipative
effects described in the previous section become significant
only at longer time scales, causing a decay of energy and
length. A snapshot of the dense vortex tangle which we
obtain is shown in fig. 3. From the vortex line density,
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Fig. 3: Vortex tangle at t= 0.06 s.
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Fig. 4: (Colour on-line) Energy spectrum E(k) (black line) and
effective enstrophy spectrum Ω(k) (grey line), arbitrary units,
vs. wave number k, m−1. The straight dashed lines represent
the classical energy k−5/3 (red dashed line) and enstrophy k1/3

(blue dash-dotted line) scalings.

L= 7.9× 108m−2, we infer that the average distance
between vortex lines is approximately �≈L−1/2 = 0.36×
10−4m.
The kinetic energy spectrum E(k) is defined by

E =
1

V

∫
1

2
v2dV =

∫ ∞
0

E(k)dk, (2)

where k is the magnitude of the three-dimensional wave
vector and V =D3. To compute the energy spectrum
we calculate the superfluid velocity v on a 10242 mesh
in the xy-plane at z = 0, using the Biot-Savart integral,
eq. (1). We verify (see fig. 4) that, at large scales k < k� =
2π/�≈ 1.8× 105m−1, E(k) is consistent with the k−5/3
Kolmogorov scaling which is observed in ordinary turbu-
lence; this result is in agreement with experiments [17,18],
and with calculations performed with Schwarz’s model
[23,25] and the GPE [33–35].

Fig. 5: (Colour on-line) Volume rendering (a semi-transparent
representation) of the magnitude of the smoothed vorticity,
|ω(r)|, s−1, for anti-parallel (left) and parallel (right) vortex
pairs. In the former, the average vorticity is small but not
zero due to the presence of small-amplitude Kelvin waves
(note the wiggliness of the vortex filaments). In the latter, the
contributions of the two vortex strands add up.

Coherent vortex structures. – The question which
we address is whether the dense vortex tangle shown in
fig. 3 contains regions of concentrated vorticity, similar
to the “worms” of ordinary turbulence. Visual inspection
suggests that the vortex tangle is somewhat intermittent
in space. To properly answer the question, we convolve
our discrete vortex filaments with a Gaussian kernel, and
define a smoothed vorticity field ω,

ω(r, t) = κ

N∑
i=1

s′i
(2πσ2)3/2

exp(−|si− r|2/2σ2)∆ξ , (3)

where s′i =dsi/dξ is the unit vector along a vortex at
si = si(ξ, t), and the smoothing length σ is of the order of
�; N is the number of discretization points. We test that,
under this smoothing operation, a collection of randomly
oriented vortex lines whose separation is of the order of
� yields ω≈ 0 ; conversely, an organised bundle of vortex
filaments of the same circulation yields a smooth vorticity
distribution. We also take into account the fact that, in
the absence of mutual frictionv [36] in the low temperature
limit, our calculation is in the presence of a Kelvin waves
cascade [24] for k > k�, hence the vortex lines are very
wiggly. Figure 5 tests the smoothed vorticity resulting
from adding ten helical waves with an imposed k−7/5

Kelvin wave amplitude spectrum.
From the smoothed vorticity ω we can define an effective

enstrophy spectrum Ω(k). We find that it is consistent
with the classical k1/3 scaling, peaking near k≈ k� as
expected, see fig. 4.
Figure 6 shows the smoothed vorticity corresponding to

fig. 3: vortical “worms”, such as those seen in numerical
simulations of ordinary turbulence, are clearly visible.
Each “worm” consists of parallel vortex lines which, in
a small region of space, are close to each other, creating
a relatively large ω, and then fan away from each other
outside this region where ω is much smaller due to the
random orientation of the lines.
There have been reports in the literature about the

existence of vortex bundles [37,38] in simulations of
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Fig. 6: (Colour on-line) Volume rendering of |ω(r)|, s−1 corre-
sponding to fig. 3. Note the vortical worm-like structures, simi-
lar to the “worms” observed in ordinary turbulence.

quantum turbulence at relatively high temperatures,
0.7K<T <Tλ ≈ 2.17K, where thermal excitations form
a viscous normal fluid component which interacts with
the vortex lines via a friction force. However, in this
finite-temperature regime, vortical structures belong to
the normal turbulent fluid, and the friction force [39]
would naturally induce superfluid bundles around them
(although their stability is an open question). What we
have shown in this report is the development of vortical
bundles in the perfect superfluid case, as a consequence
of pure Euler dynamics. A visually intermittent vortex
structure has also been noticed in a recent [40] GPE
simulation of turbulence in a Bose-Einstein condensate.
However, in this work the vortex cores were very close
to each other: �/a0 ≈ 4.5 to 9 (in contrast to our much
larger �/a0 ≈ 3.5× 103 typical of helium experiments):
compressible effects (rapid density changes near vortex
cores, sound waves, and the application of artificial
damping, which affects vortex positions) were likely to
have played a rôle.

Analysis of the coherent structures. – To verify
that the worm-like structures in fig. 6 are indeed bundles
of quantised vortices, we show in fig. 7 a two-dimensional
cross-section of the z-component of the smoothed vorticity
ω in the z = 0 plane of fig. 6. We overlay the intersections
of vortex filaments with the plane z = 0 distinguishing
the sign of ωz. It is apparent that the smoothed vortical
structures shown in fig. 6 are indeed small bundles of
aligned vortex filaments, which appear as small clusters
of positive and negative vorticity. There are typically 2 to
5 vortex points in each cluster.
It is important to check that the vortex bundles are

physically distinct coherent structures of a well-defined
scale, rather than just a part of a purely random distri-
bution, which would also contain structures of any scale
which would become prominent after averaging. Cluster-
ing in any two-dimensional system of points (or of any
other discrete objects) can be confirmed and quantified

Fig. 7: (Colour on-line) Cross-section z = 0 of ωz(r), s
−1 from

fig. 6. Open circles show where vortex lines cross the plane
from z < 0, and black asterisks show those coming from z > 0.
Clustering of vortex points of the same sign is visible as regions
of large positive and negative values of ωz (shown blue and
yellow).

using Besag’s function [41],

L(d) =
√
K(d)/π− d, (4)

where

K(d) =
D2

M2

M∑
i=1

M∑
j=1,j �=i

I(di,j < d) (5)

is Ripley’s K-function [42], M is the number of points
within the area A=D2 (D being the size of the domain),
di,j is the distance between points i and j, and I(x) is
unity if the condition x is satisfied and zero otherwise.
These functions are frequently used in applied statistics
to detect spatial correlations in two-dimensional systems:
L(d) = 0 means complete spatial randomness, L(d)< 0
implies dispersion, and L(d)> 0 aggregation (clustering).
Figure 8 shows Besag’s function for a large collection of
two-dimensional cross-sections of the three-dimensional
tangle shown in fig. 3. The figure confirms that vortex
points of the same sign tend to cluster, hence the vortex
clusters of fig. 7 represent indeed distinct physical enti-
ties —regions of concentrated vorticity— rather than
merely an element of a purely random distribution of
vorticity.
Finally, we have verified the existence of the coherent

vortex structures at a lower numerical resolution (∆ξ ∼
10−5m) for approximately the same vortex line density,
L≈ 109m−2. The lower resolution allows us to monitor
the continual appearance and disappearance of “worms”
over a longer time scale, of the order of 1 s. We find that the
typical width of “worms” is approximately 2 times � and
the typical lifetime is of the order of 10 times the turnover
time scale τ = �2/κ. We also note that the worms have
a characteristic elongated structure with a typical aspect

26002-p4
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Fig. 8: (Colour on-line) Besag’s function, L(d), averaged over
a random selection of 1000 two-dimensional cross-sections
(parallel to one of the coordinate planes) of the vortex tangle
of fig. 3 in the final, statistically steady state (black) and the
initial state (red), plotted vs. distance, d. Vertical bars show
one standard deviation range. The initial state has L(d) = 0
within errors at all scales, consistently with the purely random
nature of the initial conditions. In the final state L(d)> 0 at all
scales, confirming the existence of coherent structures (clusters
of vortex filaments in each cross-section).

Fig. 9: (Colour on-line) An isolated structure from the lower-
resolution simulation, ∆ξ ∼ 10−5m, with the vortices that
make up the structure plotted as black lines, and other nearby
vortices plotted in grey. We estimate the width of this structure
to be approximately 2�.

ratio of 5 : 1. Figure 9 shows an isolated vortical structure
from the lower-resolution simulation.

Conclusions. – In conclusion, our numerical exper-
iments with quantum turbulence at absolute zero have
revealed that the vortex tangle contains coherent vorti-
cal structures, or bundles of parallel vortex lines, which
arise from the Biot-Savart dynamics alone, and appear to
be similar to the vorticity “worms” observed in ordinary

turbulence. Unlike ordinary turbulence, in a superfluid
system the vorticity is only in the form of lines, hence the
vortex bundles which we observe are not the result of the
Kelvin-Helmoltz roll-up of vortex sheets. The result sheds
new light on the relation between ordinary and quantum
turbulent flows, suggesting that their connection can be
deeper than usually assumed. Given the relative simplicity
of the quantum turbulence, this may provide new insights
into the nature of turbulence and the origin of “worms”.
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