
Example 1.1

1. Two students witness burglar Bill making off from a crime
scene in his getaway car. The first student tells the police
that the number plate began with and R or a P and that the
first numerical digit was either a 2 or a 3. The second
student recalls that the last letter was an M or an N. Given
that all number plates have the same format: two capital
letters (between A and Z) followed by 2 digits (between 0
and 9) followed by 3 more letters, how many number plates
must the police investigate.



2. There are 7 people to be seated at a round table. How
many seating arrangements are possible? How many
times must they change places so that everyone sits next
to everyone else at least once. What difference does in
make if one person always sits in the same place?

3. A lecturer divides a class of 30 students into 5 groups, not
necessarily of the same size, and then chooses one
representative from each group. In how many ways is this
possible? If some of the groups are to be selected to move
into another room how many possibilities are there now?
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A basic counting technique

I have shirts of 3 different colours, trousers of 2 different colours
and socks of 5 different colours. How many different outfits
(colour combinations) are available to me?

The general rule is

Lemma 1.2
A task is to be carried out in stages. There are n1 ways of
carrying out the first stage. For each of these there are n2 ways
of carrying out second stage. For each of these n2 ways there
are n3 ways of doing the third stage and so on. If there are r
stages then there are in total n1n2 · · ·nr ways of carrying out the
entire task.
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The Pigeonhole Principle

Do any 2 Newcastle students share the same Personal
Identification Number (PIN) for their debit cards? Is your PIN
number the same as mine?

More generally we have the following lemma.

Lemma 1.3
If n identical balls are put into k boxes and n > k then some box
contains at least 2 balls.
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Coming back to the question of PINs we can worry even more.
Is it possible that 3 or more people in Newcastle share the
same PIN?

Lemma 1.4
Suppose n identical balls are placed in k boxes and that n > kr ,
for some positive integer r . Then some box contains at least
r +1 balls.
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Example 1.5
Suppose that 7 boys dance with 7 girls, all on the dance floor at
once. How many pairings are possible?

Definition 1.6
A mapf : X → Y is called

1. aninjectionif a 6= b implies f (a) 6= f (b), for all a,b ∈ X ;

2. asurjectionif, for all y ∈ Y , there isx ∈ X with f (x) = y ;

3. abijection if f is an injection and a surjection.

Also one-onemeans the same as injection andontomeans the same as
surjection.
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Definition 1.7
A bijection from a setX to itself is called apermutation.

Theorem 1.8
The number of permutations of a set of n elements is n!.
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In the examples of permutations above each element of the set
{1, . . . ,n} appears exactly once.

By contrast suppose that I drink 5 cups of water, 3 cups of tea
and 2 cups of coffee every day. How many different ways can I
arrange the order in which I drink all these drinks?

A multiset is a collection of elements of a set in which elements
may occur more than once.
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Theorem 1.9
Let a1, . . . ,ak be positive integers and let n = a1 + · · ·+ak .

If we have a multiset of a1 elements of type 1,

a2 elements of type 2,

... , ak elements of type k,

then we can arrange these elements in order in

n!

a1! · · ·ak !

ways.
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A database stores information of a certain type as a string of
length 10 consisting of capital letters A–Z, lower case letters
a–z and numerical digits 0–9: so there are 62 different symbols
available. How many different records can be made this way?

Lemma 1.10
The number of sequences a1, . . . ,ak of length k where all the
elements ai belong to a set of size n is nk .
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Example 1.11
I am going to paint each of my fingernails (and thumbnails) a
different colour. I have paints of 5 different colours. How many
different ways can I do this?

Corollary 1.12
The number of maps from a set of size k to a set of size n is nk .



I’m going to place a bet at Cheltenham races on a race in which
there are 15 horses. Only the order of the first 3 horses over
the line is recorded and I bet that horses Brave Inca, Straw
Bear and Lazy Champion will come in 1st, 2nd and 3rd,
respectively. How many outcomes are possible and how likely
am I to win my bet?

Theorem 1.13
The number of ordered k-subsets of a set of size n is

n(n−1) · · ·(n−k +1) =
n!

(n−k)!
.
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Example 1.14
How many subsets does the set {a,b,c} have?

Lemma 1.15
The number of subsets of a set of size n is 2n.
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k -subsets

In the Quickfire Lotto game players buy a ticket and select 4
numbers from a list of the numbers from 1 to 48. Then 4
different winning numbers between 1 and 48 are selected at
random. How many tickets would you need to buy to be sure of
getting all 4 numbers (and so winning the top prize).



By convention we set 0! = 1.

Definition 1.16
Thebinomial coefficientfor integersn ≥ k ≥ 0 is(

n
k

)
=

n!

k!(n−k)!
.

For integersn < k we define(
n
k

)
= 0.

In particular from this definition we have(
n
0

)
=

(
n
n

)
=

(
0
0

)
= 1 and

(
n
1

)
=

(
n

n−1

)
= n.
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Theorem 1.17
The number of k-subsets of a set of n elements is(

n
k

)
=

n(n−1) · · ·(n−k +1)

k!
.

Example 1.18
It has been decided that classes for module MAS9999 will all
be held on a Friday between the hours of 8:00 and 20:00 (so
there are 12 hour long slots available). There are to be 5 hours
of teaching but no two consecutive hours. In how many ways
can the schedule be devised?
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k -multisets
Example
Suppose that, in the Quickfire Lotto game described above,
instead of choosing 4 different numbers from the list 1, . . . ,48
we choose any 4 such numbers with repetition: that is we
choose a multiset of 4 elements. I win if my numbers are the
same as a 4-multiset chosen from 1, . . . ,48 at random by the
lottery company. How many tickets do I need to buy to ensure I
win this game?

A collection of k elements of a set where repetition is allowed is
called a k-multiset.

Theorem 1.19
The number of k-multisets of a set of n elements is(

n +k−1
k

)
.
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The Binomial Theorem

Consider expanding

(x +y)7 = (x +y)(x +y)(x +y)(x +y)(x +y)(x +y)(x +y).

What is the coefficient of say x3y4 in the result?

Theorem 1.20 (The Binomial Theorem)
For all positive integers n

(x +y)n =
n

∑
k=0

(
n
k

)
xkyn−k .
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Lemma 1.22
Let n and k be positive integers.

(i) (
n
k

)
=

(
n

n−k

)
.

(ii) (
n−1

k

)
+

(
n−1
k −1

)
=

(
n
k

)
.
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The Multinomial Theorem

Suppose we wish to compute powers of (x +y +z) instead of
(x +y).

For example we have

(x +y +z)3 = x3 +y3 +z3

+3x2y +3x2z +3xy2 +3y2z +3xz2 +3yz2

+6xyz.

What is the coefficient of xaybzc in (x +y +z)n?
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Definition 1.23
Let n = a1 + · · ·+ak , whereai is a non-negative integer,i = 1, . . . ,k .

Define themultinomial coefficient(
n

a1, . . . ,ak

)
=

n!

a1! · · ·ak !
.

Theorem 1.24
Let x1, . . . ,xk be real numbers. Then, for all non-negative
integers n and positive integers k, we have

(x1 + · · ·+xk)n = ∑
a1,...,ak

(
n

a1, . . . ,ak

)
xa1

1 · · ·xak
k ,

where the sum is over all length k sequences a1, . . . ,ak of
non-negative integers such that n = a1 + · · ·+ak .
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Inclusion-Exclusion

I have 30 uncles some wicked some virtuous. 12 of them
smoke, 12 of them drink and 18 of them gamble. 6 smoke and
drink, 9 drink and gamble, 8 smoke and gamble and finally 5
smoke, drink and gamble. How many neither smoke, drink nor
gamble?

The general result covering the example above is the next
theorem.
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Inclusion-Exclusion

Theorem 1.25
Let A1, . . . ,Ak be subsets of a set E. Then

|A1∪ ·· ·∪Ak |= |A1|+ · · ·+ |Ak |
− (|A1∩A2|+ · · ·+ |Ak−1∩Ak |)
+ (|A1∩A2∩A3|+ · · ·+ |Ak−2∩Ak−1∩Ak |)
...

+(−1)k−1|A1∩ ·· ·∩Ak |.

That is

|A1∪ ·· ·∪Ak |=
k

∑
i=1

(−1)i−1 ∑
s1,...,si

|As1 ∩ ·· ·∩Asi |

where, for all i , the subscripts s1, . . . ,si run over all i-subsets of
{1, . . . ,k}.
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Derangements

Example 1.26
n people come to a party at your house, each wearing a hat.
When they leave they are not so sober and they can’t
remember which hat is which. In the morning each person
discovers they have someone else’s hat. How many ways can
this happen?

A permutation with no fixed points is called a derangement of a
setand the number of such permutations of an n-set is denoted
D(n).

Theorem 1.27
The number of derangements of an n-set is

D(n) =
n

∑
r=0

(−1)r n!

r !
.
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Compositions

Suppose I wish to distribute n toffees to k students. How many
ways is it possible to do this?

Now suppose that I feel bad about the possibility that some
students may not get any toffees atall. How many ways are
there of distributing n toffees amongst k students so that every
student gets at least one toffee.
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More formally we make the following definition.

Definition 1.28
A sequence(a1, . . . ,ak) of k non-negative integers such that
∑k

i=1 ai = n is called aweak compositionof n into k parts. Ifai > 0
for all i the sequence is called acomposition.

Theorem 1.29
The number of weak compositions of n into k parts is(

n +k−1
n

)
=

(
n +k−1

k −1

)
.

Corollary 1.30
The number of compositions of n into k parts is(

n−1
k −1

)
.
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A sequence(a1, . . . ,ak) of k non-negative integers such that
∑k

i=1 ai = n is called aweak compositionof n into k parts. Ifai > 0
for all i the sequence is called acomposition.

Theorem 1.29
The number of weak compositions of n into k parts is(

n +k−1
n

)
=

(
n +k−1

k −1

)
.

Corollary 1.30
The number of compositions of n into k parts is(

n−1
k −1

)
.



Since ai can be zero in a weak composition there exist weak
compositions of n into k parts for all k > 0.

However, for a composition of n into k parts to exist we must
have k ≤ n.

Therefore there are finitely many compositions of n: and we
have the following Corollary.

Corollary 1.31
The number of compositions of n is 2n−1.
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Partitions

Suppose now I have n flowers, each one a different type, and I
wish to arrange them in k different vases, in such a way that
there is at least one flower in each vase.

In how many ways can I do this?
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Stirling numbers

Definition 1.32
A partitionof a setX into k parts is a collectionS1, . . . ,Sk of
non-empty subsets ofX such thatX = ∪k

i=1Si andSi ∩Sj = /0,
wheneveri 6= j .

Example 1.33
List all the partitions of the set {1,2,3,4} into 2 non-empty
subsets.

Definition 1.34
The number of partitions of{1, . . . ,n} into k parts is denotedS(n,k).
The numbersS(n,k) are called theStirling numbers (of the second
kind).
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From the example above we have S(4,2) = 7.

Example 1.35
Find S(3,1) and S(3,2).

Lemma 1.36
Let 1≤ k ≤ n. Then

S(n,n) = 1 and S(n,1) = 1,

S(n,n−1) =

(
n
2

)
and

S(n,k) = S(n−1,k−1)+kS(n−1,k).
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Now suppose that I have arranged the n flowers in the k vases
and I wish to give each vase to a different person.

How many ways can this be done? That is, how many ways are
there of distributing n different types of flower amongst k
people, so that each person receives at least one flower?

Theorem 1.37
The number of surjective functions from a set of size n to a set
of size k is k!S(n,k).
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there of distributing n different types of flower amongst k
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Theorem 1.37
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of size k is k!S(n,k).



We can apply the inclusion-exclusion principle to obtain a
formula for S(n,k). The formula is not entirely satisfactory as it
contains a sum of k +1 terms, but it is the best we can do.

Theorem 1.38
Let k and n be positive numbers. Then

S(n,k)=
1
k!

k

∑
d=0

(−1)d
(

k
d

)
(k−d)n =

k

∑
d=0

(−1)d 1
d !(k −d)!

(k−d)n.
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We can apply the inclusion-exclusion principle to obtain a
formula for S(n,k). The formula is not entirely satisfactory as it
contains a sum of k +1 terms, but it is the best we can do.

Theorem 1.38
Let k and n be positive numbers. Then

S(n,k)=
1
k!

k

∑
d=0

(−1)d
(

k
d

)
(k−d)n =

k

∑
d=0

(−1)d 1
d !(k −d)!

(k−d)n.



Integer Partitions

I have a bag of n identical marbles and wish to sort them into k
non-empty piles, the order of which does not matter. How many
ways can I do this?

Definition 1.39
Let a1 ≥ ·· · ≥ ak ≥ 1 be integers such thata1 + · · ·+ak = n. Then
(a, . . . ,ak) is called aninteger-partitionof n into k parts.

The number of integer-partitions ofn into k parts is denotedpk (n)

and the number of all integer-partitions ofn is denotedp(n).

It can be shown that

p(n)∼ 1

4
√

3
exp(π

√
2n
3

)
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Integer Partitions

I have a bag of n identical marbles and wish to sort them into k
non-empty piles, the order of which does not matter. How many
ways can I do this?

Definition 1.39
Let a1 ≥ ·· · ≥ ak ≥ 1 be integers such thata1 + · · ·+ak = n. Then
(a, . . . ,ak) is called aninteger-partitionof n into k parts.

The number of integer-partitions ofn into k parts is denotedpk (n)

and the number of all integer-partitions ofn is denotedp(n).

It can be shown that
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Summary

Permutations

permutations of and n-set n!

orderings of ai objects of type i , where
a1 + · · ·+ak = n

n!

a1! · · ·ak !



Sequences

sequences of length k over an alphabet of size n
or functions from a set of size k to a set of size n

nk

ordered k-subsets of an n-set

or sequences of length k without repetition
n!

(n−k)!



Subsets

all subsets of an n-set 2n

k-subsets of an n-set
(

n
k

)

k-multisets of an n-set
(

n +k−1
k

)



Derangements

derangements of an n-set D(n) =
n

∑
r=0

(−1)r n!

r !

Compositions

weak compositions of n into k parts
(

n +k−1
k −1

)

compositions of n into k parts
(

n−1
k −1

)

compositions of n 2n−1



Partitions

partitions of an n-set
into k parts

S(n,k) =
1
k!

k

∑
d=0

(−1)d
(

k
d

)
(k −d)n

surjective functions of
an n-set to a k-set

k!S(n,k)

integer-partitions of an
n-set into k parts

pk(n) =??

integer-partitions of an
n-set

p(n)∼ 1

4
√

3
exp(π

√
2n
3

)



Graph Theory

Example 2.1. 1. On arrival at a party guests shake hands with some of the
people they meet in the hallway, but mostly don’t shake hands after that.
If we ask each person how many people they shook hands with and then
add these numbers we always have an even number. Why?
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Graph Theory

Example 2.1. 1. On arrival at a party guests shake hands with some of the
people they meet in the hallway, but mostly don’t shake hands after that.
If we ask each person how many people they shook hands with and then
add these numbers we always have an even number. Why?

2. Suppose there are an odd number of people at this party. If we ask each
person how many other people they shook hands with then there will be
an odd number of people who answer with an even number. Why?
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Graph Theory

Example 2.1. 1. On arrival at a party guests shake hands with some of the
people they meet in the hallway, but mostly don’t shake hands after that.
If we ask each person how many people they shook hands with and then
add these numbers we always have an even number. Why?

2. Suppose there are an odd number of people at this party. If we ask each
person how many other people they shook hands with then there will be
an odd number of people who answer with an even number. Why?

3. Only 6 people make it to the MAS2216 lecture at mid-day on the day after
this party. I can guarantee that either 3 of them shook each others hands
or 3 of them did not. How can I be sure?
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Definition 2.2. A graph G consists of

(i) a finite non–empty set V (G) of vertices and
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Definitions

Definition 2.2. A graph G consists of

(i) a finite non–empty set V (G) of vertices and

(ii) a set E(G) of edges

such that every edge e ∈ E(G) is an unordered pair {a, b} of vertices a, b ∈
V (G).
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(ii) a set E(G) of edges

such that every edge e ∈ E(G) is an unordered pair {a, b} of vertices a, b ∈
V (G).

We shall restrict attention to graphs with finite edge and vertex sets in this
course.
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Definitions

Definition 2.2. A graph G consists of

(i) a finite non–empty set V (G) of vertices and

(ii) a set E(G) of edges

such that every edge e ∈ E(G) is an unordered pair {a, b} of vertices a, b ∈
V (G).

We shall restrict attention to graphs with finite edge and vertex sets in this
course.

Throughout the remainder of the next two sections G = (V, E) will denote a
graph with (finite) vertex and edge sets V and E.
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Example 2.3.
A

B

C

D

e1

e2 e3

e4

e5

e6
e7

e8

e9
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Example 2.3.
A

B

C

D

e1

e2 e3

e4

e5

e6
e7

e8

e9

A graph must have at least one vertex but need not have any edges.
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Definition 2.4. Let G = (V, E) be a graph.
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(ii) Edges e and f are adjacent if there exists a vertex v ∈ V with e = {v, a}
and f = {v, b}, for some a, b ∈ V .
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(ii) Edges e and f are adjacent if there exists a vertex v ∈ V with e = {v, a}
and f = {v, b}, for some a, b ∈ V .

(iii) If e ∈ E and e = {c, d} then e is said to be incident to c and to d and to
join c and d.
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and f = {v, b}, for some a, b ∈ V .

(iii) If e ∈ E and e = {c, d} then e is said to be incident to c and to d and to
join c and d.

(iv) If a and b are vertices joined by edges e1, . . . ek, where k > 1, then
e1, . . . ek are called multiple edges.
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join c and d.

(iv) If a and b are vertices joined by edges e1, . . . ek, where k > 1, then
e1, . . . ek are called multiple edges.

(v) An edge of the form {a, a} is called a loop.
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Definition 2.4. Let G = (V, E) be a graph.

(i) Vertices a and b are adjacent if there exists an edge e ∈ E with e = {a, b}.

(ii) Edges e and f are adjacent if there exists a vertex v ∈ V with e = {v, a}
and f = {v, b}, for some a, b ∈ V .

(iii) If e ∈ E and e = {c, d} then e is said to be incident to c and to d and to
join c and d.

(iv) If a and b are vertices joined by edges e1, . . . ek, where k > 1, then
e1, . . . ek are called multiple edges.

(v) An edge of the form {a, a} is called a loop.

(vi) A graph which has no multiple edges and no loops is called a simple
graph.
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Example 2.5. Are these three graphs the same?
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Example 2.6. What about these?
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Isomorphism

Definition 2.7. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic
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Isomorphism

Definition 2.7. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic

if there exists a bijection
φ : V1 −→ V2

– Typeset by FoilTEX – 6



Isomorphism

Definition 2.7. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic

if there exists a bijection
φ : V1 −→ V2

such that the number of edges joining u to v in G1 is the same as the number
of edges joining φ(u) to φ(v) in G2, for all u, v ∈ V1.
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Isomorphism

Definition 2.7. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic

if there exists a bijection
φ : V1 −→ V2

such that the number of edges joining u to v in G1 is the same as the number
of edges joining φ(u) to φ(v) in G2, for all u, v ∈ V1.

φ is called an isomorphism from G1 to G2 and we write G1 ∼= G2.
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Definition 2.8. The degree of a vertex u is the number of edges incident to u
and is denoted deg(u) or degree(u).
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Definition 2.8. The degree of a vertex u is the number of edges incident to u
and is denoted deg(u) or degree(u).

Definition 2.9. Let G be a graph with n vertices. Order the vertices v1, . . . , vn

so that deg(vi) ≤ deg(vi+1). Then G has degree sequence

〈deg(v1), . . . , deg(vn)〉.
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Definition 2.8. The degree of a vertex u is the number of edges incident to u
and is denoted deg(u) or degree(u).

Definition 2.9. Let G be a graph with n vertices. Order the vertices v1, . . . , vn

so that deg(vi) ≤ deg(vi+1). Then G has degree sequence

〈deg(v1), . . . , deg(vn)〉.

Definition 2.10. A graph is regular if every vertex has degree d, for some fixed
d ∈ Z.
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Definition 2.8. The degree of a vertex u is the number of edges incident to u
and is denoted deg(u) or degree(u).

Definition 2.9. Let G be a graph with n vertices. Order the vertices v1, . . . , vn

so that deg(vi) ≤ deg(vi+1). Then G has degree sequence

〈deg(v1), . . . , deg(vn)〉.

Definition 2.10. A graph is regular if every vertex has degree d, for some fixed
d ∈ Z.

In this case we say the graph is regular of degree d.
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Example 2.11. Graphs which are simple, have 8 vertices, 12 edges and are
regular of degree 3. Are any two of these isomorphic? What are their degree
sequences?
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Counting degrees

G is a graph with vertices V and edges E, that is G = (V, E).
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Counting degrees

G is a graph with vertices V and edges E, that is G = (V, E).

Lemma 2.12. [The Handshaking Lemma]∑
v∈V

deg(v) = 2|E|.
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Counting degrees

G is a graph with vertices V and edges E, that is G = (V, E).

Lemma 2.12. [The Handshaking Lemma]∑
v∈V

deg(v) = 2|E|.

Lemma 2.13. Suppose that G has q vertices of odd degree. Then q is even.
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Counting degrees

G is a graph with vertices V and edges E, that is G = (V, E).

Lemma 2.12. [The Handshaking Lemma]∑
v∈V

deg(v) = 2|E|.

Lemma 2.13. Suppose that G has q vertices of odd degree. Then q is even.

Corollary 2.14. If G has n vertices and is regular of degree d then G has
nd/2 edges.
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Examples of graphs

Example 2.15. The Null graph Nd, for d ≥ 1.

– Typeset by FoilTEX – 10



Examples of graphs

Example 2.15. The Null graph Nd, for d ≥ 1.

Example 2.16. The Complete graph Kd, for d ≥ 1.
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K10
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K15
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K20
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K25
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K42
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Lemma 2.17. The complete graph Kd is regular of degree d− 1 and has
d(d− 1)/2 edges.
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Example 2.18. The Petersen graph.
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Subgraphs

Definition 2.19. A subgraph of a graph G = (V, E) is a graph H = (V ′, E′)
such that V ′ ⊂ V and E′ ⊂ E.
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Subgraphs

Definition 2.19. A subgraph of a graph G = (V, E) is a graph H = (V ′, E′)
such that V ′ ⊂ V and E′ ⊂ E.

Example 2.20.

1. For d ≥ 1 we define the cycle graph Cd to be the graph with d vertices
v1, . . . , vd and d edges {v1, v2}, . . . , {vd−1, vd}, {vd, v1}.
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Subgraphs

Definition 2.19. A subgraph of a graph G = (V, E) is a graph H = (V ′, E′)
such that V ′ ⊂ V and E′ ⊂ E.

Example 2.20.

1. For d ≥ 1 we define the cycle graph Cd to be the graph with d vertices
v1, . . . , vd and d edges {v1, v2}, . . . , {vd−1, vd}, {vd, v1}.
(C1 has one vertex v1 and one edge {v1, v1}.)
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Subgraphs

Definition 2.19. A subgraph of a graph G = (V, E) is a graph H = (V ′, E′)
such that V ′ ⊂ V and E′ ⊂ E.

Example 2.20.

1. For d ≥ 1 we define the cycle graph Cd to be the graph with d vertices
v1, . . . , vd and d edges {v1, v2}, . . . , {vd−1, vd}, {vd, v1}.
(C1 has one vertex v1 and one edge {v1, v1}.)
The cycle graph is regular of degree 2 and simple if d ≥ 3.
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replacemen

v1

C1

v1 v2

C2

v1

v2

v3 v4

v5

v6

C6
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2. The star graphs are the graphs K1,s, s ≥ 1:

K1,2
K1,3 K1,6
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3. For d ≥ 1 we define the wheel graph Wd to be the graph with

d + 1 vertices c, v1, . . . , vd and
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3. For d ≥ 1 we define the wheel graph Wd to be the graph with

d + 1 vertices c, v1, . . . , vd and

2d edges {v1, v2}, . . . , {vd−1, vd}, {vd, v1}, and {c, v1}, . . . {c, vd}.
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replacements

cv1

W1

cv1 v2

W2

c

v1

v2

v3 v4

v5

v6

W6
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Walks, paths, trails, circuits and cycles

G = (V,E) a graph

Definition 2.21. A sequence v0, e1, v1, . . . , vn−1, en, vn, where
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Walks, paths, trails, circuits and cycles

G = (V,E) a graph

Definition 2.21. A sequence v0, e1, v1, . . . , vn−1, en, vn, where

(i) n ≥ 0 and
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Walks, paths, trails, circuits and cycles

G = (V,E) a graph

Definition 2.21. A sequence v0, e1, v1, . . . , vn−1, en, vn, where

(i) n ≥ 0 and

(ii) vi ∈ V and ei ∈ E and
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Walks, paths, trails, circuits and cycles

G = (V,E) a graph

Definition 2.21. A sequence v0, e1, v1, . . . , vn−1, en, vn, where

(i) n ≥ 0 and

(ii) vi ∈ V and ei ∈ E and

(iii) ei = {vi−1, vi}, for i = 1, . . . , n,
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Walks, paths, trails, circuits and cycles

G = (V,E) a graph

Definition 2.21. A sequence v0, e1, v1, . . . , vn−1, en, vn, where

(i) n ≥ 0 and

(ii) vi ∈ V and ei ∈ E and

(iii) ei = {vi−1, vi}, for i = 1, . . . , n,

is called a walk of length n.
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Walks, paths, trails, circuits and cycles

G = (V,E) a graph

Definition 2.21. A sequence v0, e1, v1, . . . , vn−1, en, vn, where

(i) n ≥ 0 and

(ii) vi ∈ V and ei ∈ E and

(iii) ei = {vi−1, vi}, for i = 1, . . . , n,

is called a walk of length n.

The walk is from its initial vertex v0 and to its terminal vertex vn.
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Example 2.22. G is the graph shown.

u

v w

x

e1

e2

e3

e4

e5

e6

e7 e8

e9
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Definition 2.23. Let W = v0, e1, v1, . . . , en, vn be a walk in a graph.

(i) If v0 = vn then W is a closed walk.
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Definition 2.23. Let W = v0, e1, v1, . . . , en, vn be a walk in a graph.

(i) If v0 = vn then W is a closed walk.

(ii) If vi 6= vj when i 6= j, with the possible exception of v0 = vn, then W is
called a path. If v0 6= vn the path is said to be open and if v0 = vn it is
closed.
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Walks in simple graphs

In a simple graph we may write only the sequence of vertices, which we call the
vertex sequence of a walk.

– Typeset by FoilTEX – 26



Walks in simple graphs

In a simple graph we may write only the sequence of vertices, which we call the
vertex sequence of a walk.

For example the sequence
v1, c, v5, v4, c, v2

is the vertex sequence of a unique walk in the wheel graph W6 shown above.
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Connectedness

Definition 2.24. A graph is connected if, for any two vertices a and b there is
a path from a to b.
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Connectedness

Definition 2.24. A graph is connected if, for any two vertices a and b there is
a path from a to b.

A graph which is not connected is called disconnected.
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Connectedness

Definition 2.24. A graph is connected if, for any two vertices a and b there is
a path from a to b.

A graph which is not connected is called disconnected.

Lemma 2.25. Let a and b be vertices of a graph. There is an path from a to b
if and only if there is a walk from a to b.
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Connected Component

Definition 2.26. A connected component of a graph G is a subgraph H of G
such that
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Connected Component

Definition 2.26. A connected component of a graph G is a subgraph H of G
such that

1. H is a connected subgraph of G and
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Connected Component

Definition 2.26. A connected component of a graph G is a subgraph H of G
such that

1. H is a connected subgraph of G and

2. H is not contained in any larger connected subgraph of G.
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The graph G below has 3 connected components A, B and C, as shown.
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The graph G below has 3 connected components A, B and C, as shown.

A
B

C
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Eulerian graphs

The Königsberg bridge problem.

R. Pregel

1 2 3

4

567
A

B

C

D

The River Pregel in Königsberg
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1 2 3

4

5
67

A

B

C

D

A graph of the Königsberg bridges
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Definition 2.27. A walk in which no edges are repeated is called a trail. A
closed walk which is a trail is called a circuit.
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Definition 2.27. A walk in which no edges are repeated is called a trail. A
closed walk which is a trail is called a circuit.

Definition 2.28. 1. A trail containing every edge of a graph is called an
Eulerian trail.
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Definition 2.27. A walk in which no edges are repeated is called a trail. A
closed walk which is a trail is called a circuit.

Definition 2.28. 1. A trail containing every edge of a graph is called an
Eulerian trail.

2. A circuit containing every edge of a graph is called an Eulerian circuit.
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Definition 2.27. A walk in which no edges are repeated is called a trail. A
closed walk which is a trail is called a circuit.

Definition 2.28. 1. A trail containing every edge of a graph is called an
Eulerian trail.

2. A circuit containing every edge of a graph is called an Eulerian circuit.

3. A graph is called semi–Eulerian if it is connected and has an Eulerian trail.
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Definition 2.27. A walk in which no edges are repeated is called a trail. A
closed walk which is a trail is called a circuit.

Definition 2.28. 1. A trail containing every edge of a graph is called an
Eulerian trail.

2. A circuit containing every edge of a graph is called an Eulerian circuit.

3. A graph is called semi–Eulerian if it is connected and has an Eulerian trail.

4. A graph is called Eulerian if it is connected and has an Eulerian circuit.
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Example 2.29. 1. The walk 1, 2, 3, 1, 5, 4, 3, 5, 2 is a semi–Eulerian trail in the
graph G1 below.

1

2 3

4

5

G1
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Example 2.29. 1. The walk 1, 2, 3, 1, 5, 4, 3, 5, 2 is a semi–Eulerian trail in the
graph G1 below.

1

2 3

4

5

G1

Therefore G1 is semi–Eulerian.
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Example 2.29. 1. The walk 1, 2, 3, 1, 5, 4, 3, 5, 2 is a semi–Eulerian trail in the
graph G1 below.

1

2 3

4

5

G1

Therefore G1 is semi–Eulerian.

Does G1 have an Eulerian circuit?
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2. The walk a, b, c, d, e, f, b, e, c, f, a is an Eulerian circuit in the graph G2 below.

a

b c

d

ef

G2

– Typeset by FoilTEX – 34



2. The walk a, b, c, d, e, f, b, e, c, f, a is an Eulerian circuit in the graph G2 below.

a

b c

d

ef

G2

Therefore G2 is Eulerian.
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3. The walk a, 1, b, 2, c, 3, d, 4, e, 5, a, 7, c, 9, c, 8, e, 6, a is an Eulerian circuit in
the graph G3 below.

a

b

c

d

e

1

2 3

4

5

6

7 8

9

G3
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3. The walk a, 1, b, 2, c, 3, d, 4, e, 5, a, 7, c, 9, c, 8, e, 6, a is an Eulerian circuit in
the graph G3 below.

a

b

c

d

e

1

2 3

4

5

6

7 8

9

G3

Therefore G3 is Eulerian.
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Theorem 2.30. [Euler, 1736] If G is an Eulerian graph then every vertex of
G has even degree.
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Theorem 2.30. [Euler, 1736] If G is an Eulerian graph then every vertex of
G has even degree.

Example 2.31. 1. There is no Eulerian circuit for the graph of Example
2.29.1 above: this graph has verices of odd degree.
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Theorem 2.30. [Euler, 1736] If G is an Eulerian graph then every vertex of
G has even degree.

Example 2.31. 1. There is no Eulerian circuit for the graph of Example
2.29.1 above: this graph has verices of odd degree.

2. The graph of the Königsberg bridges problem has vertices of odd degree
so is not Eulerian.
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Theorem 2.30. [Euler, 1736] If G is an Eulerian graph then every vertex of
G has even degree.

Example 2.31. 1. There is no Eulerian circuit for the graph of Example
2.29.1 above: this graph has verices of odd degree.

2. The graph of the Königsberg bridges problem has vertices of odd degree
so is not Eulerian.

3. The graph Kd is not Eulerian if d is even.
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Lemma 2.32. Let G be a graph such that every vertex of G has even degree.
If v ∈ V (G) with deg(v) > 0 then v lies in a circuit of positive length.

– Typeset by FoilTEX – 37



Lemma 2.32. Let G be a graph such that every vertex of G has even degree.
If v ∈ V (G) with deg(v) > 0 then v lies in a circuit of positive length.

Theorem 2.33. Let G be a connected graph. Then G is Eulerian if and only
if every vertex of G has even degree.
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Lemma 2.32. Let G be a graph such that every vertex of G has even degree.
If v ∈ V (G) with deg(v) > 0 then v lies in a circuit of positive length.

Theorem 2.33. Let G be a connected graph. Then G is Eulerian if and only
if every vertex of G has even degree.

a

C

D

v0 = vm

u0 = un

e′i+1

e′i
ej

ej+1
a

C

D

v0 = vm

u0 = un

e′i+1

e′i
ej

ej+1
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Example 2.34.
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Example 2.34.
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Theorem 2.35. A connected graph is semi-Eulerian but not Eulerian if and
only if precisely 2 of its vertices have odd degree.
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Theorem 2.35. A connected graph is semi-Eulerian but not Eulerian if and
only if precisely 2 of its vertices have odd degree.

Example 2.36. The following graph has exactly 2 vertices of odd degree and
is therefore semi–Eulerian.
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Theorem 2.35. A connected graph is semi-Eulerian but not Eulerian if and
only if precisely 2 of its vertices have odd degree.

Example 2.36. The following graph has exactly 2 vertices of odd degree and
is therefore semi–Eulerian.
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Hamiltonian Graphs

People at a party are to be seated at a circular table. Is it possible to arrange
the seating so that everyone sits next to two people they know?
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Hamiltonian Graphs

People at a party are to be seated at a circular table. Is it possible to arrange
the seating so that everyone sits next to two people they know?
Definition 2.37.

1. A path containing every vertex of a graph is called a Hamiltonian path.
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Hamiltonian Graphs

People at a party are to be seated at a circular table. Is it possible to arrange
the seating so that everyone sits next to two people they know?
Definition 2.37.

1. A path containing every vertex of a graph is called a Hamiltonian path.

2. A closed path containing every vertex of a graph is called a Hamiltonian
closed path.
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Hamiltonian Graphs

People at a party are to be seated at a circular table. Is it possible to arrange
the seating so that everyone sits next to two people they know?
Definition 2.37.

1. A path containing every vertex of a graph is called a Hamiltonian path.

2. A closed path containing every vertex of a graph is called a Hamiltonian
closed path.

3. A graph is called semi-Hamiltonian if it has a Hamiltonian path and
Hamiltonian if it has a Hamiltonian closed path.
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Example 2.38.

1. The walk a, b, c, d is a Hamiltonian path in the graph G1 below.

G1:
ab

c d
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Example 2.38.

1. The walk a, b, c, d is a Hamiltonian path in the graph G1 below.

G1:
ab

c d

Therefore G1 is semi-Hamiltonian.
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Example 2.38.

1. The walk a, b, c, d is a Hamiltonian path in the graph G1 below.

G1:
ab

c d

Therefore G1 is semi-Hamiltonian.

2. The walk 1, 2, 3, 4, 5, 1 is a Hamiltonian closed path in the graph G2 below.

G2:
1

2 3
4

5
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Example 2.38.

1. The walk a, b, c, d is a Hamiltonian path in the graph G1 below.

G1:
ab

c d

Therefore G1 is semi-Hamiltonian.

2. The walk 1, 2, 3, 4, 5, 1 is a Hamiltonian closed path in the graph G2 below.

G2:
1

2 3
4

5
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Therefore G2 is Hamiltonian.
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3. The graph G3 below is not semi-Hamiltonian (and therefore not
Hamiltonian).

G3:
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3. The graph G3 below is not semi-Hamiltonian (and therefore not
Hamiltonian).

G3:

4. The complete graph K2 is semi-Hamiltonian but not Hamiltonian.
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3. The graph G3 below is not semi-Hamiltonian (and therefore not
Hamiltonian).

G3:

4. The complete graph K2 is semi-Hamiltonian but not Hamiltonian.

For d 6= 2 the graphs Kd are Hamiltonian.
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3. The graph G3 below is not semi-Hamiltonian (and therefore not
Hamiltonian).

G3:

4. The complete graph K2 is semi-Hamiltonian but not Hamiltonian.

For d 6= 2 the graphs Kd are Hamiltonian.

5. The cycle graphs are Hamiltonian for d ≥ 1.
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3. The graph G3 below is not semi-Hamiltonian (and therefore not
Hamiltonian).

G3:

4. The complete graph K2 is semi-Hamiltonian but not Hamiltonian.
For d 6= 2 the graphs Kd are Hamiltonian.

5. The cycle graphs are Hamiltonian for d ≥ 1.

6. The wheel graph Wd is Hamiltonian for d ≥ 2.

– Typeset by FoilTEX – 43



7. Construct a graph with one vertex corresponding to each square of a
chessboard and an edge joining two vertices if a knight can move from one
to the other. We call this the knight’s move graph.
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A Hamiltonian closed path for the knight’s move graph
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Example 2.39.

A graph which is Hamiltonian and
Eulerian
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Example 2.39.

A graph which is Hamiltonian and
Eulerian

A graph which is Eulerian and
non-Hamiltonian
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A graph which is Hamiltonian and
non-Eulerian
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A graph which is Hamiltonian and
non-Eulerian

A graph which is non-Eulerian and
non-Hamiltonian
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Trees
Definition 2.40. A closed path of length at least 1 is called a cycle.
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Trees
Definition 2.40. A closed path of length at least 1 is called a cycle.

1. A forest is a graph with no cycle.
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Trees
Definition 2.40. A closed path of length at least 1 is called a cycle.

1. A forest is a graph with no cycle.

2. A tree is a connected graph with no cycle.
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Example 2.41.

A forest:
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Example 2.42.

1. There is only one tree with one vertex, N1 = P1. There is only one tree with
2 vertices, K2 = P2. There is only one tree with 3 vertices, namely P3.
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Example 2.42.

1. There is only one tree with one vertex, N1 = P1. There is only one tree with
2 vertices, K2 = P2. There is only one tree with 3 vertices, namely P3.

2. There are 2 trees with 4 vertices:
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Example 2.42.

1. There is only one tree with one vertex, N1 = P1. There is only one tree with
2 vertices, K2 = P2. There is only one tree with 3 vertices, namely P3.

2. There are 2 trees with 4 vertices:

3. There are 3 trees with 5 vertices.
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4. There are 6 trees with 6 vertices and 11 trees with 7 vertices (see the
Exercises).
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5. There are 23 trees with 8 vertices:
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Characterising trees

Lemma 2.43. If a graph G contains two distinct paths from vertices u to v
then G contains a cycle.

– Typeset by FoilTEX – 53



Characterising trees

Lemma 2.43. If a graph G contains two distinct paths from vertices u to v
then G contains a cycle.

Theorem 2.44. A graph G is a tree if and only if there is exactly one path
from u to v, for all pairs u, v of vertices of G.
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Characterising trees

Lemma 2.43. If a graph G contains two distinct paths from vertices u to v
then G contains a cycle.

Theorem 2.44. A graph G is a tree if and only if there is exactly one path
from u to v, for all pairs u, v of vertices of G.

Theorem 2.45. Let G be a with n vertices. Then G is a tree if and only if G
is connected and has n− 1 edges.
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Spanning Trees

Definition 2.46.
Let G be a graph. A spanning tree for G is a subgraph of G which
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Spanning Trees

Definition 2.46.
Let G be a graph. A spanning tree for G is a subgraph of G which

1. is a tree and
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Spanning Trees

Definition 2.46.
Let G be a graph. A spanning tree for G is a subgraph of G which

1. is a tree and

2. contains every vertex of G.
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Example 2.47. In the diagrams below the solid lines indicate some of the
spanning trees of the graph shown: there are many more.
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Theorem 2.48. Every connected graph has a spanning tree.
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The cut-down algorithm

Given a connected graph G to construct a spanning tree:
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The cut-down algorithm

Given a connected graph G to construct a spanning tree:

1. If G is a tree stop.
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The cut-down algorithm

Given a connected graph G to construct a spanning tree:

1. If G is a tree stop.

2. Choose an edge e from a cycle and replace G with G− e. Repeat from 1.
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The cut-down algorithm

Given a connected graph G to construct a spanning tree:

1. If G is a tree stop.

2. Choose an edge e from a cycle and replace G with G− e. Repeat from 1.

Example 2.49.
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2. Choose an edge e from a cycle and replace G with G− e. Repeat from 1.
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The cut-down algorithm
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1. If G is a tree stop.

2. Choose an edge e from a cycle and replace G with G− e. Repeat from 1.

Example 2.49.
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The cut-down algorithm

Given a connected graph G to construct a spanning tree:

1. If G is a tree stop.

2. Choose an edge e from a cycle and replace G with G− e. Repeat from 1.

Example 2.49.
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The cut-down algorithm

Given a connected graph G to construct a spanning tree:
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2. Choose an edge e from a cycle and replace G with G− e. Repeat from 1.
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The cut-down algorithm
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1. If G is a tree stop.

2. Choose an edge e from a cycle and replace G with G− e. Repeat from 1.
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The cut-down algorithm

Given a connected graph G to construct a spanning tree:

1. If G is a tree stop.

2. Choose an edge e from a cycle and replace G with G− e. Repeat from 1.

Example 2.49.
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The build-up algorithm
Given a connected graph G to construct a spanning tree:
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The build-up algorithm
Given a connected graph G to construct a spanning tree: start with a graph T
consisting of the vertices of G and no edges.
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The build-up algorithm
Given a connected graph G to construct a spanning tree: start with a graph T
consisting of the vertices of G and no edges.

1. If T is connected stop.
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The build-up algorithm
Given a connected graph G to construct a spanning tree: start with a graph T
consisting of the vertices of G and no edges.

1. If T is connected stop.

2. Add an edge e of G to T which does not form a cycle in T . Repeat from 1.

Example 2.50.
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Given a connected graph G to construct a spanning tree: start with a graph T
consisting of the vertices of G and no edges.

1. If T is connected stop.

2. Add an edge e of G to T which does not form a cycle in T . Repeat from 1.

Example 2.50.
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The build-up algorithm
Given a connected graph G to construct a spanning tree: start with a graph T
consisting of the vertices of G and no edges.

1. If T is connected stop.

2. Add an edge e of G to T which does not form a cycle in T . Repeat from 1.

Example 2.50.
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The build-up algorithm
Given a connected graph G to construct a spanning tree: start with a graph T
consisting of the vertices of G and no edges.

1. If T is connected stop.

2. Add an edge e of G to T which does not form a cycle in T . Repeat from 1.

Example 2.50.
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Weighted graphs

Definition 2.51. Let G be a connected graph with edge set E. To each edge
e ∈ E assign a non–negative real number w(e).
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Weighted graphs

Definition 2.51. Let G be a connected graph with edge set E. To each edge
e ∈ E assign a non–negative real number w(e).

Then G is called a weighted graph and the number w(e) is called the weight
of e.
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Weighted graphs

Definition 2.51. Let G be a connected graph with edge set E. To each edge
e ∈ E assign a non–negative real number w(e).

Then G is called a weighted graph and the number w(e) is called the weight
of e.

The sum
W (G) =

∑
e∈E

w(e)

is called the weight of G.
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Example 2.52.
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Example 2.52.

PSfrag

A

B

D

O

P

S

99

91

70
45

46

83
24

60

11

123

– Typeset by FoilTEX – 60



The graph has weight W (G) = 652.
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The Minimum Connector Problem

A subgraph of a connected graph G which contains all the vertices of G is called
a spanning subgraph.
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The Minimum Connector Problem

A subgraph of a connected graph G which contains all the vertices of G is called
a spanning subgraph.

Every spanning graph must contain a spanning tree.
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The Minimum Connector Problem

A subgraph of a connected graph G which contains all the vertices of G is called
a spanning subgraph.

Every spanning graph must contain a spanning tree.

In a connected, weighted graph the problem of finding a spanning subgraph of
minimal weight is called the minimal connector problem.
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The Minimum Connector Problem

A subgraph of a connected graph G which contains all the vertices of G is called
a spanning subgraph.

Every spanning graph must contain a spanning tree.

In a connected, weighted graph the problem of finding a spanning subgraph of
minimal weight is called the minimal connector problem.

A spanning subgraph of minimal weight is always a spanning tree,
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The Minimum Connector Problem

A subgraph of a connected graph G which contains all the vertices of G is called
a spanning subgraph.

Every spanning graph must contain a spanning tree.

In a connected, weighted graph the problem of finding a spanning subgraph of
minimal weight is called the minimal connector problem.

A spanning subgraph of minimal weight is always a spanning tree,

so the problem is to find a spanning tree of minimal weight.
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The Minimum Connector Problem

A subgraph of a connected graph G which contains all the vertices of G is called
a spanning subgraph.

Every spanning graph must contain a spanning tree.

In a connected, weighted graph the problem of finding a spanning subgraph of
minimal weight is called the minimal connector problem.

A spanning subgraph of minimal weight is always a spanning tree,

so the problem is to find a spanning tree of minimal weight.

The following algorithm does so. Again we leave aside the problem of testing for
a cycle.
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The Greedy Algorithm (also known as Kruskal’s Algorithm)

Let G be a connected weighted graph. To find a spanning tree T for G of
minimal weight:
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The Greedy Algorithm (also known as Kruskal’s Algorithm)

Let G be a connected weighted graph. To find a spanning tree T for G of
minimal weight:

Step 1
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The Greedy Algorithm (also known as Kruskal’s Algorithm)

Let G be a connected weighted graph. To find a spanning tree T for G of
minimal weight:

Step 1

Step 2

– Typeset by FoilTEX – 63



The Greedy Algorithm (also known as Kruskal’s Algorithm)

Let G be a connected weighted graph. To find a spanning tree T for G of
minimal weight:

Step 1

Step 2

Step 3
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Example 2.53
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Example 2.53
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Some choices that have to be made in the running of the algorithm.
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Some choices that have to be made in the running of the algorithm.

For instance, either of the edges of weight 2 could have been included in T .
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Some choices that have to be made in the running of the algorithm.

For instance, either of the edges of weight 2 could have been included in T .

A different choice results in a different minimal weight spanning tree, of which
there may be many.
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The Travelling Salesman Problem

A problem:

“Given a connected weighted graph G, find a closed walk in G containing all
vertices of G and of minimal weight amongst all such closed walks.”

This problem is very difficult to solve in general.
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The Travelling Salesman Problem

A problem:

“Given a connected weighted graph G, find a closed walk in G containing all
vertices of G and of minimal weight amongst all such closed walks.”

This problem is very difficult to solve in general.

An easier problem: the Travelling Salesman problem:

“Given a connected weighted graph G, find a minimal weight Hamiltonian closed
path in G.”
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The Travelling Salesman Problem

A problem:

“Given a connected weighted graph G, find a closed walk in G containing all
vertices of G and of minimal weight amongst all such closed walks.”

This problem is very difficult to solve in general.

An easier problem: the Travelling Salesman problem:

“Given a connected weighted graph G, find a minimal weight Hamiltonian closed
path in G.”

easier — fewer possible solutions,
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The Travelling Salesman Problem

A problem:

“Given a connected weighted graph G, find a closed walk in G containing all
vertices of G and of minimal weight amongst all such closed walks.”

This problem is very difficult to solve in general.

An easier problem: the Travelling Salesman problem:

“Given a connected weighted graph G, find a minimal weight Hamiltonian closed
path in G.”

easier — fewer possible solutions,

but still very difficult to solve.

– Typeset by FoilTEX – 66



The Travelling Salesman Problem

A problem:

“Given a connected weighted graph G, find a closed walk in G containing all
vertices of G and of minimal weight amongst all such closed walks.”

This problem is very difficult to solve in general.

An easier problem: the Travelling Salesman problem:

“Given a connected weighted graph G, find a minimal weight Hamiltonian closed
path in G.”

easier — fewer possible solutions,
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but still very difficult to solve.

The algorithm for the Minimum Connector problem can be used to find a lower
bound for the Travelling Salesman problem.
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Deleting vertices

Definition 2.54. Let G be a graph and let v be a vertex of G.
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Deleting vertices

Definition 2.54. Let G be a graph and let v be a vertex of G.

The graph G− v obtained from G by deleting v is defined to be the graph
formed by removing v and all its incident edges from G.
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Deleting vertices

Definition 2.54. Let G be a graph and let v be a vertex of G.

The graph G− v obtained from G by deleting v is defined to be the graph
formed by removing v and all its incident edges from G.

Example 2.55.
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A lower bound for the Travelling Salesman

Theorem 2.56. If G is a weighted graph, C is a minimal weight Hamiltonian
closed path in G and v is a vertex of G then

w(C) ≥ M + m1 + m2,

where M is the weight of a minimal weight spanning tree for G− v and m1
and m2 are the weights of two edges of least weight incident to v.
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A lower bound for the Travelling Salesman

Theorem 2.56. If G is a weighted graph, C is a minimal weight Hamiltonian
closed path in G and v is a vertex of G then

w(C) ≥ M + m1 + m2,

where M is the weight of a minimal weight spanning tree for G− v and m1
and m2 are the weights of two edges of least weight incident to v.

As pointed out above the inequality in this Theorem may be strict.
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A lower bound for the Travelling Salesman

Theorem 2.56. If G is a weighted graph, C is a minimal weight Hamiltonian
closed path in G and v is a vertex of G then

w(C) ≥ M + m1 + m2,

where M is the weight of a minimal weight spanning tree for G− v and m1
and m2 are the weights of two edges of least weight incident to v.

As pointed out above the inequality in this Theorem may be strict.

We obtain a lower bound for the Travelling Salesman problem, which in some
cases may be smaller than the weight of minimal weight Hamiltonian closed path.
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Example 2.57.

Find a lower bound for the Travelling salesman problem in the weighted graph G
below by removing vertex A.
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Example 2.57.

Find a lower bound for the Travelling salesman problem in the weighted graph G
below by removing vertex A.

A
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E
2
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The Greedy Algorithm output: one of the 3 trees shown below, all of weight 10;
so M = 10.

B
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E

33 4

Spanning Tree 1
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Spanning Tree 2
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3
3 4

Spanning Tree 3
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The Greedy Algorithm output: one of the 3 trees shown below, all of weight 10;
so M = 10.

B

C D

E

33 4

Spanning Tree 1

B

C D

E

3
3

4

Spanning Tree 2

B

C D

E

3
3 4

Spanning Tree 3

Edges of minimal weight incident to A: {A, C} and {A, D} of weights m1 = 2
and m2 = 4.
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The Greedy Algorithm output: one of the 3 trees shown below, all of weight 10;
so M = 10.

replacements

B

C D

E

33 4

Spanning Tree 1

B

C D

E

3
3

4

Spanning Tree 2

B

C D

E

3
3 4

Spanning Tree 3

Edges of minimal weight incident to A: {A, C} and {A, D} of weights m1 = 2
and m2 = 4.

Lower bound 10 + 2 + 4 = 16.
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A minimal weight Hamiltonian closed path
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An electronics engineer wishes to make a board on which there are 3 input
terminals and 3 output terminals.
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An electronics engineer wishes to make a board on which there are 3 input
terminals and 3 output terminals.

Each input terminal is to be connected to all output terminals.

– Typeset by FoilTEX – 74



An electronics engineer wishes to make a board on which there are 3 input
terminals and 3 output terminals.

Each input terminal is to be connected to all output terminals.

Connections are to be made by lines of solder laid on the board (not necessarily
straight).
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An electronics engineer wishes to make a board on which there are 3 input
terminals and 3 output terminals.

Each input terminal is to be connected to all output terminals.

Connections are to be made by lines of solder laid on the board (not necessarily
straight).

Two different lines of solder must not cross.

– Typeset by FoilTEX – 74



An electronics engineer wishes to make a board on which there are 3 input
terminals and 3 output terminals.

Each input terminal is to be connected to all output terminals.

Connections are to be made by lines of solder laid on the board (not necessarily
straight).

Two different lines of solder must not cross.

Is this possible?
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An electronics engineer wishes to make a board on which there are 3 input
terminals and 3 output terminals.

Each input terminal is to be connected to all output terminals.

Connections are to be made by lines of solder laid on the board (not necessarily
straight).

Two different lines of solder must not cross.

Is this possible?

The complete bipartite graph K3,3
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Planar Graphs
Definition 2.58. A graph is planar if it can be drawn in the plane without
edges crossing.
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Planar Graphs
Definition 2.58. A graph is planar if it can be drawn in the plane without
edges crossing.

Example 2.59.

1.
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Example 2.59 cont.

2.
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Faces

Definition 2.60. Let D be a planar graph, drawn on the plane.
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Faces

Definition 2.60. Let D be a planar graph, drawn on the plane.

If x is a point of the plane not lying on D then the set of all points of the
plane that can be reached from x without crossing D is called a face of D.
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Faces

Definition 2.60. Let D be a planar graph, drawn on the plane.

If x is a point of the plane not lying on D then the set of all points of the
plane that can be reached from x without crossing D is called a face of D.

One face is always unbounded and is called the exterior face.
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Faces

Definition 2.60. Let D be a planar graph, drawn on the plane.

If x is a point of the plane not lying on D then the set of all points of the
plane that can be reached from x without crossing D is called a face of D.

One face is always unbounded and is called the exterior face.

(To make a rigourous definition of face requires the Jordan Curve theorem,
which says that:

a simple closed curve in the plane divides the plane into two parts, one inside
and one outside the curve.
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Faces

Definition 2.60. Let D be a planar graph, drawn on the plane.

If x is a point of the plane not lying on D then the set of all points of the
plane that can be reached from x without crossing D is called a face of D.

One face is always unbounded and is called the exterior face.

(To make a rigourous definition of face requires the Jordan Curve theorem,
which says that:

a simple closed curve in the plane divides the plane into two parts, one inside
and one outside the curve.

This theorem is beyond the scope of this course.)
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Example 2.61.

1. All trees are planar and have one face (which is exterior).
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Example 2.61.

1. All trees are planar and have one face (which is exterior).

2. The graph below has 9 faces labelled a . . . i. Face h is the exterior face.

a

b

c

de
f

g

h i
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Euler’s Formula

Theorem 2.62. [Euler’s Formula] Let G be a connected planar graph (drawn
in the plane) with n vertices, m edges and r faces. Then n−m + r = 2.
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Euler’s Formula

Theorem 2.62. [Euler’s Formula] Let G be a connected planar graph (drawn
in the plane) with n vertices, m edges and r faces. Then n−m + r = 2.

Definition 2.63. Let F be a face of a planar graph. The degree of F , denoted
deg(F ) is the number of edges in the boundary of F , where edges lying in no
face except F count twice.
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Euler’s Formula

Theorem 2.62. [Euler’s Formula] Let G be a connected planar graph (drawn
in the plane) with n vertices, m edges and r faces. Then n−m + r = 2.

Definition 2.63. Let F be a face of a planar graph. The degree of F , denoted
deg(F ) is the number of edges in the boundary of F , where edges lying in no
face except F count twice.

(To compute deg(F ) walk once round the boundary of F , counting each edge
on the way.)
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Non-planarity

Lemma 2.64. If G is a planar graph with m edges and r faces F1, . . . , Fr then

r∑
i=1

deg(Fi) = 2m.
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Non-planarity

Lemma 2.64. If G is a planar graph with m edges and r faces F1, . . . , Fr then

r∑
i=1

deg(Fi) = 2m.

Corollary 2.65. If G is a simple connected planar graph with n ≥ 3 vertices
and m edges then m ≤ 3n− 6.
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Non-planarity

Lemma 2.64. If G is a planar graph with m edges and r faces F1, . . . , Fr then

r∑
i=1

deg(Fi) = 2m.

Corollary 2.65. If G is a simple connected planar graph with n ≥ 3 vertices
and m edges then m ≤ 3n− 6.

Corollary 2.66. If G is a connected simple planar graph with n ≥ 3 vertices,
m edges and no cycle of length 3 then m ≤ 2n− 4.
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Non-planarity
Lemma 2.64. If G is a planar graph with m edges and r faces F1, . . . , Fr then

r∑
i=1

deg(Fi) = 2m.

Corollary 2.65. If G is a simple connected planar graph with n ≥ 3 vertices
and m edges then m ≤ 3n− 6.

Corollary 2.66. If G is a connected simple planar graph with n ≥ 3 vertices,
m edges and no cycle of length 3 then m ≤ 2n− 4.

Theorem 2.67. The complete graph K5 and the complete bipartite graph K3,3
are both non–planar.
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Subdivision

If a graph G is non-planar then any graph which contains G as a subgraph is
also non–planar.
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Subdivision

If a graph G is non-planar then any graph which contains G as a subgraph is
also non–planar.

It follows that if a graph contains K5 or K3,3 as a subgraph it must be
non-planar.
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Subdivision

If a graph G is non-planar then any graph which contains G as a subgraph is
also non–planar.

It follows that if a graph contains K5 or K3,3 as a subgraph it must be
non-planar.

Definition 2.68. A graph H is a subdivision of a graph G if H is obtained
from G by the addition of a finite number of vertices of degree 2 to edges of
G.
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Subdivision

If a graph G is non-planar then any graph which contains G as a subgraph is
also non–planar.

It follows that if a graph contains K5 or K3,3 as a subgraph it must be
non-planar.

Definition 2.68. A graph H is a subdivision of a graph G if H is obtained
from G by the addition of a finite number of vertices of degree 2 to edges of
G.

It is possible to add no vertices and so a graph is a subdivision of itself.
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Example 2.69. H below is a subdivision of G.

G H
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Planarity and subdivisions

The following theorem is an easy consequence of Theorem 2.67.
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Planarity and subdivisions

The following theorem is an easy consequence of Theorem 2.67.

Theorem 2.70. If G is a graph containing a subgraph which is a subdivision
of K5 or K3,3 then G is non–planar.
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Example 2.71.

Neither Corollary 2.65 nor Corollary 2.66 are sufficient to show that the graphs
of this example are non–planar.
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Example 2.71.

Neither Corollary 2.65 nor Corollary 2.66 are sufficient to show that the graphs
of this example are non–planar.

1. The Petersen graph has 10 vertices and 15 edges.
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Example 2.71.

Neither Corollary 2.65 nor Corollary 2.66 are sufficient to show that the graphs
of this example are non–planar.

1. The Petersen graph has 10 vertices and 15 edges.

The diagram on the right shows a subgraph which is a subdivision of K3,3.
Therefore the graph is non-planar. (Vertices which are not labelled A or B
are those added in the subdivision.

A

A

A B

B

B
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Example 2.71 cont.
2. The graph shown below has 11 vertices and 18 edges.

– Typeset by FoilTEX – 85



Example 2.71 cont.
2. The graph shown below has 11 vertices and 18 edges.

The right hand diagram shows a subgraph which is a subdivision of K5.
Therefore the graph is non-planar.

1

2

3 4

5
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Kuratowski’s Theorem

A more surprising theorem:

Theorem 2.72. [Kuratowski] If G is a non–planar graph then G contains a
subgraph which is a subdivision of K5 or K3,3.
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The Four-Colour Problem

De Morgan’s conjecture (1852): any map of countries can be coloured using
only 4 colours, in such a way that countries with a common border have
different colours.
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The Four-Colour Problem

De Morgan’s conjecture (1852): any map of countries can be coloured using
only 4 colours, in such a way that countries with a common border have
different colours.

Given a map of countries construct a planar graph as follows.

Place one vertex in each country.
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The Four-Colour Problem

De Morgan’s conjecture (1852): any map of countries can be coloured using
only 4 colours, in such a way that countries with a common border have
different colours.

Given a map of countries construct a planar graph as follows.

Place one vertex in each country.

Join two vertices with an edge whenever their countries have a common border.
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Example 2.73.
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Example 2.73.
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Reformulated in terms of graph theory:

A colouring of a map according to de Morgan’s rules corresponds to colouring
each vertex of the graph in such a way that no two adjacent vertices have the
same colour.
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Reformulated in terms of graph theory:

A colouring of a map according to de Morgan’s rules corresponds to colouring
each vertex of the graph in such a way that no two adjacent vertices have the
same colour.

De Morgan’s conjecture is that this can be done with 4 colours:
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Reformulated in terms of graph theory:

A colouring of a map according to de Morgan’s rules corresponds to colouring
each vertex of the graph in such a way that no two adjacent vertices have the
same colour.

De Morgan’s conjecture is that this can be done with 4 colours:

that is any such graph has a 4-colouring.

If it can be shown that any planar graph without loops is 4-colourable then
it follows that every map of countries can be coloured as required.
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Reformulated in terms of graph theory:

A colouring of a map according to de Morgan’s rules corresponds to colouring
each vertex of the graph in such a way that no two adjacent vertices have the
same colour.

De Morgan’s conjecture is that this can be done with 4 colours:

that is any such graph has a 4-colouring.

If it can be shown that any planar graph without loops is 4-colourable then
it follows that every map of countries can be coloured as required.

Conjecture 2.74. [The 4–colour conjecture] Every simple planar graph is
4–colourable.
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History

1852 Guthrie and de Morgan proposed the 4–colour conjecture.
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History

1852 Guthrie and de Morgan proposed the 4–colour conjecture.

1873 Cayley presented a proof to the London Mathematical Society. The proof
was fatally flawed.
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History

1852 Guthrie and de Morgan proposed the 4–colour conjecture.

1873 Cayley presented a proof to the London Mathematical Society. The proof
was fatally flawed.

1879 Kempe published a proof; which collapsed.
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History

1852 Guthrie and de Morgan proposed the 4–colour conjecture.

1873 Cayley presented a proof to the London Mathematical Society. The proof
was fatally flawed.

1879 Kempe published a proof; which collapsed.

1880 Tait gave a proof which turned out (after ten years) to be incomplete.
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1976 Appel & Haken at the University of Illinois proved the 4–colour
conjecture. Their proof required checking 1, 476 “reducible” configurations
and this used hundreds of hours of CPU time on a Cray computer.

– Typeset by FoilTEX – 91



1976 Appel & Haken at the University of Illinois proved the 4–colour
conjecture. Their proof required checking 1, 476 “reducible” configurations
and this used hundreds of hours of CPU time on a Cray computer.
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that it is impossible to verify manually. We cannot even to be sure that the
hardware performed well enough, over such an extended period, to give a
reliable result.
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Appel and Haken’s, but more efficient: it requires checking only 633 reducible
configurations. This must still be done by computer.
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1976 Appel & Haken at the University of Illinois proved the 4–colour
conjecture. Their proof required checking 1, 476 “reducible” configurations
and this used hundreds of hours of CPU time on a Cray computer.

A problem with Appel & Haken’s proof is that the program ran for so long
that it is impossible to verify manually. We cannot even to be sure that the
hardware performed well enough, over such an extended period, to give a
reliable result.

1996 Robertson, Sanders, Seymour and Thomas created a new proof, similar to
Appel and Haken’s, but more efficient: it requires checking only 633 reducible
configurations. This must still be done by computer.

2004 Werner and Gonthier gave an alternative proof using automatic theorem
proving techniques. Again this requires us to trust a computer.
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The 5 and 6-colour Theorems

Theorem 2.75.
Every simple planar graph G is 6–colourable.
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The 5 and 6-colour Theorems

Theorem 2.75.
Every simple planar graph G is 6–colourable.

A proof of a 5–colour theorem can be found in most introductory texts on graph
theory.

In 1880 Tait made the following connection between 4–colouring of faces and
edge–colouring.

Theorem 2.76. Let G be a plane drawing of a graph which is connected,
regular of degree three and has no bridges or loops. Then the faces of G can
be coloured using 4 colours if and only if G has a proper edge–colouring using
3 colours.
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