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Chapter 1

Background

In this Chapter we shall establish and/or revise some of the basic ideas and notation that we need
in this and other courses. Much of the material will be familiar and you should use the section
as reference when you need it. In lectures | shall refer to Sections of this Chapter as and when
they’re needed and only go through parts of the Chapter that are less familiar or cause difficulty.
Most of the Chapter is about Sets but we start by discussing some terminology.

1.1 Definitions, Lemmas and so on

In mathematics and statistics we sometimes need words to have precise, unambiguous, tech-
nical meanings. To give a word such a meaning we make what is catlefirgtionof the word.

The definition acts like a dictionary definition and the words mean precisely what the definition
says and nothing else. For example in Secfidgiwe define the wordhtegerto mean the set of

whole numbers. From this point on, as far as this course goes, the word “integer” has this mean-
ing and means absolutely nothing else, at all, ever. Some words may have the same meaning in
everyday life as in their definition, but others may not. The word “integer”, as far as I'm aware,
has no meaning other than the one above. On the other hand in Defihhithe word “divides”

is given a meaning which may differ from the common usage. For instance we might like to say
that if we divide5 by 2 we getQ%, which seems perfectly sensible. However in the sense given in
Definition2.5we find that2 doesnot divide 5. We use our definition for the meaning of “divide”

so as far as we are concerriedoesn’t divideb.

Definitions record the basic terms and describe the fundamental structures which we work
with. Reasoning from the definitions we attempt to understand such things as numbers, se-
guences, functions etc. The conclusions we draw are recorded and may be referenced later. Im-
portant conclusions are callddheoremsLess important results may be calleemmas (Some
authors uséropositionas a label for a result of medium importanc€grollary is a term used
to mean “result which follows more or less obviously from a previous theorem”. Conclusions are
set out as statements of fact in the Theorems, Lemmas, Corollaries etc.. The reasoning leading
to a conclusion is usually set out ap@offollowing the statement.

Examplesover not only illustrative calculations and standard techniques of problem solution
but sometimes also results so minor that we don’t wish to dignify them with a label like Lemma

1
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or Theorem. (See for instance Exampl8in Section2.2.)

Once a Lemma, Theorem or Corollary has been established by some line of reasoning it can
be referred to in subsequent arguments. By recording our results as we go we allow ourselves to
build up gradually to surprising or well-hidden conclusions. If we prove the right Theorems on
the way we will be able to quote them in appropriate places to make our arguments look concise
and elegant.

1.2 Sets

In widespread and in common everyday use there are numerous words for collections: when

we refer to such things as a
family, flock, team or pack
we are, in each case, referring to several
people, sheep, players or wolves

as one single entity. This idea of regarding a collection of things as a single object is fundamental
to mathematics and statistics where the single entity is usually a set. It may seem somewhat
surprising then that we can’'t make a short, easily understood and unambiguous description of
exactly what a set is. Luckily it doesn’t usually matter and we can be content with the the
following. A setis a collection of objects together with some method of (in principle) identifying
which objects belong to the collection and which do not. Sets will be studied further in the
module MAS131, “Introduction to Probability and Statistics”. (There are some more unusual
words for sets atvww.ojohaven.com/collectives/

1.3 Membership

If Sis a setand is an object which belongs t& then we say that is anelementof S or a
memberof S. The symbok is used as an abbreviation for “is a member of”xse S reads %
is an element of”. Similarly, the symbok is used as an abbreviation for “is not a member of”,
soy ¢ S reads % is not an element o$”.

One way of describing a set is to enclose a list of its members in curly braces, separated by
commas. Thus the set with elememtg, 3, 4, 5 can be denoted by

{1,2,3,4,5}.

Judicious use of. . allows us to use this notation when the list of elements of the set is infinite.
For example the set of positive whole numbBrsan be written as

N={1,2,3,...}
and the set of all whole numbefsas
Z={.,-3,-2,-1,0,1,2,3, ...}

1.4 Subsets

A setS is asubsetof a set?’ if every element ofS is also an element df. For example
{a, b} is a subset of the sdu, b, c}. The symbolcC is used as an abbreviation for “is a subset


http://www.ojohaven.com/collectives/index.html
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of”. Thus
{1,2,3,..} c{...,—3,-2,-1,0,1,2,3,...}.

The symbolZ is used as an abbreviation for “is a not a subset of”. Thus
{..,-3,-2,-1,0,1,2,3,...} ¢ {1,2,3,...}.
Note that every set is a subset of itself, that'is S, for all setsS so, for example,
{a,b,c} C{a,b,c}.
We also use the symbal as an abbreviation for “contains the subset”. For example
{78,69,45,32} D {78,45},
{78,69, 45,32} D {78,32,69,45}

and
{78,69,45,32} D {78,45}.

The symbols has the obvious meaning, that is
{78,69} 2 {78,32,69,45}
and
{78,69, 45,32} 2 {78,31,64,49}.
1.5 The empty set

The set with no elements is called tempty setdenoted). It follows from the definitions
we have already made that the empty k&t a subset of5, for all setsS. To see this observe
that, given our definition of subset, we need to test whether or not every eleniebelifngs to
S, whereS is a set (in fact we need to do this for all séfs However there are no elementdjin
so no element dj fails the test. Henc is a subset of (no matter what set we choose).

1.6 Some sets of numbers

We have standard names for some sets of numbers.

(1) The positive whole numbers are called thetural numbers and the sef1,2,3,...} of
natural numbers is denotéd

(2) The elements of the s¢t.. — 3,—2,—1,0,1,2, 3, ...} of all whole numbers, positive, neg-
ative and zero are called titegersand the set of integers is denotéd

(3) A number which can be expressed as a fractiofn wherep andq are integers and # 0 is
called arational number and the set of all rational numbers is den@ed

(4) A number which has a decimal expansion is callee@ number and the set of all real
numbers is denotel.

Note thatN C Z € Q C R. HoweverZ ¢ N, Q ¢ Z andR ¢ Q. (Do you know why?)
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1.7 Specification of new sets from old

Using the symbol # to denote “with the property that” or “such that” we can use curly braces
to specify subsets. For example consider theéNset all positive whole numbers. Then

{n € N:niseven}
is read as “the set of elementf N such that: is even”. That is
{2,4,6,8,...}.

The new description is more precise as it removes the necessity far.thewhich are possibly
ambiguous. Further examples of this notation are:

{neN:n>9}={10,11,12,...},
and
{neN:n>11landn < 16} = {11,12,13,14, 15}.
Sometimes|” is used instead of:" as in
{n € N|nis amultiple of1l0} = {10, 20, 30, ...},

{n € N|nis a multiple of10 and of3} = {30, 60, 90, ...},
{n € N|nis a multiple of3 andn + 1 is a multiple of7} = {6,27,48,...}.

1.8 Unions, intersections, complements and differences

The union of two setsS and T, denotedS U T is the set consisting of all those elements
which either belong t&' or belong tol'. For example

{A,B,C}U{X,Y,Z} ={A,B,C, XY, Z}

and
{A,B,C,Y,Z} U {A,X,Y,Z} = {A,B,C,X,Y, Z}.

The intersection of two setsS and 7', denotedS N 7' is the set consisting of only those
elements which belong to bothand7'. For example

{A,B,C,L,M}YN{L,M,X,Y,Z} = {L, M}

and
{A,B,C}yn{X,Y,Z} =0.

If S'is a subset of a séf then thecomplementof S in E, denotedS’, is the set consisting
of those elements af which do not belong t&. ThatisS’ = {x € E: = ¢ S}. For example if
E ={a,b,c,d,e, f} andS = {a,b,c} thenS’ = {d,e, f}.

Thedifference of two setsS andT (in that order), denoted\ 7', is the set of elements of
which do not belong t@". For example ifS = {A, B,C, D, E,F} andT = {D,E, F,G,H, I}
thenS\T = {A, B, C}.
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1.9 Objectives

The material in this chapter is mainly for reference but you should become familiar with it as
the course goes on. Once you have covered this chapter you should be able to:

() understand the use of terms such as Definition, Lemma, Theorem,...
(i) read and use the symbais{...}, C, ¢, D, 5 and;
(i) know which sets of numbets, Z, Q andR refer to;

(iv) understand notation of the forfm € Z : n > 10};

(v) know what unions, intersections, complements and differences of sets are and understand
the meaningoX UY, X NY, X\Y andX’, whereX andY are sets.

1.10 Exercises
Use these questions to test your set theory. If you can’t do them you should read the Chapter.
1.1 Go to the library and find the Mathematics and Statistics books. You are allocated a range
of shelf marks below. In a book with your shelf mark find a piece of technical mathematical
or statistical terminology (that is a word likiefinition theoremlemmaor corollary) which
is not mentioned in Section 1.1 of this course. Write out
(a) the name of the book, its author, its publisher and date of publication;

(b) the word that you have found and the page it occurs on;

(c) the sentence containing the word you have found (or enough of its context to show
how it is used) and
(d) describe, in not more thahlines, what the word means and how it is used.

Your shelf mark is as follows, depending on the first letter of your surname.

Name Shelf mark Name | Shelfmark Name| Shelfmark
A-B 511-511.52 C-D | 512.52-512.8| E-F | 515.354-515.7
G-H 511.6-512.02 || 1-J |512.9-514.744 K-L | 515.72-515.9
M—N 512.1-512.22 || O-P 515-515.15 | Q-R | 515.93-516.7
S-T | 512.23-512.507 U-V | 515.2-515.353 W-Z 516.8-519

1.2 List the elements of the following sets:

(@) {neN : 10 < n®+n < 42};
(b) {zeR : 22+ 6x+9=0};
() {n € N : nandn + 2 are prime withn < 30};

1.3 List the elements of the following sets:
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(@ {neN: 2<n? <75} (c) {neN :
b) {zeR : 22+ 3z +2=0};

1.4 TRUE or FALSE

(@ 6¢{reN: z=3n+1, forsomen € N},
(b) 2e{zeR : 22 =4};
(c) 2e€e{z€R : 22 =4andz > 0};
(d) 7¢ {z €Q : 2? > 7andz® < 343}.
1.5 TRUE or FALSE:
@0cNCN
b) {reR:x2=3n+1,wheren e N} C {x €Z:z >3}

€ {re€eZ:x>3}C{reR:xz=3n+1,wheren € N}
(d) {xeN:ziseven} C {z € R: z?is ever}

n is a 2 digit prime};



Chapter 2

Division and Greatest Common Divisors

A professor decides to reward the class by handing out toffees. Thepd toéfees in a packet

and the professor buys several packets. On the way to the lecture the préftefites. There

are 30 students in the lecture, each receives the same number of toffees and then there are no
toffees left. What's the least number of packets the prof could have bought and how many toffees
would each student then get?

We can solve this problem algebraically.

Suppose that
the number of packets of toffees boughtr
the number of toffees each student gets,

We can easily work out:
Total number of toffees bought: = 24x
Number of toffees handed out to class 24x — 6

Since each student gajtoffees and there ai students
24x — 6 = 30y.

What canx be? We must solve the equation above to find whole numbensdy which
are both positive (if possible). To simplify matters notice we can divide through dnyd the
equation becomes

4r — 1 = dy.

We can solve this by trying values ofuntil we find one which works. We start with= 1,
since we're looking for the smallest number of packets the prof could have bought, and increase
x by one each time:

dr—11] 3 7 |11 |15
y? 2?7 ??7?| ???| 3
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Whenz is 4 andy is 3 we havedr — 1 = 5y. No smaller value ofr makesiz — 1 equal to a
multiple of 5. We now know that the prof could have got away with buying just 4 packets
of toffees. Each of the students would then have receivedees.

There are two features of this problem that I'd like to draw attention to.

e We are only interested in solutions to this problem which are natural numbers (defined in
Sectionl.6). Solutions would be very easy to find if we allowed ourselves to use rational
numbers or real numbers (see Sectlof). For example if we set = 1 then we can take
y = 3/5. On the other hand finding integer solutions is just as difficult as finding natural
number solutions (integers are also defined in Sedtién

e To simplify the equation | divided through s | could have divided by or by 3 but the
resulting equation would have had bigger numbers in it. Howévsras big as | can go
without making some number in the equation into a fraction. Put another24;a3() and
6 are all multiples of; but they’re not all multiples of anything bigger thén

This chapter looks into some of the properties of natural numbers and integers that, among
other things, prove useful in solving problems such as the toffees above. We'll look at a a step
by step recipe which would give us the numbedo divide our equation by in this problem and
then investigate, in some detail, why it works.

2.1 The Euclidean Algorithm

To solve the equatiotdz — 6 = 30y | first divided throughout bg. | chose6 because itis the
biggest positive number that divides albf 24, 6 and30. How do | know? Because I'm familiar
with the positive divisors of all these numbers and | mentally list them and pick the biggest that
appears on al lists, which in this case happens to eLet’'s see how this process works for
some other numbers. For simplicity suppose | want the biggest positive number that divides both
24 and30. | make two lists.

Positive divisorsoR4 : 1,2,3,4,6,8,12,24
Positive divisorso80 : 1,2, 3,5,6, 10, 15, 30
Now | pick the largest number which appears on both of the lists, whi¢h &d this is my
answer.
Example 2.1. Find the biggest number which divides bath28 and2600.
Positive divisors of
2028 : 1,2,3,4,6,12,13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028
2600 : 1,2,4,5,8,10, 13, 20, 25, 26, 40, 50, 52, 65,100, 104, 130, 200, 260,
325,520, 650, 1300, 2600
By examining these lists we see that the biggest number dividing20athand2600 is 52.
The last example involved alot of calculation and required us to factoris&b2srand2600.
Without some systematic method it would be very easy to leave out some divisor of28ilser

or 2600. The following is a method which in many cases involves much less work and is easier
to validate.
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EAL. Input the pair(b, a), with 0 < a < b.

EA2. Write b = aq + r, whereq andr are integers witl) < r < a.

EA3. If » = 0 thenoutput ged(a, b) = a andstop.

EA4. Replace the ordered pdif, a) with (a,r). Repeat fromZ).

Before going into why this algorithm works we look at some examples.

Example 2.2. Find the greatest common divisdrof 12 and63. Find z,y € Z such that
122 + 63y = d.
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ged(63,12) = 3 and stops. (Notice that this is the last non—zero remainder occuring in the results

of Step EA

As shown in the above example we can use the Euclidean Algorithm not only to find the
greatest common divisaf of two natural numbers and b but also to expresd as sum of
multiples ofa andb. This can be useful in solving equations as we’ll see later. (Noterthad
y are not always natural numbers: they may be negative.)

Example 2.3. Find the greatest common diviséof 2600 and2028. Find integers: andy such
thatd = 2600z + 2028y.

First we findged (2028, 2600). The input to the Euclidean Algorithm {8600, 2028). We write
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out the results of Step EAas the algorithm runs:

(2600,2028) 2600 = 2028 - 1 + 572 (2.1)
(2028,572) 2028 = 572 - 3 + 312 (2.2)
(572,312) 572 = 312 1 + 260 (2.3)
(312,260) 312 = 260 - 1 + 52 (2.4)
(260,52) 260 = 52 5 + 0. (2.5)

This givesged (2600, 2028) = 52, as we found in Exampl@. 1.

To find the integers;, y we work back from 2.4) to (2.1).

52 = 312 — 260 - 1 from (2.4)
=312 — (572 —312-1) = 312-2 — 572 from (2.3)
= (2028 —572-3)-2 — 572 =2028-2 — 5727 from (2.2)
= 2028 -2 — (2600 — 2028 - 1) - 7 = 2028 - 9 — 2600 - 7 from (2.1).

Thusb52 = 2600 - (—7) + 2028 - 9 so we may take = —7 andy = 9.

Example 2.4. Find the greatest common divisdrof 2028 and626. Findz,y € Z such that
2028z — 626y = d.

First we findged (2028, 626). The input to the Euclidean Algorithm {8028, 626). We write out
the results of Step EAas the algorithm runs:

(2028,626) 2028 = 626 - 3 + 150 (2.6)
(626,150) 626 = 150 - 4 + 26 2.7)
(150,26) 150 = 26 - 5 + 20 (2.8)

(26,20) 26=20-1+6 (2.9)
(20,6) 20=6-3+2 (2.10)
(6,2) 6=23+0. (2.11)

This givesged (2028, 626) = 2.

To find the integers;, y we work back from 2.10 to (2.6) to find an expression fa.

2=20-1-6-3 from (2.10
=20-1-3-(26-1—-20-1)=20-4—26-3 from (2.9
=(150-1—26-5)-4—26-3=150-4—26-23 from (2.9)
=150-4 — (626 — 150 - 4) - 23 = 150 - 96 — 626 - 23 from (2.7)
= (2028 — 626 - 3) - 96 — 626 - 23 = 2028 - 96 — 626 - 311 from (2.6).

Thus2 = 2028 - 96 — 626 - 311 so we may take: = 96 andy = 311.
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Among other properties that hold for numbers) andz are that

O+zr=u
l-z==x
z(y+2) = xy + 22
(—2)(=y) = =y
if x> 0andy < 0thenzy < 0.

We've already used the terminolgy tividesd” for integersa andb but let's be absolutely
clear of what we mean by this.

Definition 2.5. Let a andb be integers. If there exists an integesuch thab = qa then we say
thata divides? b, which we write as|b.

(A definition establishes once and for all the meaning of a word. From now on whenever we
say “divides” we mean what it says above, nothing more, nothing)less.

Other ways of saying|b are thatz is afactor of b, a is adivisor of b or b is amultiple of a.
We writea 1 b to denote & does not divideé”.

Example 2.6. From the definition we can easily check t6at8 becausd8 = 6 - 3. In the same
way we see that divides24,12,6,0 and—6. It's also fairly obvious that t 16 and—15 t 25,
although explaining exactly why may take a little thought.

In the next few examples we’ll use Definitién5 as a starting point and from it prove some
very simple facts, just to get used to the terminology for integer arithmetic.

Example 2.7. We shall prove tha|(6n + 6), for all integersn.

2.5

1The real numbers are defined in Sectiof
2Bold face is used for definitions. Some authors use italics. On the blackboard underlining is used instead.
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g =n+ 1, it follows that6|(6n + 6).

Example 2.8. Prove thatt|[(2n + 1)* — 1], for all integersa.

2.5

1.3

What we need to settle the question of explaining why, for exaéple3 is something like:
if we form the fractionl3/6 it's equal to2 + 1/6 which is not an integer. Alternatively, to verify
that32 1 121 we could try to dividel21 by 31 and we’'d find a non—zero remainder. In fact we
can expres$21 as
121 =32 x 3 + 25.

(In this expressior3 is called thequotientand 25 the remainder) This is the content of the
Theorem we come to next.
Before stating the Theorem we need to recall some notation.
Definition 2.9. The modulus or absolute valueof a real number: is denotedx| and is given
by the formula
x, ifz>0
ol = {

—x, Ifzx<O.

All integers are real numbers so it makes perfect sense to talk of the modulus of an integer. For
example

| — 6] =6=]6],
102 = 102| = | — 102| and
0[=0=—0=]-0].
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Theorem 2.10 (The Division Algorithm). Leta andb be integers withu # 0. Then there exist
unique integerg andr such that = aq + r and0 < r < |a|.

We could prove this: but it is intuitively obvious, rather mundane and up to now we just
accepted it as an obvious fact: so we’ll continue to accept it for now. If you're unhappy with
this, more detail of why and how it should be proved can be found in any book on elementary
number theory; and later on we’ll prove a similar statement in a setting where it's not obviously
true. Instead let’s take stock.

(1) The condition that: # 0 is necessary. It's the same as saying that we can’t have fractions
like 3/0.

(2) There are two parts to the conclusion of the Theorem. Firstly it says;thati~ do exist,
with the properties described. Secondly it says thand» are unique In terms of the
example above this means that if we hgwendr with 0 < r < 32 such thatl21 = 32¢g + r
theng must be3 andr must be25. This is not surprising: we'd be dismayedilit1/32 had
some value other thah+ 25/32.

(3) One way if assessing whether the Theorem is worth stating or not is to see how it might
work in other settings. Suppose for example we were to work with rational numbers instead
of integers. Ifb anda are rational witha > 0 then | can pick any | like, in the given range
0 <r < |a|, and obtairb = aq + r by settingg = (b — r)/a. Thusq andr are not unique
and the Division Algorithm does not hold. More dramatic failure of the Division Algorithm
is exhibited in some other situations. For example in the set of polynomials in two variables
x andy with integer coefficients it's easy to find polynomigisandg for which there is no
way of writing f = g - ¢ + r with r in any meaningful way “less thary.

Here are some examples of the Division Algorithm in action.

Example 2.11.Every integem can be written as = 2¢ + r, with 0 < r < 2. If r = 0 we say
n isevenand ifr = 1 we sayn is odd.

Here we've used the Division Algorithm (Theoreirl0 to partition of integers into odd and
even.
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Example 2.12.

Example 2.13.Show thaB3|n® — n, for all integersn.
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Example 2.14.Show that ifn is an integer then?® has the formik, 4k 4 1 or 4k + 3, for some
ke Z.
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2.3 Why the Euclidean Algorithm works
Example 2.15.Consider the equality12 = 20 - 5 + 12.

Lemma 2.16.Let s, t andu be integers, which are not all zero, such that
s =tq + u.
Thenged(s, t) = ged(t, u).

(Alemma is a lesser result: one which is not important enough to be given the grand title of
theorem. Lemmas are often small steps made on the way to establishing a theorem.



MAS121 Notes 18

Proof. Strategy: show that any integer that divides bo#nd¢ must also divide:. Then show
that any integer that divides botrandu must also divides. Having done this it’s clear that the
set of common divisors of andt is exactly the same as the set of common divisorsaidu
and their greatest commond divisors are thus equal.
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such thatu = dw andt = ¢z. As s = tq + u, with ¢ € Z, we see that

s=cdzq+ dw = d(2q + w),

which shows that’|s. Conclusion: common divisors efandw are also common divi-

sors ofs andt.

Example 2.17.We can write337 = 11 - 30 + 7.

2.16

The lemma above is the key to the Euclidean Algorithm. We shaprosethat the Euclidean
algorithm works, being content to see that it must do on some fairly general examples. A proof
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A. Before going any further we record
some very basic consequences of the definition of division; as a lemma.

Lemma 2.18.

1. ala, for all integersa.

2. al0, for all integersa.

3. If a andb are integers such that|b andb > 0 thena < b.

4. If a andb are positive integers such thafb thengcd(a, b) = a.

Proof.
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Example 2.19.Consider the Equationg ©)—(2.11).
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2.6

2.7

2.16

2.8

2.9

2.10
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Finally, using Equationq.11
Stringing all these facts together we have

2 = ged(6,2) = ged(20, 6) = ged(26,20) = ged(150,26) = ged(626, 150) = ged (2028, 626),

that isgcd(2028,626) = 2. This is what the Euclidean Algorithm told us. Lemrad.6 and
Equations 2.6)—(2.11) show why the algorithm comes up with the correct answer.

Example 2.20.Consider the Equation2 ()—(2.5). As in the example above we have

ged (2600, 2028) = ged (2028, 572), using EquationZ.1)
ged(2028,572) = ged(572,312), using EquationZ.2)
ged(572,312) = ged(312, 260), using EquationZ.3)
ged(312,260) = ged(260, 52), using EquationZ.4).

From EquationZ%.5) we see thab2|260 and so we havecd (260, 52) = 52:

Therefore

52 = ged (260, 52) = ged(312, 260) =
ged(572,312) = ged(2028, 572) = ged (2600, 2028),

that isged (2600, 2028) = 52. Again we've seen why the answer given by the Euclidean Algo-
rithm was the correct one.

In addition to finding the greatest common divisor of two integeasidb we can work back
through the output of the Euclidean algorithm, as we did in Examplgs?.3 and 2.4, to find
integerse andy such thatx + by = ged(a, b). This give us the following Theorem.

Theorem 2.21.Leta andb be integers, not both zero, and lét= ged(a, b). Then there exist
integersu andv such thatd = au + bv.

Note that we restricted the input of the Euclidean algorithm to pairs of positive integers, so
we might worry that ifa or b is non-positive then the Theorem does not work. However it's easy
to see thagcd(a, b) = ged(—a,b) = ged(—a, —b) = ged(a, —b) and from this it follows that the
Theorem holds in all cases.
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2.4 An application

We began this Chapter by looking at the problem of distribution of toffees. This problem was
resolved by solving the equati@dz — 6 = 30y. An equation of this form, where the coefficients
are integers and only's andy’s occur (nothing liker?, 23, zy or zy? occurs) and for which we
seek integer solutions, are callldear Diophantine equations Here we look at some linear
Diophantine equations.

Example 2.22.Find integersc andy such thaR600z + 2028y = 104.

In Example2.3 we ran the Euclidean Algorithm and foupdd (2600, 2028) = 52. Once we'd
done so we were able to use the equations generated to find integedy such that

2600 - (—7) + 2028 - 9 = 52. (2.12)

2.12

Example 2.23.Find integersc andy such that-72 = 12378z — 3054y.

First we run the Euclidean Algorithm to fingtd (12378, 3054).

(12378,3054) 12378 = 3054 - 4 + 162 (2.13)
(3054,162) 3054 = 162 - 18 + 138 (2.14)
(162,138) 162 =138 - 1 + 24 (2.15)
(138,24) 138 =24 -5+ 18 (2.16)
(24,18) 24=18-1+6 (2.17)
(18,6) 18 =3-6+0. (2.18)

This givesged (12378, 3054) = 6.
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Next we work back fromZ.17) to (2.13 to find integers:, v such that = 123738u + 3054v.

6=24-18-1 from (2.17)
=24—(138—-24-5)=24-6—138 from (2.16
= (162 —138)-6 — 138 =162-6 — 138 -7 from (2.19
=162-6— (3054 — 162 -18) - 7=162-132 — 3054 - 7 from (2.14)

= (12738 — 3054 - 4) - 132 — 3054 - 7 = 12378 - 132 — 3054 - 535 from (2.13.

Thus
6 = 12378 -132 + 3054 - (—535) (2.19)

SO we may takes = 132 andv = —535.

2.19

The method above of finding integer solutions can be extended to find all such solutions to
equations of this kind. Here we establish conditions which determine whether or not there exists
a solution. Later on we’ll see how to describe all solutions.

Lemma 2.24.Leta, b andc be integersd, b not both zero). The equation

ar +by =c (2.20)
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has integer solutions, y if and only ifged(a, b)|c.

Proof.

2.21

2.20

Example 2.25. Are there integers andy such thaR600x + 2028y = 130?

Example 2.26.For whichc does the equatiof2z + 49y = ¢ have a solution@cd(72,49) = 1
so the equatiofi2z + 49y = ¢ has a solution for every choice of

2.5 Objectives
After covering this chapter of the course you should be able to:
(i) use terms such d3efinition, Lemmaandproofwith confidence;

(i) read and understand simple proofs;
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(i) remember Definitior2.5 of a dividesb, for integersz andb;
(iv) apply this definition to prove simple divisibility properties;
(v) state the Division Algorithm and be able to use it to demonstrate properties of integers;
(vi) remember the definition of greatest common divisor of two integers;
(vii) apply this definition to prove results;
(viii) apply the Euclidean algorithm and explain why it works;
(ix) find solutions to equations of the kind given in Sectiba

2.6 Exercises
2.1 For each of the following pairs, b of integers findgcd(a, b) and integers ands such that
ged(a, b) = ra + sb.

@) a = 13,b = 1000; (C) a = 1729,b = 703; (€) a = 5213, = 2867.
(b) a = 306,b = 657; (d) a = 1147,b = 851;

2.2 Prove the following using only the definition of division (Definiti@n5). In each case
indicate where in your proof you have used the definition.

(a) 13]169, 13]1859 and143|1859. (c) 5|(5n? +4)* — 1, for alln € Z.
(b) 5|(5n*+25n+T75n), for all integersn.

2.3 Use the Division Algorithm to show that, if is an integer then

(a) n? is either of the fornB8k or 3k + 1;
(b) n? is either of the formik or 4k + 1;
(c) n? has one of the form&k, 9k + 1 or 9k + §;
(d) n*is of the form eithebk or 5% + 1.

2.4 Show thats|n® — n, for all integersn.

2.5 Use the Division Algorithm to prove that for any integeone of the integers, a + 2,
a + 4 is divisible by 3. Indicate where and how you use the Division Algorithm in your
proof.

2.6 Use the Division Algorithm to prove that for any integeone of the integers, a + 2,
a+ 4, a+ 6 ora+ 8is divisible by5. Indicate where and how you use the Division
Algorithm in your proof.
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2.7 Use only the definition of division, Definitio.5, to prove the following facts. Doot
mention the Division Algorithm, Theore@ 10, Leta, b andc be integers.

(a) Prove that ifc|a then—c|a andc|(—a).
(b) Prove that ifa|b andb|c thena|c.

2.8 Leta andb be integers.

(a) Prove thagcd(a,b) = ged(—a, b) = ged(—a, —b).
(b) If a > 0 show thatged(a, 0) = a. What isged(a, 0) if a < 0?

2.9 Determine integer solutions y to the following equations.

(a) 56z + T2y = 40; (d) bx + 17Ty = 22;
(b) 24z + 138y = 18; (e) 63z + 45y = 783;
(c) 221z + 35y = 11, (H 119z — 6y = 7.

2.10 Which of the following equations have integer solutions? (Justify your answers but do not
find the solutions.)
(@) 56z + T2y = 88; (d) 5z + 17y = 88;
(b) 24z + 138y = 88; (e) 63z + 45y = 88;
(c) 221z + 35y = 88; () 1192 — 6y = 88.



2 assert the existence of something. For in-
stance Examplé.4 asked for integers andy such tha028z — 626y = gcd (2028, 626). One
such pairr = 96, y = 311, was found by applying the Euclidean Algorithm. Once such a pair
has been found we haygovedthe truth of the statement

“There exist integers andy such thaR028z — 626y = gcd (2028, 626)."
It is only necessary to findnepair z, y to prove that this statement is true. (There are lots of

other pairs besides the one given= 409, y = 1325, for example, but this doesn’t matter. The
assertion can be seen to be true once we've found our first solution.)

Notation: the symbol 9" is read “there exists”.

Example 3.1. Prove thatlg € Z such thatrq = 28.

29
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Example 3.2. Prove thatdx € R such that: - 0 = 0.

“For all...”

2.7

2.7
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Similarly in Examples2.8, 2.13and2.14we show that something holds for all integers. In
each case we do this by using a letteto represent an arbitrary integer. Again, it is easy to
verify these results for particular valuesrobut this does not prove that the statements totd
all integers.

Counter—example and disproof

Is the following statement true or false?

3|n* + 2n, foralln € Z.
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Notation: the symbol ¥” is read “for all”.

Example 3.3. Show, by finding a counter—example that the statement

“n?isevenyvn € 7’

is false.

Example 3.4. Disprove the assertion that

“In € Z such that® can be written agk + 2, with k € Z".

2.14
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with k& € Z. From the uniqueness part of the Division Algorithm it follows théts not of the

form 4k + 2. As this holds for all € Z the given statement is disproved.

Example 3.5. Consider the statement

“Jx € R such that:? = —10.

| believe this is false. To prove it's false | must show it fails foraak R (infinitely many). | can

use a basic property of real number arithmetic to do this. NamelydfR thenz? > 0. Thus,

no matter what valué takes the statement is false. Note that a counter—example is no use here
as | must check all possible valuesaof

“If ... then ..”

Example 3.6. Consider the assertion,

“if ©>2thenz®+2x—6>0"

In statements of the form “if A then B” it is crucial that “A’ occurs between “if” and “then”
and that “B’ occurs after “then”. If we swap A and B around we end up with something that has
a different meaning. This is easy to understand on the level of everyday language. For example
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“If | am a frog then | can swim”

is a plausible enough statement which for arguments sake we can assume is true. The A part is
“l am a frog” and the B part is “| can swim”. Switching the order of A and B we have

“If | can swim then | am a frog”.
This can’t be true, unless lots of people we know are in fact frogs!

Example 3.7.1f we switch the order of A and B in Exampk6we obtain the statement

“If 224+ 2x—6>0thenz >2."

Switching A and B always gives a new statement (as long as we don’t consider statements
where A and B are the same). The switched statement is callextiverseof the original.

Example 3.8. The converse of

“If 22> 0thenx > 0"

“If 2 > 0thenz? > 0"
This time, ifx € R, the original statement is false but its converse is true.
As in the above examples, even if the original statement is true its converse may not be, and

vice—versa. In some circumstances it may turn out however that both statements are true: as in
the next example.
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“..ifand onlyif..”

Example 3.9.Leta, b, c € R with a > 0. Consider the statement

“If b2 — 4ac > 0thenax? + bz + ¢ = 0 has a real solution.”

We know that this is true.

What we have seen in the previous example is that

“lif v> —4ac > 0thenaxz? + bx + ¢ = 0 has a real solution]
AND
[if az? + bx + ¢ = 0 has a real solution théd — 4ac > 0]”

is a true statement. We have a shorthand for statements of this form: we say

“azx?® + bx + ¢ = 0 has a real solutioif and only if 5> — 4ac > 0"

instead. Sometimes “if and only if” is shortened to “iff”. In general a statement of the form
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“Aif and only if B”
means
“[if A then B] AND [if B then A]".
Here is an “if and only if” version of Lemma.183.
Corollary 3.10. Assume that andb are positive integers. Thet}b if and only ifged(a, b) = a.

Proof. The statement of the Corollary uses shorthand and when written out in full becomes
“lif a|bthenged(b, a) = a] AND [if gcd(b, a) = a thenalb]”.
The general rule in a proof of such a statemempras/e each part separately

2.16

We have proved both statements are true so we have completed the proof of the Lemma.
In general terms to show that
“Aif and only if B”
is true we must establish the truth of both
“if A then B”
and

“if B then A.
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if Athen B A=1B Bif A
if B then A A<B AifB
Aifand only if B A< B Aiff B

3.2 Contradiction
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Most of the proofs we have seen so far are direct. Look for example at LehiriaHere we
prove that ifs, ¢t andu are integers and = tq + u, for someg € Z, thenged(s, t) = ged(t, u).
The proof starts with the assumption that t¢ + v and makes deductions until the required
result is reached. Here is a mathematical example of the second kind of, indirect, argument.

Example 3.11.Show thatz? = —1 has no real solution.

Step(1) Assume the opposite of what is to be proved.et us suppose that there is a real number
r such that? = —1 and see where this leads us.

Step(2) Derive some consequences of the assumptioks » € R we have) < r2.

Step(3) Show that something we’ve derived is falseCombining the fact above with the as-
sumption that? = —1 we obtain0 < —1, which is clearly false.

Step(4) Conclude that the assumption is false and so prove the required resulfThe false
statement in Steff was a direct consequence of the assumption that a solutierr
to 22 = —1 exists. We are forced to conclude that there is no such solution.

This is a technique of argument known @tradiction. We start by assuming that whatever

we wish to prove is false. This assumption is then used to make deductions. We hope that these
deductions lead to something which we know is false: that is to a contradiction. We conclude
that our assumption is wrong so what we want to prove is true.

3.3 Examples: proof by contradiction
The proof thay > 0 in the proof of Lemm&.183 is a proof by contradiction.
Theorem 3.12.There are no natural numbersandy such thatr? — 2y? = 0.

Proof.
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33b
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solutionz = y, > 0, y = x; > 0 contradicts the choice af, as being as small as

possible. This contradiction shows that the assumption of Step(

O

We can use this to prove something that may seem more familiar, namely’2hiatnot a
rational number. As this follows easily from the Theorem we call it a Corollakycdrollary is
a consequence of another result which is (usually) easy to prove given the othel) rAgalin
we use proof by contradiction.

Corollary 3.13. There is no rational number such that-? = 2. That isv/2 ¢ Q.
Proof.

Step(1) Suppose that there is a rational numbsuch that? = 2.

Step(2) As r € Q we haver = p/q, wherep, ¢ € Z andq # 0. We have

P
= P _y

q2
= p° =2¢%, asq # 0,
= p|* = 2|q|?
= pl* = 2[g|* = 0.

The introduction of - | is justified because-z)? = 2? = |z|?, forall z € R.

Step(3) As r? = 2 it cannot be the case that= 0, because then we'd hae= 0. Thusp
andq are non—zero. Thereforg| and|q| are natural numbers and we have deduced,
in Step@), a contradiction to Theorerd.12. It follows that there is no such rational
numberr.

Note thaty/2 by definition has square equal2oso we've shown it can’t be if). O
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3.4 Objectives

After covering this chapter of the course you should be able to:
(i) recognise and use the symbdls/, =, < and<;

(i) apply appropriate arguments to show whether or not statements of the form
“if ... then...”
and
“...ifandonlyif..”
are true.

(iif) explain what &Corollary is;

(iv) understand and use proof by contradiction.
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3.5 Exercises
3.1 TRUE or FALSE?

(@) If x > 10 then2x > 15. ) n—1¢NVneN.

(b) If n € Nthenn +1 € N. (@) Yz €R,z>0=1/z > 0.
(¢) 3n € Nsuchthat: + 1 ¢ N.
(d) 3In € Nsuchthat, — 1 ¢ N.
(e) n+1€N,Vn e N. (i) Iz e R, 2% = —1.

(h) 3z € R, 2% = 4.

3.2 Disprove the following by finding a counterexample.

(@) If 22 > 16 thenz > 4.
(b) Ym € N, 9n € N such thatn + 1 = m.
(c) Vm € Z, In € Z such thatnn = 1.

(d) Vm € Q, 9n € Q such thatnn = 1.
(e) For all real numbers > 1, there is a real numbeér> 0 such thatt — ¢ > 1.

3.3 A lecturer rashly claims that:

(a) if albandc|d then(a + ¢)|(b+ d) and  (b) if ac|bc thenalb.

Give counter—examples to show that these beliefs are ill-founded.

3.4 Disprove the following assertions. Use Questi@ifsand 3.8 — that is assume that the
results of these questions have been established — but indicate where you use them. You
should also indicate where you use the Division Algorithm (if you do).

(@) In € Z suchthaB t n(n+ 1)(n + 2).

(b) In € Z suchthaB { n(2n? + 7).

(c) In € Z such that? has the forn8k + 2, for some integek.
(d) In € Z such that:® has the formdk + 2, for some integet:.

3.5 Are the statements below true or false? Write down the converse of each. Is the converse
true or false?

(@) If a*> —b* = 0thena = b = 0. (c) If a = bthena® = (—b)%.
(b) If a # 0then2a # 0. (d) If a*> = 1thena = —1.

3.6 What, if anything, is wrong with the following.

(a) If am a dog then | have a nose. | have a nose. Therefore | am a dog.
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(b) If you are not a reptile then you are not an alligator. | am an alligator so | am also a
reptile.
(c) If you are not a fish then you cannot be a haddock. | am a fish so | must be a haddock.

3.7 Prove each statement below using only the definition of division (and basic laws of arith-
metic). Point out where in your proof you use the definition of division. 4.ét ¢, d be

integers. The following hold.

(@) ala?.

(b) If a|b thena|be andac]be.
(c) If a|b andc|d thenac|bd.
(d) If 0|a thena = 0.

(e) a|l if and only if a = +1. [Hint: Consider cases > 0 anda < 0 separately. If
a > 0 use the previous part of the questiona & 0 apply the result for, > 0 to —a.

Cana = 07]
(f) If a|b andb|a thenb = +a.

3.8 Use the Division Algorithm and Questiéh? to prove that for an arbitrary integer

(@) 2|a(a +1); () 3|a(2a® + 7);
(b) 3la(a+1)(a+ 2); (d) if a is odd ther82|(a® + 3)(a® + 7).

In each case indicate where the Division Algorithm and results of QueS3fioare used
and how.

3.9 Show that there do not exist integersy such that? — 4y = 3. [Hint: first prove that
there are no such numbers witteven, then that there no such wittodd.]

3.10 Show that there is no pair of natural numberg such that:? — 3y? = 0. Use this to show
that there is no rational numbeisuch that? = 3.

3.11 Show that there is no pair of natural numberg such that:? — 52 = 0. Use this to show
that there is no rational numbeisuch that? = 5.



2.2 are axioms for numbers. The method of proof by induction
is based on the following property which is really an axiom for the natural nunibers

The Principle of proof by induction

Assume thai’(n) is a statement, for alt € N. Assume further that it can be shown that
(1) P(1)istrue and
(2) if P(k)is true thenP(k + 1) is true, fork > 1.

ThenP(n) is true for alln € N,

In the following example we use “sigma” notation for sums, that is we define

n
Jj=1

Example 4.1. Suppose that we wish to prove that

1 1
Z__ =1——— foralln e N.
n+1

Here P(n) is the statement

1 1
> o=l
Jj(7+1) n+1

j=1
and we wish to prové’(1), P(2), P(3),.. ..
Proof by induction takes the following form.

45
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righthand side. Starting with the lefthand sideftfk + 1) we have

k+1

j=1

1 o
23570 <Zj<j+1>> BECER(

- (l_ki1)+(k+1)(k+2)’

1— (k+2
— 1+ (k+2)

(k+1)(k+2)

E+1

&+ 1)(k +2)

E+2’

k+1)+1)

by applying the inductive hypothesis

which is the righthand side @?(k + 1). ThereforeP(k + 1) holds.
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Example 4.2 (Bernoulli’'s Inequality). Prove that

(1+2)" > 1+ nz, foralln € Nand forallr € R,z > 0.
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Example 4.3 (Summing a geometric progression)Prove that

. n_ 1
ar! = a(r—1)7 foralla € Randr € R,r # 1, and for alln € N.
r —
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Example 4.4 (Special cases of summing geometric progressions).

Q) a=1,r=x(#1):

From Examplet.3
" —1

xr—1"

l+o+a>+- 2"t =
Multiplying through byx — 1 gives
A4+z+22+--+2"Ha—-1)=2" -1

If we defined division for polynomials as we've done for integers, in Definificinwe could
say that this shows that
(z = 1)|(z" = 1)

and that
(I+z+2>+-- +2" (" —1).

For example
1+z)(z—1)=2>—-1,

Q+z+a)(@—-1)=2"~1,
A4+z+22+2%)(z—1)=2*— 1
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2)a=1Lr=—x(@x#-1),n=2m+1,meN:

The lefthand side of the equality of Example3 becomes

2m 2m

Zarj = Z(—x)j

7=0 §=0
:1_:L,+x2__'_(_1)2mx2m
=1l—x+a?—- 422

The righthand side is

a(r"—1)  (—z)*t -1

r—1 —x—1
x2m+1_|_1
ol
From Examplet.3
2m—+1 1
1_x+x2_...+x2m:u
z+1
Multiplying by = + 1 gives
1—z+2*— -+ (x+1)=2""" +1.
For example
(l—z+2*)(x+1)=2"+1,
(1—z+2>—2*+at)(z+1)=2"+1,
l—z+2®—2*+2* -2 +2%(@+1)=2"+1.
We can say
(z + 1)|(2*™ !+ 1)
and

(1—l’—|—$2—~--+£L‘2m>’(l’2m+l—|—1).

4.2 Change of basis

It is sometimes useful to be able to start the induction at some point othen tean In this
case we use the following alternative statement of the Principle of Induction.

Lets € Z. Assume thatP(n) is a statement, for alk > s. Assume further that it can be
shown that

(1) P(s)istrue and
(2) if P(k)istrue thenP(k + 1) is true, fork > s.
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Example 4.5. Show that™ > »n3, for alln > 10.



MAS121 Notes

54

Now

2k = K + k* > k3 + 10k*, ask > 10,

=k + 3k* + TK?

> k* + 3k* + 70k, ask > 10,

= k3 + 3k + 3k + 67k

> k% + 3k + 3k + 1, ask > 10.

HenceP(k + 1) holds.

Conclusion: Therefore, by inductionf’(n) holds for alln > 10.

Note that2? = 512 < 729 = 93, so the result does not hold when= 9.
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4.3 Pascal’s triangle and Fibonacci numbers

Thebinomial coefficientor choice number(Z) is given by the formula

()=

for non-negative integers andk, with 0 < k£ < n. We defined! = 1 so that(g) = (n> =1,

for all n. As you can verify
n\y (n—1 n n—1
k) k k—1)

We can use this fact to generate binomial coefficients, as follows. Star V(\)II hand write out

succesive rows starting with= (8) and ending with ") = 1. Fill the rows making théth
n

entry on thenth row the sum of thék — 1)th andkth entries from the row above.

n

Then the(n + 1)st row will contain the binomial coefficienték

),forkzo,...,n. This array

is known asPascal’s triangleand is more familiar as
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Write out Pascal’s triangle with the left hanti’s aligned in a column, as follows.

1

2 1

3 3 1

4 6 4 1
5 10 10 5 1

6 15 20 15 6 1
721 35 35 21 7 1

— = = = e e e

Now add numbers on the diagonals running from lower left to upper right:

1
1

1+1=2
1+2=3
I1+3+1=5
1+4+3=28

1+54+6+1=13
1+6+10+4=21.

These are the first of the Fibonaccinumbers, which are generated by the rules

fi=1
f2=1
fn-i—l = fn + fn—la forn > 2.

Thus the Fibonacci numbers are

1,1,2,3,5,8,13,21, 34,55, 89, 144, 233, 377, 610, . ..
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Do the diagonals of Pascal’s triangle sum to the Fibonacci numbers after the?fifdtey do
because each entry on a diagonal is the sum of one number from the diagonal one row above it
and a second number from the diagonal two rows above it. Thus each diagonal is the sum of the
two diagonals above it: as on the following diagram.

We could write out an algebraic proof based on the idea above using induction.

Example 4.6. Consider the following.

Jo=1
f3=2
fi=3
fot fa=4
f5=5
Jot [5=06
fst+fs=17
Ji+[5=238

fot+fs+fo=1+5+34=40
fs+ fr+ fio =2+ 13+ 55 = 70.
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Example 4.7.1f we take every third Fibonacci number we obtain a new sequence of numbers,

fss o, fo, a2, - -

with values

2,8, 34,144, 610, 2584, 10946, 46368, 196418, . . .

We shall prove, by induction that,, is even, for alln > 1.
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for someq € Z. Then

fak+s = fapt2 + farsr
= (fsp1 + far) + foen

= 2f3p41 + 2q,

using the inductive hypothesis. Thiig; 1) is even.

Conclusion: Therefore by induction?(») holds for alln > 1.

Example 4.8 (The binomial theorem).This example is not examinable

n

(x+y)" = Z (Z) 2" Fy* foralln € Nand allz,y € R.

k=0

We shall prove this by induction.
Basis: P(1) is

(x+y) = i (,1) wt Ty

k=0
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1
N 4. (1 N
2 ()= (o) (v

P(1) holds, for allz,y € R.

and, as

Inductive Hypothesis: AssumeP (k) holds for somen > 1. That is

(+y)" = (Z) ™ Fyk forallz,y € R.

k=0

Inductive Step: Given the inductive hypothesis we wish to show tRatn + 1) holds. That is

il _ = (mF 1 Zm Iy
(x +vy) :E k ¥ forallz,y € R.
k=0

We have
(z+y)" = (z+y)"(z+y)
(x +y), using the inductive hypothesis,

3 ()]

k=0

Now settings = k£ + 1 we can write

m m—k, k+1 — m m+1—s, s
()= (1)
fork =0,...m. Therefore

m m—+1 m m+1 m
m k k+1 m+l—s, s m+1—k_ k
()= () = (1 e

s=1 k=1
Hence
m m+1
(z +y)™H = Z (m)xmﬂ Rkl 4 Z ( m )xm—i—l by
k=0 k k=1 k-1
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m\  (m\ m—+1 m-+1 _1
0) \im/) 0 m+1)
and, forl < k < m,

(Z)+(kT£>:km:ikﬂ+(k—nwgil—kﬂ

~ omlm+1—Fk)+mlk
Ck(m—K)!(m+1—k)
_ ml(m+1)

T E(m+1— k)

_ (m4+1)!

T K(m+1—k)

-(")

m

mi1 (ML m=+1\ ik gk m+1\
(x+vy) —( 0 )x +Z( P y"+ m1)?

k=1

m+1\ 1k ok

We have

Thus

3
s

=
Il

0

That is,P(m + 1) holds.
Conclusion: Therefore, by inductionf’(n) holds for alln € N.
4.4 Objectives
After covering this chapter of the course you should be able to:
(i) understand the principle of proof by induction;

(i) carry out proof by induction, both starting with the integeand starting with an integer
other thant;

(i) remember the definition of binomial coefficients;

(iv) remember the definition of the Fibonacci numbers.
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45 Exercises

4.1 A infinite sequencery, xs, x3, ... Of integers is defined by the rules = 2 andx,,; =
Z, 4+ 2(n + 1), for alln > 1. Show by induction that,, = n(n + 1), foralln € N.

4.2 Prove that! > 2" for all n € N with n > 4.

4.3 Prove by induction that:
n 1 2
(1+z)" > 1+n$+§n(n— 1)z,

foralln € Nandz € R,z > 0.

4.4 Prove by induction that:

forall n € N.

4.5 Prove by induction that:

S k1) = %n(n +1)(n+2)

forall n € N.

4.6 Prove by induction that:

1
(a+2)

zn:k(k+1)...(k+a): nn+1)(n+2)...(n+a+1)
k=1

foralln € Nandalla € N.
4.7 Use proof by induction to show that each of the following hold, fomalt 1.

(@) 85% + 7; [Hint: 52(+1) 17 = 52(5%F - 7) + (7 — 5% . 7)]
(b) 1524 —1;
(c) 5[3%* ! +2m+Y,
(d) 21]47+1 4 521
(e) 24|27 +3-5" — 5.
4.8 Geography made simpléVhat is wrong with the following “proof by induction” of the
fact that all British towns have the same name. Prove, by induction, that any collection

of n towns have the same name. This is true whers- 1. Assume the truth of the
statement for any collection df towns, wherek > 1. Now take a collection of + 1
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towns. Excludel town from the collection to leave a collection btowns, which by the
inductive hypothesis, all have the same name. Now take: thel towns and exclude a
different one. The remainingtowns all have the same name and this time include the one
that was left out before. Therefore &l 1 towns have the same name and the statement
holds for alln > 1.

4.9 Prove the following.

(a) Every4th Fibonacci number is divisible b3 that is3| f4,,, for all n > 1.
(b) Every5th Fibonacci number is divisible by, that is5| f,,, for alln > 1.

4.10 In Maple type the command
with(combinat, fibonacci);
Now Maple will return thenth Fibonacci number in response to the command
fibonacci(n);
We can write a loop to generate and print Fibonacci numbers:

for i from 1 to 20 do
print("f",i,"=",fibonacci(i));
od;

The output can be restricted to evéith Fibonacci number and then divided 4y

for i from 1 to 20 do
print("f",6*i,"=",fibonacci(6*i), "and ", fibonacci(6*i)/4);
od,

What does this suggest? Can you prove it? Try to some other numbers to see if you can
detectnth Fibonacci numbers which they divide.



Chapter 5

Primes and Coprimes

A central concept of number theory is that of the prime number which is introduced in this
chapter. These numbers form the basic building blocks out of which the integers are formed and
into which they can be decomposed. We shall barely scratch the surface of the theory of prime
numbers here. We shall establish the Fundamental Theorem of Arithmetic, which shows that
every integer factors uniquely as a product of primes, and we shall see that there are infinitely
many primes. We begin by considering a property of pairs of integers.

5.1 Greatest common divisors again

First we establish a few more properties of the greatest common divisor. Recall that whenever
we ran the Euclidean Algorithm, on natural numbeendb, we obtained not onlgcd(a, b) but
also integers: andv such that
ged(a, b) = au + bv,

and from this fact we obtained Theoréh?21 We’'ll now give an alternative proof of this Theo-
rem.

Second proof of Theoref21
Suppose that we have positive integerandb. (The cases where or b are non-positive
follow easily from this case, and are left to the reader.) This proof depends on analysis of the set

S ={ak+bl €Z:ak+bl>0andk,l cZ}.

65
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This is clearly a set of positive integers. We shall prove the theorem by showing that it’s
smallest element iscd(a, b). First of all we need to show that it does have a smallest element. It
is a fundamental property of numbers that every non-empty set of positive integers has a smallest
element. Then, a§ contains only positive integers it must have a smallest element unless it's
empty. It's easy to seé is non-empty as it contains, for examplet b. ThereforeS has a
smallest element say. The fact that € S means

s = ak + bl, for somek,[ € Z. (5.1)
Now, using the Division Algorithm, we can write

a = sq+r, where) <r < s.
Substituting fors using 6.1) this becomes

a= (ak+bl)g+r
= a(kq) + b(lq) +,

SO
r=a(l—kq) +b(—lg), with0 < r < s.

If » # 0 then we have € S andr < s, a contradiction. Therefore= 0 anda = sq. That s,
s|la. Similarly s|b.
Now suppose thatja andc|b. Thena = cu andb = cv, for someu, v € Z. Substitution in
(5.1 gives
s = c(uk) + c(vl) = c(uk + vl).

Thereforer|s and from Lemma.183 we haver < s. This completes the proof that= gcd(a, b)
and we've already founél, [ such thats = ak + bl, so Theoren2.21follows.

5.2 Coprimes and Euclid’'s Lemma

Pairs of integers have greatest common divisdvave particularly nice properties and it’s
useful to have a name for them.

Definition 5.1. If a andb are integers witkged(a, b) = 1 then we say that andb arecoprime.

Example 5.2.1t is easy to see th&tand35 are coprime, for example. Now from Theorén21
it follows that there are integersandv such thatu + 350 = 1. For instance we may set= 6
andv = —1. (There are other possibilities: see the exercises.)

On the other hand suppose that for some integeasid b we happen to know that, say,
5a — 2b = 1. Does this mean thagd(a, b) = 1?

Corollary 5.3. Integersa andb are coprime if and only if there exist integarsand v such that
au+bv = 1.

Proof. This is an if and only if proof so has two halves.
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Step(1) Prove that ifa andb are coprime then there exist integarandv such thatiu + bv = 1.
If  andb are coprime then it follows directly from Theoréir? 1that such: andv exist.

Step(2) Prove that if there exist integersand v such thatau + bv = 1 thenged(a,b) = 1.
Assume that there are integersindv such thatuu + bv = 1. Letd = ged(a,b). Then
d|a andd|b sod|(au + bv):

Therefored|1. Asd > 0 (why?) it follows, thatd < 1:

Thusd = 1, soa andb are coprime, as required.

Corollary5.3allows us to prove a result known as Euclid’s Lemma.

Lemma 5.4 (Euclid’s Lemma). Leta, b andc be integers withged(a, b) = 1. If a|be thenalc.
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Proof.

5.3 Application to solving equations
We've already seen (Lemnia24) that a linear Diophantine equation, that is an equation of
the formaz + by = ¢, wherea, b andc are integers, has integer solutiorandy if and only if
c| ged(a,b). We can now use Euclid’s lemma to find all solutions to such equations.
Theorem 5.5. Leta, b, c be integers and lef = gcd(a, b). The equation
ar + by =c (5.2)

has an integer solution if and onlydic. If d|c then equatior(5.2) has infinitely many solutions
and if x = ug, y = vy is one solution them = u,, y = v is a solution if and only if

up = ug + (b/d)t andv; = vy — (a/d)t, for somet € Z.

Proof. 2.24
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5.2
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so from Euclid’s Lemmap|(vy — vo). Thereforevy, — v, = pt, for some integer, and so

v = vo—pt = vo—(a/d)t. NOWp(us—ug) = pqt SOus—ug = gt anduy = ug+qt = up+(b/d)t,

for somet € Z.
O

Example 5.6.1n Example2.22we saw thagcd (2600, 2028) = 52 and that the equatiaz600z +
2028y = 104 has a solution: = —14, y = 18. As2600/52 = 50 and2028/52 = 39 the solutions
to this equation are

x=—144 39,y = 18 — 50t, fort € 7Z.

For each integetr we have a solution, some of which are shown below.

e |y |
2] 92| -118
1[-53 68
0 [-14]18
1|25 | -32
2 (64 | -82

5.4 Prime Numbers

It follows from the definition of division that every integeris divisible by+1 and by+n.
Amongst the positive integers a special case is the integdrch has only one positive divisor,
namely 1. All other positive integers have at least 2 positive divisors, 1 andand may have
more.

Definition 5.7. A positive integemp > 1 is called agprime if the only positive divisors op arel
andp. An integer which is not prime is callesbmposite

For example, 5,7, 11,13, 17 and19 are prime whilst the first few composite integers are:

4 which is divisible by 2

6  which is divisible by 2 and 3

8  which is divisible by 2and 4

9  which is divisible by 3

10 which is divisible by 2 and 5.
A fundamental property of prime numbers is the following.

Theorem 5.8 (The prime divisor property). If p is a prime andp|ab thenp|a or p|b.
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Proof. If p|a then we have nothing to prove.jff a then the common divisors afandp are+1
(since the only divisors gf are+1 and+p). Henceged(a, p) = 1. From Lemméb.4 (Euclid’s
Lemma) it follows thap|b, as required. O]

Example 5.9.1f 3|bc then eitheB|b or 3|c. The same goes f@9: if 29|bc then29|b or 29|c. This

does not hold for all integers. For instar@e4 and24 = 8- 3, so6|8 - 3 but6 1 8 and6 1 3. Once
we've discussed prime factorisation it will be easy to see why this property doesn’t hold for any
composite integers.

The Theorem above can easily be extended to products of more thieagers. For example,
if 3|abc then, from the Theorem eith8fab or 3|c. If 3|ab then, from the Theorem agaiBja or
3|b. Therefore, if3|abc then3|a or 3|b or 3|c.

Corollary 5.10. If p is prime andp|a; - - - a,, thenp|a;, for some.

Proof. The proof is by induction on, starting withn = 2.
Basis: P(2) follows from Theorenb.8.
Inductive Hypothesis: If n > 2 andp|a; - - - a,, thenp|a;, for somei.

Inductive Step: Suppose that|a; - - - a,1. Let
a=aj---a, andb = a, ;.

Thenp|ab so, from Theoren’.8, p|a or p|b. If p|a the inductive hypothesis implies thalt;, for
some; with 1 < i < n. If p|b thenp|a, ;. Hencep|a;, for somei, as required. O

5.5 Prime Factorisation

We now come to the main result of this chapter: the Fundamental Theorem of Arithmetic. It
may seem that this theorem does not say anything very much or that what it does say is obvious.
However there are number systems in which the theorem does not hold: examples are left to the
exercises. During the nineteenth century there were attempts to prove Fermat’s last theorem using
so called “algebraic” number systems. It escaped the attention of mathematicians for some time
that these proofs were incorrect precisely because of the failure of the Fundamental Theorem of
Arithmetic in the algebraic number systems concerned.

An expression of an integer as a product of primes is calledpgime factorisation of n.

For examplel2 and25 have prime factorisation®2 = 2 - 2 - 3 and25 = 5 - 5, respectively. We
aim to show that every positive integer greater than one has a prime factorisation and that this
prime factorisation is unique, up to the order in which the prime factors occur. For instance

-5-2.7,
. 7-2-5,
2225

-3 N o

are all prime factorisations df40 but are regarded as the same because the numhés, 6fs
and7’s is the same in each.
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Example 5.11.1t's easy enough to see thatannot be written as a product of primes other than
by writing it as ... well ...7. What about a larger prime lik€991 say? Can | write this as a
product of primes: other than the length one prodyétl ?

By listing all possible factorisations it's easy to see that small integers have unique prime
factorisation. In the proof of the next theorem we’ll show that this is true for all integerd.

Theorem 5.12 (The Fundamental Theorem of Arithmetic).Every integem > 1 is a product
of one or more primes. This product is unique apart from the order in which the primes occur.
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Proof. Step(1) Prove that every. > 1 has a prime factorisation.
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Step(2) Prove that prime factorisations are unique.

]

It is often convenient to write the prime factorisation of an integer with all like primes col-
lected together, in ascending order, and with exponential notation. For example we could write
the prime factorisations df40 and2200 as

140 =2%.5-7and
2200 = 23 - 5% - 11.

We call this thecollected prime factorisation of an integern or say that we've writtem in
standard form. From the Fundamental Theorem of Arithmetic it follows that collected prime
factorisations are unique. We record this fact in the following corollary.
Corollary 5.13. Letn > 1 be an integer. Then may be written uniquely as

n=pi' -,

wherek > 1, p; < -+ < pg, p; IS prime anda; > 1.
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Example 5.14.1t is easy to multiply together integers in standard form: we just add correspond-
ing superscripts. For examp$888 = 22 -7 - 112 and2200 = 23 - 5% - 11 s0 3388 - 2200 =
2°.5%.7.113. In general if integers andb have standard forms

a=pi"---pomand

b:pflpg”

thenab has standard form

ab — p(lxl'i_ﬂl . Oén'f'ﬁn‘

--pn

Here we've padded out the collected prime factorisations (pfitivhere necessary) to make
them the same length: as in the following example.

2200 =2%-5%-11=2%.52.7.11'. 13 and
572572 =22.7-112.13> =22.5%. 71 . 112 . 132

SO

2200 - 572572 = 2° .52 . 71 . 113 . 132,

Example 5.15. Reversing the idea of the previous example, it's easy to find the divisors of an
integer given in standard form. For instance|i$388 then

3388 =22.7-11% = ab,
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for some integeb.
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Example 5.16.As 2200 has standard for®? - 52 - 11 the positive divisor 02200 are of the form
205°11¢, where0 < a < 3,0 < b < 2and0 < ¢ < 1. First list all such triplega, b, c):

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (0,2,0) (0,2,1)
(1,0,0) (1,0,1) (1,1,0) (1,1,1) (1,2,0) (1,2,1)
(2,0,0) (2,0,1) (2,1,0) (2,1,1) (2,2,0) (2,2,1)
(3,0,0) (3,0,1) (3, 1,0) (3,1,1) (3,2,0) (3,2,1)
The positive divisors 02200 are therefore:
1 11 ) 511 52 5211
2 2-11 2-5 2-5-11 252 2-5%.11
22 22.11 22.5 22.5-11 22.52 22.5%.11
23 23 .11 23.5 23.5-11 23 .52 23.5%.11

Example 5.17.1f two numbers are expressed in standard form its easy to find their greatest
common divisor. The standard form &f2572 is 22 - 7 - 11% - 13? so any divisor 0672572 has

the form2°7/11913", with0 < e < 2,0 < f < 1,0 < g < 2and0 < h < 2. Hence common
divisors 0f2200 and572572 have the forn2“11%, with 0 < v < 2 and0 < v < 1. Therefore

ged (2200, 572572) = 22 - 11 = 44,

Example 5.18.Find gcd (11990979, 637637).

5.6 Fermat’s Method of Factorisation

Factoring an integet > 1 means finding a pair of positive integers- 1 andb > 1 such that
ab = n. If nis given as a collected prime factorisation then we've seen that it's easy to do this.
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Example 5.19.Use Fermat's method of factorisation to find factors266004389. We have
16309 < /266004389 < 16310. Therefore we start with = 16310:

16310% — 266004389 = 11711

163117 — 266004389 = 44332

16312% — 266004389 = 76955

16313% — 266004389 = 109580

16314% — 266004389 = 142207

16315% — 266004389 = 174836

16316% — 266004389 = 207467

16317% — 266004389 = 240100 = 490°.

Therefore266004389 = 16317% —490? = (16317+490)(16317—490). As16317+490 = 16807
and16317 — 490 = 15827 we've found the factorisation

266004389 = 16807 - 15827.

Unfortunately, ifn does not have factors of similar size then this method of factoring can
be very slow. (It does however form the basis of some more powerful methods.)

5.7 Primality testing

One way to see whether or not an integer- 1 is prime is to test it for divisibility by all
prime numberg such thatl < p < n. If none of these primes divide then the Fundamental
Theorem of Arithmetic implies that is prime. This is very time consuming but does allow us
to build up a list of primes. The process can be speeded up significantly by using the observation
that if n is composite then it has a prime diviser< \/n. This is the content of the following
lemma.

Lemma 5.20. An integern. > 1 is composite if and only if it has a prime divisprsuch that

p < +/n.

Proof.
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Example 5.21.To find all primes in the rangéto 45:

2,3,5,7,11,13,17, 19,23, 29, 31, 37, 41, 43.

This is now a complete list of primes betweemnd45. This method of constructing lists of
primes is known as th8ieve of Eratosthenem fact it is still too inefficient to use in practice to
determine if a large number is prime.

5.8 A Theorem of Euclid

The following theorem appears in Book IX of tBdementsa mathematical textbook written
by Euclid: a Greek mathematician who lived around 300 bc.

Theorem 5.22.There are infinitely many primes.

Proof. The proof is by contradiction.


http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Euclid.html
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implies thatp; = 1 - p; < zp; = 1 and we obtaimp; < 1, a contradiction.

5.9 Objectives

After covering this chapter of the course you should be able to:
(i) recall Theoren?.21and understand its proof;
(i) define a coprime pair of integers;
(i) recall Corollary5.3and Euclid’s Lemma and understand their proofs;
(iv) define prime and composite numbers;
(v) recall the prime divisor property, TheoreémnB, and understand its proof;
(vi) recall the Fundamental Theorem of Arithmetic, Theofed?, and understand its proof;

(vii) recognise and write down the prime factorisation and standard form or collected prime
factorisation of an integer;

(viii) use prime factorisation to find divisors and greatest common divisors;

(ix) recall the statement of Theorefr22and understand its proof.
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5.10 Exercises
5.1 Leta, b andc be integers such thatd(a,b) = 1 anda|c andb|c. Prove thatb|c. [Hint:
Use Theoren2.21and multiply byc.]

5.2 Leta, b andn be integers such thatd(a,n) = 1 = ged(b, n). Prove thatcd(ab, n) = 1.
[Hint: Use Corollary5.3]

5.3 Leta andb be integers, not both zero.
(@) Show that ifk > 0 andgced (a,b) = d thenged (ka,kb) = kd. [Hint: Use an
appropriate result to expregsisd = ax + by. Multiply both sides byk.]
(b) Prove that ifa andb be integers witlged(a, b) = d then

a b
— =) =1.
gcd(d,d)

[Hint: Use the previous part of the question.]

5.4 Write down the collected prime factorisation4i25, 17460, 1234 and36000. Hence find
ged (4725, 17460).

5.5 Write down the collected prime factorisation ©of= 252, b = 1470 andc = 525. Hence
find ged(a, b), ged(a, ¢) andged (b, ¢) and list all divisors oR52.

5.6 (a) Suppose that,...,n; are integers and that; = 3¢; + r;, with », = 0 or 1, for
i=1,...,t. Show that, - - - n; has the forn8q + r, with» =0 or 1.
(b) Show that an integer of the forBm + 2 has a prime factor of the same form.
5.7 (a) Show that, if2" — 1 is a prime them must also be a prime.Hint: «" — 1 =

(a—1)(a"*+---+1).] Primes of this form are called Mersenne primes. Show that
211 — 1is not a prime.

(b) Show that, if2" + 1 is a prime them must be a power of. [Hint: a® + 1 =
(a+1)(a* — a® + a®> — a' + 1).] Primes of this form are called Fermat primes.

5.8 Let p, ¢; andg, be prime and suppose thalt;; .. Show, without using the Fundamental
Theorem of Arithmetic, thgt = ¢; or p = ¢s.

5.9 Letn be an integer. > 1. Assume that has the property that

“if n|abthenn|a orn|b”.

Show thatn is prime. Conclude, by quoting an appropriate result, thigtprime if and
only if p has the prime divisor property.
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5.10 (a) Letay,...,a, andb be integers such that andb are coprime, for ali. Letc =
ay - - - a,,. Prove by induction that andc are coprime. (Use the result of question
5.2)
(b) Letay,...,a, be integers such that anda; are coprime whenever# j. Show by

induction that ifa;
5.1.)

b, fori = 1,...,n, thena; ---a,|b. (Use the result of question

5.11 Use Fermat Factorisation to factorise
(i) 143; (i) 2279; (iii) 43; (iv) 11413.

5.12 Use Fermat Factorisation to factorise
(i) 8051; (i) 73; (iii) 45009; (iv) 11021.

5.13 Write out the odd integers fromito 100 and then use the sieve of Eratosthenes to reduce
this list to a list of primes betweehand100.

5.14 Using the solutions to Questich9, determine the general form of the solutieny to the
following equations.

(a) 56z + 72y = 40; (d) 5z + 17y = 22;
(b) 24z + 138y = 18; (€) 63z + 45y = 783;
(c) 221z + 35y = 11; () 1192 — 6y = 7.



Chapter 6

Finite Arithmetic

In this chapter we introduce some new number systems and study their arithmetic. These number
systems are based on the ideaohgruencen the integers. Congruence arithmetic was devel-
oped by one of the greatest of all mathematiciares;| Friedrich Gausdn the 19th Century. It

is an important and useful part of mathematics which has many applications both theoretical and
practical. We'll look at one application at the end of the Chapter: there are many more. We begin
with some curiosities which can be understood once we've developed the theory.

6.1 Casting Out Nines

This is a method of testing integers for divisibility ByIn fact it outputs the unique remainder
obtained (by the Division Algorithm) on expressing a positive integé&gasr, with 0 < r < 9.
The procedure is the following.

Procedure 6.1 (Casting Out Nines)Given a non—negative integer(written in basel0) repeat
the following steps (in any order) until a number less thamobtained.

1 Cross out any digits that sum $oor a multiple of9.
2 Add the remaining digits.
The result is the remainder of division ofoy 9.

Example 6.2. Cast out Nines from15763401.

86
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Example 6.3. Cast out Nines fron31422211.

The casting out nines procedure can be used to check the results of numerical calculations.
Example 6.4. Check the computation

215763401 x 51422216 = 11095032211116616.

Example 6.5. Check
57 + 3 = 78128 = 304 x 257

for arithmetic mistakes.
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FY=7xT7=49=4. Hence5s” = 5* x 53 = 4 x 8 = 32 = 5. Thus5’ + 3 = 8 and the left hand

equality is checked.

These examples do nguaranteehe results of calculations. All that can be said is that if we
cast out nines and get different answers then we've made a mistake.

We can also use casting out nines to check for divisibilitpby number is divisible by if
and only if the result i9.

Example 6.6. Decide which 0215763401, 51422216 and3254787 is divisible by9.

The Telephone Number Trick

1 Write down your telephone number.
2 Write down your telephone number with digits reversed.
3 Subtract the smaller of these two numbers from the larger.

4 By casting out nines from the result decide whether or not it is divisible. by
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6.2 The “Odd & Even” Number System
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6.3 Red, white and blue arithmetic
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6.4 Congruence

In the Red, White and Blue number system we collected together all integers which left re-
mainderl, after attempting division bg, and called them blue. Notice thatdfandb are blue
then3|b — a.

Conversely, given any two integetsandb such thaB|b — a we can write
b — a = 3k, for somek € Z.
Using the division algorithm we can also write
b=3q+r, forr=0,10r2.
Therefore
a=b—-3k=3(q—k)+r.

That isa andb are both the same colour in the Red, White and Blue number system.

Our analysis shows thatandb are the same colour if and only3fo — a. Generalising this
from 3 to an arbitrary integer leads us to the definition of congruence.

Definition 6.7. Let n be a positive integer and letb € Z. If n|b — a then we say that is
congruentto b modulo n, and write

a=b (mod n).

For instancel7 = 5 (mod 12) and216 = 6 (mod 7). As in the case: = 3 above,a = b
(mod n) if and only if « andb both leave the same remainder after attempting division.ky
fact, if

a=mnqg-+randb=np+r, where0 <r <n (6.1)
then
b—a= n(p - CD?

son|b — a: thatisa = b (mod n).
On the other hand if we know that= b (mod n) thenn|b— a S0, using the argument above,
with n instead of3, we'll find that there is some such that §.1) holds.

Example 6.8. Congruence moduld gives rise to the Odd and Even number system.
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Example 6.9. Congruence moduld gives rise to the Red, White and Blue number system.

Example 6.10. Suppose: = 10. Then0 = 10 (mod 10), 10 = 101090 (mod 10), 11 = 121
(mod 10) and 27 = 253427 (mod 10). Every positive integer is congruent to its last digit
(written to basd 0). In particular integers congruentdaall end in the digi0. These are exactly
the integers divisible byo0.

Congruence is not the same as equality but it does share some of the properties of equality.
If we have any integers, b andc andn is a positive integer then

1. a =a (mod n),
2. if a=0b (mod n) thenb = a (mod n) and
3. ifa=b (mod n) andb = ¢ (mod n) thena = ¢ (mod n).

These are all properties of equality. Let’s check them for congruence. The first one is easy since
n|0 = a — a, for all integersz. We'll check the last one here and leave the second as an exercise.
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Lemma 6.11. Letn be a positive integer. Suppose thab, v andv are integers such that
a=u (modn)

and

b=v (mod n).

Then
() —a=—u (modn);
(i) a+b=u-+v (modn)and
(i)  ab=wv (mod n).

Proof. We prove partsif and (i) here, leaving parti() as an exercise.



MAS121 Notes 96

94
U

Lemma 6.12. Every integer is congruent modutoto one and only one of the integers in the list
0,1,...,n—1.
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Proof. This follows from the division algorithm because:iE Z then we can write, = nq + 7,
with 0 < r < n. Thenn|a — r soa = r (mod n) andr is in the given list. Ifa = r (mod n)
anda = s (mod n) then, from the above, = s with 0 < r < n and0 < s < n. Assuming that
r > sthenn|r — sandn > r > r — s, contradicting Lemm&.183. Thusa is congruent to only
one integer in the list. Il

Example 6.13.In Modular arithmetic we can always avoid computation with large numbers. For
example working modula0 we have

7459898790352045324 =4 (mod 10)

and
9874558754423 = 3 (mod 10).

Therefore
7459898790352045324 - 9874558754423 =4 -3 =12=2 (mod 10).
Similarly, working modulo7 we have
4543362 =5 (mod 7).

Therefore
4543362 =5° =25=4 (mod 7)

and
4543362° = 4543362 - 45433622 =5-4=20=6 (mod 7).

6.6 Divisibility Tests
Divisibility by 9
When we write a number lik20195 to basel0 we are expressing the number
2x 10 4+0x 10°+1x 10>+ 9 x 10" +5

in shorthand (there’s &in the 100’s column etc.).
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Applying this argument in general we write
A Gm—1 ** @100

for the number
A X 10™ 4+ @ppq X 10™ 1 4o o oy x 10 + ag.

As10* =1 (mod 9), fork =1,...,m, we have
A Gpp—1 ** Q100 = Ay + Q1 + -+ + a1 + a9 (mod 9). (6.2)

Now consider Casting out Nines, Proced@ré Suppose we cast out nines from an integer
m. In Stepl we cross out any digits which sum to a multiplefThe sum of these digits is
congruent to zero modul®so, from ©.2), the result is an integer congruentriomodulo9. In
Step2 we add the digits and again, frorfi.p), the result is an integer congruenttomodulo9.
Thus the casting out nines procedure results at every stage in an integer congruenbtiulo
9. The procedure ends with a numbesuch that) < r» < 9 andr = m (mod 9). Therefore
9/m — r, from which it follows thatm = 9¢ + r, for someq € Z and0 < r < 9. That is, the
output from Casting out Nines is the unique remainder guaranteed by the division algorithm, on
attempting division by.

The following lemma follows fromg.2).

Lemma 6.14. An integer is divisible by if and only if the sum of its digits is divisible By

Example 6.15.Are 31357989921 or 5179183229478 divisible by9?
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Divisibility by 4
Now 102 = 0 (mod 4). Thus, for example,
1932526 = (19325 x 100) + 26 = 26  (mod 4)

and

93975656489084357745565568738675 =
(939756564890843577455655687386 x 100) + 75 =75 (mod 4).

More generally, ifa,, - - - a1a¢ iS an integer written to basé then
A+ 100 = (A - - - ag X 100) + ajag = ajap  (mod 4).
Therefore
Ay - -ra1ap =0 (mod 4) ifandonlyif aap=0 (mod 4).

That is

A|ay, -+ - ajag < 4|aiap.

Example 6.16.Does4 divide 937475900345 or 803450037327

6.7 Inverses in modular arithmetic

If we work in the rational number® we can find a multiplicative inverse for any non-zero
element. For example the inverseldf/201 is 201/11. The same is true ik where the inverse
of x # 0is 1/x. In general ifz is a number ang has the property thaty = 1 then we say that
x hasinversey. Most elements o7 don't have inverses if. For exampl€ has no inverse. In
fact 41 are the only elements @ which have inverses. What about arithmetic modulo
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Example 6.17.Try to find the inverse o2 modulo6.

Example 6.18.Do either3 or 7 have inverses modul?
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Example 6.19.Which numbers have inverses moda®
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Lemma 6.20. An integera has an inverse modute if and only ifged(a,n) = 1.

Proof. O]

What happens if we do arithmetic modulo a prime numiiein this case, for every integer
a either
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1 p1ainwhich casecd(a,p) =1 or
2 pla in which caser = 0 (mod p).

Thus every integer which is not congruent to zero modultas an inverse. This means that
arithmetic modulg resembles arithmetic i@ more closely that arithmetic .

Example 6.21. Write out the multiplication table for arithmetic modufowith the integers
0,1,2,3 and4. Hence find the inverse of every integer which is not congruent to zero mod-
ulo 5.
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6.8 Solving Congruences

Example 6.22.Find all integerse such that
2r =4 (mod 6). (6.3)

We call such equationsongruencesand this is an example oflaear congruence. Note that if
x = a is a solution ands = b thenx = b is also a solution: so if there’s one solution there are
infinitely many. Every integer is congruent to one of

0,1,...,n — 1 modulon

so we seek solutions to congruences in this range. Once we know the solutions in this range
then, given the preceeding remark, we know all solutions. One method of solving the congruence
above is to construct a table:

x (001 2 3 45
2z (mod 6) |

From the table we see that the only solutionszare 2 andx = 5.

This method certainly works but it require alot of work. A more efficient method is to use
the results of Sectiof.3. Suppose we wish to find solutions to the congruence

ar =b (mod n). (6.4)

By definition of congruence is a solution to §.4) if and only if n|(az — b): that is if and only
if ax — b = ny, for some integey. Rearranging the last equatianjs a solution if and only
if ax —ny = b, for somey € Z. This is an equation of the form solved in Sect®f and we
know from Theoren®.5that it has a solution if and only gcd(a, n)|b. If ged(a,n)|b then, as
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5.3, we can use the Euclidean algorithm to find a particular solution to the equation.
Also, writing ged(a, n) = d, if d|b andz = u, y = v is a solution then the list of solutions to this
equation consists of all the pairs

r=u—(n/d)t, y=v— (a/d)t, fort € Z.

Therefore, ifd|b andz = u is one solution to the congruence4) then the list of solutions to
(6.4) consists of the integers of the form— (n/d)t, fort € Z.

Applying this to congruences(3) above,

In the general case (of congruenéel) the only remaining question is which of the solutions
we have found are congruent?
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We summarise our findings in a Theorem.

Theorem 6.23.Leta, b andn be integers witm > 0 and letd = ged(a, n). Then the congruence
(6.4) has a solution if and only ifljn. If d|n then there are exactly pairwise incongruent
solutions to(6.4).

Example 6.24.Find all solutions to the congruence

2r =3 (mod 6).

Example 6.25.Find all solutions to the congruenée = 9 (mod 15).

Example 6.26. Compare the solutions to the congruences

2c =4 (mod 6) andz =2 (mod 6).
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set of solutions: it's not a sensible thing to do if you want to find all soluti@ndoes not have

an inverse modul6é. Cancellation really involves multiplication by the inverse so is not always

useful when solving congruences.

6.9 Random numbers: an application

A sequence of numbers in which each new term is selected independently of the previous
term is called a sequence @ndom numbers. Such sequences can be obtained mechanically;
by rolling a dice, spinning a roulette wheel, or running the lottery. However if the sequence is to
be used in a scientific experiment then it is often desirable to be able to repeat the experiment.
This means producing a sequence wharvks random but which can be reconstructed when we
wish to verify our experimental results. Such sequences cannot be truly random and are called
pseudo-random Pseudo-random numbers are often generated by computer but this means that
we need to find good algorithms to produce them. The art and science of pseudo-random number
generation is highly developed and very sophisticated: look at the webRxaggom number
generators- The pLab Project Home Page at http://random.mat.sbg.ac.at/.

Here we present a pseudo-random number generator, first proposed by D.H. Lehmer in 1949,
that is easy to understand and for many purposes does a good enough job. To generate a sequence
of pseudo-random integeds, a1, as, . . . perform the following process.

1 Fix a positive numben and two integersn andc, with 2 < m < n and0 < ¢ < n.
2 Choose a start valug), such thab) < ay < n.
3 Generate elements of the sequence successively using the formula

ags1 = mag + ¢ (mod n), whered < a1 < n.

If a large value of is chosen the sequence appears random, at least to start with.

Example 6.27.With n = 800, m = 71, ¢ = 57, anday = 2 the first ten elements of the sequence
are

2,199, 586, 63, 530, 87,634,271, 98, 615.

Now alteringa, to 551 the sequence produced is

551, 778,95, 402, 599, 186, 463, 130, 487, 234.


http://random.mat.sbg.ac.at/
http://random.mat.sbg.ac.at/
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Theorem 6.28.Thekth term of the sequence generated by the process above is

c(m* —1)

) med

with0 < a; < n.
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ged(e,m) =1, m =1 (mod p), for all primesp dividing n, andm =1 (mod 4) if 4|n.

Analysis of “how random” a pseudo-random sequence is involves applying statistical tests to
the sequence. For instance the frequency of occurence of a particular integers in the sequence
can be tested; as can the frequency of occurence of pairs of integers.

6.10 Objectives
After covering this chapter of the course you should be able to:
(i) recall the definition of congruence;
(ii) recall the statement of Lemntalland understand its proof;
(i) do arithmetic modula;
(iv) understand how various divisibility tests work and be able to apply them;
(v) decide whether or not an integer has an inverse moglulo

(vi) generate a sequence of pseudo-random numbers.
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6.11 Exercises

6.1 Perform the following calculations in arithmetic moduldor n = 2, 10 and9. In each
case give your answer as an integer in the rangen — 1.
@1+2;, b)2-3; (©)4-3+5); M)6-7, (€)(6+5)-(5+T7).

6.2 Perform the following calculations in arithmetic moduldor n = 2, 10 and9. In each
case give your answer as an integer in the ranigen — 1.
@1l+1; (B)0-1; (€)3-(4+5); (@)2-5 (€)(4+5)-(6+47).

6.3 Construct tables for addition and multiplication moddlo Which integers if any have
inverses moduld?

6.4 Complete the following tables which give the rules for addition and multiplication modulo

+/0 1 2 3 45 6 7 89 -101 2 3 4 5 6 7 89
0,01 2 3 456 7 89 0/0 0O OO OOOOT OO
111 2 3 456 7 8 90 10 1 2 3 456 7 89
202 3 45 6 7 8 9 01 2/0 2 46 8 0 2 4 6 8
3|3 3|0 3 6 9 2 5

10 44 410 8 2 6

5|5 50 5

6|6 6|0

7|7 710

8|8 8|0

919 9|0

Which integers have inverse modulo?

6.5 Construct tables, similar to those in Questiofy for addition and multiplication in modulo
9. Which integers have inverse mod@

6.6 Letn be a natural number and letb € Z. Use the definition of congruence to show that
if
a=b (modn) then b=a (modn).

6.7 Letn be a natural number and lethb € Z. Use the definition of congruence, Lem®ma 1
and induction to show thatif = b (mod n) then

a* =b" (modn), forallintegersk > 0.

6.8 Find all solutions of the following congruences modaland modulcs.

(@) 3z =T; () z+3=3x+11; (e) —z+2=3;
(b) 4x +6 = 3; d)bx+1=a-—2; () —4x —3= -3z +2.

6.9 Find all solutions of the following congruences.
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(@) 3z =5 (mod 11); (d) 182z + 21 = 112 (mod 1001);
(b) 102+ 9 =9 (mod 15); (€) 42z + 100 = 53 (mod 105);
(c) 18z = 18 (mod 27); () —63x =0 (mod 99).

6.10 We say that: is asquare rootof b in arithmetic modulo if
a?>=b (mod n).

Show thaB3 is a square root of—1) in arithmetic modulal0. Find all of the square roots
of (—1) in arithmetic modulal0: that is find all solutions of the congruence

7> = -1 (mod 10).

6.11 Show thatr = 7 is a solution of the quadratic equatioh — 5z + 6 = 0 (mod 10). Find
all the solutions of this quadratic equation modixo

6.12 Find all solutions to the following simultaneous congruences mogialed11.

Tx+10 = 2 20 +3y = 8
(@) 3r+9 = 47 (b) br+4y = 8’
dr +15y = 3 Sxr+3y = 7
© 3r+2y = 5’ (d) Tx+2y = 1°

6.13 (a) Show that an integer is divisible yif and only if the sum of its digits is divisible
by 3.

(b) Show that an integer is divisible lyif and only if its last digit is divisible byp.

(c) Show that the integer
A QGm—1 *+ - Q100

is divisible by11 if and only if the alternating sum
ag—ay + -+ (=D a1+ (=1)"an,

Is divisible by11.

(d) Testthe following for divisibility by3, 5 and11: the numberd3451, 800834, 23422345,
234221054 and2987090.

6.14 Use induction ork to prove Theorens.28



Appendix A

Proof that the Euclidean Algorithm works

This appendix is included for information only: the material it contains is not examinable.

From the examples of Chaptemwe can see that with the input of Exampe8 and2.4the
Euclidean Algorithm does give the correct output. As we can always replace an integer by its
absolute value, without changing the set of its positive divisors, the algorithm is only ever needed
to find the greatest common divisor of a pair of positive integers. We may therefore assume that
the input to the Euclidean Algorithm is a pair of natural numbeasidb with a < b.

Suppose then that we are giveandb with 0 < a < b and that we wish to explain why the
output from the Euclidean Algorithm igd(b, a).

EAL. We input the paifb, a).

EA2. Expresd asb = aqq + 1o, for some integerg, andrq, with 0 < ry < a. We know that we
can always do this because the Division Algorithm, Theogei tells us so.

EA3. Do nothing ifry # 0. We’ll come back to what happensrif = 0 later.

EAA4. If we reach this step then we must have hrad> 0 in Step EA3. In this case we replace
(b, a) with (a, o). Then we go back to Step BAand begin again.

Next time we reach Step EAwe express = roq; + 1, for some integerg, andr; with
0 < r; < ro. Assuming that; > 0 we’ll reach Step EA again and replacés, ry) with the
pair (ro, r1). We’'ll then start again at Step HBAThis process continues: we repldeg, ;) with
(r1,m2) wherery = r1q2 + 72 @and0 < r, < r; and so on, as long as none of this is zero. The
result is a sequence of positive integers

b>a>rg>r;>--->nr, >0,
with ;1 = r;q;v1 + 101, fori = 1,...,n — 1. These are equations are Equati@ns-2.5in
Example2.3and ther;’s are the remainders which occur there. The algorithm continues adding

to this sequence if the remaindgris non—zero. This cannot continue indefinitelybas a fixed
positive integer. Therefore, at some stage we’'ll inpyt r,,.) at Step EA and when we reach

113
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Step EA3find that we have,, = r,,1¢,.2 1+ 0, for some integet,, .. As in the examples above,
at this point we have

ged(b, a) = ged(a, ro) = ged(rg,m1) = -+ = ged(rp—1,7mn) = ged(rp, 0) =1y,

(using Lemma2.16). Now Step EA outputsr,, and stops. Thus the Euclidean Algorithm does
indeed give the correct answer.



115
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Appendix B

Glossary of notation

{a,b,c} the set with elements, b, ¢

€ is a member of

¢ is not a member of

0 the empty set

XcCcY X is a subset ot

XqgY X is not a subset of

XDY Y is a subset oX

X2Y Y is a not a subset ot

2 or | such that

N the set of natural numbers

Z the set of integers

Q the set of rational numbers

R the set of real numbers

{z € S: x has property?} the set of elements of the s€twhich have property’
XUY the union ofX andY

XNy the intersection oX andY

X\Y the difference ofX andY

X' the complement oK (in a given setF)

= there exists

v for all

A= B Aimplies B (or if AthenB)

A<=B B implies A (or if AthenB)

A B Aifandonly if B (or A iff B)

alb a dividesb (or a is a factor ofb, or a is a divisor ofb)
ath a does not dividé

|| the modulus (or absolute value) .of

ged(a, b) greatest common divisor afandb

hcf(a, b) highest common factor af andb (ged(a, b) = hcf(a, b))

Zaj ay +---+ap

j=1
a=b (mod n) a is congruent té@ modulon
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