
MAS2203/3203 Graph Theory

Semester 1, 2006/2007

Lecturer: Dr A Duncan

This module is an introduction to Combinatorial Mathematics an important part of
which is Graph Theory. Graph does not refer to the familiar notion of the graph of a
function. Instead it is a construct that can be visualised as a finite set of points (vertices)
in 3 dimensional space, together with a finite set of lines (edges) joining them. The vertices
and edges of a cube are an example. Often a graph has an additional structure. Its edges
can be assigned lengths or capacities, and the graph can be interpreted as a network of
roads or pipes. Typical problems are: in a system of roads joining given towns find the
shortest network joining all the towns; find the number of different molecules that have a
given chemical formula; determine the maximal flow from source to sink through a network
of pipes. Any of these problems can be solved by trying all the possibilities; graph theory
looks for economical methods of solution.

Books

1. Introduction to Graph Theory, R J Wilson (Longman Scientific & Technical): prob-
ably the book closest in level and content to this course.

2. Graphs, an introductory approach, R J Wilson & J J Watkins (Wiley): similar to
the book above with more waffle

3. Discrete Mathematics, N L Biggs (Oxford Science Publ.): contains alot of material
besides Graph Theory, some of which will arise in other Pure Maths courses

4. Graph Theory with applications, J A Bondy & U S R Murty (MacMillan): goes
further than this course

5. Graph Theory “1736–1936”, N L Biggs, E K Lloyd & R J Wilson (Clarendon Press):
a readable account of the history of Graph Theory

6. Library §511.5

Notes

The printed notes consist of lecture notes, intended to supplement the notes you make
during the lectures, exercises and a mock exam with solutions. Material given on slides
in the lectures is covered in the printed notes, what is written on the blackboard during
lectures may not be. There should be enough space in the printed notes for you to write
down the notes you take in lectures. The notes, exercises and other course information can

http://www.mas.ncl.ac.uk/~najd2/


be found on the web at
www.mas.ncl.ac.uk/~najd2/teaching/mas2203/

from where they can be viewed or printed out.

AJ Duncan August 2006
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0 Prerequisites

This section does not form part of the course but is included to show you what you will
need to know. You should refer to it as and when necessary.

Functions revisited

Let X and Y be sets.

Definition 0.1. A function (or map) from X to Y is a rule which assigns to each element
of X a unique element of Y . A function f from X to Y is denoted f : X −→ Y , with f(x)
denoting the element of Y assigned to x ∈ X.

1. f : R −→ R, with f(x) = x + 1 is a function (or map).

2. g : R −→ R, with g(x) = x2 is a function (or map).

3. g′ : R −→ R
+, with g′(x) = x2 is a function (or map), where R

+ denotes the set of
non-negative real numbers.

4. h : Z −→ Z, with h(n) = 2n is a function (or map).

Definition 0.2. A map (or function) f satisfying the property that whenever f(a) = f(b)
then a = b, is called injective.

1. f above is injective because x + 1 = x′ + 1 implies x = x′.

2. g above is not injective because g(−1) = 1 = g(1) but −1 6= 1.

3. g′ above, like g is not injective.

4. h above is injective because 2n = 2m implies n = m.

Definition 0.3. A map (or function) φ : X −→ Y satisfying the property that there exists
x ∈ X such that φ(x) = y, for all y ∈ Y is called surjective.

1. f above is surjective as if y ∈ R then y − 1 ∈ R and f(y − 1) = y.

2. g above is not surjective as −1 ∈ R but −1 6= x2, for all x ∈ R.

3. g′ above is surjective as if y ∈ R and y ≥ 0 then
√

y ∈ R and g′(
√

y) = y.

4. h above is not surjective as 1 ∈ Z but 1 6= 2n, for all n ∈ Z.

Note that we now have

1. f is both injective and surjective.
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2. g is neither injective nor surjective.

3. g′ is not injective but is surjective.

4. h is not surjective but is injective.

Definition 0.4. A function which is both injective and surjective is called bijective.

Of the examples above only f is bijective. In set theory two sets are defined to have
the same size if there exists a bijective map from one to the other.

Notation.

• function ≡ map

• injective ≡ one-one

• surjective ≡ onto

• bijective map ≡ one-one correspondence

Language. Two things are distinct if they are not the same. Sets A and B are distinct
if there is an element of A which is not in B or vice-versa (which means the other way
round). Three numbers are distinct if no two of them are equal. Two things are disjoint
if they share nothing in common. Sets A and B are disjoint if their intersection is empty.
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1 Introduction

Example 1.1.

Definition 1.2. A graph G consists of

(i) a finite non-empty set V (G) of vertices and

(ii) a set E(G) of edges

such that every edge e ∈ E(G) is an unordered pair {a, b} of vertices a, b ∈ V (G).
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Example 1.3.

1. G1 = (V1, E1)

a

b

c

e1 e2

e3

V1 = {a, b, c} and E1 = {e1, e2, e3} with

e1 = {a, b}, e2 = {b, c}, e3 = {c, a}.

2. G2 = (V2, E2)

A

B

C

D

e1

e2
e3

e4

V2 = {A, B, C, D},

E2 = {e1, . . . , e4}, and

e1 = {A, B}, e2 = {B, C}, e3 = {C, D},
e4 = {D, A}.

3. G3 = (V3, E3)

A

B

C

D

e1

e2 e3

e4

e5

e6

V3 = {A, B, C, D},

E3 = {e1, . . . , e6}, and

e1 = {A, B}, e2 = {B, C}, e3 = {C, D},
e4 = {D, A}, e5 = {A, C}, e6 = {B, D}.
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4. G4 = (V4, E4)

A

B

C

D

e1

e2 e3

e4

e5

e6
e7

e8

e9

V4 = {A, B, C, D}

E4 = {e1, . . . , e9}, and

e1 = {A, B}, e2 = {B, C}, e3 = {C, D},
e4 = {D, A}, e5 = {A, C}, e6 = {B, D},
e7 = {B, D}, e8 = {D, A}, e9 = {B, B}.

5. G5 = (V5, E5)

A

B

C

D
e4

e8

e9

V5 = {A, B, C, D}

E5 = {e4, e8, e9}, and

e4 = {D, A}, e8 = {D, A}, e9 = {B, B}.

6. G6 = (V6, E6)

A B
V6 = {A, B},
E6 = ∅.

7. G7 = (V7, E7)

A
V7 = {A},
E7 = ∅.

A graph must have at least one vertex but need not have any edges.
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2 First steps

Terminology

Definition 2.1. Let G = (V, E) be a graph.

(i) Vertices a and b are adjacent if there exists an edge e ∈ E with e = {a, b}.

(ii) Edges e and f are adjacent if there exists a vertex v ∈ V with e = {v, a} and
f = {v, b}, for some a, b ∈ V .

(iii) If e ∈ E and e = {c, d} then e is said to be incident to c and to d and to join c and
d.

(iv) If a and b are vertices joined by edges e1, . . . ek, where k > 1, then e1, . . . ek are called
multiple edges.

(v) An edge of the form {a, a} is called a loop.

Definition 2.2. A graph which has no multiple edges and no loops is called a simple
graph.

(In Examples (1.3) the graphs in 1–3 and 6 and 7 are simple whereas those in 4 and 5
are not.)

Drawing graphs

From the definition we can easily prove that any graph can be represented by a diagram
in R

3. We need the following lemma.

Lemma 2.3. Let n be a positive integer. Then we can choose n points in R
3 so that no

four of them lie on the same plane.

Proof. It is true for n ≤ 3. Suppose that it is true for n − 1. Choose n − 1 points
P1, P2, . . . , Pn−1 so that no four are coplanar. There are only finitely many planes containing
three of these points. Choose Pn so that it does not lie in any of these planes. Then no
four of P1, P2, . . . , Pn are coplanar.

To construct the diagram of a graph G, choose a set of points in R
3 having as many

members as there are vertices in G, and so that no four of the points are coplanar. Label
the points by the names of the vertices and join a, b by an interval [a, b] if and only if {a, b}
is an edge. Two intervals [a, b] and [c, d] cannot intersect if a, b, c, d are all distinct, since
that would force the four points to be coplanar.

Drawings of graphs are projections of diagrams in R
3 into the plane R

2. In some cases
it is impossible to draw a graph without edges crossing.
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A graph may have many different drawings
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Example 2.4. Are these three graphs the same?

e′i

(a) (b) (c)

Example 2.5. What about these three?

(a) (b)
(c)
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Definition 2.6. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there
exist bijections

φ : V1 −→ V2 and θ : E1 −→ E2

which preserve incidence. That is, such that if

e = {a, b} ∈ E1 then θ(e) = {φ(a), φ(b)} ∈ E2.

The pair (φ, θ) is called an isomorphism from G1 to G2.

Definition 2.7. The degree of a vertex u is the number of ends of edges incident to u
and is denoted deg(u) or degree(u).
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Example 2.8.

Graph degree of u degree sequence of G

u 0 〈0〉
u 1 〈1, 1〉

u 3 〈1, 3〉

u 2 〈1, 1, 2〉
u

3 〈1, 1, 1, 3〉

u

4 〈1, 1, 2, 4〉

u

7 〈1, 1, 1, 2, 7〉

Definition 2.9. Let G be a graph with n vertices. Order the vertices v1, . . . , vn so that
deg(vi) ≤ deg(vi+1). Then G has degree sequence

〈deg(v1), . . . , deg(vn)〉.

All the graphs of Example 2.4 are isomorphic – so all have the same degree sequence,
〈3, 3, 3, 3, 3, 3, 3, 3〉.

However, all the graphs of Example 2.5 have degree sequence 〈2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 8〉
although no two are isomorphic.
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Definition 2.10. A graph is regular if every vertex has degree d, for some fixed d ∈ Z.
In this case we say the graph is regular of degree d.

Example 2.11. Graphs which are simple, have 8 vertices, 12 edges and are regular of
degree 3. Are any two of these isomorphic? What are their degree sequences?

(a) (b) (c)

e8

(d) (e) (f)

(h)
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3 Basic results and particular examples

Counting edges and vertices

For this subsection G is a graph with vertices V and edges E, that is G = (V, E).
Recall that, for a set X, |X| = the number of elements of X.

Lemma 3.1 (The Handshaking Lemma).

∑

v∈V

deg(v) = 2|E|.

Lemma 3.2. Suppose that G has q vertices of odd degree. Then q is even.
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Corollary 3.3. If G has n vertices and is regular of degree d then G has nd/2 edges.
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Examples of graphs

Example 3.4. The Null graph Nd, for d ≥ 1.

Example 3.5. The Complete graph Kd, for d ≥ 1.
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K10 K15

K20
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K25
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K42
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Lemma 3.6. The complete graph Kd is regular of degree d − 1 and has d(d − 1)/2 edges.

Example 3.7. The Petersen graph.
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Example 3.8. The Platonic graphs. There are five of these graphs: called the Tetra-
hedron, Cube, Octahedron, Dodecahedron and Icosahedron. Each graph is based on the
corresponding regular solid. Corners and edges of the regular solid correspond to vertices
and edges of the graph, respectively.

Icosahedron Dodecahedron

Octahedron TetrahedronCube

AJD October 18, 2006
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4 Bipartite graphs

Definition 4.1. Let G = (V, E) be a graph such that

(i) V = V1 ∪ V2, where V1 and V2 are non-empty subsets of V and

(ii) V1 ∩ V2 = ∅ and

(iii) for i = 1 and 2, no edge of G joins a vertex of Vi to a vertex of Vi.

Then G is called a bipartite graph with bipartition (V1, V2).
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Example 4.2. 1. The Null graph Nd, where d ≥ 2, is bipartite. (Colour one vertex
blue, one vertex red and all the rest red or blue as you please.)

2. Here is a drawing of a bipartite graph with bipartition (V1, V2), where V1 is white and
V2 is black. (Note that not every vertex of V1 need be incident to a vertex of V2.)

3. The cube is bipartite.
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4. The octahedron is not bipartite.

5. Any graph which contains the following configuration is not bipartite.

The Gray code of length n

Example 4.3. Let k be any integer greater than 0. The k-cube Qk is a graph whose
vertex set is the set of sequences of length k of the symbols 1 and 0. That is

V (Qk) = {〈a1, . . . , ak〉 : ai = 0 or 1}.

Two vertices 〈a1, . . . , ak〉 and 〈b1, . . . , bk〉 are joined by and edge if and only if these se-
quences differ in exactly one term.

Q1: V (Q1) = {〈0〉 , 〈1〉}.
10
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Q2: V (Q2) = {〈0, 0〉 , 〈0, 1〉 , 〈1, 0〉 , 〈1, 1〉}.

0,10,0

1,0 1,1

Q3: V (Q3) = {000, 001, 010, 011, 100, 101, 110, 111}, (where the angle brackets are left out
for readability).

0,0,0 0,0,1

0,1,0 0,1,1

1,0,0

1,1,0 1,1,1

1,0,1

Lemma 4.4. 1. Qk is regular of degree k.

2. |E(Qk)| = k2k−1.

3. Qk is bipartite with bipartition (V1, V2) where

V1 = {〈a1, . . . , ak〉 :
∑

ai ≡ 0 mod (2)}

and
V2 = {〈a1, . . . , ak〉 :

∑
ai ≡ 1 mod (2)}.
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Proof. The first statement follows immediately from the definitions, the third is left as an

exercise. The second statement follows from the first and Corollary 3.3. In fact, as Qk is

regular of degree k and has 2k vertices we have

|E(Qk)| = k2k/2,

as required.

Definition 4.5. Let r, s ∈ Z with r, s ≥ 1. The complete bipartite graph Kr,s is the
simple graph with bipartition (V1, V2), where

1. |V1| = r and |V2| = s and

2. every vertex of V1 is joined to every vertex of V2.

Example 4.6. 1. Some complete bipartite graphs:

K2,3 K3,3 K4,4

2. As a special case of the complete bipartite graphs we have the family of star graphs
which are the graphs K1,s, s ≥ 1.
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K1,2

K1,3

K1,6
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5 Subgraphs

Definition 5.1. A subgraph of a graph G = (V, E) is a graph H = (V ′, E ′) such that
V ′ ⊂ V and E ′ ⊂ E.

Example 5.2. Let G = (V, E), where V = {a, b, c, d, f}, E = {e1, e2, e3, e4, e5, e6} and

e1 = {a, b}, e2 = {b, c}, e3 = {c, d}, e4 = {d, a}, e5 = {a, f}, e6 = {f, c}.

a

b
c

d

f
e1

e2

e3

e4

e5

e6

1. H1 = (V1, E1), where V1 = {a, b, c} and E1 = ∅ is a subgraph of G.

a b c

2. H2 = (V2, E2), where V2 = {a, b, c} and E1 = {e1, e2} is a subgraph of G.

a

b
c

e1

e2

3. H3 = (V3, E3), where V3 = {a, b, c, d, f} and E1 = {e2, e4, e5} is a subgraph of G.

a

b
c

d

f

e2

e4

e5

AJD October 18, 2006



MAS2203 Notes 28

4. G is a subgraph of G.

5. H4 = (V4, E4), where V4 = {a, b, c, x, y} and E1 = {e2, e4, e5} is not a subgraph of G,
because V4 is not a subset of V .

6. H5 = (V5, E5), where V5 = {a, b, c, d} and E5 = {e7, e8} with e7 = {b, f}, e8 = {a, c}
is not a subgraph of G, because E5 is not a subset of E.

7. H6 = (V6, E6), where V6 = {a, b, c, d} and E6 = {e5} is not a subgraph of G, because
it is not a graph (e5 = {a, f} is not a pair of elements of V6).

The last 3 examples illustrate the 3 possible ways in which H may fail to be a subgraph
of G.

Example 5.3. 1. For d ≥ 1 we define the cycle graph Cd to be the graph with d
vertices v1, . . . , vd and d edges {v1, v2}, . . . , {vd−1, vd}, {vd, v1}. (C1 has one vertex v1

and one edge {v1, v1}.) The cycle graph is regular of degree 2 and simple if d ≥ 3.

v1

C1

v1 v2

C2

v1

v2

v3 v4

v5

v6

C6
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2. For d ≥ 1 we define the wheel graph Wd to be the graph with d + 1 vertices
c, v1, . . . , vd and 2d edges {v1, v2}, . . . , {vd−1, vd}, {vd, v1}, {c, v1}, . . . {c, vd}.

cv1

W1

cv1 v2

W2

c

v1

v2

v3 v4

v5

v6

W6

The wheel graph has a subgraph isomorphic to the cycle graph Cd and a subgraph
isomorphic to the star graph K1,d. For d ≥ 3 it is simple.
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6 Walks, trails, paths, circuits and cycles

Throughout this section let G = (V, E) be a graph.

Definition 6.1. A sequence

v0, e1, v1, . . . , vn−1, en, vn,

where

(i) n ≥ 0 and

(ii) vi ∈ V and ei ∈ E and

(iii) ei = {vi−1, vi}, for i = 1, . . . , n,

is called a walk of length n. The walk is from its initial vertex v0 and to its terminal
vertex vn.

Example 6.2. G is the graph drawn below.

u

v w

x

e1

e2

e3

e4

e5

e6

e7
e8

e9

1. The sequence u, e1, v, e7, v, e2, w, e2, v is a walk of length 4 from u to v.

2. The sequence u, e4, x, e6, u is a walk of length 2 from u to u.

3. The sequence w is a walk of length 0 from w to itself.
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4. The sequence v, e2, w, e4, v is not a walk as e4 6= {w, v}.

Definition 6.3. Let W = v0, e1, v1, . . . , en, vn be a walk in a graph.

(i) If no edges of the walk are repeated (that is ei 6= ej when i 6= j) then W is called a
trail.

(ii) If no vertices of the walk are repeated (that is vi 6= vj when i 6= j) then W is called
an open path.

(iii) If v0 = vn then W is a closed walk.

(iv) A closed trail is called a circuit.

(v) If W is a closed trail and no two of the vertices v0, . . . , vn−1 are the same then W
is called a closed path. [Note that from the definition it follows that vn 6= vi, for
1 ≤ i ≤ n − 1.]

(vi) We refer to both open and closed paths as paths.

(vii) A closed path of length at least 1 is called a cycle.

Example 6.4. Consider the following walks in the graph of Example 6.2.

7. the walk v, e1, u, e4, x, e6, u, e5, w.

8. the walk w, e3, x, e4, u, e1, v.

9. the walk u, e4, x, e9, w, e3, x, e6, u.

The table below shows which of the definitions applies to each of the sequences of Ex-
amples 6.2 and 6.4.

open closed closed
walk trail path walk circuit path cycle length

1

2

3

4

5

6

7
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Note that an open path may be a closed walk, as in 3 above, but only when it has length
0.

Example 6.5. 1. The cycle graph Cd consists of a cycle of length d.

2. The path graph Pn, for n ≥ 1, is the graph with n vertices v1, . . . , vn and n − 1
edges e2, . . . , en, with ei = {vi−1, vi}, for i = 2, . . . , n. The path graph Pn consists of
an open path of length n.

P1 P2 P3 P4

Walks in simple graphs

If G is a simple graph then, to simplify notation, we may describe a walk by writing
only the subsequence of vertices, which we call the vertex sequence of the walk. For
example the sequence

v1, c, v5, v4, c, v2

is the vertex sequence of a unique walk in the wheel graph W6 shown above.
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7 Connectedness

Definition 7.1. A graph is connected if, for any two vertices a and b there is an open
path from a to b. A graph which is not connected is called disconnected.

Lemma 7.2. There is an open path from a to b if and only if there is a walk from a to b.
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Example 7.3.

Definition 7.4. A connected component of a graph G is a subgraph H of G such that

1. H is a connected subgraph of G and

2. H is not contained in any larger connected subgraph of G.

Example 7.5. 1. A connected graph has only one connected component – itself.

2. The graph G3 of Example 1.3 (5) has 3 connected components:

H1: the graph with vertices A, D and edges e4, e8;

H2: the graph with vertex B and edge e9;

H3: the graph with vertex C and no edges.

A

B

C

D
e4

e8

e9

G3

A

D
e4

e8

H1

B

e9

H2

C

H3
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3. The null graph Nd has d connected components, each with 1 vertex.

4. The graph G on the left has 3 connected components A, B and C, as shown.

G A

B
C

Definition 7.6. Let G = (V, E) be a graph and let E ′ be a subset of E. The graph with
vertex set V and edge set E − E ′ is called the graph obtained from G by deleting E ′,
denoted G−E ′. When E ′ consists of only one element we write G− e instead of G−{e}.

Example 7.7. In this example we use letters a, b, c, . . . , o, p, q to denote edges of the graphs
shown.

1.

a

b

c

d

e

G1
G1 − {a, b, c, d, e}
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2.

a

b

c

d

e

f

h

i

j

k

l

m

n

o

p

q

G2

G2 − {a, . . . , q}

3.

e

G3 G3 − e
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Lemma 7.8. Let G be a connected graph, C a circuit in G and e an edge of C. Then
G − e is connected.
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8 Eulerian graphs

Definition 8.1. 1. A trail containing every edge of a graph is called an Eulerian trail.

2. A circuit containing every edge of a graph is called an Eulerian circuit.

3. A graph is called semi-Eulerian if it is connected and has an Eulerian trail.

4. A graph is called Eulerian if it is connected and has an Eulerian circuit.

Note: Every Eulerian graph is semi-Eulerian.

Example 8.2. 1. The walk 1, 2, 3, 1, 5, 4, 3, 5, 2 is a semi-Eulerian trail in the graph
G1 below. Therefore G1 is semi-Eulerian. Does G1 have an Eulerian circuit?

1

2 3

4

5

G1

2. The walk a, b, c, d, e, f, b, e, c, f, a is an Eulerian circuit in the graph G2 below.
Therefore G2 is Eulerian.

a

b c

d

ef

G2

3. The walk a, 1, b, 2, c, 3, d, 4, e, 5, a, 7, c, 9, c, 8, e, 6, a is an Eulerian circuit in the graph
G3 below.
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G3

1

2 3

4

5

6

7 8

9

a

b

c

d

e

Consider the vertex c in Example 8.2.3. Each occurrence of c appears between two
edges. As all edges of the graph appear in the Eulerian circuit we can compute the degree
of c as twice the number of times it occurs in the sequence.

Theorem 8.3 (Euler, 1736). If G is an Eulerian graph then every vertex of G has even
degree.
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Example 8.4. 1. There is no Eulerian circuit for the graph of Example 8.2.1 above:
this graph has vertices of odd degree.

2. The Königsberg bridge problem.

R. Pregel

1 2 3

4

567
A

B

C

D

The River Pregel in Königsberg

1 2
3

4

5
67

A

B

C

D

A graph of the Königsberg bridges

The Königsberg bridge problem is: starting at any bridge, cross all bridges exactly

once and return to the start. Euler proved the theorem above in response to this

question, showing that it is not possible to do so. The corresponding graph is not

Eulerian as it has vertices of odd degree.

3. Of the Platonic graphs only the Octahedron can be Eulerian. Can you find an
Eulerian circuit for the Octahedron?

4. The graph Kd is not Eulerian if d is even.

Lemma 8.5. Let G be a graph such that every vertex of G has even degree. If v ∈ V (G)
with deg(v) > 0 then v lies in a circuit of positive length.
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Proof. Starting at v we can begin a trail by walking along an edge incident to v. We

continue to construct a trail for as long as we can. At any vertex u we come to we can

always leave by an edge that has not been used so far. In fact if we have previously visited

u on k occasions then we have used 2k ends of edges incident to u. Thus we arrive at u

on the 2k + 1st edge. As deg(u) is even there must be another unused edge by which we

can leave. As G is finite we eventually arrive back at v and form a circuit containing v, of

positive length.

Theorem 8.6. Let G be a connected graph. Then G is Eulerian if and only if every vertex
of G has even degree.

Proof. We have already seen (Theorem 8.3) that if G is Eulerian then every vertex of G is
of even degree.

Suppose then that every vertex of G has even degree. Let C be a circuit of maximal
length in G. If C contains every edge of G then it’s an Eulerian circuit and so G is Eulerian
as required. We assume that C does not contain all edges of G and derive a contradiction.

Assume that E ′ is the set of edges of C and that there are some edges of G not in E ′.
Consider the graph G − E ′. First of all, every vertex of G − E ′ has even degree (as C is
a circuit). Also, although G − E ′ may be a disconnected graph it does have a connected
component, H say, with at least one edge. Furthermore, as G is connected it follows that
C and H have a vertex, a say, in common. Now a has positive degree and so, by Lemma
8.5, is contained in a circuit D, of positive length, in H .

Let C be
v0, e

′

1, . . . , e
′

i, a, e′i+1, . . . , vm

and let D be
u0, e1, . . . , ej, a, ej+1, . . . , un.

Then
v0, e

′

1, . . . , e
′

i, a, ej+1, . . . , un = u0, e1, . . . , ej , a, e′i+1, . . . , vm
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is a circuit in G of length greater than that of C (see Figure 8.1). However this contradicts
the choice of C as a circuit of maximal length in G. Therefore C must contain all edges of
G as required.

C

D

aej

+1

ej+1

e′i+1

e′i

v0 = vm

u0 = un

C

D

aej
ej+1

e′i+1

e′i

v0 = vm

u0 = un

Figure 8.1: Construction of a circuit in Theorem 8.6
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Example 8.7.

1. The graph Kd is Eulerian, for d odd.

2. The Octahedron is Eulerian.

3. The complete bipartite graph Kr,s is Eulerian if and only if r and s are both even.

4. The k-cube Qk is Eulerian if and only if k is even.

5. The graphs shown below are Eulerian.
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Definition 8.8. A graph G = (V, E) has a decomposition into subgraphs H1 =
(V1, E1), . . . , Hn = (Vn, En) if

1. E = E1 ∪ · · · ∪ En and

2. Ei ∩ Ej = ∅, when i 6= j.

Put another way: colour the edges of G with n colours 1, . . . , n. Take Hi to be the subgraph

of G consisting of all edges of colour i and all their incident vertices. If G has no isolated

vertices then this is a decomposition of G into subgraphs H1, . . . , Hn. If G has some isolated

vertices then any combination of them may be added to any of the Hi’s or they may be

partitioned into separate subgraphs: either way a decomposition of G results.

If G has a decomposition into subgraphs H1, . . . , Hn, where Hi is a cycle graph or a
null graph, for all i, we say G has a decomposition into closed paths. (See Example
5.3.1, Notes page 28, for the definition of a cycle graph.)

Example 8.9. 1. The Octahedron, the 4-cube Q4, the graphs of Example 7.7.1 and
7.7.2 and all the graphs of Example 8.7.5 have decompositions into closed paths.
Isolated vertices may occur in a decomposition into closed paths. In particular the
Null graph Nd has a decomposition into closed paths.

2. A decomposition of the Petersen graph into subgraphs H1, H2 and H3.
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The Petersen graph H1

H2 H3
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3. A different decomposition of the Petersen graph into subgraphs A1 and A2.

The Petersen graph A1 A2

4. Another example of a decomposition into 3 subgraphs B1, B2 and B3.

The wheel graph W12 B1
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B2 B3

Theorem 8.10. A graph G has a decomposition into closed paths if and only if every
vertex of G has even degree.
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Corollary 8.11. A connected graph is Eulerian if and only if it has a decomposition into
closed paths.

Theorem 8.12. A connected graph is semi-Eulerian but not Eulerian if and only if pre-
cisely 2 of its vertices have odd degree.
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9 Hamiltonian graphs

Definition 9.1.

1. A path containing every vertex of a graph is called a Hamiltonian path.

2. A closed path containing every vertex of a graph is called a Hamiltonian closed
path.

3. A graph is called semi-Hamiltonian if it has a Hamiltonian path and Hamiltonian
if it has a Hamiltonian closed path.

Note:

1. By definition every Hamiltonian graph is semi-Hamiltonian. If v0, . . . , vn, v0 is a

Hamiltonian closed path then v0, . . . , vn is a Hamiltonian path; so a Hamiltonian

graph contains both an open and a closed Hamiltonian path.

2. A semi-Hamiltonian graph is necessarily connected.

Example 9.2.

1. The walk a, b, c, d is a Hamiltonian path in the graph G1 below. Therefore G1 is
semi-Hamiltonian.

ab

c d

G1
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2. The walk 1, 2, 3, 4, 5, 1 is a Hamiltonian closed path in the graph G2 below. Therefore
G2 is Hamiltonian.

1

2 3

4

5

G2

3. The graph G3 below is not semi-Hamiltonian (and therefore not Hamiltonian).

G3

4. The complete graph K2 is semi-Hamiltonian but not Hamiltonian. For d 6= 2 the
graphs Kd are Hamiltonian.

5. The cycle graphs are Hamiltonian for d ≥ 1.

6. The wheel graph Wd is Hamiltonian for d ≥ 2. The wheel graph W1 is semi-
Hamiltonian but not Hamiltonian.

7. Construct a graph with one vertex corresponding to each square of a chess-board and
an edge joining two vertices if a knight can move from one to the other. We call this
the knight’s move graph.

The knight’s move graph
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Here is a Hamiltonian closed path for the knight’s move graph.

We say a graph G has a decomposition into Hamiltonian closed paths if it has a
decomposition into subgraphs each of which forms a Hamiltonian closed path in G.

Example 9.3. Consider the complete graph K11.

This has 11 vertices and (11 × 10)/2 = 55 edges. A Hamiltonian closed path for K11

has 11 edges so if there is a Hamiltonian decomposition it must involve 5 closed paths.

We demonstrate one method of finding a decomposition of K11 into 5 Hamiltonian closed

paths. Let the vertices of K11 be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, x. Arrange the numbered vertices

as the corners of a regular 10-gon and place the vertex x outside. The first Hamiltonian
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closed path C1 is the zig-zag, with ends attached to x, shown in Figure 9.1 below.

That is

1

2

3

4

5

6

7

8

9
0

x

Figure 9.1: The Hamiltonian closed path C1 in K11

C1 = 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, x, 0.

The second closed path C2 is obtained by rotating the zig-zag one position anti-clockwise.

The ends of the zig-zag are still to be joined to x. This is achieved by adding 1 to each
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term of the first sequence C1 and reducing modulo 10 as necessary. Therefore

C2 = 1, 0, 2, 9, 3, 8, 4, 7, 5, 6, x, 1,

as in Figure 9.2.

1

2

3

4

5

6

7

8

9
0

x

Figure 9.2: The Hamiltonian closed path C2 in K11

We continue this process, turning the zig-zag one position anti-clockwise each time to
obtain 3 further closed paths

C3 = 2, 1, 3, 0, 4, 9, 5, 8, 6, 7, x, 2,

C4 = 3, 2, 4, 1, 5, 0, 6, 9, 7, 8, x, 3 and

C5 = 4, 3, 5, 2, 6, 1, 7, 0, 8, 9, x, 4.

We now have the required decomposition of K11 into 5 Hamiltonian closed paths.

Theorem 9.4. The complete graph K2d+1 has a decomposition into d Hamiltonian closed
paths.

Proof. The method of the above example (which is called the turning trick) can be used to
prove the general case. Note that K2d+1 has (2d+1)2d/2 = (2d+1)d edges. A Hamiltonian
decomposition, if it exists, must therefore involve d Hamiltonian closed paths. We label
the vertices 0, 1, . . . , 2d − 1, x. Our closed paths are
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C1 0, 2d − 1, 1, 2d − 2, 2 . . . d − 1, d, x, 0
C2 1, 0, 2, 2d − 1, 3 . . . d, d + 1, x, 1
C3 2, 1, 3, 0, 4 . . . d + 1, d + 2, x, 2
...

...
...

...
...

...
...

...
...

...
Cd−1 d − 2, d − 3, d − 1, d − 4, d . . . 2d − 3, 2d − 2, x, d − 2
Cd d − 1, d − 2, d, d − 3, d + 1 . . . 2d − 2, 2d − 1, x, d − 1

There are d of these closed paths and they have no edges in common. Therefore we have
the required decomposition into d Hamiltonian closed paths.

The vertices of a graph having a decomposition into closed paths are all of even degree.

Hence K2d cannot possibly have a decomposition into closed paths and certainly not into

Hamiltonian closed paths. However, all is not lost:

Corollary 9.5. The complete graph K2d has a decomposition into d Hamiltonian paths.

Proof. Consider the decomposition of K2d+1 into d Hamiltonian closed paths given in

Theorem 9.4. Remove the vertex x, and all its incident edges, to obtain a decomposition

of K2d into d Hamiltonian paths. (These are open paths.)

Example 9.6. The drawings below show the decomposition of K7 into 3 Hamiltonian
closed paths, given by Theorem 9.4 and the corresponding decomposition of K6 into 3
Hamiltonian paths.
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1

2

3

4

5

0

x

A decomposition of K7 into
Hamiltonian closed paths

1

2

3

4

5

0

A decomposition of K6 into
Hamiltonian paths

Example 9.7. From the decomposition of K6 into 3 Hamiltonian paths above we can

construct a decomposition of K6 into 5 paths of lengths 1, 2, 3, 4 and 5. We use one of the

Hamiltonian paths as it is for the path of length 5. We split the second one into two paths:

one of length 1 and one of length 4. We split the third one into two paths: one of length

2 and one of length 3. This results in the required decomposition.

This example generalises to give the following theorem.

Theorem 9.8. The complete graph K2d has a decomposition into 2d − 1 paths of lengths
1, 2, . . . , 2d − 1.

Theorem 9.9. Let G be a simple graph with n ≥ 3 vertices. Suppose

deg(u) + deg(v) ≥ n,
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whenever u and v are vertices of G which are not adjacent. Then G is Hamiltonian.

Proof. (Non-examinable) The proof is by contradiction. Assume there is a graph G which
satisfies the given conditions but is non-Hamiltonian. Note that G cannot be a complete
graph as these are all Hamiltonian. We can therefore add an edge to G to form a new
simple graph. If we find that adding this edge gives a Hamiltonian graph then we know that
G is semi-Hamiltonian. Otherwise we replace G with the non-Hamiltonian graph with the
new edge added. This graph still satisfies all the given conditions and is non-Hamiltonian.
We carry on this process of adding an edge until the stage where the addition of one more
edge would make the graph Hamiltonian. We now have a semi-Hamiltonian graph G which
satisfies all the given conditions but is not Hamiltonian.

Suppose P is a Hamiltonian path for G, say P has vertex sequence

v1, . . . , vn.

If v1 and vn are adjacent then (as n ≥ 3) we can extend this path to a Hamiltonian closed
path. As G is non-Hamiltonian it follows therefore that v1 and vn are not adjacent. Thus
deg(v1) + deg(vn) ≥ n, by assumption. Suppose deg(v1) = r so

deg(vn) ≥ n − r. (9.1)

Let i1 < i2 < · · · < ir be integers such that the elements vi1 , vi2 , . . . , vir of the sequence
P = v1, . . . , vn are the r vertices incident to v1. Let

S = {vi1−1, vi2−1, . . . , vir−1}.

Note that vn /∈ S, v1 = vi1−1 and |S| = r. Now assume that vn is not adjacent to any of
the vertices of S. As G has n vertices and vn /∈ S, it follows that vn is adjacent to at most
n − r − 1 vertices. Hence deg(vn) ≤ n − r − 1, contradicting equation (9.1). Therefore
vn must be adjacent to a vertex of S. That is, there is some integer i such that P is the
sequence

v1, . . . , vi−1, vi, . . . , vn,

with v1 adjacent to vi and vn adjacent to vi−1, as illustrated in the diagram below.

e

e2

e′

ei

en

v1

v2

vivi−1

vn

vn−1

Now, using the notation of the diagram

v1, e2, v2, . . . , vi−1, e
′, vn, en, vn−1, . . . , vi, e, v1

is a Hamiltonian closed path for G. This contradicts the assumption that G is non-
Hamiltonian. Hence no such G exists and the proof is complete.
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Example 9.10. Note that although there are theorems relating Eulerian and Hamiltonian
graphs there do exist graphs with any combination of these properties:

A graph which is Hamiltonian and
Eulerian

A graph which is Eulerian and
non-Hamiltonian

A graph which is Hamiltonian and
non-Eulerian

A graph which is non-Eulerian and
non-Hamiltonian
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10 Trees

Recall that a cycle is a closed path of length at least 1.

Definition 10.1.

1. A forest is a graph with no cycle.

2. A tree is a connected graph with no cycle.

Example 10.2.

1. A forest:

2. The graphs of Example 4.6.2 are all trees.

3. The path graph is a tree for all n ≥ 1.

Note:

1. Forests and trees are, by definition, simple graphs.

2. A connected subgraph of a forest is a tree.

3. The connected components of a forest are trees. A forest with one connected com-

ponent is a tree.

AJD October 18, 2006



MAS2203 Notes 63

4. A subgraph of a tree is a forest.

One obvious question is how many non-isomorphic trees are there with a given number

of vertices. Here are some results in this direction.

Example 10.3.

1. There is only one tree with one vertex, N1 = P1. There is only one tree with 2
vertices, K2 = P2. There is only one tree with 3 vertices, namely P3.

2. There are 2 trees with 4 vertices:

3. There are 3 trees with 5 vertices.

4. There are 6 trees with 6 vertices and 11 trees with 7 vertices (see the Exercises).

5. There are 23 trees with 8 vertices:
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There are several possible ways of formulating the definition of a tree. Starting from
the above definition we can prove the next theorem, which could have been used as the
definition. First we recall the result of Exercise 2.20.

Lemma 10.4. If a graph G contains two distinct paths from vertices u to v then G contains
a cycle.

Proof. Amongst all pairs of distinct paths with the same initial and terminal vertices choose
a pair such that the sum of their lengths is minimal. Suppose this is the pair of paths

p = u0, . . . , um and q = v0, . . . vn,

where u0 = v0 and um = vn. Suppose that ui = vj for some i, j, with 0 < i < m and
0 ≤ j ≤ n. Then either there is a pair of distinct paths from u0 to ui or from ui to um

which have smaller lengths than p and q. This contradicts our choice of p and q, so cannot
occur. It follows that u0, u1, . . . , um = vn, vn−1, . . . , v1, v0 = u0 is a cycle.

Theorem 10.5. A graph G is a tree if and only if

(i) G has no loops and

(ii) there is exactly one open path from u to v, for all pairs u, v of vertices of G.

Proof. First suppose that G is a tree. Then, by definition, G has no cycle and is connected.

Therefore G has no loop and there is at least one path from u to v, for all vertices u, v of

G. Suppose there exist vertices u and v of G with two distinct paths from u to v. Then,

using the result of Lemma 10.4, it follows that G contains a cycle. Thus G is not a tree, a

contradiction. Thus there is exactly one path from u to v whenever u and v are vertices

of G.

Conversely suppose G is a graph with no loop which has the property that there is

exactly one path from u to v whenever u and v are vertices of G. Then G is certainly

connected. If G contains a cycle with vertex sequence v0, . . . vn, v0 then there are distinct

paths v0, . . . , vn and v0, vn from v0 to vn, a contradiction. Hence G is connected and

contains no cycle and so is a tree.
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Another characterising property of trees can be obtained with the help of the following
definition.

Definition 10.6. An edge e of a graph G is a bridge if G − e has more connected
components than G.

Example 10.7.

1. In these diagrams the edge e is a bridge:

ee

2. If e is an edge of a cycle then e is not a bridge (Lemma 7.8).

Theorem 10.8. A graph G is a tree if and only if G is connected and every edge of G is
a bridge.

Proof. Assume first that G is a tree. Then, by definition G is connected. Let e be an edge

of G, say e = {u, v}. If e is not a bridge then G − e is connected and so there is a path P

in G − e from u to v. However this means that there are 2 distinct paths, P and u, e, v,

from u to v in G. This contradicts Theorem 10.5. Therefore e must be a bridge.

Now suppose that G is a connected graph, every edge of which is a bridge. If G

contains a cycle then let e be an edge of this cycle. From Lemma 7.8 it follows that G− e

is connected, contradicting the hypothesis that e is a bridge. Hence G is connected and

contains no cycle. That is, G is a tree.

Lemma 10.9. Let G be a connected graph with m edges and n vertices. Then n ≤ m + 1.
Furthermore G contains a cycle if and only if n < m + 1.
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Theorem 10.10. Let G be a connected graph with n vertices and m edges. Then G is a
tree if and only if n = m + 1.

This follows immediately from Lemma 10.9

Definition 10.11. Let G be a graph. A spanning tree for G is a subgraph of G which

1. is a tree and

2. contains every vertex of G.

A graph which has a spanning tree must be connected. A graph may have many
different spanning trees.

Example 10.12. In the diagrams below the solid lines indicate some of the spanning trees
of the graph shown: there are many more.

Theorem 10.13. Every connected graph has a spanning tree.

Proof. We use induction on m, the number of edges of G. When m = 0 then the graph

consists of a single vertex, since it is connected, and is therefore a tree.

The inductive hypothesis is: every connected graph with at most m edges has a spanning

tree, where m ≥ 0.
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Now let G be a connected graph with m + 1 edges. If G is a tree then there is nothing

further to prove. If G is not a tree then it contains a cycle C. Remove an edge e from C

to form the connected graph G− e (Lemma 7.8). As G− e has m edges it has a spanning

tree (by the inductive hypothesis). As G and G − e have the same vertex set it follows

that this spanning tree is also a spanning tree for G, as required. Therefore, by induction,

the result holds for all connected graphs.

The above proof suggests an algorithm for construction of a spanning tree of a graph.
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The cut-down algorithm
Given a connected graph G to construct a spanning tree:

1. If G is a tree stop.

2. Choose an edge e from a cycle and replace G with G − e. Repeat from 1.

Example 10.14. Starting with the Petersen graph:

Proof that this process results in a spanning tree is contained in the proof of Theorem
10.13. Another approach is the following.

The build-up algorithm
Given a connected graph G to construct a spanning tree:

1. Start with a graph T consisting of the vertices of G and no edges.

2. If T is connected stop.

3. Add an edge e of G to T which does not form a cycle in T . Repeat from 2.
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Example 10.15. This time starting with the Petersen graph:

Proof that the build-up algorithm stops when T is a spanning tree for G is straightfor-
ward. Strictly speaking neither of these is an algorithm. Recall that a graph consists of a
set V of vertices and a set E of edges. The input to our algorithm is a list of the elements
of V and a list of the elements of E. Given such data we have described no way of testing
whether the graph G = (V, E) contains a cycle or whether the graph is connected. We
shall see how to remedy this defect in the next section.
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11 Weighted graphs

In Section 10 it was pointed out that the cut-down and build-up algorithms described
there are incomplete as they do not address the questions of finding cycles or testing for
connectedness.

In fact, as all the graphs we consider are finite, it is clear that algorithms to find a cycle
or a connected component do exist. The difficulty is to find an algorithm that works fast
enough to be practical. Generally speaking, in a very large graph it may take a very long
time to find a cycle, even with the best known algorithms. It is somewhat easier to test
for connectedness. In fact to determine the connected component of a given vertex v we
might colour v and all vertices incident to v red. Next colour red all uncoloured vertices
which are incident to a red vertex. Continue until there are no uncoloured vertices incident
to red vertices. The vertices of the connected component of v are now red.

Next we describe an adaption of the build-up algorithm which, by choosing carefully
which edge to add at each stage avoids asking the questions “does adding this edge create a
cycle?”. The algorithm also tests for connectedness, using something similar to the “colour
red” algorithm described above.

A programmable spanning tree algorithm

A graph with one vertex has a spanning tree consisting of one vertex and no edges. We
eliminate these before we begin. Assume that we have a graph G = (V, E) with at least
2 vertices. If the graph has no edge then it is not connected (and we are finished) so we
shall also assume G has an edge

Step 1 Choose an element e ∈ E, say e = {a, b}, with a 6= b.
Set v1 = a, v2 = b and t1 = e.
Start building a tree T with vertices V (T ) = {v1, v2} and edges E(T ) = {t1}.
Set i = 1 and j = 2. (i is the number of the “base vertex”, j is the number of the
last vertex added.)

Step 2 If there is a vertex u of G which is adjacent to vi and not in the subgraph T then

add 1 to j;
set vj = u and tj−1 = {vi, vj} (an edge of G joining vi to u);
continue to build up T by adding vj to V (T ) and tj−1 to E(T ).

Step 3 If j is equal to the number of vertices of G then output the tree T and stop.

Step 4 If all vertices of G which are adjacent to vi are in T then

add 1 to i.

Step 5 If i > j then output the message “G is not connected” and stop. Otherwise repeat
from Step 2.

We illustrate the algorithm using the following example.
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Example 11.1.

a

b c d

ef

g

Step 1 Choose e = {a, b};

Set v1 = a, v2 = b and t1 = e = {v1, v2};

Set i = 1 and j = 2.

Result: V (T ) = {v1, v2}, E(T ) = {t1}.

a

b

Step 2 vi = v1 = a is adjacent to f and f /∈ V (T );

Set j = 2 + 1 = 3;

Set vj = v3 = f and tj−1 = t2 = {a, f}.

Result: V (T ) = {v1, v2, v3}, E(T ) = {t1, t2}.

a

b

f
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Step 3 and Step 4 do nothing.

Step 2 vi = v1 = a is adjacent to g and g /∈ V (T );

Set j = 3 + 1 = 4;

Set vj = v4 = g and tj−1 = t3 = {a, g}.

Result: V (T ) = {v1, v2, v3, v4}, E(T ) = {t1, t2, t3}.

a

b

f

g

Step 3 does nothing.

Step 4 Set i = 1 + 1 = 2.
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Step 2 vi = v2 = b is adjacent to c and c /∈ V (T );

Set j = 4 + 1 = 5;

Set vj = v5 = c and tj−1 = t4 = {b, c}.

Result: V (T ) = {v1, v2, v3, v4, v5}, E(T ) = {t1, t2, t3, t4}.

a

b c

f

g

The subsequent steps of the algorithm continue to build T as follows, the right hand tree

being the output spanning tree.

a

b c

ef

g

a

b c d

ef

g

To see that the above procedure always outputs a spanning tree of a connected input
graph G note that it produces a sequence T1, . . . , Tk, Tk+1, . . . of subgraphs of G. For each
k the subgraph Tk+1 is constructed from Tk by adding a new edge; one end of which is in
Tk while the other is not. Therefore each subgraph in the sequence is connected. As T1

has 2 vertices and 1 edge it follows that the number of vertices of Tk is one more than the
number of edges of Tk, for all k. From Theorem 10.9 it follows that Tk is a tree, for all k.
Therefore, the only way the process could fail is if some vertex of G never enters any of
the Tk. Suppose that this happens for some graph G and that v is a vertex of G which is
never included in the vertex set of the Tk’s. If G is connected then there is a path in G
from v to a vertex of Tk, for some k. Let u be the last vertex in this path which is never
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added to any of the Tk’s. Then the next vertex in the path x, say, is a vertex of Tk, for
some k. Hence, at some stage the algorithm sets x = vi. In the subsequent steps of the
algorithm u becomes a vertex of one of the Tk’s, a contradiction. Hence no such v exists.
Therefore we conclude that if G is connected then the algorithm always halts and outputs
a spanning tree T of G. On the other hand, if G is not connected the algorithm cannot
stop in Step 3, because j is always less than the number of vertices of G. Hence it must
stop in Step 5, saying that G is not connected.

Weighted graphs

It is often useful to associate further information to the edges and vertices of a graph.
For example the edges of a graph may represent roads, in which case we may wish to as-
sociate a distance, cost of travel or speed restriction to each edge. If the vertices represent
places we may require them to carry additional information about population, tempera-
ture or cost of living. We concentrate here on graphs in which additional information is
associated to edges. We assume that the required information is encoded as a number.

Definition 11.2. Let G be a connected graph with edge set E. To each edge e ∈ E assign
a non-negative real number w(e). Then G is called a weighted graph and the number
w(e) is called the weight of e. The sum

W (G) =
∑

e∈E

w(e)

is called the weight of G.

Example 11.3. The following drawing shows a weighted graph G. The weight of edge
{A, S} is w({A, S}) = 99 and the weight of edge {O, P} is w({O, P}) = 24. The graph
has weight W (G) = 652.

11

123

99

91

70
45

46

83

24

60

A

B

D
O

P

S

The Minimum Connector Problem

A subgraph of a connected graph G which contains all the vertices of G is called a
spanning subgraph. We have seen several examples of spanning trees and obviously
every spanning graph must contain a spanning tree.
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In a connected, weighted graph the problem of finding a spanning subgraph of minimal
weight is called the minimal connector problem. A spanning subgraph of minimal weight
is always a spanning tree, so the problem is to find a spanning tree of minimal weight. The
following algorithm does so. Again we leave aside the problem of testing for a cycle.

The Greedy Algorithm (also known as Kruskal’s Algorithm)

Let G be a connected weighted graph. To find a spanning tree T for G of minimal
weight:

Step 1 Start with the forest T consisting of all vertices of G and no edges.

Step 2 Choose an edge e of G of minimal weight amongst all those not in T . Add e to T

if this does not create a cycle in T .

Step 3 If T is connected then T is a minimal weight spanning tree so stop. Otherwise

repeat from Step 2.

A proof that the Greedy Algorithm outputs a minimal weight spanning tree can be found

in most introductory texts in Graph Theory.
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Example 11.4. The algorithm proceeds as shown on the weighted graph G below, pro-
ducing forests T1, . . . , T5 the last of which, T5, is a minimal weight spanning tree. Note
that there are some choices that have to be made in the running of the algorithm on this
graph. For instance, either of the edges of weight 2 could have been included in T . A
different choice results in a different minimal weight spanning tree, of which there may be
many.

1

2
2

5

6

7

77

8

8

8

9

A

B

D
O

P
S

G

1

2
2

5

6

7

77

8

8

8

9

A

B

D
O

P
S

T1

1

2
2

5

6

7

77

8

8

8

9

A

B

D
O

P
S

T2

1

2
2

5

6

7

77

8

8

8

9

A

B

D
O

P
S

T3

1

2
2

5

6

7

77

8

8

8

9

A

B

D
O

P
S

T4

1

2
2

5

6

7

77

8

8

8

9

A

B

D
O

P
S

T5

The Travelling Salesman Problem

A problem which arises in many applications is: “Given a connected weighted graph
G, find a closed walk in G containing all vertices of G and of minimal weight amongst all
such closed walks.” This problem proves to be very difficult to solve in general. An easier
problem, which we shall call the Travelling Salesman problem is: “Given a connected
weighted graph G, find a minimal weight Hamiltonian closed path in G.” The Travelling
Salesman problem is easier in the sense that there are fewer possible solutions, so the search
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has fewer items to consider. However it is still very difficult to solve. We show here how
the algorithm for the Minimum Connector problem can be used to find a lower bound for
the Travelling Salesman problem. First however we establish some useful notation.

Definition 11.5. Let G be a graph and let v be a vertex of G. The graph G− v obtained
from G by deleting v is defined to be the graph formed by removing v and all its incident
edges from G.

Example 11.6.

a

b

G

b

G − a

a

G − b

Suppose that G is a weighted graph. Let C be a Hamiltonian closed path of minimal

weight in G and let v be any vertex of G. Delete the vertex v from G to leave a weighted

graph G − v. Now C − v is a Hamiltonian path in G − v and is therefore a spanning tree

for G − v. In particular G − v is connected. Suppose that the weight of a minimal weight

spanning tree for G− v is M . Then w(C − v) ≥ M but note that it is possible that C − v

is not of minimal weight, so it may be that w(C − v) > M . Next consider the two edges e1

and e2 of the closed path C which are incident to v. Let m1 and m2 be the weights of two
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edges of least weight incident to v. Then w(e1) + w(e2) ≥ m1 + m2 and again it is possible

that equality does not hold here. We now have

w(C) = w(C − v) + w(e1) + w(e2) ≥ M + m1 + m2.

We have shown that:

Theorem 11.7. If G is a weighted graph, C is a minimal weight Hamiltonian closed path
in G and v is a vertex of G then

w(C) ≥ M + m1 + m2,

where M is the weight of a minimal weight spanning tree for G− v and m1 and m2 are the
weights of two edges of least weight incident to v.

As pointed out above the inequality in this Theorem may be strict. Thus, what we
have is a lower bound for the Travelling Salesman problem, which in some cases may be
smaller than the weight of minimal weight Hamiltonian closed path.

Example 11.8. We shall find a lower bound for the Travelling salesman problem in the
weighted graph G below by removing vertex A.

2

3
3

4

44

4

55

5

A

B

C D

E
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Removing A we obtain the weighted graph G − A:

3

3

4

4

4

5

B

C D

E

Running the Greedy Algorithm on G − A we might obtain any of the minimal weight
spanning trees below. We show all three only for purposes of illustration: any one will
suffice. In this case we have M = 10.

33 4

B

C D

E

Spanning Tree 1

3

3

4B

C D

E

Spanning Tree 2

3

3
4

B

C D

E

Spanning Tree 3

The edges of minimal weight incident to A are {A, C} and {A, D} which have weights
m1 = 2 and m2 = 4. Combining this information we have a lower bound of 10+2+4 = 16.

In this example it is relatively easy to see that there is no Hamiltonian closed path of

weight 16. In fact, if there were then the argument justifying the above theorem shows

that we should be able to form such a closed path using a minimal weight spanning tree

for G−A and two edges incident to A. However, as you can easily check, G−A has only 3
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minimal spanning trees and they are shown above. None of these is part of a Hamiltonian

closed path of weight 16 so no such closed path exists. However there is a Hamiltonian

closed path of weight 17, as shown below. Therefore the minimal weight of a Hamiltonian

closed path in the graph G is 17.

2
3

3
4

5

A

B

C D

E
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12 Planar Graphs

Definition 12.1. A graph is planar if it can be drawn in the plane without edges crossing.
A plane drawing of a graph is a drawing of a graph in the plane which has no edge
crossings.

We shall abuse notation and refer to a plane drawing of a graph as a plane graph.
Note however that a drawing is merely a representation of a graph: as always a graph
consists merely of a pair of sets.

Example 12.2. 1.

The two graphs drawn below are isomorphic. Therefore they both represent a planar

graph. Only the right hand drawing is plane.

2.

All the platonic graphs are planar. There are plane drawings of all but the Octahe-

dron in Example 3.8. Here is a plane drawing of the Octahedron.
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3.

It is easy to see that the left hand graph below is planar. The right hand one is

non-planar. To verify non-planarity from scratch requires some effort. Here we shall

develop some tests which can be used to check quickly whether or not a graph is

planar.

A plane drawing of a graph divides the plane up into polygonal regions which we call
faces. In the Example 12.2 the first plane graph divides the plane into 7 regions and the
Octahedron divides the plane into 8 regions. (Note that in each case one of the regions is
unbounded.) The following definition attempts formalise this idea.

Definition 12.3. Let D be a plane drawing of a graph. If x is a point of the plane not
lying on D then the set of all points of the plane that can be reached from x without
crossing D is called a face of D. One face is always unbounded and is called the exterior
face.

(To make a rigorous definition of face requires the Jordan Curve theorem, which says
that a simple closed curve in the plane divides the plane into two parts, one inside and one
outside the curve. This theorem is beyond the scope of this course.)

Example 12.4. 1. A plane drawing of a tree has one face (which is exterior).

2. The graph below has 9 faces labelled a, . . . , i. Face h is the exterior face.
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a

b

c

de
f

g

h i

Euler noticed that for a plane drawing of a platonic graph with n vertices m edges and
r faces the sum n − m + r = 2. He went on to prove the following theorem.

Theorem 12.5 (Euler’s Formula). Let G be a connected plane graph (i.e. a plane drawing
of a connected graph) with n vertices, m edges and r faces. Then n − m + r = 2.

Proof.
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Definition 12.6. Let F be a face of a plane graph. The degree of F , denoted deg(F ) is
the number of edges in the boundary of F , where edges lying in no face except F count
twice. (To compute deg(F ) walk once round the boundary of F , counting each edge on
the way.)

In Example 12.4.2 above we have

face a b c d e f g h i
degree
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The degree of a face has much in common with the degree of a vertex. Compare the
following to Lemma 3.1.

Lemma 12.7. If G is a plane graph with m edges and r faces F1, . . . , Fr then

r∑

i=1

deg(Fi) = 2m.

Proof. Every edge meets either one or two faces. Edges meeting only one face contribute
2 to the degree of their face. Edges meeting two faces contribute 1 to the degree of each
of their faces. The result follows.

We can use Euler’s formula to find graphs which are non-planar.

Corollary 12.8. If G is a simple connected planar graph with n ≥ 3 vertices and m edges
then m ≤ 3n − 6.

Proof. Let D be a plane drawing of G with r faces. As G is simple every face of D has

degree at least 3. (Why?) Therefore

2m =
∑

f a face

deg(f) ≥ 3r.

Hence 2m/3 ≥ r and substitution in Euler’s formula gives

2 = n − m + r ≤ n − m + (2m/3) = n − m/3.

The result follows.

Corollary 12.9. If G is a connected simple planar graph with n ≥ 3 vertices, m edges and
no cycle of length 3 then m ≤ 2n − 4.

Proof. A plane drawing of G can have no face of degree less than 4. The proof proceeds
as that of Corollary 12.8, except that this time 2m ≥ 4r.
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We can now prove the following.

Theorem 12.10. The complete graph K5 and the complete bipartite graph K3,3 are both
non-planar.

Proof. As K5 has 5 vertices it can be planar only if it has 9 or fewer edges (Corollary 12.8).

As K5 has 10 edges it cannot be planar.

Similarly, if K3,3 is planar then Corollary 12.9 implies that it has at most 8 edges. As

K3,3 has 9 edges it cannot be planar.

If a graph G is non-planar then any graph which contains G as a subgraph is also non-
planar. It follows that if a graph contains K5 or K3,3 as a subgraph it must be non-planar.
We can however prove a stronger result. First some terminology.

Definition 12.11. A graph H is a subdivision of a graph G if H is obtained from G by
the addition of a finite number of vertices of degree 2 to edges of G.

Note that in this definition it is possible to add no vertices and so a graph is a subdivision
of itself.

Example 12.12. The graph H below right is a subdivision of the graph G below left.

G H

The following theorem is an easy consequence of Theorem 12.10.

Theorem 12.13. If G is a graph containing a subgraph which is a subdivision of K5 or
K3,3 then G is non-planar.
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Proof. A subdivision of a non-planar graph is also non-planar. The Theorem therefore

follows from Theorem 12.10.

Example 12.14. Neither Corollary 12.8 nor Corollary 12.9 are sufficient to show that the
graphs of this example are non-planar.

1. The Petersen graph shown below has 10 vertices and 15 edges. The diagram on the
right shows a subgraph which is a subdivision of K3,3. Therefore the graph is non-
planar. (Vertices which are not labelled A or B are those added in the subdivision.

A

A

A B

B

B

2. The graph shown below has 11 vertices and 18 edges. The diagram on the right
shows a subgraph which is a subdivision of K5. Therefore the graph is non-planar.

1

2

3 4

5

A more surprising theorem, which we shall not prove here, is known as Kuratowski’s
theorem:

Theorem 12.15 (Kuratowski). If G is a non-planar graph then G contains a subgraph
which is a subdivision of K5 or K3,3.
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13 Colourings of graphs

Vertex colouring

Definition 13.1. Let G be a graph without loops. A k-colouring of G is an assignment
of k colours to the vertices of G such that no two adjacent vertices are assigned the same
colour. If G has a k-colouring it is said to be k-colourable.

Example 13.2. We use colours 1, 2, 3, 4 and 5.

1. a 5-colouring: 1

2

3 4

5

2. a 4-colouring: 1

2 3

3 4

3. a 3-colouring: 1

2

2 3

3

4. not a colouring:

1

1

2 3

3
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Example 13.3. 1.

K3 has a 3-colouring but no colouring with fewer than 3-colours. No graph containing

K3 as a subgraph can be coloured with fewer than 3 colours.

1

2 3

2.

Generalising this: Kd has a d-colouring but no (d − 1)-colouring, for all d ≥ 2. No

graph containing Kd as a subgraph can be coloured with fewer than d colours.

Note: We restrict attention to simple graphs because, firstly, a graph with loops cannot

be coloured and, secondly, addition of multiple edges has no effect on colouring.

Definition 13.4. The chromatic number χ(G) of a graph G is the least positive integer
k such that G has a k-colouring.

Example 13.5. 1. From Example 13.3 it follows that χ(Kd) = d, for all d ≥ 2.
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2.

The graph of Example 13.2 has chromatic number at least 3, because it has a subgraph

K3. It has chromatic number at most 3 because it has a 3-colouring. Therefore it

has chromatic number 3.

3.

The graph below has chromatic number at least 4 because it contains a subgraph

K4. It has a 4-colouring, as shown, and therefore has chromatic number at most 4.

Hence it has chromatic number 4.

11

2

3

4
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We state, without proof, the following strengthening of the above result. This theorem
was proved in 1941 by Brooks.

Theorem 13.6 (Brooks). Let G be a connected simple graph and d a non-negative number
such that deg(v) ≤ d, for all vertices v of G. If

1. G is not a cycle graph Cn with n odd and

2. G is not a complete graph Kn

then χ(G) ≤ d.

Example 13.7. The graph G below has a subgraph isomorphic to K4, so χ(G) ≥ 4. Using
Brooks’ theorem χ(G) ≤ 4. Hence χ(G) = 4. The graph must therefore be 4-colourable.
Can you find a 4-colouring?

G
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Edge colouring

Definition 13.8. An edge-colouring using k colours of a graph G is an assignment of
one of k colours to each edge of G. A proper edge-colouring is one with the additional
property that no two adjacent edges are assigned the same colour. The edge-chromatic
number χe(G) of G is the smallest integer k such that G has a proper edge-colouring
using k colours.

Notes:

1. We have already seen edge-colourings of graphs. They correspond to decompositions,

in the sense of Definition 8.8.

2. Only graphs without loops can have proper edge-colourings.

Example 13.9. 1. a proper edge-colouring using 5 colours:

1

2

2

2 3

3 3

3

4

4
5

5

2. a proper edge-colouring using 3 colours:

1

1

1

1

2

2

2

2 3

3 3

3
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3. an edge-colouring using 3 colours which is not proper:

1

1

1

11

1

2

2

3

3 3

3

Lemma 13.10. Let G be a graph and let d be the largest degree of a vertex of G. Then
any proper edge-colouring of G uses at least d colours. That is χe(G) ≥ d.

Proof. Let v be a vertex of degree d. In a proper edge-colouring the d edges incident to v

must all be assigned different colours. Therefore at least d colours are required.

Example 13.11. 1.

The graph of Example 13.9 has edge-chromatic number 3. It has a proper edge-

colouring using 3 colours, as shown. It cannot have one with fewer colours since it

has vertices of degree 3.

2.

The cube and the dodecahedron have edge-chromatic number 3. To see this note

that they are both regular of degree 3 so that any proper edge-colouring requires
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at least 3 colours. Furthermore each of them has a proper edge-colouring using 3

colours. Here is a proper 3-edge-colouring of the dodecahedron. The cube is left to

the reader.

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

22 2

2

2

3

3

3

3

3

3

3

3

3
3

Theorem 13.12. The graph K2d has edge-chromatic number χe(K2d) = 2d − 1, for all
d ≥ 1.

Proof. We use the “turning trick” (see Example 9.3 and Theorem 9.4). Label the vertices
of K2d with 0, 1, . . . , 2d − 2 and x. Arrange the numbered vertices as the corners of a
regular 2d− 1-gon and place the vertex x outside. Assume we have colours C1, . . . , C2d−1.
Colour the edges

{0, x}, {1, 2d− 2}, {2, 2d− 3}, . . . , {d, d − 1}
with colour C1. Note that all these edges except {0, x} are parallel, as shown in Figure
13.1, for the case d = 5. Now turn the 2d − 1-gon one position anticlockwise. This gives
a new set of parallel edges which, in addition to {1, x}, are coloured with C2; see Figure
13.2 for the case d = 5. A list of the new edges is obtained by adding 1, modulo 2d− 1, to
the label of each vertex in the list of edges coloured C1. Continuing in this way edges are
coloured as follows.
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1

2

3

4 5

6

7

8

0 x

Figure 13.1: Solid edges coloured C1 in K10

1

2

3

4 5

6

7

8

0

x

Figure 13.2: Dashed edges coloured C2 in K10

C1 {0, x} {1, 2d − 2} {2, 2d − 3} . . . {d, d − 1}
C2 {1, x} {2, 0} {3, 2d − 2} . . . {d + 1, d}
C3 {2, x} {3, 1} {4, 0} . . . {d + 2, d + 1}
...

...
...

...
...

...
C2d−2 {2d − 3, x} {2d − 2, 2d − 4} {0, 2d − 5} . . . {d − 2, d − 3}
C2d−1 {2d − 2, x} {0, 2d − 3} {1, 2d − 4} . . . {d − 1, d − 2}

Each edge of K2d appears exactly once in this table and each vertex appears exactly once
on each row. Therefore we have a proper edge-colouring using 2d − 1 colours. As K2d is
regular of degree 2d − 1 at least 2d − 1 colours are required in any proper edge-colouring.
Hence χe(K2d) = 2d − 1.

Corollary 13.13. The graph K2d−1 has edge-chromatic number χe(K2d−1) = 2d − 1, for
all d ≥ 1.

Proof. To see that at least 2d − 1 colours are required for a proper edge-colouring note

that K2d−1 has (2d − 1)(d− 1) edges. If only 2d − 2 colours are used in an edge-colouring
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then there is some colour assigned to at least d edges. As there are only 2d − 1 vertices

two of these edges must be adjacent and so the edge-colouring is not proper.

We can properly edge-colour K2d−1 using 2d − 1 colours by taking a proper edge-

colouring of K2d, using 2d − 1 colours, and deleting one vertex. This leaves a proper

edge-colouring of K2d−1. Therefore χe(K2d−1) = 2d − 1.
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Example 13.14. The following diagrams show the proper edge-colourings of K6 and K5

obtained using the methods of Theorem 13.12 and Corollary 13.13, respectively.

Proper edge-colouring of K6 using 5
colours

Proper edge-colouring of K5 using 5
colours
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The Four-colour Problem

In 1852 De Morgan made the conjecture that any map of countries could be coloured
using only 4 colours, in such a way that countries with a common border would have
different colours.

We can interpret this question in terms of graph theory: given a map of countries we
construct a plane drawing of a graph as follows. Place one vertex in each country (the
“capital” of the country). Join two vertices with an edge whenever their countries have a
common border.

Example 13.15. The map of countries on the left gives rise to the plane graph on the right.

Now, if it could be shown that any planar graph without loops is 4–colourable then it
would follow that every map of countries can be coloured as required by De Morgan. The
graph theoretic version of the conjecture is therefore:

Conjecture 13.16 (The 4–colour problem).
Every simple planar graph is 4–colourable.

The problem has a long and chequered history.

1852 De Morgan proposes the 4–colour conjecture.

1873 Cayley presents a proof to the London Mathematical Society. The proof is fatally
flawed.

1879 Kempe publishes a proof; which collapses.

1880 Tait gives a proof which turns out to be incomplete.

1976 Appel & Haken at the University of Illinois prove the 4–colour conjecture: using
thousands of hours of CPU time on a Cray computer.
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A problem with Appel & Haken’s proof is that the program runs for so long that it is
impossible to verify manually. We cannot even to be sure that the hardware performed
well enough, over such an extended period, to give a reliable result.

By contrast a 6–colour theorem is easy to prove.

Theorem 13.17.
Every simple planar graph G is 6–colourable.

Proof. Use induction on n, the number of vertices of G. Clearly if n ≤ 6 the result holds.

Assume the result holds for simple planar graphs of up to n − 1 ≥ 6 vertices.

From the result of Exercise 6.2(b), G has a vertex v of degree at most 5. Delete v from

G to form the graph G − v, which is 6–colourable, by the inductive hypothesis. Choose a

6–colouring for G − v. Now replace v. Note that, as v has degree at most 5, there is one

of the 6 colours not used to colour any of the vertices adjacent to v. Colour v with this

colour to give a 6–colouring of G.

A proof of a 5–colour theorem, although somewhat harder, can be found in most intro-
ductory texts on graph theory.

We finish with a result which links vertex and edge colouring. The map of countries
shown above does itself constitute a graph: put a vertex at each point where two borders
meet. The resulting graph is plane, connected, regular of degree three and has no bridges
or loops. Furthermore any “reasonable” map of countries constitutes a plane drawing of
a graph with all these properties. The 4–colour conjecture states that the faces of such
a plane graph can be coloured using 4 colours, where colouring means that no edge
meets two faces of the same colour. In 1880 Tait made the following connection between
4–colouring of faces and edge–colouring.

Theorem 13.18. Let G be a plane drawing of a graph which is connected, regular of degree
three and has no bridges or loops. Then the faces of G can be coloured using 4 colours if
and only if G has a proper edge–colouring using 3 colours.

AJD October 18, 2006
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