MAS345 Algebraic Geometry of Curves: Notes

AJ Duncan, September 29, 2003

0 Introduction
Background

As we shall see in due course Affine Algebraic Curvé' is the collection of points
C'={(u,v) € k x k|f(u,v) =0}

wheret is a field andf (z, y) is a polynomial with coefficients ik (e.g. the set of pointge, y)
satisfying2z? + 3> —zy = 0in R x R).

Real algebraic curves, that is curves
C = {(u,v) € R x R|f(u,v) = 0}

where f(z,y) is a polynomial with coefficients ifR have been studied for over two thousand
years. For instance, the Greeks described Real curves as loci of points: a circle is the locus
of points at a fixed distance from a poifit Nowadays the theory of real algebraic curves has
applications in many areas, for example mechanical engineering, optics, computer visualisation
and coding theory.

A problem studied by the Greeks was that of ‘Doubling the cube’. Given a €ukéth
edges of length: (and so of volume:®) construct a cube of volumea®. The problem is to
find the length of an edge of such a cube. That is, to fimith 2 = 2a®. In about 350.c.
Menaechmus gave the solution as the intersection of the two cutyes 22 andzy = 2. The
Greeks wasted a lot of time trying to construct these two conics with ruler and compasses; a task
we now know to be impossible (see any accourBafois Theory).

With the introduction of a systematic algebraic notation in 17th Century and the idea de-
veloped by Descartes and Fermat of describing the plane in terms of Cartesian coordinates the
theory of algebraic curves took on new life. In due course, around 1700, Newton made a study
of cubiccurves, which are those described by polynomials of degree 3. He classified them and
described 72 different kinds. His investigations also included an examinatgingaflaritiesof
curves, that is points at which they have no uniquely defined tangent. Much of this course is
based on modern interpretation of the methods of Newton.

Later it was realized that it was useful, and in many cases more illuminating, to look at curves
in the complex plane, described by polynomials with complex coefficients. Furthermore it was
discovered that adding points at infinity to the line to obtain projective space made it easier to
understand the behaviour of curves. By the end of the nineteenth century Dedekind and Weber
had begun the study of curves and surfaces in projective spaces over an arbitrary field (instead of
the complex or real numbers).

Algebraic curves are today reasonably well understood: that is a classification of curves
has been made and the intersections of curves can be described. For higher dimensional objects
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(zeroes off (x4, ..., z,,) = 0, etc.) no such classification exists and the description of intersections
is a difficult task. However the successful theory of algebraic curves provides a base from which
to work on the general theory.

Applications

In almost all branches of mathematics some aspect of algebraic geometry is lurking. Here
is one example. A famous problem of number theory is Fermat’s conjectutds iin integer
n > 2 then there are no positive integer solutions to

xn_l_ynzzn.

Reformulate the equation as

T Yy
_\n J\n __ 1
(Z) + (z) =

and this problem becomes that of deciding whether the curve
r"+s"—1=0

has any points i) x Q. The recent proof of this result by Wiles is based to a large extent on the
theory of Elliptic curves.

The theory of Algebraic Curves is the basis for an encryption system that is widely used in
commercial applications. In the last part of the course the construction underlying these codes
will be studied briefly.

Aims of the Course

The course is an introduction to Algebraic Geometry. We shall concentrate on the simplest
case of the objects studied in this field, that is on Algebraic Curves, mainly over fields of char-
acteristic zero, namelfZ, R andQ, but sometimes also over fields of finite characterigfig,

Zy, ...). We shall study curves in Affine and Projective space. The primary object is to under-
stand how curves intersect, both with each other and themselves.

Further Reading

Library: Section 514.2

E Brieskorn & Krorrer, Plane Algebraic Curves, (nice pictures).

J Dieudonne, History of Algebraic Geometry, (worth browsing through).

C G Gibson, Elementary Geometry of Algebraic Curves, (well written, lots of examples).

F Kirwan, Complex Algebraic Curves, (well presented at about the right level).

M Reid, Undergraduate Algebraic Geometry, (also about the right level but not as well explained
as Kirwan'’s book).

R J Walker, Algebraic Curves, (good background reading).
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1 Fields and Polynomials
Fields

This subsection is mainly for background reading. The only parts of the section you need
to know for assessment are Examplesnumbersl and3. A field consists of a set together
with binary operations of additio and multiplication« on & that satisfy the field axioms listed
below.

Field Axioms
kl. x+y € k, for all z, y € k (closure of+).
k2. There exists an elemefte k such that: + 0 = x, for all = € k (identity for+);
k3. If z € k then there exists an element € k such that: 4+ (—z) = 0 (inverse law for+).
k4. x+y =y + z, forall z,y € k (commutative law for).
k5. (x +y)+z=a+ (y+ 2), forall z,y, 2 € k (associative law for-).
k6. x xy € k, forall z,y € k (closure ofx).
k7. There exists an elemeite & such thatc x 1 = z, for all z € £\{0} (identity forx).
k8. If x € k\{0} then there exists an element k such thatr x y = 1 (inverse law for).
k9. x xy =y * x, forall z,y € k (commutative law fok).
k10. (xxy)xz =x * (y * 2), forall z, y, =z € k (associative law fok).
K1l. (x+y)*x 2= (x*2) + (y x 2), forall z, y, = € k (distributive law )

Note: We usually writeab instead ofa * b.
Example 1.1.
1. Familiar fields are, R andC.

2. Another common example of a field @]:] the smallest subfield df containing bothQ
andi. Elements ofQ[:] are all of the formu + bi, wherea andb are inQ. All these fields
containZ.

3. The number of elements of a field is calledatsler. FieldsZ,, Zs,Zs and in generak,,
wherep is a prime are finite of orde}, 3, 5 andp, respectively.

4. Any finite field has ordep”, for some primep and positive integen. In fact, up to
isomorphism, there is exactly one field of orgé&r called GKp™), for each primep and
positive integem. The field GKp") containsZ,, that is GKp). The field GK4) has4
distinct elementg0, 1, o, 5} and addition and multiplication are defined according to the
following tables.
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@ Q0 = o+
@ Q0 ~ oo
O L O R
— O @ QR
S = Q W@
oo o olo
— X Q0 o0
O P OoOl®

™R 0~ O %
R0 = Ol

Note thata? = 3 and thatl + o + o® = 23 = 0. Others finite fields of ordep™ are
constructed similarly.

Every field either containZ (and is infinite) or contain&, = GF(p), for some primep. A
field containindZ is said to haveharacteristic 0 whilst a field containing,, hascharacteristic
p. Given any primep the field GFp") C GF(p™*!). We may construct an infinite field of
characteristigp by taking the union,, >, GF(p™).

There are many cases of sétis which the field axioms all hold except for axiakB. In this
case we calk acommutative ring. For example, the integerZ, and the integers module,
denotedZ,,, are commutative rings (even whens not prime). If% is a field and a variable the
set of polynomials irt with coefficients ink is a commutative ring (when polynomials are added
and multiplied in the usual way). We shall define polynomials in several variables and find that
these also form commutative rings.

Monomials and Polynomials

Definition 1.2. A monomialin x4, ..., x, is and expression of the form
x?l N Ig”’
wherex, ..., x, are distinct variables and, . . . a,, are non—negative integers. Ttegreeof

the monomial above is; + ... + «,,. Thedegreeof the variabler; is «;.

Two monomialseS - - - z2» andz)" - - - 0 are equal if and only ify; = 3;, fori =1,... . n.

Product of monomials

Multiplication of monomials is defined by the rule

(@l (@ val) = af gt

Note: From the definition we have

and
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Definition 1.3. Let k£ be a field. Apolynomial f overk in variablesz, . .., z, is a sum

f:f(xlv'”,xn): Z Qqy,..., an$?1"‘$g"a

Qe Qn

1. aq,...,a, runs over allh—tuples of non—negative integers,

o, € k,forallay,. .., a, and

-----

«, = 0, for all but finitely manyay, . . ., a,,.

.....

When convient we writex for then—tupleay, . .., o, anda,x® for aq, . a, 7" - - - 25", TWO
polynomials) _  a,x“ and)__b,x* are equal if and only if.,, = b,, for all . When writing
polynomials we use the following conventions.

1. We do not write downi,, .., x7" - - - x5 for anya such that, = 0. We call the polyno-
mial with a,, = 0, for all a, thezero polynomial and write it a8.

2. We omitx$ from z{* - - - 22" if a; = 0. In particular we writex instead ofaz? - - - 0.
Thus2z22923 is written a2z?x3 and3a2{z5x3 as3zs.

Definition 1.4. Let
f(xh s 73771) = Z Qay,..., Ozn:lz(l)é1 o 'xg’?
be a polynomial ovek.

«,, 1S called thecoefficientof the monomiak?" - - - .

1. a,, o

,,,,,

2. If a, # 0 we calla,x“ aterm of f.

3. Thedegreeof the terma,x* is the degree of the monomiaf'. Thedegreeof z; in the
terma,x® is the degree af; in x“.

4. If fis not the zero polynomial then tliegreeof f is the maximum of the degrees of the
terms of f and thedegreeof z; in f is the maximum of the degrees.ofin the terms off.
If fisthe zero polynomial thefi hasdegree—oc.

Example 1.5.

1. The following are polynomials in variables, x» andxs. The first two are monomials
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polynomial degree degree in
T 1 1
rixsri! 21 7
1+ 21 + @9 + 222 + Ty 29 + 32523 5 2
0 —00 —00
1 0 0
z1 + 23 2 2
Tt + 23 + 3r379 + 3 7 0

2. The following is a polynomial irz, y andz.

flx,y,2) = 3I3y19 + 2:By28 — 2zy12 + bxyz + 13z — 3z + 2.

The polynomialf has degree2 and the degree aofin f is 8. The terms off are

ngylg, Qxyzs, —22y12, dxyz, 13z, —3z, 2

which have degreg2, 10, 13, 3, 1, 1 and2, respectively.

3. The polynomiab has one term, namef; of degred). The polynomiab has no terms and
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is of degree—cc.

The set of all polynomials ovérin variablesry, . . ., z,, is denoted:[z4, . . . , x,]. We wish to
define addition of polynomials in such a way as to maks, . . ., x,,] a vector space ovérwith
basis the set of all monomials in variables. . ., z,,. In particular this means that ff = ax®
andg = bx®, for somea, b € k, we require

f+g=(a+bx"

This leads to the following definition

f= Z a,x“ andg = Z bax®
be polynomials. Theum f + g of f andg is

f +9= Z(aa + ba)xa'

[0}

Definition 1.6. Let

It is easy to check that, with this definition of additidrz, . . ., z,,] is a vector space ovér
with the required basis.

Example 1.7.

1. Let

2 2 2
[ =zi+z5+ i1y

andg = 2x% + x1xo — 373 + 1 then

f+g=32% 222+ 2200 + xy29 + 1.

AJD September 29, 2003



MAS345 Notes 8

2. Let f = Tlzy't2? — 1529°2 + 33zyz + 4 andg = 924y'°2° + 102y°2 — 2322y — 9 then

f+4g="lz*y" 2" + 92%y'%2° — 529°2 + 10xyz — 5.

We now wish to extend the definition of multiplication of monomials to multiplication of
polynomials in such a way as to make the vector spgéce . . . , z,,| into a commutative ring. To
simplify notation, ifo = a4, ..., a, andg = G, ..., B, wewritea+ 8 = a1+ 54, ..., a, + (.

To meet our requirement we need to define multiplication so thatifax® andg = bx” then

fg = abx*x" = abx®*P,

(where the second equality follows from the definition of product of monomials). Using axiom
F11this means that if = > a,x* andyg is as above then we require

fg = Z anbx*t?.

We are thus led to following definition of product.

Definition 1.8. Let
f= Z a,x“ andg = Z bax®

be polynomials. Theroduct fg of f andg is
fg=> ex,
v

where

Example 1.9.

1. Let f = zy + 1 andg = z + y2. Then

fg:x2y+xy3+x+y2.
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2. Let f =22 + y* + 1 andg = zy? + 23 + 2 then

fg = By 42520+ oy +a3y? 2y 4oy + 23 +2 = 203y + 20 200 +ay -2y + P 2 +-2.
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2 Affine curves

Definition 2.1. Let k be a field and let. be a positive integeAffine n—space overt is the set
An(k)={(a1,...,a,) :a; € k, fori=1,...,n}.
We call the element§, . .., a,) points of A, (k).
Example 2.2.
1. The affine lineA; (k) whenk isR, Q, C andGF (p).

2. The affine plané\,(k), for the same fields.
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3. As(k), for these fields.

A polynomial f € k[zy,...x,| may be written ag (x4, ..., z,) and thenf(ay, ..., a,) used
to denote the element éfobtained by substituting; for z;, for: = 1,...,n, throughoutf. If
f(ai,...,a,) = 0we saythatay,...,a,)is azeroof f.

Definition 2.3. Let f be a non—constant polynomial of degrée variablesz, y over the field

k. Then the set of points
Cr = {(a,b) € Ag(k) : f(a,b) =0}

is called acurve over k with equation f = 0. We say that’; hasdegreed and is a curven
Ay (k).
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We shall refer toC; as the curvedefined by f and withpolynomial f. Note that a curve
may have many different equations as can be seen from the following examples. In spite of this
we often refer to the curv€’s merely asC.

Example 2.4.
1. Examples of introduction and Exercises 1, Drawing curves.

2. A curve of degred is called dine.
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3. A curve of degree is called aconic.

AJD September 29, 2003



MAS345 Notes 14

4. Curves of degreg, 4 and5 are called aubic, quartic andquintic, respectively.

5. Consider the curves§; andCy, wheref = z? — y andg = z* — 22%y + .

In Ay(R) both these curves are parabolas ahd= C,. This is no coincidence as (for

arbitraryk)

g=a'—22%y+y* = (2 —y)* = [~

Henceg(a,b) = 0 if and only if f(a,b) = 0. In some sens€, is C repeated twice. To

make this precise and to cope with the ambiguity inherent in this situation we look again

at polynomials.

Polynomials again

Lemma 2.5. Let f andg be elements df[z4, ..., x,]. Then

1. degreéfg) = degreéf) + degre¢g) and
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2. degreéf + g) < max{degre€f), degre¢g)}

Furthermore, forl <i <mn,
3. the degree of; in fg is equal to[degree ofi; in f] + [degree ofr; in g] and

4. the degree of; in f + g < max{degree ofi; in f, degree ofc; in g}.

For example withf = 22 — y andg = 2%y — 1 we havefg = 2%y — 23y* — 2% + y while

degreéf) = 2, degreég) = 4 and degregfg) = 6. Furthermore the degrees.ofn f, g andfg

are2, 3 ands, respectively. Alsgf + g = 2%y + 22 — y — 1 which has degre¢ and in which the

degree ofr is 3. Note that iff is as above anél = 1 — 22 then the degree of + / is 1, which

is strictly less thamnax{degre€f), degre¢h)}.

Definition 2.6. Let f andg be elements of [z, ..., z,]. We say thay divides f or g is afactor
of f, writteng|f, if there exists an elemehte k[z4, ..., x,] such thatf = gh.

For exampler?yz — x2? — xy® + y?2 has factorsry — z andzz — o2

Definition 2.7. A non—constant polynomiaf over a fieldk is reducible if there exist non—
constant polynomialg andh, overk, such thatf = gh. A non—constant polynomial isre-
ducible if it is not reducible.

Example 2.8.
1. The polynomiak:™ is reducible ifn > 1 and irreducible ifn = 1.

2. The polynomiak? — y? is reducible as? — y* = (z + y)(z — y).
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3. Let f = 2%yz — 222 — 2y + y22.

Thenf = gh, whereg = xy — z andh = 2z — y?, so f is reducible.

4. All polynomials of degred are irreducible.

To see this suppose thats a polynomial of degreé and thatf = gh, whereg andh are

non—constant polynomials. Then

1 = degre¢f) = degreég) + degreéh).

If g andh are non—constant then degfee> 1 and degreg:) > 1. Hencel = degre€g)+

degreéh) > 2, a contradiction. Thug is not reducible.

5. The polynomialf = 22 — y is irreducible.

We shall prove this. Suppose thais reducible. Then there exist non—constant polynomi-

alsg andh such thatf = gh. As g andh are non—constant they both have degree at least
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1. As2 = degre¢f) = degreég) + degreéh) it follows, from Lemma2.5 part 1, that

degre¢g) = degre€h) = 1. Hence we may writg = ax + by + c andh = px + qy + r,

for some elements, b, ¢, p, g, v € k. We now have

f=a*—y=gh=apr®+ (aq+ bp)xy + bqy* + (ar + cp)x + (br + cq)y + cr.

Comparing coefficients we have

ap =1, (2.1)
br + qc = —1, (2.2)
aqg+bp=bg=ar+cp=cr=0. (2.3)

From 2.1), a # 0 andp # 0. Given thater = 0, eitherc = 0 or» = 0. Let us first assume
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thatc = 0. Then, from R.3) we haveur = 0, and since: # 0 sor = 0. Similarly, if » = 0

we obtainc = 0. Thereforec = r = 0. Similarly b = ¢ = 0. However 2.2) now implies

0 = —1, a contradiction. We conclude thAts irreducible.

6. In contrast to the last example the reducibility of the polynonfiat 22 + 3? depends
upon the ground field.

If & = C the polynomial factorizes af = (z + iy)(z — iy), SO f is reducible ove(C. If

k = R the polynomial is irreducible. This follows from the uniqueness of factorization,

below. If k& = Z, then

(x+y)* =2"+ 22y +y° =2 + 37,

so f is reducible ovefZ,. If k = Zj it is easy to show, using the method of the above

example, thaf is irreducible.

7. As afinal example we show that the polynomfiak 2% —1? is irreducible over an arbitrary
field k.
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Suppose then thgt = gh, whereg andh are non—constant polynomials. It follows from

Lemma2.53 that the degree of in g is 0, 1 or 2 and that the degree ofin h is 2— (degree

of z in g). Suppose first that the degreexoi ¢ is 0. Theng € k[y] andh = az? + bzy +

cx + I/, whereh' € k[y]. Then

f = gh = gax® + gbry + gex + gh'.

The coefficient of/" 22 in f, forr > 0, is equal td) and it follows on comparing coefficients

that g is constant, a contradiction. Hence the degree of g is not0. Since the same

applies toh it follows that the degree of in both ¢ andh is 1. Therefore there are

polynomialsg’ and?’ in k[y] such thaty = ax + ¢’ andh = bx + k', with a, b non—zero
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elements of.. We have

f = gh = abx® + (ah/ + bg )z + ¢g'H.

Now f has no terms of degréein x, soah’ + bg’ = 0. Furthermorey’h’ = —y3. We may

assume thay’ = py? andh’ = qy, with p,q € k andpg = —1. Thenp # 0 andq # 0, so

ah’ + by’ = aqy + bpy* # 0, a contradiction. We conclude thAts irreducible.

Remark: A non—constant polynomial is irreducible if its only factors are constants and constant
multiples of itself. That is, iff is irreducible angy| f then eithery is a constant oy = af, for
somea € k. Compare this to the situation in the integ&rsin Z the irreducible elements are
primes. The factors of a primeare+1 and+p.

Given a reducible polynomidi, of degreel, we can, as we have seen in the examples above,
write f = gh, wherel < degre¢g) < d — 1 and1 < degreéh) < d — 1. If eitherg or
h is reducible then we can repeat the process, factorizing into polynomials of lower degree.
Eventually we obtain an expression

f=q- g

whereg; is an irreducible polynomial. A factorization gfinto a product of irreducible polyno-
mials is called arnrreducible factorization of f.

Theorem 2.9. Let f be a polynomial ink[zy,...,z,]. Thenf has an irreducible factoriza-
tion. This factorization is unique up to the order of the irreducible factors and multiplication by
constants.

Partial proof. We have shown above that a polynomial has an irreducible factorization. The
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second sentence of the theorem means thathids irreducible factorizationg = ¢; - - - ¢, and

f=4q,---q, thent = s and that

— / _ /
q1 = alq@'17"’7QS - asq'isa

for someay, ..., as € k and permutatiofiy, ..., i) of (1,...,s). We shall not attempt to prove

this here.
Example 2.10.
1. The polynomialke® — 3 has irrreducible factorisatiofx + y)(z — y).

2. Let f = 2%yz—x2? —xy® +y*2. Thenf has irreducible factorisatiogh, whereg = xy — =z
andh = xz — 2. This follows from the previous example and the fact (which you should
check) thayy andh are irreducible.

Reducible and irreducible affine curves

Lemma 2.11.If f,¢g and h are non-constant polynomials iz, y] with f = gh thenCy =
Cy U Ch,.

Proof. If f = gh whereg andh are non—constant polynomials then, for @l b) € A, (k) we

havef(a,b) = 0 if and only if eitherg(a,b) = 0 or h(a,b) = 0. Hence(a, b) € Cy if and only if
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(a,b) € C, U Cy,. ThusCy = C, U C}, as required.
Example 2.12.

1. The curve with equation? — 2 = 0.

2. The curve with equatiofw? + (y — 1)2 — 1)(2® + (y — 2)? — 4)(2® + (y — 3)2 = 9) = 0.

Definition 2.13. Let f be an irreducible polynomial ifk[z,y]. Then the curve’; is called an
irreducible affine curve.

Definition 2.14. Let f be a reducible polynomial ik[z, y| with irreducible factorizatiory =
¢ - - - ¢s. Thenwe say that'; is areducible curve and hasreducible componentsC,,, ..., C,..

Note: If C'y has, as above, irreducible componefifs . . ., C,, then it follows from Lemma.11

that
Cr=C,U---UC,,.

Therefore every curve is a union of irreducible curves.
Example 2.15.
1. Lines are irreducible curves.

2. The curve with polynomiat? — 3? has two irreducible components: the lines- y = 0
andzr —y = 0.
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Figure 2.1:The curve with equation® — 23y — 22y + 3° = 0.

3. Let f = 2° — 23y — 2%y? + 93. Thenf has irreducible factorizatioff = gh, where
g =x*—yandh = z* — y?, and soC; has irreducible components, andC;,. If £k = R
we can draw the curve, using Maple, and obtain a drawing: which looks as though it has
two components (Figurg.l).

4. The last example may be misleading asA(R), curves which appear to have several
components may in fact be irreducible. For example the curve with equgtion:(z? —
1) = 0, shown in Figure.2is irreducible oveiR.

5. The curve with equatiom® + 2 + y* + y? = 0 in Ay(R) behaves even worse, having an
isolated point at the origin even though it is irreducible: see Figuse

6. On the other hand curves which, when drawn, look irreducible may not be. For example
let f = 2? — 22y + y*. Thenf = ¢*, whereg = = — y. The curveC; has2 irreducible
components both equal @,, which is the liney = z.
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Figure 2.2:The curve with equatiop® — z(z* — 1) = 0.

.

Figure 2.3:The curve with equation® + 22 + 33 + y? = 0.

-2
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The Nullstellensatz

As we have seen above fifandg are polynomials itk[z, y| andg| f thenC, C C;. However,
this raises a question. Namely,Gf, C C/}, for some polynomialg andg, does it follow that
g|f. The answer to this question dependsgaand the fieldk and requires a further definition.
First we state the following result which gives a partial answer.

Theorem 2.16.Let k be a field and letf € k[t] be a polynomial of degreé > 0. Then the
following hold.

1. Ifa € kthenf(a) =0ifand only if(t — a)|f.
2. f has at mostl zeros.
Proof.

1. If (t—a)|f thenf(t) = (t —a)q(t), for somey € k[t], sof(a) = 0, as required. The proof
of the converse depends on the fact that we can wiite = (¢t — a)q(t) + r(t), whereq
andr are polynomials irk[t] and degre@) < degre¢t — a). Given this fact, which we
shall not prove here, it follows thatis constant, since degrge-a) = 1. Now if f(a) =0
we haved = f(a) = r. Hencef(t) = (t — a)q(t) andt — a| f, as required.

2. This is proved by induction od. It is clearly true ifd = 1. If d > 1 and f has a zera
then we can writef = (¢ — a)q, for someg € k[t]. As degreé;) = d — 1 the inductive
hypothesis implies thathas at most/ — 1 zeros. The result follows.

The first part of this theorem answers the analogue of question posed above for case of polyno-
mials of one variable (under the the restriction tha linear).

If a field k& has the property that every non—constant polynorhialk[t] has at least one zero
then we say that is algebraically closed From Theoren2.16 we may conclude that if is
algebraically closed anflis non—constant polynomial of degréén &[t] then

f=ao(t—ay)- - (t —ay,),

for somea; € k, with ag # 0. This follows by induction on the degrekof f. Note that, in this
expression forf, thea;’s are not necessarily distinct. If we collect together all the repeated linear
factors then we can write

k
f=ao H(t —b)",
i=1

with ag # 0, b; # b; wheni # j andry + - - - 4+ r;, = d. In this case we say that timeultiplicity
of the zerap; is r;.
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Example 2.17.
1. The fieldC is algebraically closed.

This follows from a theorem of Complex Analysis. Hence any polynomial in one variable

overC is a product of linear factors. For example

th— 203 — 2it — 1 = (L 414)(t — 1),

so has one zere1, of multiplicity 1, and another zerg of multiplicity 3.

2. The fieldR is not algebraically closed.

For example? + 1 has no zero ifR.
We also have the following which will be useful later.

Theorem 2.18.Let k£ be an infinite field and lef € k[zy,...z,). If f(ay,...,a,) = 0 for all
(a1,...,a,) € A,(k)thenf is the zero polynomial.

Again, this theorem answers a question similar to the one above. Note that we did not allow the
zero polynomial to be the equation of a curve and so the theorem tells us that no curve contains all
points of A, (k), as long ag is infinite. The answer to our question is contained in the following
theorem.

Theorem 2.19 (Hilbert’'s Nullstellensatz).Let & be an algebraically closed field and I¢tand
g be non—constant polynomials iy, . . . x,,]. Suppose that

1. g isirreducible and
2. f(a1,...,a,)=0forall (ay,...,a,) € A,(k) such thaty(a,...,a,) = 0.
Theng| f.
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We shall not prove this theorem. To see more plainly what it means for curves we state a
Corollary.

Corollary 2.20. Letg and f be polynomials irk[x, y|, wherek is an algebraically closed field.
Assumey has irreducible factorizatioy = ¢; - - - ¢,. If

1. ¢, c Cyand

2. q; # qj, wheni # j,

theng| f. In particular if ¢ is irreducible andC, C C; theng|f.

Proof. Fix i with 1 < i < s. Sinceg|g, if (a,b) € Ay(k) is such thaty(a,b) = 0 we

haveg(a,b) = 0. AsC, C Cy this means thaf(a,b) = 0, for all (a,b) € Ay(k) such that

¢i(a,b) = 0. Asg; is irreducible it follows from the theorem thag f. It now follows from the

uniqueness of factorization, and the fact that all¢ghare distinct, thaty, - - - ¢;| f. That is,g|f,

as required.

The corollary tells us that if we stick to algebraically closed fields then we have a good cor-
respondance between curves and polynomials without repeated irreducible factors. In particular
if f andg are irreducible polynomials and; = C, theng = af, for somea € k. If we drop
the requirement that is algebraically closed this theorem is far from true, as the next example
shows.

Example 2.21. Let k = R and consider the curv€ with equationz? + y*> + 1 = 0. This
curve has no points. Therefore it is contained in every other curve. Furthermore its polynomial
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is irreducible ovelR. However this polynomial does not divide the polynomial of every other
curve: in particular it does not divide any linear polynomial. This means Cordl&a§does not
hold in A,(R). Note also that the polynomial= z* + y? + 2 defines the same (empty) curve in
Ay (R), but thatg is not a constant multiple of? + 3> + 1.
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3 Intersection Number

How can curves intersect with themselves and with each other? We start with intersections
of line and curve.

We’'ll look at the ways in which curves and lines intersect. In particular we want to understand
tangents to points on a curve, because near a point we expect the curve to be approximated by its
tangent(s) at that point.
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Parametric form of a line

Let [ be an affine line with equation: + by + ¢ = 0. Note that(a,b) # (0,0) as the poly-
nomialax + by + c is of degreel. Suppose that a poiift,, yo) belongs td. Then we make the
following description of the line.

The set of points of the linkis

{(xo — bs,yo +as) : s € k}. (3.1)

To see that this holds suppose first that we have a pgoint) of the form @.1). That is, for

somes € k

(u,v) = (xg — bs,yo + as).

Then

au + bv 4+ ¢ = axg — abs + byy + abs + ¢

=axg+ byy+ ¢
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Hence(u,v) € l and{(zo — bs,yo + as) : s € k} C L.

On the other hand suppose thiat, =,) € . First assume that # 0. In this case set

Y1 — Yo

Then

xo—bs:xo—b<y1;yo)

([ axo —byr + byo
B a

—c— by,

ary
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Also
yo+a52yo+a(yl ;yo) = Y1
Therefore
(x1,11) € {(xg — bs,yo +as) : s € k}
and so

L C {(zg—bs,yo +as) : s € kt}.

If « = 0thenb # 0 and a similar argument holds. The result follows.
Now suppose we're given amy b, zo, yo € k with (a,b) # (0,0). If we set

¢ = —(axo + byo)

then it follows from the above that the s& 1) defines a line, with equatiom + by + ¢ = 0,
passing through the poift;, yo).

We call 3.1) aparametric form of the linel with equationax + by + ¢ = 0 through point
(x0,y0)- If the meaning is clear we abbreviate this by sayihgs parametric forrico — bs, yo +
as). Note that the parametric form of the lihelepends on the choice of poift,, yo) € . We
call the ratio(—b : a) thedirection ratio of /.

Example 3.1.

The linel with equation2x + 5y + 1 = 0 contains the point—3, 1) so has parametric form
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(—3 — 5s,1 + 2s) and direction ratid—>5 : 2).

The point(7, —3) also lies on so (7 — 5s, —3 + 2s) is another parametric form of

The line with parametric forn5 — 3s,2 — 9s) has equation-9x + 3y + 39 = 0, direction

ratio(—3 : —9) = (1 : 3) and passes througdh, 2).

Intersection polynomials

Let/ be an affine line passing through the pding, yo) with parametric form(zo — bs, yo +
as), fors € k. Let f be a polynomial irk[z, y] and letC' = C'y be the curve with equatiofi= 0.
A pointg € Ay(k) liesonl andC' if and only if ¢ = (z¢ — bu, yo + au), for someu € k such
that

f(zo — bu, yo + au) = 0. (3.2)

This leads to the following definition.

Definition 3.2. We call the polynomial

¢(s) = f(xo — bs,yo + as)
anintersection polynomial of / andC.

Note thaty depends on the choice of parametrisation of

From 3.2) the points of intersection éfandC' correspond to those € k such that(u) = 0.
Now ¢(u) = 0 if and only if (s — u)|¢(s). (This follows from Theoren2.16) Hence points of
[ N C are precisely the points:y — bu, yo + au) such thats — u)|4(s). This prompts the next
definition.

Definition 3.3. Let g = (o — bu, yo + au) be a point ofl, for someu € k. Theintersection
number I(q, f,1) of C'and! atq is the largest integer such that(s — u)"|¢(s).
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Example 3.4.Let f = 22 — y and letl; be the line with equatior — y = 0, let [, be the line
with equationy = 0 and let!’ be the line with equatiop + 1 = 0.
Thenl; has parametric forns, s), [, has parametric forns, 0) and!’ has parametric form

(s,—1).

The intersection polynomials &f, [, and!’ are

¢1(s) =8> —s=s(s—1),

$o(s) = s* and

¢'(s) = s> +1,

respectively.

1. ¢1(s) has zeros = 0 ands = 1. These correspond to poings = (0,0) andg; = (1,1)

on C N ;. The intersection numbers of these points &g, f,11) = I(q, f,l1) = 1, as

zeros ofp, have multiplicity1.
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If w# 1andu # 0 and we sety = (u,u) thenI(q, f,11) = 0, as(s — u) does not divide

¢1 in this case. Note that this is a general principleg & [ N C; thenl(q, f,1) = 0 (as

long asl Z CY).

2. ¢o(s) = s* and has only one zere = 0. This corresponds to the poig§ = (0,0) as

before but now (qo, f, o) = 2.

3. The zeros ofY'(s) depend ork. If £ = R then¢’(s) has no zeros sb(q, f,l') = 0, for all

pointsq on!’. If you sketch the real curve you will see that it does not nileet

If & = Ctheng/(s) = (s —i)(s + i) so there are two points of intersection, = (i, —1)

corresponding ta = ¢ andg_ = (—i, —1) corresponding ta = —i. Both factors ofp’

are linear sd (q., f,') = I(q_, f,I') = 1. All other points ofl’ lie outsideC' and have

intersection number zero.
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If & = Z3 then¢'(s) has no zeros as can be easily verifiedi(&ss3 elementd), 1 and2).

Therefore all points of the linB have intersection number zero. 73 the linel’ consists

of the 3 points(0, 2), (1,2) and(2, 2). Recalling the diagram of Example 2.4 we see that

none of these points lie afl.

If k = Zs then¢/(s) has zerog and3 and we can check thaf (s) = s?+1 = (s—2)(s—3).

Therefore there are two points of intersecti¢h,—1) = (2,4) corresponding te = 2,

and(3,—1) = (3,4) corresponding t@ = 3. Both these points have intersection number

1.

Example 3.5.Let f = 22 — y and letl,, be the line with equationp = mx, wherem ¢ k. We've
covered the cases = 0 and1 in the previous example. Thép has parametric forms, ms).

The intersection polynomials @f, is

bm(s) = s* —ms = s(s —m).
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We've covered the case = 0 above. Whemn # 0 theng,,(s) has zeros = 0 ands = m.

These correspond to poings = (0,0) andg,, = (m, m?) onC N 1,,. The intersection numbers

of these points aré(qo, f,ln) = I(qm, f,ln) = 1, as zeros ofp,, have multiplicity 1. Note

that, if we are working oveR or C, as|m| becomes very small the second point of intersection

becomes close t(,0). Whenm reaches zero the two points of intersection coalesce and we

have one point of intersection with intersection numher

Suppos€(zy, yo) € ! and that! has parametric fornizy — bs,yo + as). If I € Cy then
¢(s) = 0, for all s € k. It follows from Theoren®.18 that¢ is the zero polynomial (as long as
k is an infinite field). In this casés — u)"|¢(s), for all » > 0. Hence the intersection number
I(q, f,1) = oo, forall g € Ay (k).

Theorem 3.6.If C' is an affine curve, with polynomigl of degreed > 0, and! is a line with
I < C'thenl N C has at mostl points, counted with multiplicity. That is

> Il fi1) <d.

pelNC
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The definition of intersection number depends on an intersection polynomialafed C'.
The intersection polynomial depends in turn on the parametric form for thé [irtee parametric
form for [ is determined by the choice of the point, 1,) onl. Note that the line with parametric
form (z¢ — bs,yo + as) has equatiomz + by + ¢ = 0. Therefore it also has equatiomx +
Aby + Ac = 0, where) is any non-zero element &f It follows that another parametric form
for lis (zg — Ab,yo + Aa): that is we may replacéu, b) with (Aa, \b). We now show that the
intersection number is the same no matter which parametric form we chodsé fierremainder
of this section is background reading and not required for assessment.

Letp = (zo,yo) and define

L,(s) = (xg — bs, yo + as).

First we investigate the result of changifg, o). The original parametric form faris L,(s).
Suppose now that = (z1, ;) is a different point of. Then! also has parametric form

Lp/(t) = (Il — bty + Clt),t € k.
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Asp’ = (z1,71) is a point ofl we havev € k such that

p’ = (51717 yl) = (xo — b, yo + av)- (3.3)

There is also an intersection polynomigl corresponding to the new parametric form for
namely
¢'(t) = flz1 —bt,y1 + at).
Now suppose thaj is some point of, sayq = L,(u), for someu € k, and that using the
original intersection polynomiap we havel(q, f,1) = r. Thatis(s — u)"|¢(s) but (s — u)" ! ¢
¢(s). Then there exists a polynomi@kuch thatp(s) = (s — u)"q(s) and(s — u) t q(s). Now

(s —u)"q(s) = ¢(s) = f(xg — bs,yo + as)
= f(xg — bv+ bv — bs,yo + av — av + as)
= f(

f(

x1 + bv — bs,y; — av + as) using @.3
x1 —b(s —v),y1 + a(s —v)).

Settingt = s — v and substituting in the above we obtain

(t = (u—0))"q(t +v) = f(z1 = bt y1 + at)
= ¢'(1).
Thatis, if(s —u)"|¢(s) then(t — (u —v))"|¢'(t). Appealing to the symmetry of the situation the
converse of the last statement also holds, so in(faet)"|4(s) if and only if (t — (u—wv))"|¢'(t).

Therefore the intersection number@f= L,(u) calculated using is equal to the intersection
number ofL,, (u — v) calculated using’. Now the point

Ly(u—v)= (21 —blu—v),y1 + alu —v))

= (zo — bu, yo + au) using @B.3

= Ly(u) =q¢.
Thusgq is the point ofl corresponding to the zeto= (u — v) of ¢/(¢) and from the above we
obtain the same intersection number whichever parametric form we use.

Next we consider the effect of changingndb. We can replace the parametric fofip(s) =

(zo — bs,yo + as) with the parametric forni.) (t) = (xo — 0's,yo + a's) if and only if (—b :
a) = (= : da'). Suppose then thate k, d # 0, a = da’, b = db’ and L, (t) is as above. The
intersection polynomial corresponding to the parametric fofft) is

¢'(t) = f(wo —V's,yo +a's).
Now letq = L,(u) be a point of. Then

q = Ly(u) = (zo — bu, yo + au)
= (xo — db'u, yo + da'u)
= L, (du).
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Furthermore if(s — u)"|¢(s) then there is a polynomial s) such that

(s —u)"q(s) = &(s) = f(xo — bs,yo + as)
= f(xg — db's,yo + da's)
= ¢(ds).

Settingt = ds and substituting in the above we obtain
((t/d) —u)"q(t/d) = ¢'(t).
Now, sinced € k, ¢(t/d) is a polynomial of the same degreegas k[t] and
1
((t/d) —u)" = E(t —du)".
It follows, appealing to symmetry again, that— u)"|¢(s) if and only if (¢ — du)"|¢'(t). Hence

the intersection number gfis the same whether we ugés) or ¢/ (¢) to compute it. We conclude
therefore that intersection number is independent of choice of parametric fofm for
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4  Singularities, Multiplicity and Tangents
Example 4.1. The curvey — 2% = 0.

Example 4.2. The curvey? — 2® — 22 = 0.
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In order to make these ideas precise we first need to look again at polynomial algebra.

Polynomials and Taylor’s theorem

First of all we define derivatives of polynomials, of one variable, algebraically (the definition
involves no limits).

Definition 4.3. Let f = ag + a1z + - - - a,2™ be a polynomial irk[z]. Then thederivative of f
with respect tar is
f''=ay + 2a0x + - - + na,a™ L.

We can prove all the usual rules for differentiation using this definition and we use the usual
notation for higher derivatives. In particular we have the Taylor expansion for polynomials of
one variable given by the next theorem. In this theorem and in the remainder of the section on
multiplicities we shall assume that ffis a polynomial of degre€ in k[z4,...,z,| thenk is a
field containingZ or Z,, wherep > d. Otherwisek would be a field containing., with p < d
and then we should not be able to make statements involyilg

Theorem 4.4. Let f be a polynomial of degre€in k[z] and letu be an element of. Then the
Taylor expansionof f is

2 d

(z —u)
d!

Proof. The polynomialf (x + u) has degred and we can writef (v + u) = ag + a1z + - - - a,, 2%,
with a; € k. Therth derivative off (z + u) with respect tar is then

d! d—r
m&dl’ .

(z —u)

. 7).

f@) = fu) + (x —u) f/(u) + Flu) + -t

Nz +u) =rla, + (r + Dlagqx + -+
Settingz = 0 in the above expression we obtgifi) (u) = r!a,. Therefore

2 d
fo ) = J(u) + of () + 5 () + -4 SO ).

Substitution ofr — u for = above gives the required result.

Partial derivatives of polynomials of several variables are defined in the obvious way and we
use the notation
of

8.751-

for the partial derivative of with respect tac,. Thus if f(z, y) = 28y + 322y% + 172 +4'° + 3
we have
of

ox

Orfa:z' Orfi

(z,y) = 82"y® + 6ay° + 17
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and

o)
a—f(:c, y) = 32%* + 182%y° + 10y°.
Y

We can now state the chain rule.

Theorem 4.5. Let f(xy,...,z,) be an element df[z4,...,x,] and letg;(s), ... gn(s) be ele-
ments of|[s]. Then, differentiating (¢, (s), . .., g.(s)) with respect tcs, we obtain

n

F(91(8),-9a()) = D Fui(9a(5), -, 9u(5))gi(5)-

i=1

The chain rule is used in the proof of Taylor's theorem for polynomials of several variables,
which is as follows.

Theorem 4.6.Let f € k[x, y] be a polynomial of degree and leta, b, 2o, yo € k. Then

f(sa + x0,5b+yo) = f(xo, y0)

0 0
+ 5(aa—£(xo, Yo) + ba—i(xm Yo))

Sn n n—7jig anf
+HZ(]- )a ]b](%n_—jayj(%o,yo)-

n
j=0
Proof.

Leto(s) = f(sa+xo, sb+1o). Using Taylor's theorem for polynomials of one variable (Theorem
4.4) we have

n

6(5) = 6(0) + s(0) + 56 (0) + -+ + 556(0).

Using the chain rule

$(0) = f(xo, o)

0 0
¢'(0) = aa_i(xoayo) + ba_i;(%o, Yo)

¢(k)(0) = Z ( I; ) ak‘JW&Ck_—;faw(xo,yo)-

=0

The result follows.
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Corollary 4.7. Let f € k[z,y| be a polynomial of degree and letz,, yo € k. Then
f(z,y) = f(z0, y0)
0 0
+ ((x - l‘o)a—i(%,yo) + (y — y0)8—£($0, yo))

( n ) (z — xo)n_j(y - yo)j%j;yj(%,yo)-

Proof.
Sets = 1,a = x — g andb = y — y, in the Theorem and this follows immediately.

Next we prove a useful result about homogeneous polynomials in 2 variables (an analogue of
Theorem2.16). We say a ratida : b) is non—zeroif (a,b) # (0,0).

Lemma 4.8. Let f(z, y) be a homogenous polynomial of degiee 0 in k[x, y]. Then there are
at mostd non-zero ratioga : b) such thatf(a,b) = 0. If k = C then

d

f(wy) = ao [ [(bix — asy),

=1
for someu;, b; € C.

Proof. Since the degree gfis non—zero we may write

d
i
f=> euiy™,
Jj=0

wherec; # 0, for somej. Now, using the result of one of Exercises 2, giVenb) we have
f(a,b) = 0if and only if f(ta,tb) = 0, for all t # 0. Hence(a, b) is a zero off if and only if
(¢,d) is a zero off, for all (¢, d) with (¢ : d) = (a : b). Hence we need only prove the result for
one representativg:, b) of each non-zero rati(: : b). Note that any non-zero ratj@ : 0) is
equal to(1 : 0) and that any rati¢a : b) with b # 0 is equal to(t : 1), with ¢ = a/b.

Firstly suppose thatl, 0) is not a zero off. Thenc, # 0 and any ratio which is a zero ¢f
has a representative of the fofm: 1). Thus

d
f(tv 1) = chtja
§=0

is a polynomial of degre€. From Theoren®.16 there are at most zeros off(¢,1) and this
proves the first statement of the lemmak K= C then

d

f(ta 1) = Qo H(t - CLZ-),

=1
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for someq; € C. In this case let

Then

and so ]
fley) =y'f(t,1) =ao | [ (= — aiy).
=1
Now suppose thatl, 0) is a zero off. Thenc, = 0 so there is > 1 such that
Cq=C4-1 ="+ =Cqey1=0andecg_. # 0.
Thus

d—e d—e
_ Jod—J — ,€ J,d—e—j
f= E 'yl =y E c;xly .
Jj=0 Jj=0

Sincec,_. # 0 the result now follows from the previous case.

Singular points

Definition 4.9. Let C' be an affine curve with polynomigl. A point (z¢,y,) of C is called
singular if
fe(z0,90) = fy(z0,90) = 0.

Otherwise(z, yo) is callednon-singular. If all its points are non—singular then the cues
callednon-singular.

Example 4.10.Find all singular points of the curve with equati¢t, y) = 23 + y* — 3zy.
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Example 4.11.Find all singular points of the curve with equation
flz,y) =2 +9° — 227 +y* + 2.

(The real curve with this equation is shown in Figdrd.) We have
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TN

Figure 4.4:The curve with equation® + 3 — 222 + y?> +x = 0.

fo=32"—4r+1 and f, = 3y + 2y.
Hencef, = 0ifand only ify = 0 ory = —2/3.

Case 1y = 0: In this casef(z,y) = 2® — 22> + x = z(x — 1)> = 0if and only if z = 0 or
z=1.

If = 0theny = x = 0 and sof, = 1 # 0. Hence(0, 0) is not
a singular point.

If + = 1thenf, = 0, so we havef(1,0) = f,(1,0) = f,(1,0) = 0. Hence(1,0) is a
singularity.

Case 2y = —2/3: Inthis casef, = 0 ifand only ifx = 1 or 1/3. Also
flz,=2/3) =2° — 22° + = — (2/3)* + (2/3)*.

As f(1,—2/3) # 0and f(1/3,—2/3) # 0 there are no singular points withcoordinate
—2/3.

The curve has one singular poffit 0).

Multiplicity

At a singular point the first partial derivatives of the polynomial vanish. What about second
partial derivatives? We single out the degree of the first non—vanishing partial derivative with the
following definition.

Definition 4.12.
Let C' be a curve with equatiofi = 0. A pointp = (zo, yo) of C hasmultiplicity r if
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1.
f(.T()? ?JO) - 07
0 0
a_i('rm Z/O) = a_‘?];(x()a ZJO) = OJ
67"71(](‘ arflf arflf arflf
W(%,yo) = m(%,yo) =...= W(%’%) = W(onyo) =0
and
2.
_oF

=10 j(azo,yo) # 0, forsomej with0 < j <.
"I 0y

It follows immediately from this definition that a point @f is singular if and only if it has
multiplicity greater thari.

Definition 4.13.
1. Points of multiplicity 1 are calledimple points.
2. Points of multiplicity 2 are calledouble points.
3. Points of multiplicity 3 are callettiple points.
4. Points of multiplicityr are called-—tuple points.
Example 4.14.We shall find the multiplicity of each singular point of the curve with equation
f(z,y) =2° +9* — 3ay.

From Examplet.10we know that the curve has one singular pginn).
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Example 4.15.We shall find the multiplicity of each singular point of the curve with equation
flx,y) =2 +9* — 22 +y* + 1.
From Examplet.11we know that the curve has one singular pgint). We have
fox =62 —4, fo, =0 and f,, = 6y + 2.
As f..(1,0) = 2 # 0 it follows that(1, 0) is a double point.

Tangents

Now letp = (x0, yo) be a point on the curv€' with equationf = 0. Supposef has degreé
and, fort =0, ..., d, define the polynomiat; in two variablesy andj as follows.

Fo(e, B) = f(x0,5) and

t
t o 0
Fi(a,8) = 0 < i )at Jﬁ]axt_—jfayj(xo,yo), fort > 0. (4.1)
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ThenF, is either zero or homogeneous of degtea line [ throughp with direction ratio(a : b)
has parametric fornz, + as, yo + bs).

Definition 4.16. Let p = (x¢, yo) be a point of multiplicityr on C. The linel with parametric
form (x¢ + as, yo + bs) is called atangentto C' atp if

F.(a,b) =0.

As F, is non—zero it is homogeneous of degreand it follows, from Lemmat.8, that there
are at most tangents at a point of multiplicity.

Example 4.17.Find all tangents to the complex curve with equation
flz,y) = 2" +y* = 3ay
at the pointg0,0) and(3/2, 3/2).

From Examplet.14we know that the curve has one singular pdin0) of multiplicity 2. There-
fore (3/2,3/2) is a simple point.
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Example 4.18.Find all tangents to the complex curve with equation
flx,y) =2 +9° =22 + > + 2
at singular points.

From Examplet.15the curve has one singularity: the double pdint). As (1,0) is a point of
multiplicity 2 the tangents must have direction rat{es b) which are zeroes of

meﬂm(lv O) + nyf:vy(la O) + y2fyy(1a 0) = 2372 + 2y2.

We have2z? + 2y* = 0 if and only if (z + iy)(x —iy) = 0s0(a: b) = (i : 1) or (i : —1). The
tangents atl, 0) are therefore the linds = {(is + 1, s)|s € k} andly = {(is + 1, —s)|s € k}.

Tangents and Intersection numbers

As before letp = (z9, yo) be a point on the curv€' with equationf = 0. A line [ throughp
with direction ratio(a : b) has parametric formicy + as, yo + bs). Define

Pap)(8) = f(wo + as, yo + bs).

ThenI(p, f,1) is the highest power of dividing ¢, (s). That is
I(p, f,) =m ifandonlyif s™|¢wp(s) and s™ 4§ g (s).

From Theorena.6,

whereF;(«, () is defined in 4.1). If p is a point of multiplicityr then we have
FO<O[7B):"': T‘*l(ai/B):O
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so that in fact

Therefore, for all ratioga : b),
ST|¢(a1b) (5)
That is, for all lined through a poinp of multiplicity r,
I(p, f,1) >

Furthermore, for a given linewith direction ration(a, b),

Ip. f,)>r <= S owp(s)
<  F.(a,b)=0.

From Lemma4.8, there are at mostratios(a : b) such thatf.(a,b) = 0. There are therefore at
mostr lines through the point such that/ (p, f, 1) > r: each such line has direction ratio: b)
whereF, (a,b) = 0. We have proved the following Theorem.

Theorem 4.19.Letp be andr—tuple point of a curv&’. Then a lingl is a tangent ta”' at p if
and only ifI(p, f,1) > r.

Example 4.20.As we saw in Exampld.17, the tangents to the curve curve with equation
flx,y) = 2* +y* = 3ay

at the point(0, 0) are the liness = 0 andy = 0 with parametric formg0, s) and(s, 0), respec-
tively.
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Multiplicity and tangents at the origin

The multiplicity of the point(0,0) is particularly easy to compute. Jf is a polynomial
then the terms of of least degree are callddwest order termsof f. Thus the polynomial
o7yt + 325y% + 172%y'% + 2297 has lowest order term3z%y? and2xy”. We can write any
polynomial f of degreel as

f=Go+ G+ -+ Gy,

whereGy, is either zero or homogenous of degkeandG, is non—zero. In this case the sum of
lowest order terms of is G5, whereG,. is the zero polynomial fok = 0,...,s — 1 andG, is
not the zero polynomial.

Corollary 4.21. Let C be a curve with equatiofi = 0 containing the point0,0). Then(0,0)
has multiplicityr on C' if and only if the lowest order terms gfhave degree. In this case let
G, be the sum of lowest order terms fof Then a ling through (0, 0) is tangent toC' at (0, 0) if
and only ifl has parametric forntas, bs) whereG,.(a, b) = 0.

Proof. Write f = Gy + G1 + - - - + G4, whereG, is either zero or homogenous of degtesnd
Gg4 is non—zero. From Corollar.7, with (xg, yo) = (0,0), we see that

1
Gt(x> y) = EFt(ma y)7
whereF; is defined in 4.1). Hence(0, 0) has multiplicityr if and only if
Go=-=G,_1=0 and G,«#O

This proves the first statement. The second follows similarly.
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Example 4.22.Let C be the curve with polynomiaf = (22 + 3?)? + 32%y — y3. The point
(0,0) belongs toC' and the sum of lowest order terms pfis 322y — y3. Therefore(0,0) has
multiplicity 3. The line with parametric forrnus, bs) is tangent ta”' at (0, 0) if and only if (a, b)
is a zero of3z?y — y3, that is if and only ifb = 0 or 3a* — b? = 0. Whenb = 0 we have a tangent
[ with parametric form(s, 0). When3a®> — b> = 0 we may assume = 1 and sob = ++/3.
In this case we obtain two tangeritsand !” with parametric formgs, sv/3) and (s, —sv/3),
respectively.

l// ll

Figure 4.5:The real curvéz? + y*)? + 3z%y — y*> = 0 and its tangents &b, 0)
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5 Projective spaces and projective curves

We shall add new points “at infinity” to the affine plane and discover that by doing so we
obtain a plane in which the geometry is simplified but nonetheless gives insight into the behaviour
of affine curves.

Ratios

A ratio, overk, is ann—tuple(a, : ... : a,) of elements ofk. Two ratios(a; : ... : a,) and
(by : ... : by,) are defined to be equal if there exists a non-zero element with

ap = )\b1,a2 = )\bg,...,an = /\bn

Lines in the affine plane

We have used Cartesian coordinates to describe poidtg(éf: a point is represented by an
ordered paifu, v) of elements of. Lines are sets of points satisfying equations of the form

ar+by+c=0, where (a,b)#(0,0).

Two points ofA, (k) lie on a unique line. In factxo, o) and(xy, y;) lie on the line with para-
metric form

((x1 — 20)s + 0, (Y1 — Yo)s + Yo)-

However it is not always the case that two lines meet at a unique point: they may be parallel. In
fact two distinct lines are parallel if and only if their direction ratios are equal. (The direction
ratio of the line above i§—b : a).)

To see this suppose we have two linesd L with equations

axr + by + c=0and (5.1)

Az + By +C =0, (5.2)
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respectively. Assume that+ 0. If A = 0then(—B: A) # (—b: a) andL has equation

y=—C/B.

In this case we obtain a unique point of intersection by substitution of this valyeirothe
equation ofl.

We may assume then that# 0 and A # 0. Note that in this case

(=b:a)=(—B:A) < b=AB and a=\A,

for some non-zera € k and the latter holds if and only if

b:%B <~ Ab—aB =0,

sinceA # 0. Multiplying equation 5.1) by A and equation.2) by a we find that the, coordi-
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nate of any point of intersection must satisfy

(Ab —aB)y + (Ac —aC) = 0.

If Ab—aB # 0then(—b:a) # (—B : A) and we obtain a unique point of intersection. If, on

the other handib — aB = 0, so(—b: a) = (—B : A) then there are two cases to consider. First

suppose thatlc — aC # 0. Then there can be no solution, so no point of intersection and the

lines are parallel. Now suppose thét — aC' = 0. Since bothw and A are non—zero we have

From the above it's now clear that bdthnd . are the same line.

Homogeneous coordinates fol, (k)

To see how to extend the affine plane to a plane in which any two lines do meet at a unique
point we first replace Cartesian coordinates with a new coordinate system.
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Definition 5.1. The point(u, v) of Ay (k) hashomogeneous coordinates

U V
(U:V:W), where W #0 and US55V =

Example 5.2. The coordinate$l +i:2+i:3)and(3+::5:6 — 3i) in Ay(C).

Extension to points with third coordinate zero

We now extend the plane by allowing points with homogeneous coordifidtes” : W),
wherelW = 0. We exclude only the rati) : 0 : 0). Thus(1:2:0)and(0: 5 :0) are points of
the extended plane. The definition for spaces of dimensiotiher thar3 is analogous.

Definition 5.3. Projective n—spaceoverk, denotedP, (k), is the set of non—zero ratios
(ay:...:an41), Where aq; €k.
Elements of?, (k) are calledpoints of P, (k).
Thus the extended plafi® (k) consists of
1. points(u : v : w) € Ay(k), that is those withv # 0, and

2. new points(u : v : 0), where(u, v) # (0,0).
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In the projective plane, as in the affine plape: v : w) = (Au : \v : Aw), for all non—zero
A € k. Note that, given a fixed non-zero trigle, v, w) the set

{Qu, A, \w) = X € k} = ((u,v,w))

is a one—dimensional subspace of the vector spac€herefore there is a one to one correspon-
dence between points & (k) and one—dimensional vector subspacek’of

(u:v:w) corresponds td(u, v, w)) .
A similar statement holds for points &f,(k), for anyn > 1.

Lines in the projective plane

Suppose thdtis a line in the affine plane with equatien + by + ¢ = 0. A point (u : v : w)
of A, (k) belongs td if and only if

(ORI

au +bv + cw = 0.

that is if and only if

Therefore(u : v : w) belongs td if and only if (x, y, z) = (u,v,w) is a solution to the equation
ar + by + cz = 0.

Note that
au+bv+cw =0 <= lau + \bv + Acw = 0,

so it makes sense to speak(af: v : w) as a solution ofix + by + cz = 0.
Definition 5.4. Suppos€ A, B, C') # (0,0,0). Theprojective line with equation
Az + By+Cz=0
is the set of points
(u:v:w)€Py(k) suchthat Au+ Bv+ Cw = 0.
As in the affine plane, two points determine a line.

Lemma 5.5. Two distinct pointp andq of Py (k) lie on a unique line.

Proof. The points(a : b : ¢) and(u : v : w) lie on the line with equation

(bw — cv)x + (cu — aw)y + (av — bu)z = 0.
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That is, with equation

— 0. (5.3)

2 Q8
SEES NS
g o W

The uniqueness part of the proof is left to the exercises.

In contrast to the affine plane, here, in the projective plane two lines determine a unique point:
their point of intersection.

Lemma 5.6. Distinct lines inPy (k) meet at a unique point.

Proof. Suppose we have two lines with equations
Ar+By+Cz=0 and Az+ B'y+C'z=0.

To find their point of intersection, if it exists, we solve these equations simultaneously. As we
have two equations in three unknowns there will be at least one solution. As the two lines are
distinct it follows that

(A:B:C)# (A :B:C").

Therefore there is exactly one solution. For details see the exercises.

There are no parallel lines Py (k)

Parametric form of a projective line

Let/ be a line inPy(k) through the pointga : b : ¢) and(u : v : w). Thenl has equation
given by (5.3) above. A point(xy : yo : 2) IS a solution to this equation if and only if the
vector (zo, yo, 20) € k?® is a linear combination of the vectofs, b, c¢) and (u, v, w): otherwise
the matrix in(5.3) will have non—zero determinant. That {3 : vo : 20) is a point ofl if and
only if

(%0, Yo, 20) = (as + ut,bs +vt,cs +wt), forsome s,t € k.

Therefore

l={(z:y:2)€Py(k)|(x,y,2) = (as + ut, bs + vt,cs + wt), with s, t € k}
={(as +ut : bs + vt : cs + wt) € Py(k)|s,t € k}. (5.4)

The expressiony(4) is called theparametric form of the linel. As in the affine case we’ll say
that/ has parametric form

(as+ut :bs+vt:cs+wt), for s,tek

when the meaning is clear.
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Projective curves

Definition 5.7. A linear combination of monomials of degrée> 0, with at least one non-zero
coefficient, is called Aomogeneous polynomial of degreé.

Theorem 5.8. A polynomial f € k[xq,...,z,] is homogeneous of degrekeif and only if
fltzy, ... to,) =t (zy,...,2,), forall t € k.

Proof. See solutions to exercises 2.

From the above it follows that if (x, y, z) is homogeneous of degrédehenf(a, b, ¢) = 0 if and
only if f(u,v,w) =0, forall (u,v,w) € k*suchthala :b:c) = (u:v:w).

Definition 5.9. Let f be a homogeneous polynomial of degiee 0 in k[z, y, z]. The set
Cr={(a:b:¢c) € Py(k): f(a,b,c) =0}
is called aprojective curve of degreed in P, (k).

Theorem 5.10.If f is homogeneous andf theng is homogeneous.
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Proof. See solutions to exercises 2.

Let f be an irreducible homogeneous polynomiakim, y, z]. Then the curve’; is called
anirreducible projective curve. (Compare this with definiti@nl3) If C'y is a projective curve
and f has irreducible factorisatiofi= ¢ - - - ¢, then

Cr=CqU---UCy,

and the projective curves,, are called théreducible componentsof C.
Note that a homogeneous polynomial of degrekefines what we called a line in definition
5.4. That is, as in the affine plane, lines are curves of degree

Dehomogenization

Let F' be a homogeneous polynomial of degide k|x, y, z|]. Thedehomogenizationof F,
with respect toz = 1, is the polynomialf(z,y) = F(x,y,1). Note thatf is a polynomial of
degree at most in k[z, y]. Moreover if ' # az? then f is non—constant and if{ F' then f has
degreed.

If the dehomogenizatioyi of the polynomialf’ is non—constant then we call the affine curve
C'y thedehomogenizationof C, with respect to: = 1.

Example 5.11.

1. The projective curve with equatiaff — 222 = 0 has dehomogenization the affine curve
with equationy® — 22 = 0. We can view the real projective curve as a set of lines through
(0,0) in R3. We obtain the real affine curve by intersecting the projective curve with the
planez = 1: see Figures.6.

2. The projective curve with polynomial® + 3 — 3zyz has dehomogenization the affine
curve with polynomiak? + y® — 3zy. The real curves with these equations are shown in
Figure5.7. In the left hand drawing the axis points straight up out of the page, whilst
the z axis points to the left and the axis points upwards in the plane of the page. The
right hand drawing is first rotated so that theaxis points out to the left and then its tilted
towards you.
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The only curves which do not have a dehomogenization are those with eqrfation. We
call the line
z=0

theline at infinity (with respecttaz = 1). If (u : v : w) is a point ofPy (k) then either
1. w = 0 and it lies on the line at infinity, or
2. w # 0 and it's a point ofA, (k).

That is, the line at infinity consists precisely of all the new points we addéd tb) to form
Py(k).

Now let C'» be a projective curve of degreewith equationF” = 0 and let f(z,y) =
F(z,y,1) be the dehomogenization &f. Suppose thatu : v : w) is a point ofCr. Then
either

1. w =0, in which casdu : v : w) lies on both the line at infinity an@'z, or

2. w # 0, in which case
F(u/w,v/w,1) =0,

SO
fu/w,v/w) = 0.

In this case the poirlz : v : w) is a point of the affine curve’;.

Thus Cr consists of the points af’; together with the points wher@r intersects the line at
infinity. Furthermore the polynomidl'(x, y, 0) is homogeneous of degréén two variablest, y
or it is the zero polynomial. 1#'(x,y,0) is not the zero polynomial there are at mdstatios
( :y:0)such thatt'(x,y,0) = 0 (Lemma4.8). Therefore, either

1. F(z,y,0) is non-zero and the sétr has at most points on the line at infinity or

2. F(z,y,0) = 0 and the line at infinity is contained ifi.
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We also define thdehomogenizationof F' andC'r with respect tac = 1:
9(y,z) = F(1,y, z) andC,

and with respect tg = 1:
h(z,z) = F(x,1,z) andC},.

The linesz = 0 andy = 0 are called thdines at infinity with respecttor = 1 andy = 1,
respectively.

Example 5.12. The projective curve® — 2?2 = 0 has dehomogenizations — » = 0 and
1 — 222z = 0 with respect tar = 1 andy = 1 respectively. These dehomogenizations in the case
R = k are shown in Figuré.8.
Homogenization

Let f be a polynomial of degre¢in k[z,y]. We form thehomogenizationof f by multi-
plying every term of degreé— k by 2*. The resulting polynomial’(z, v, z) is homogeneous of
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(a) Dehomogenization with respectito= 1 (b) Dehomogenization with respectgo= 1

Figure 5.8:The real projective curve with equatigh — 2%z = 0

degreel. Formally
X
F(:an7z) = de (_a y) :

Z Z

For example consider the polynomi&l = 23> — yz3. The dehomogenization df is f =

x® — y. The homogenization of is 2® — y2? instead ofF.
Caution Dehomogenization is not always the reverse of homogenization.
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Thehomogenizationof the affine curve’ is the projective curvé'y.

Example 5.13.The line with equation: +y + 1 = 0 has homogenization the linet+ y + 2 = 0.

This line meets the line = 0 at points(u : v : w) wherew = 0 andu + v = 0. That is at

the unique poin{—1 : 1 : 0). Note that the direction ratio of this line{s-1: 1 : 0).

The lineazx + by + ¢ = 0 has homogenization the line: + by + cz = 0. This line meets
the linez = 0 at points(u : v : w) wherew = 0 andau + bv = 0. That is at the unique point
(—b : a : 0). Note that the direction ratio of this line {s-b : a : 0). All affine lines which are
parallel have the same direction ratio and so meet0 at the same point.

Example 5.14.The homogenization of affine conics.

1. The affine parabola with equatian- y> = 0 has homogenization with equatien — y*> =
0. This curve meets = 0 wheny? = 0: at the unique poinl : 0 : 0).

2. The affine circle with equation® +1% —1 = 0 has homogenization with equatiof+1> —
2? = 0. This curve meets = 0 wherez? + y* = 0: at points(1 : 7 : 0) and(1 : —i : 0).
The real projective curve does not meet 0. (Recall that(0 : 0 : 0) is not a point of
P, (k) so is not a point of intersection.)

3. The affine hyperbola with equatiarf — y?> — 1 = 0 has homogenization with equation
2% —y? — 2% = 0. This curve meets = 0 wherez? — y* = 0: at points(1 : 1 : 0) and
(1:-1:0).

The real curves with these equations are shown in Fighut®$.10and5.11 In fact all these
affine curves may be obtained by dehomogenization, with respect to appropriate planes, from a
single projective quadratic. For more details see the exercises.
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Figure 5.10:The projective curve with equatiort + y? — 2% = 0 and its dehomgenization with

Figure 5.9:The projective curve with equatian: —y? = 0 and its dehomgenization with respect
respect to: = 1.

toz = 1.
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Figure 5.11:The projective curve with equatiart — ?> — 22 = 0 and its dehomgenization with
respect to: = 1.

Intersection of line and curve

Let ! be a projective line with parametric fortas + ut : bs + vt : cs + wt), for s, ¢t € k and
let C' = C} be the projective curve with equatigh= 0. A pointp € P,(k) lies onl andC' if
and only ifp = (asg + utg : bsg + vty : cso + wiy), for somes,, ¢ty € k and

f(asg + utg, bsg + vtg, cso + wiy) = 0.
This leads to the following definition.
Definition 5.15. We call the polynomial

o(s,t) = f(as+ ut,bs + vt,cs + wt)

anintersection polynomialof [l andC. If p = (asg + uty : bsy + vty : cso + wty) € [ the
intersection number [ (p, f, ) of C'andl atp is the largest integersuch thatt,s—sot)" | (s, t).

It can be shown that, as in the affine case, intersection number is independant of choice of para-
metric form forl.
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Note thatifp = (a : b : ¢) € Py(k) then either # 0, b # 0 or ¢ # 0. That is we can rewrite

the homogeneous coordinatespads either(1 : v/ : ¢)or(a’ : 1 : )or(a’ : ¥ : 1). Hencep

becomes a point of the affine plane obtained by dehomogenizing with respect to at least one of

r=1,y=10rz=1.
The following lemma shows that we can always reduce calculation of intersection number on
a projective line to calculation of intersection number on an affine line.

Lemma 5.16. Given a projective curv€’r and projective linel let C'; and! be the dehomog-
enization ofCr and L, respectively, with respect to = 1. Letp = (u : v : 1) € Ay(k).
Then

I(p, ;1) = I(p, F\ L).
Similar statements hold for dehomogenization with respectol or y = 1 instead of: = 1.

A field which contains a copy df,,, for some prime, is said to haveharacteristic p. A field
containingZ is said to haveharacteristic co. If you don't like finite fields just assume = C
in the following Lemma.
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Lemma 5.17.Let C be a projective curve of degrekin P,(k), with equation/’ = 0, wherek
is an algebraically closed field of characteristic greater tharLet! be a line such that ¢ C.

Then
> I(p,Fl)=d.

pelnNC

Proof. If [ ¢ C theng(s, ) is not the zero polynomial and so is homogeneous of degrelence
the result follows from the proof of Lemm&a8and the remark following Theoregh16

Multiplicity

Definition 5.18. Let p be a point of a projective curv€ with equationf = 0. We say thap has
multiplicity » (onC) if

1. for all non—negative, j, k suchthat + j + k =r — 1

and

2. for at least one triple of non—negative integéers k withi + j + £k =r

of (a,b,c) #0.

Oxtyd 2k
The termssingular, non—singular, simple, double, triple andr—tuple are defined as in the
affine case (see Definitich13).

Example 5.19.Let C be the projective curve with equatiaf — y22 = 0. Find the multiplicity
of all singular points of”.
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Tangents to projective curves could be defined, as for affine curves, by reference to partial
derivatives. However the notation becomes even more cumbersome in this case and it is easier
to make the following equivalent definition.

Definition 5.20. Let p be anr—tuple point of a projective curv€ with polynomial f. A line [
throughp is calledtangentto C atp if I(p, f,{) > r.

It's often easiest to find multiplicity and tangents to points of projective curves by dehomog-
enizing and using the following theorem, rather than working in the projective plane with the
above definitions.

Theorem 5.21.LetC'r be a projective curve with equatidn = 0, let f be the dehomogenization
of F' (with respect toz = 1) and letC'; be the affine curve with equatigh= 0. Suppose that
p = (u : v : 1)is a point of Py(k). Thenp has multiplicityr on Cr if and only if p has
multiplicity » on C'y. Furthermore, the projective liné is tangent toC'r at p if and only if the
affine linel is tangent taC'y at p, wherel is the dehomogenization af Similar statements hold
for dehomogenization with respectto= 1 or y = 1.

Before proving the theorem we’ll look at some examples.

Example 5.22.Let C be the curve with equatiar® — 22 = 0, as in the previous example.
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Example 5.23.Find the tangents to the curvé—y2? = 0 at the pointg1 : 0: 0)and(0: 0 : 1).

Example 5.24.Find all singular points of the curve® + ¢ — 3zyz = 0. Find the multiplicity
of each singular point and its tangents.
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In some cases we may find it easier to calculate tangents directly using the following corollary
to Theorenb.2], rather than dehomogenizing.

Corollary 5.25. A line ! is tangent to a non—singular poipt= (a : b : ¢) of a projective curve
Cr if and only if/ has equation

zFy(a,b,c) +yF,(a,b,c)+ zF.(a,b,c) = 0.
The proof of this lemma is left to the exercises.

Example 5.26.Find the tangent t@'x at(3 : 3 : 2), whereF’ = 23 + 3* — 3zyz.
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Proof of Theorem5.21

First we consider partial derivatives of homgeneous polynomials and establish a relationship
between the partial derivatives of a polynomiaBigariables and its dehomogenization.

Lemma5.27.Let F(z,y, ) be a homgeneous polynomial of degdesnd let f be the dehomog-
enization off with respectto: = 1. Then

1. F, is either zero or homogeneous of degiiee 1 and

2. Fy(z,y,1) = fuo(z,9).

Similar statements hold faror = in place ofx.

Proof. Let

F(z,y,z) = Z a; 'y 2.

Then

Fo(x,y,2) = E iai7j7ka:’_1yjzk.
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Each of these terms is either zeroi(i£ 0) or of degreel — 1.

e.g.7%yz + xy’z + a2 + 222

f(x,y) = Z az‘,j,kﬁiyja

SO

fa:(mv y) = Z Z‘ai,j,kxi_lyj = F:c(wa Y, 1)

We have immediately the following corollary.
Corollary 5.28.
1. F:, .« is either zero or homogeneous of degikee (i + j + k) and

2. Friyi(x,y,1) = frigi(x,y).
To prove Theorend.21we need one more result.

Theorem 5.29 (Euler's Theorem).Let F'(z,y, z) be a homogeneous polynomial of degree
Then
mF(x,y, z) = xFy(x,y, 2) + yFy(z,y, 2) + 2F.(x,y, 2).

Proof. We havet™ F'(z,y, z) = F(tx, ty, tz). Differentiating with respect towe obtain

mt™ F(x,y, 2) = oF,(tr, ty, t2) + yF,(ta, ty, t2) + 2F, (tz, ty, t2).
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The result follows on setting= 1.

Proof of Theorenb.21 We shall prove here that = (v : v : 1) is a singular point o’ if
and only if it is a singular point of’;. The full statement follows from this using an obvious
induction and Corollarnp.28 see the exercises. By definitipris a singular point ot if and
only if

Fy(u,v,1) = F,(u,v,1) = Fy(u,v,1) =0
<~ F(u,v,1) = Fy(u,v,1) = F,(u,v,1) =0 (using Euler’s Theorem)
= f(u,v) = fo(u,v) = f,(u,v) =0 (using Lemméeb.27)
<= pis asingular point of’;.

The statement concerning tangents follows from Lendmi&and Theorend.19

Asymptotes

Definition 5.30. Let C'; be an affine curve and I€t be the homogenization of. Let L be a
projective line tangent t6'x at some poinp on the linez = 0. If L is not itself the linez = 0
then the dehomogenizatiéof L is called arasymptoteto C.

Example 5.32.Let f = 2® — y and soF = a3 — y2°.

There is only one point of intersection 6fz with = = 0 namely(0 : 1 : 0). We have

F, =32% F, = z*andF, = 2yz. AsF, = F, = 0 impliesz = z = 0 there is only one possible

singular point, namely0 : 1 : 0). As F'(0,1,0), = F,(0,1,0) = F,(0,1,0) = 0 it follows that

(0 : 1 :0)is a singular point of”r. As F,, = 2y we havé.,(0,1,0) # 0so(0 : 1 : 0) is

AJD September 29, 2003



MAS345 Notes 78

a double point. Note that since the only singularity(of lies onz = 0 the affine curve’; is

non-singular.

To find the equation of the tangent €4- at (0 : 1 : 0) we dehomomogenize to obtain an

affine view of (0 : 1 : 0). Dehomogenizing with respect toy = 1 gives the polynomial

g(z,2) = z* — 22, The homogeneous coordinat@s: 1 : 0) correspond to the affine point.

Note that(0 : 1 : 0) is the unique singular point @f» whilst, from Corollary4.21, we see that

(0,0) is a double point of”,, verifying Theorem5.21 The tangent ta’, at (0,0) is the line

with parametric forn{s, 0), that isz = 0 (repeated twice). The homogenization of the affine line

z = 0 is the projective line = 0. Thereforez = 0 is the tangent t@’» at (0 : 1 : 0). The curve

C'y has no asymptote.

Note that we now have two different affine curve§,andC, corresponding to the projective
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curveCr. We shall now find the asymptotes@f. As C, is obtained by dehomogenization with

respect tay = 1 the corresponding line at infinity ig = 0. The curveCr meets the ling = 0

at(0: 0: 1), which is a non-singular point of the curve. We have

F,(0,0,1) =0, F,(0,0,1) = 1 andF.(0,0,1) = 0.

Hence the tangent 16 at (0 : 0 : 1) has equatioy = 0 (Theorenb.25. Again the affine curve

C, has no asymptote.

Finally we dehomogenizé” with respect tar = 1. This gives the polynomiak(y, z) =

1 — y22. This time the line at infinity i = 0. The curveCr meetse = 0 at points(0 : y : 2)

whereyz? = 0, that is at pointg0 : 0 : 1) and(0 : 1 : 0). The first of these is non-singular with

tangenty = 0 as we have determined above. The tangeat0 dehomogenized with respect to
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47Y
9
x
—4 —2 0 2 4
9
4

Figure 5.12: The real curve with equatiam® — y = 0

x = 1 becomes the affine line with equatign= 0, which is therefore an asymptotedg. The

second point(0 : 1 : 0), is a double point o€ with tangent: = 0. Again the tangent = 0

dehomogenized with respectito= 1 becomes the affine line with equation= 0, which is also

an asymptote t@,. Hence the curv€’, has two asymptotes.
We plot the real affine curves;, C,, andCj, in figures5.12 5.13and5.14below.
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Figure 5.13: The real curve with equatiar® — 2% = 0

Figure 5.14: The real curve with equatioh— yz? = 0 and its asymptoteg = 0 andz = 0.
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6 Beézout's Theorem

We shall not prove the following two theorems. Proofs can be found in any of the recom-
mended texts.

Theorem 6.1.If C' and D are projective curves thefi and D meet in at least one point.

Recall that two curve§’ and D are said to have a common component if there is a chrve
such that? C C'andE C D. From the Nullstellensatz it follows that K is irreducible then the
polynomial of £ divides that ofC.

Theorem 6.2 (Weak form of Bezout’'s Theorem). Let C' and D be two projective curves of
degreesn andn, respectively. IC" and D have no common component then their intersection
C' N D contains at mostwn points.

Corollary 6.3. 1. A non-singular projective curve is irreducible.
2. Anirreducible projective curve has finitely many singular points.

Proof.
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7 Inflexions

Definition 7.1. A point p of a projective curve&’' is called arinflexion if
1. pis non-singular and
2. the tangent to C' atp satisfies/ (p, F,1) > 3.

Example 7.2. Let F be the polynomial® — z2? andC' the curve with polynomial-.

We shall give a characterisation of inflexions in terms of second partial derivatives.

Definition 7.3. Let F' be a non—constant homogeneous polynomial. Hassianof F' is

F:E:v F:vy Facz
Hp=| Fy Fy Fy
an: Fzy Fzz

Note that if ¥ has degred > 2 then H is a homogeneous polynomial of degde — 2).
Next we prove a preliminary lemma.

Lemma 7.4. Supposé&’ has degreel > 1. Then

Fzm me Fw
Z?Hp = (d—1)?*| F, F,, F,
Fo Fy (G5)F
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Proof. Multiply row 3 of the matrix in the definition of{z by z. Then multiply column 3 by:.
The resultis
Faca: Facy ZFa;y
22Hp = Fy, Fy,, =z2F,
2F,, zF.,, 2*F,

Now addz - (row 1) +y - (row 2) to row 3. Euler’s Theorem for the degrée- 1 polynomial 7,
iS
so we obtain
F.. Foy 2y
PHp = Fyx Fyy 2Fy,
(d—1F, (d—1)F, z(d-1)F,

Adding z - (column 1) + 3 - (column 2 to column 3, and using Euler’s theorem again, gives the
required result.

Theorem 7.5. Let F' have degree at lea®t A pointp = (u : v : w) of the curveCr is an
inflexion if and only if

1. pis non-singular and
2. Hp(u,v,w) = 0.

Proof. Assume thap has coordinatesu : v : 1). (The other cases follow using a similar
argument.) Defing (z,y) = F(x,y,1) and letg = (u,v), sog € Cy. Then from Theorens.21
and Lemm&b.16it follows thatp is an inflexion ofC'r if and only if ¢ is a non—singular point of
C'y and the tangenitto C atq satisfies/ (¢, f,1) > 3. It therefore suffices to show that, given
is non—singular, thei(q, f,1) > 3 ifand only if Hp(u,v,1) = 0.

Write f, = f.(u,v) andf, = f,(u,v) and similarly for higher order derivatives. Then, using
Definition 4.16, the tangent to C atq is the line with parametric fornfus + u, bs + v), s € k,
where

afe+ bfy =0.

This has solutiom = —f, andb = f,. Seta = —f, andb = f,. Now I(q, f,!) is the largest
integerr such thats”| f(as + u, bs + v) and

flas +u,bs +v) = f(u,v)
+ s(af, +bfy)

2
+ %(cﬁ Foa + 2abfuy + V2f,)+5°R(s),
whereR(s) is a polynomial. Asy € C so f(u,v) = 0 and we have
2
flas +u,bs+v) = %(CLQfxx + 2abfy, + b2 f,y) + s R(s).
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Thus
I(q.f,1) >3 ifandonlyif afu, +2abfs, +b2f,, = 0. (7.1)

As p € Cr we have, using Lemma.4

Fxx Fa:y FJ:
Hp(u,v,1) = (d — 1)2 F,. F,, F,
F, F, 0

FurthermoreF . (u, v, 1) = f.(u,v) and similarly for all the other partial derivatives (of first and
higher orders). Thus

fxm fxy f:r
Hp(u,v,1) = (d — 1)2 fye Sy Sy
fo Sy O

= (d - 1)2[_fm2fyy + 2fzfyf:ry - fjfm]
= (d—1)*[=b*f,y — 2abfry — @* fra)-

Hence
Hp(u,v,1) =0 ifand only if (7.1) holds

Thusp is an inflexion if and only ify is non—singular and(q, f,1) > 3 which is true if and only
if p is non—singular and/(u, v, 1) = 0. This completes the proof of the Theorem.

Example 7.6. Find all the inflexions of ', whereF' = 2 + 4® — 3xyz.
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8 Cubics and the group law

A curve of degree 3 is aubic. It can be shown that (whéhis algebraically closed)
a non-singular cubic ity (k) has exactly nine inflexions.

We shall assume througout this section that all curves are defined over an algebraically closed
field.

Theorem 8.1.LetC be a non—singular projective cubic with equatién= 0 and let/ be a line.
Then the intersection édfand C' consists of either

1. 3 distinct pointg, p, andps with I(p;, F,1) = 1, fori = 1,2, 3, so that/ is not tangent to
C atp;; or

2. 2 distinct pointg; andp, with I(p;, F, 1) = 1 andI(p, F,1) = 2 so thatl is tangent ta”'
at p, but not atp,; or

3. 1 pointp with I(p, F,1) = 3 sol is tangent taC' at p andp is an inflexion.

Proof. This follows from Lemmab.17.

The group law on the cubic

Here we shall denote the line through poistsand B by AB. Let C be a non-singular
projective cubic and le® be an inflexion of’.

Definition 8.2. Given X € C let X denote the third point of intersection 6fX with C (where
intersections are counted according to intersection number).
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In particular we interpret this definition to mean tiiat= O, asO is an inflexion. Next we define
an operation of addition on the points@f

Definition 8.3. Given pointsP, ) € C we define a poinf> + () of C as follows. First letX be
the third point of intersection aPQ with C. Now setP + Q = X.

Theorem 8.4. The set of points of with the operation of addition defined above forms an
Abelian group.

Proof. It follows from Theorem8.1that P + (@ is a unique point o€. Therefore the given
operation of addition is a binary operation on the set of points &We need to check that it has
an identity, that there are inverses, that it is associative and that it is commutative.
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Identity: The pointO is the identity element. To see this suppose has a point ofC. We
must show that” + O = P = O + P. Let X be the third point of intersection @¢*O and
C. Now we have the lind’O passing througly, P and X .

By definition P+ O = X, the third point of intersection @ X with C. ThatisP+0O = P.
Similarly O + P = P, soO is the identity as claimed.

Inverse: Let P be a point ofC. ThenP is the third point of intersection @d P andC.

Thus PP passes througly, P and P. It follows thatP + P = O = O. Similarly
P + P = 0. Hence the inverse a? is P.
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Associative: This is the only group axiom that is non—trivial to check and we omit it.
Commutative: The line PQ is the same as the lin@P soP + Q = Q + P.
Example 8.5. Consider the curvér, whereF’ = 23 + ¢ — 23. We have
F, = 322, F, = 3y? andF, = —32°%
AsF, = F,=F, = 0impliesz = y = z = 0 the curve is non-singular. We have

Fyy =6z, F, =6y, F,, = —6zandF,, = F,, = F,, = 0.

Hence
6xr O 0
Hp=| 0 6y 0 |=—62yz.
0 0 -6z

ThereforeHr = 0ifand only ifz =0,y =0orz = 0.

x = 0: In this caseF(0,y,2) = y> — 2> = 0 and we may assumg = 1 (asy = 0 implies
xr =1y =z = 0). We findz by solvingl — 23 = 0, to givez = 1, w or w?, wherew? = 1
andw # 1. The points of inflexion with: = 0 are therefore

(0:1:1), (0:1:w)and(0:1:w?).

= 0: In this caseF'(z,0,z) = 23 — 2> = 0 and we may assume = 1 (asz = 0 implies
r =y =z =0). We findz by solvingz® — 1 = 0, to givex = 1, w or w?, wherew? = 1
andw # 1. The points of inflexion withy = 0 are therefore

(1:0:1), (1:0:w)and(1:0:w?).

z = 0: In this caseF'(z,y,0) = 2* + y*> = 0 and we may assume = 1 (asz = 0 implies
r =1y =z = 0). We findy by solving1 + 3* = 0, to givey = —1, —w or —w?, where
w? = 1 andw # 1. The points of inflexion with: = 0 are therefore

(1:=1:0),(1:—w:0)and(1: —w?:0).

There are a total of nine inflexions as expected. The inflexions on the real cuive at: 1)
and(1 : 0 : 1) can be shown by dehomogenizing with respect te 1. This gives the affine
curvezr® + y> — 1 = 0 with inflexions at(0, 1) and(1,0) (see Figure8.15(a). The inflexions
at(0:1:1)and(—1:1:0) = (1:—1:0)can be seen by dehomogenizing with respect to
y = 1. This gives the affine curve® + 1 — z* = 0 with inflexions at(0, 1) and(—1, 0) see Figure
8.15(b).

Now consider the group law afwith base poinO = (0:1:1). LetP =(1:0: w) and
Q = (1: —w?:0). We shall computé + Q. The linePQ has parametric forms + ¢ : —w?? :
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NG

(@) Thecurver® 4¢3 —1=0 (b) The curver® +1 — 23 =0

Figure 8.15:Dehomogenizations of the real curvé+ ¢ — 23 = 0

ws), for s,t € k. To find the third point of intersection d?() andC we substitute these values
into the equation of to obtain

B(s,t) = (s +1)° + (—w?)® — (ws)® = 3%t + 3st* = 3st(s + 1).

Thus¢(s,t) =0if s =0,t =00rs+t = 0. The zeros = 0 andt = 0 correspond ta’ and@
so the third point of intersectiaN, correspondingte+¢ = 0is X = (0: w? :w) = (0: 1 : w?).
To computeP + Q we must findX. As O andX both haver—coordinate) it follows that the line
OX isx = 0. Substitutingr = 0 in F we see that this line meefsatO, X andX = (0: 1 : w).
Hence

P+Q=(0:1:w).
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