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Chapter 1

Background

In this Chapter we shall establish and/or revise some of the basic ideas and notation that we need
in this and other courses. Much of the material will be familiar and you should use the section
as reference when you need it. In lectures I shall refer to Sections of this Chapter as and when
they’re needed and only go through parts of the Chapter that are less familiar or cause difficulty.
Most of the Chapter is about Sets but we start by discussing some terminology.

1.1 Definitions, Lemmas and so on

In mathematics and statistics we sometimes need words to have precise, unambiguous, tech-
nical meanings. To give a word such a meaning we make what is called adefinitionof the word.
The definition acts like a dictionary definition and the words mean precisely what the definition
says and nothing else. For example in Section1.6we define the wordintegerto mean the set of
whole numbers. From this point on, as far as this course goes, the word “integer” has this mean-
ing and means absolutely nothing else, at all, ever. Some words may have the same meaning in
everyday life as in their definition, but others may not. The word “integer”, as far as I’m aware,
has no meaning other than the one above. On the other hand in Definition2.5the word “divides”
is given a meaning which may differ from the common usage. For instance we might like to say
that if we divide5 by 2 we get21

2
, which seems perfectly sensible. However in the sense given in

Definition2.5we find that2 doesnot divide5. We use our definition for the meaning of “divide”
so as far as we are concerned2 doesn’t divide5.

Definitions record the basic terms and describe the fundamental structures which we work
with. Reasoning from the definitions we attempt to understand such things as numbers, se-
quences, functions etc. The conclusions we draw are recorded and may be referenced later. Im-
portant conclusions are calledTheorems. Less important results may be calledLemmas. (Some
authors usePropositionas a label for a result of medium importance.)Corollary is a term used
to mean “result which follows more or less obviously from a previous theorem”. Conclusions are
set out as statements of fact in the Theorems, Lemmas, Corollaries etc.. The reasoning leading
to a conclusion is usually set out as aproof following the statement.

Examplescover not only illustrative calculations and standard techniques of problem solution
but sometimes also results so minor that we don’t wish to dignify them with a label like Lemma

1
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or Theorem. (See for instance Example2.8 in Section2.2.)
Once a Lemma, Theorem or Corollary has been established by some line of reasoning it can

be referred to in subsequent arguments. By recording our results as we go we allow ourselves to
build up gradually to surprising or well–hidden conclusions. If we prove the right Theorems on
the way we will be able to quote them in appropriate places to make our arguments look concise
and elegant.

1.2 Sets

In widespread and in common everyday use there are numerous words for collections: when
we refer to such things as a

family, flock, team or pack
we are, in each case, referring to several

people, sheep, players or wolves
as one single entity. This idea of regarding a collection of things as a single object is fundamental
to mathematics and statistics where the single entity is usually a set. It may seem somewhat
surprising then that we can’t make a short, easily understood and unambiguous description of
exactly what a set is. Luckily it doesn’t usually matter and we can be content with the the
following. A setis a collection of objects together with some method of (in principle) identifying
which objects belong to the collection and which do not. Sets will be studied further in the
module MAS131, “Introduction to Probability and Statistics”. (There are some more unusual
words for sets atwww.ojohaven.com/collectives/).

1.3 Membership

If S is a set andx is an object which belongs toS then we say thatx is anelementof S or a
memberof S. The symbol∈ is used as an abbreviation for “is a member of”, sox ∈ S reads “x
is an element ofS”. Similarly, the symbol/∈ is used as an abbreviation for “is not a member of”,
soy /∈ S reads “y is not an element ofS”.

One way of describing a set is to enclose a list of its members in curly braces, separated by
commas. Thus the set with elements1, 2, 3, 4, 5 can be denoted by

{1, 2, 3, 4, 5}.

Judicious use of. . . allows us to use this notation when the list of elements of the set is infinite.
For example the set of positive whole numbersN can be written as

N = {1, 2, 3, . . .}

and the set of all whole numbersZ as

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

1.4 Subsets

A setS is a subsetof a setT if every element ofS is also an element ofT . For example
{a, b} is a subset of the set{a, b, c}. The symbol⊂ is used as an abbreviation for “is a subset

http://www.ojohaven.com/collectives/index.html
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of”. Thus
{1, 2, 3, . . .} ⊂ {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The symbol6⊂ is used as an abbreviation for “is a not a subset of”. Thus

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} 6⊂ {1, 2, 3, . . .}.

Note that every set is a subset of itself, that isS ⊂ S, for all setsS so, for example,

{a, b, c} ⊂ {a, b, c}.

We also use the symbol⊃ as an abbreviation for “contains the subset”. For example

{78, 69, 45, 32} ⊃ {78, 45},

{78, 69, 45, 32} ⊃ {78, 32, 69, 45}
and

{78, 69, 45, 32} ⊃ {78, 45}.
The symbol6⊃ has the obvious meaning, that is

{78, 69} 6⊃ {78, 32, 69, 45}

and
{78, 69, 45, 32} 6⊃ {78, 31, 64, 49}.

1.5 The empty set

The set with no elements is called theempty setdenoted∅. It follows from the definitions
we have already made that the empty set∅ is a subset ofS, for all setsS. To see this observe
that, given our definition of subset, we need to test whether or not every element of∅ belongs to
S, whereS is a set (in fact we need to do this for all setsS). However there are no elements in∅
so no element of∅ fails the test. Hence∅ is a subset ofS (no matter what setS we choose).

1.6 Some sets of numbers

We have standard names for some sets of numbers.

(1) The positive whole numbers are called thenatural numbers and the set{1, 2, 3, . . .} of
natural numbers is denotedN.

(2) The elements of the set{. . .− 3,−2,−1, 0, 1, 2, 3, . . .} of all whole numbers, positive, neg-
ative and zero are called theintegersand the set of integers is denotedZ.

(3) A number which can be expressed as a fractionp/q, wherep andq are integers andq 6= 0 is
called arational number and the set of all rational numbers is denotedQ.

(4) A number which has a decimal expansion is called areal number and the set of all real
numbers is denotedR.

Note thatN ⊂ Z ⊂ Q ⊂ R. HoweverZ 6⊂ N, Q 6⊂ Z andR 6⊂ Q. (Do you know why?)
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1.7 Specification of new sets from old

Using the symbol “:” to denote “with the property that” or “such that” we can use curly braces
to specify subsets. For example consider the setN of all positive whole numbers. Then

{n ∈ N : n is even}

is read as “the set of elementsn of N such thatn is even”. That is

{2, 4, 6, 8, . . .}.

The new description is more precise as it removes the necessity for the “. . .”, which are possibly
ambiguous. Further examples of this notation are:

{n ∈ N : n > 9} = {10, 11, 12, . . .},

and
{n ∈ N : n ≥ 11 andn < 16} = {11, 12, 13, 14, 15}.

Sometimes “|” is used instead of “:” as in

{n ∈ N |n is a multiple of10} = {10, 20, 30, . . .},
{n ∈ N |n is a multiple of10 and of3} = {30, 60, 90, . . .},

{n ∈ N |n is a multiple of3 andn + 1 is a multiple of7} = {6, 27, 48, . . .}.

1.8 Unions, intersections, complements and differences

The union of two setsS andT , denotedS ∪ T is the set consisting of all those elements
which either belong toS or belong toT . For example

{A, B, C} ∪ {X, Y, Z} = {A, B, C,X, Y, Z}

and
{A, B, C, Y, Z} ∪ {A, X, Y, Z} = {A, B, C,X, Y, Z}.

The intersection of two setsS andT , denotedS ∩ T is the set consisting of only those
elements which belong to bothS andT . For example

{A, B, C, L,M} ∩ {L, M, X, Y, Z} = {L, M}

and
{A, B, C} ∩ {X, Y, Z} = ∅.

If S is a subset of a setE then thecomplementof S in E, denotedS ′, is the set consisting
of those elements ofE which do not belong toS. That isS ′ = {x ∈ E : x /∈ S}. For example if
E = {a, b, c, d, e, f} andS = {a, b, c} thenS ′ = {d, e, f}.

Thedifference of two setsS andT (in that order), denotedS\T , is the set of elements ofS
which do not belong toT . For example ifS = {A, B, C,D, E, F} andT = {D, E, F, G, H, I}
thenS\T = {A, B, C}.
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1.9 Objectives

The material in this chapter is mainly for reference but you should become familiar with it as
the course goes on. Once you have covered this chapter you should be able to:

(i) understand the use of terms such as Definition, Lemma, Theorem,...

(ii) read and use the symbols∈, {. . .},⊂, 6⊂,⊃, 6⊃ and∅;

(iii) know which sets of numbersN, Z, Q andR refer to;

(iv) understand notation of the form{n ∈ Z : n > 10};

(v) know what unions, intersections, complements and differences of sets are and understand
the meaning ofX ∪ Y , X ∩ Y , X\Y andX ′, whereX andY are sets.

1.10 Exercises

Use these questions to test your set theory. If you can’t do them you should read the Chapter.

1.1 Go to the library and find the Mathematics and Statistics books. You are allocated a range
of shelf marks below. In a book with your shelf mark find a piece of technical mathematical
or statistical terminology (that is a word likedefinition, theorem, lemmaorcorollary) which
is not mentioned in Section 1.1 of this course. Write out

(a) the name of the book, its author, its publisher and date of publication;

(b) the word that you have found and the page it occurs on;

(c) the sentence containing the word you have found (or enough of its context to show
how it is used) and

(d) describe, in not more than3 lines, what the word means and how it is used.

Your shelf mark is as follows, depending on the first letter of your surname.

Name Shelf mark Name Shelfmark Name Shelfmark
A–B 511–511.52 C–D 512.52–512.8 E–F 515.354–515.7
G–H 511.6–512.02 I–J 512.9–514.744 K–L 515.72–515.9
M–N 512.1–512.22 O–P 515–515.15 Q–R 515.93–516.7
S–T 512.23–512.507 U–V 515.2–515.353 W–Z 516.8–519

1.2 List the elements of the following sets:

(a) {n ∈ N : 10 < n2 + n < 42};
(b) {x ∈ R : x2 + 6x + 9 = 0};
(c) {n ∈ N : n andn + 2 are prime withn < 30};

1.3 List the elements of the following sets:
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(a) {n ∈ N : 2 < n2 < 75};
(b) {x ∈ R : x2 + 3x + 2 = 0};

(c) {n ∈ N : n is a 2 digit prime};

1.4 TRUE or FALSE

(a) 6 6∈ {x ∈ N : x = 3n + 1, for somen ∈ N};
(b) 2 ∈ {x ∈ R : x2 = 4};
(c) −2 ∈ {x ∈ R : x2 = 4 andx > 0};
(d) 7 /∈ {x ∈ Q : x2 ≥ 7 andx3 < 343}.

1.5 TRUE or FALSE:

(a) ∅ ⊂ N ⊂ N
(b) {x ∈ R : x = 3n + 1, wheren ∈ N} ⊂ {x ∈ Z : x > 3}
(c) {x ∈ Z : x > 3} ⊂ {x ∈ R : x = 3n + 1, wheren ∈ N}
(d) {x ∈ N : x is even} ⊂ {x ∈ R : x2 is even}



Chapter 2

Division and Greatest Common Divisors

A professor decides to reward the class by handing out toffees. There are24 toffees in a packet
and the professor buys several packets. On the way to the lecture the prof eats6 toffees. There
are 30 students in the lecture, each receives the same number of toffees and then there are no
toffees left. What’s the least number of packets the prof could have bought and how many toffees
would each student then get?

We can solve this problem algebraically.

Suppose that
the number of packets of toffees bought= x
the number of toffees each student gets= y

We can easily work out:
Total number of toffees bought: = 24x
Number of toffees handed out to class= 24x− 6

Since each student getsy toffees and there are30 students

24x− 6 = 30y.

What canx be? We must solve the equation above to find whole numbersx andy which
are both positive (if possible). To simplify matters notice we can divide through by6 and the
equation becomes

4x− 1 = 5y.

We can solve this by trying values ofx until we find one which works. We start withx = 1,
since we’re looking for the smallest number of packets the prof could have bought, and increase
x by one each time:

x 1 2 3 4
4x− 1 3 7 11 15

y? ??? ??? ??? 3

7
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Whenx is 4 andy is 3 we have4x − 1 = 5y. No smaller value ofx makes4x − 1 equal to a
multiple of 5. We now know that the prof could have got away with buying justx = 4 packets
of toffees. Each of the students would then have received3 toffees.

There are two features of this problem that I’d like to draw attention to.

• We are only interested in solutions to this problem which are natural numbers (defined in
Section1.6). Solutions would be very easy to find if we allowed ourselves to use rational
numbers or real numbers (see Section1.6). For example if we setx = 1 then we can take
y = 3/5. On the other hand finding integer solutions is just as difficult as finding natural
number solutions (integers are also defined in Section1.6).

• To simplify the equation I divided through by6. I could have divided by2 or by 3 but the
resulting equation would have had bigger numbers in it. However6 is as big as I can go
without making some number in the equation into a fraction. Put another way,24, 30 and
6 are all multiples of6 but they’re not all multiples of anything bigger than6.

This chapter looks into some of the properties of natural numbers and integers that, among
other things, prove useful in solving problems such as the toffees above. We’ll look at a a step
by step recipe which would give us the number6 to divide our equation by in this problem and
then investigate, in some detail, why it works.

2.1 The Euclidean Algorithm

To solve the equation24x−6 = 30y I first divided throughout by6. I chose6 because it is the
biggest positive number that divides all3 of 24, 6 and30. How do I know? Because I’m familiar
with the positive divisors of all these numbers and I mentally list them and pick the biggest that
appears on all3 lists, which in this case happens to be6. Let’s see how this process works for
some other numbers. For simplicity suppose I want the biggest positive number that divides both
24 and30. I make two lists.

Positive divisors of24 : 1, 2, 3, 4, 6, 8, 12, 24

Positive divisors of30 : 1, 2, 3, 5, 6, 10, 15, 30

Now I pick the largest number which appears on both of the lists, which is6, and this is my
answer.

Example 2.1.Find the biggest number which divides both2028 and2600.
Positive divisors of

2028 : 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028

2600 : 1, 2, 4, 5, 8, 10, 13, 20, 25, 26, 40, 50, 52, 65,100, 104, 130, 200, 260,
325,520, 650, 1300, 2600

By examining these lists we see that the biggest number dividing both2028 and2600 is 52.

The last example involved alot of calculation and required us to factorise both2028 and2600.
Without some systematic method it would be very easy to leave out some divisor of either2028
or 2600. The following is a method which in many cases involves much less work and is easier
to validate.
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The algorithm

The biggest natural number which divides both natural numbersa andb is called thegreatest
common divisor of a and b. Given natural numbersa and b we wish to find their greatest
common divisor. The recipe works as follows.

EA1. Input the pair(b, a), with 0 < a < b.

EA2. Write b = aq + r, whereq andr are integers with0 ≤ r < a.

EA3. If r = 0 thenoutput gcd(a, b) = a andstop.

EA4. Replace the ordered pair(b, a) with (a, r). Repeat from (2).

Before going into why this algorithm works we look at some examples.

Example 2.2. Find the greatest common divisord of 12 and 63. Find x, y ∈ Z such that
12x + 63y = d.

First we findgcd(12, 63). The input to the Euclidean Algorithm is(63, 12). We write out the

results of Step EA2 as the algorithm runs:

(63,12) 63 =5 · 12 + 3

(12,3) 12 =4 · 3 + 0.

The first zero remainder occurs when the pair(b, a) is (12, 3) so at this point Step EA3 outputs
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gcd(63, 12) = 3 and stops. (Notice that this is the last non–zero remainder occuring in the results

of Step EA2.

To find the integersx, y we work backwards through the results of Step EA2 starting with the

first one that has a non–zero remainder (there’s only one):

3 = 1 · 63− 5 · 12

Therefore we have a solution forx, y with x = −5, y = 1.

As shown in the above example we can use the Euclidean Algorithm not only to find the
greatest common divisord of two natural numbersa and b but also to expressd as sum of
multiples ofa andb. This can be useful in solving equations as we’ll see later. (Note thatx and
y are not always natural numbers: they may be negative.)

Example 2.3.Find the greatest common divisord of 2600 and2028. Find integersx andy such
thatd = 2600x + 2028y.

First we findgcd(2028, 2600). The input to the Euclidean Algorithm is(2600, 2028). We write



MAS121 Notes 11

out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)

(572,312) 572 = 312 · 1 + 260 (2.3)

(312,260) 312 = 260 · 1 + 52 (2.4)

(260,52) 260 = 52 · 5 + 0. (2.5)

This givesgcd(2600, 2028) = 52, as we found in Example2.1.

To find the integersx, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

= 312− (572− 312 · 1) = 312 · 2− 572 from (2.3)

= (2028− 572 · 3) · 2− 572 = 2028 · 2− 572 · 7 from (2.2)

= 2028 · 2− (2600− 2028 · 1) · 7 = 2028 · 9− 2600 · 7 from (2.1).

Thus52 = 2600 · (−7) + 2028 · 9 so we may takex = −7 andy = 9.

Example 2.4. Find the greatest common divisord of 2028 and626. Find x, y ∈ Z such that
2028x− 626y = d.

First we findgcd(2028, 626). The input to the Euclidean Algorithm is(2028, 626). We write out
the results of Step EA2 as the algorithm runs:

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)

(26,20) 26 = 20 · 1 + 6 (2.9)

(20,6) 20 = 6 · 3 + 2 (2.10)

(6,2) 6 = 2 · 3 + 0. (2.11)

This givesgcd(2028, 626) = 2.

To find the integersx, y we work back from (2.10) to (2.6) to find an expression for2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)

= (150 · 1− 26 · 5) · 4− 26 · 3 = 150 · 4− 26 · 23 from (2.8)

= 150 · 4− (626− 150 · 4) · 23 = 150 · 96− 626 · 23 from (2.7)

= (2028− 626 · 3) · 96− 626 · 23 = 2028 · 96− 626 · 311 from (2.6).

Thus2 = 2028 · 96− 626 · 311 so we may takex = 96 andy = 311.
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2.2 Divisibility in the integers

From the evidence of the examples above it appears that the Euclidean Algorithm really does
return the greatest common divisor of two natural numbers. I’d like to understand why this is
so. We shall consider integer arithmetic and hopefully this will allow us to see exactly how the
algorithm performs and why it works. We shall take for granted the basic properties of arithmetic
with numbers. By arithmetic is meant addition and multiplication. For example we consider it
a basic law thatx + y = y + x, wherex andy are natural numbers, integers or real numbers1.
Among other properties that hold for numbersx, y andz are that

0 + x = x

1 · x = x

x(y + z) = xy + xz

(−x)(−y) = xy

if x > 0 andy < 0 thenxy < 0.

We’ve already used the terminolgy “a dividesb” for integersa andb but let’s be absolutely
clear of what we mean by this.

Definition 2.5. Let a andb be integers. If there exists an integerq such thatb = qa then we say
thata divides 2 b, which we write asa|b.

(A definition establishes once and for all the meaning of a word. From now on whenever we
say “divides” we mean what it says above, nothing more, nothing less.)

Other ways of sayinga|b are thata is afactor of b, a is adivisor of b or b is amultiple of a.
We writea - b to denote “a does not divideb”.

Example 2.6.From the definition we can easily check that6|18 because18 = 6 · 3. In the same
way we see that6 divides24, 12, 6, 0 and−6. It’s also fairly obvious that7 - 16 and−15 - 25,
although explaining exactly why may take a little thought.

In the next few examples we’ll use Definition2.5as a starting point and from it prove some
very simple facts, just to get used to the terminology for integer arithmetic.

Example 2.7.We shall prove that6|(6n + 6), for all integersn.

If n is an integer then6n + 6 = 6(n + 1). From Definition2.5, with b = 6n + 6, a = 6 and

1The real numbers are defined in Section1.6
2Bold face is used for definitions. Some authors use italics. On the blackboard underlining is used instead.
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q = n + 1, it follows that6|(6n + 6).

Example 2.8.Prove that4|[(2n + 1)2 − 1], for all integersn.

We have

(2n + 1)2 − 1 = (4n2 + 4n + 1)− 1 = 4n2 + 4n = 4(n2 + n).

From Definition2.5, with b = (2n+1)2−1, a = 4 andq = n2+n, it follows that4|[(2n+1)2−1],

for all n ∈ Z. (The meaning of∈ is given is Section1.3.)

What we need to settle the question of explaining why, for example6 - 13 is something like:
if we form the fraction13/6 it’s equal to2 + 1/6 which is not an integer. Alternatively, to verify
that32 - 121 we could try to divide121 by 31 and we’d find a non–zero remainder. In fact we
can express121 as

121 = 32× 3 + 25.

(In this expression3 is called thequotientand25 the remainder.) This is the content of the
Theorem we come to next.

Before stating the Theorem we need to recall some notation.

Definition 2.9. Themodulus or absolute valueof a real numberx is denoted|x| and is given
by the formula

|x| =
{

x, if x ≥ 0
−x, if x < 0.

All integers are real numbers so it makes perfect sense to talk of the modulus of an integer. For
example

| − 6| = 6 = |6|,
102 = |102| = | − 102| and

|0| = 0 = −0 = | − 0|.
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Theorem 2.10 (The Division Algorithm). Let a andb be integers witha 6= 0. Then there exist
unique integersq andr such thatb = aq + r and0 ≤ r < |a|.

We could prove this: but it is intuitively obvious, rather mundane and up to now we just
accepted it as an obvious fact: so we’ll continue to accept it for now. If you’re unhappy with
this, more detail of why and how it should be proved can be found in any book on elementary
number theory; and later on we’ll prove a similar statement in a setting where it’s not obviously
true. Instead let’s take stock.

(1) The condition thata 6= 0 is necessary. It’s the same as saying that we can’t have fractions
like 3/0.

(2) There are two parts to the conclusion of the Theorem. Firstly it says thatq andr do exist,
with the properties described. Secondly it says thatq and r are unique. In terms of the
example above this means that if we haveq andr with 0 ≤ r < 32 such that121 = 32q + r
thenq must be3 andr must be25. This is not surprising: we’d be dismayed if121/32 had
some value other than3 + 25/32.

(3) One way if assessing whether the Theorem is worth stating or not is to see how it might
work in other settings. Suppose for example we were to work with rational numbers instead
of integers. Ifb anda are rational witha > 0 then I can pick anyr I like, in the given range
0 ≤ r < |a|, and obtainb = aq + r by settingq = (b − r)/a. Thusq andr are not unique
and the Division Algorithm does not hold. More dramatic failure of the Division Algorithm
is exhibited in some other situations. For example in the set of polynomials in two variables
x andy with integer coefficients it’s easy to find polynomialsf andg for which there is no
way of writingf = g · q + r with r in any meaningful way “less than”g.

Here are some examples of the Division Algorithm in action.

Example 2.11.Every integern can be written asn = 2q + r, with 0 ≤ r < 2. If r = 0 we say
n is evenand if r = 1 we sayn is odd.

The uniqueness part of the Theorem guarantees that there can be no integer that is both even

and odd! The even integers are precisely those that are divisible by2, since they’re of the form

n = 2q. As 5 is odd it is not divisible by2.

Here we’ve used the Division Algorithm (Theorem2.10) to partition of integers into odd and
even.
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Example 2.12.From the Division Algorithm, every integern can be written asn = 3q + r,

wherer = 0, 1 or 2. No integer which is of the formn = 3q + 0 can be written asn = 3q1 + 1

or n = 3q2 + 2, because of the uniqueness part of the Division Algorithm. The integers that are

divisible by3 are precisely those of the form3q + 0. As 317 = 3 · 105 + 2 we see that3 - 317.

Again the Division Algorithm is used as a step in the argument. This is similar to the previous

example but here we have partitioned the integers into three: those that leave remainder0, those

that leave remainder1 and those that leave remainder2, on applying the Division Algorithm with

a = 3.

Example 2.13.Show that3|n3 − n, for all integersn.
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Example 2.14.Show that ifn is an integer thenn3 has the form4k, 4k + 1 or 4k + 3, for some
k ∈ Z.
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2.3 Why the Euclidean Algorithm works

Example 2.15.Consider the equality112 = 20 · 5 + 12.

It is not hard to see, by listing divisors, thatgcd(112, 20) = 4. It is even easier to see that

gcd(20, 12) = 4. Is it a coincidence that the answer is4 both times?

Lemma 2.16.Lets, t andu be integers, which are not all zero, such that

s = tq + u.

Thengcd(s, t) = gcd(t, u).

(A lemma is a lesser result: one which is not important enough to be given the grand title of
theorem. Lemmas are often small steps made on the way to establishing a theorem.)
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Proof. Strategy: show that any integer that divides boths andt must also divideu. Then show
that any integer that divides botht andu must also divides. Having done this it’s clear that the
set of common divisors ofs andt is exactly the same as the set of common divisors oft andu
and their greatest commond divisors are thus equal.

Step(1) First we show that the divisors ofs andt also divideu. To say thatc is a divisor ofs and

t is to sayc|s andc|t. That is, there are integersx andy such thats = cx andt = cy.

By assumptionu = s− tq, so we have

u = cx− cyq = c(x− yq).

This shows thatc|u. Conclusion: common divisors ofs andt are also common divisors

of t andu.

Step(2) Now suppose thatc′ is a common divisor ofu andt. Then there are integersw andz
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such thatu = c′w andt = c′z. As s = tq + u, with q ∈ Z, we see that

s = c′zq + c′w = c′(zq + w),

which shows thatc′|s. Conclusion: common divisors oft andu are also common divi-

sors ofs andt.

Step(3) Now suppose thatd = gcd(s, t). Thend|s andd|t, by definition. Therefore, from Step

(1) d is a divisor ofu andt. Thusd ≤ gcd(u, t) = d′, say. Similarlyd′ ≤ d, sod = d′,

as required.

Example 2.17.We can write337 = 11 · 30 + 7.

Thereforegcd(337, 11) = gcd(11, 7) = 1. We’ve used Lemma2.16 to avoid considering the

divisors of the large number337. Instead we only have divisors of7 to cope with.

The lemma above is the key to the Euclidean Algorithm. We shall notprovethat the Euclidean
algorithm works, being content to see that it must do on some fairly general examples. A proof
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using what we have done so far is set out in AppendixA. Before going any further we record
some very basic consequences of the definition of division; as a lemma.

Lemma 2.18.

1. a|a, for all integersa.

2. a|0, for all integersa.

3. If a andb are integers such thata|b andb > 0 thena ≤ b.

4. If a andb are positive integers such thata|b thengcd(a, b) = a.

Proof.

1. a = a · 1.

2. 0 = 0 · a.

3. If a ≤ 0 thena ≤ b (asb > 0); so we can assume thata > 0.

As a|b we haveb = aq, for someq ∈ Z.
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If q < 0 then the fact thata > 0 means thataq = b < 0: but b > 0. Therefore it must be the

case thatq > 0.

Now q ∈ Z andq > 0 implies q ≥ 1. Thereforeaq ≥ a (multiplying the inequality by the

positive integera). Henceb ≥ a, as required.

4. Certainlya|a and by assumptiona|b. If c is any positive integer that dividesa then, from the

previous statement,c ≤ a.

Thereforea = gcd(a, b), as claimed. (Don’t actually needb > 0.)

Example 2.19.Consider the Equations (2.6)–(2.11).
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From Equation (2.6) we see, with the help of Lemma2.16, that

gcd(2028, 626) = gcd(626, 150).

Next, from Equation (2.7) we have

gcd(626, 150) = gcd(150, 26).

Continuing this way, using the subsequent equations we have

gcd(150, 26) = gcd(26, 20), using Equation (2.8)

gcd(26, 20) = gcd(20, 6), using Equation (2.9)

gcd(20, 6) = gcd(6, 2), using Equation (2.10).
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Finally, using Equation (2.11), 2|6 and sogcd(6, 2) = 2.
Stringing all these facts together we have

2 = gcd(6, 2) = gcd(20, 6) = gcd(26, 20) = gcd(150, 26) = gcd(626, 150) = gcd(2028, 626),

that isgcd(2028, 626) = 2. This is what the Euclidean Algorithm told us. Lemma2.16 and
Equations (2.6)–(2.11) show why the algorithm comes up with the correct answer.

Example 2.20.Consider the Equations (2.1)–(2.5). As in the example above we have

gcd(2600, 2028) = gcd(2028, 572), using Equation (2.1)

gcd(2028, 572) = gcd(572, 312), using Equation (2.2)

gcd(572, 312) = gcd(312, 260), using Equation (2.3)

gcd(312, 260) = gcd(260, 52), using Equation (2.4).

From Equation (2.5) we see that52|260 and so we havegcd(260, 52) = 52:

Therefore

52 = gcd(260, 52) = gcd(312, 260) =

gcd(572, 312) = gcd(2028, 572) = gcd(2600, 2028),

that isgcd(2600, 2028) = 52. Again we’ve seen why the answer given by the Euclidean Algo-
rithm was the correct one.

In addition to finding the greatest common divisor of two integersa andb we can work back
through the output of the Euclidean algorithm, as we did in Examples2.2, 2.3 and2.4, to find
integersx andy such thatax + by = gcd(a, b). This give us the following Theorem.

Theorem 2.21.Let a and b be integers, not both zero, and letd = gcd(a, b). Then there exist
integersu andv such thatd = au + bv.

Note that we restricted the input of the Euclidean algorithm to pairs of positive integers, so
we might worry that ifa or b is non-positive then the Theorem does not work. However it’s easy
to see thatgcd(a, b) = gcd(−a, b) = gcd(−a,−b) = gcd(a,−b) and from this it follows that the
Theorem holds in all cases.
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2.4 An application

We began this Chapter by looking at the problem of distribution of toffees. This problem was
resolved by solving the equation24x−6 = 30y. An equation of this form, where the coefficients
are integers and onlyx’s andy’s occur (nothing likex2, x3, xy or xy2 occurs) and for which we
seek integer solutions, are calledlinear Diophantine equations. Here we look at some linear
Diophantine equations.

Example 2.22.Find integersx andy such that2600x + 2028y = 104.

In Example2.3 we ran the Euclidean Algorithm and foundgcd(2600, 2028) = 52. Once we’d
done so we were able to use the equations generated to find integersx andy such that

2600 · (−7) + 2028 · 9 = 52. (2.12)

If we multiply equation (2.12) by 2 we obtain

2600 · (−14) + 2028 · 18 = 104.

Therefore we have a solutionx = −14 andy = 104.

Example 2.23.Find integersx andy such that−72 = 12378x− 3054y.

First we run the Euclidean Algorithm to findgcd(12378, 3054).

(12378,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054 = 162 · 18 + 138 (2.14)

(162,138) 162 = 138 · 1 + 24 (2.15)

(138,24) 138 = 24 · 5 + 18 (2.16)

(24,18) 24 = 18 · 1 + 6 (2.17)

(18,6) 18 = 3 · 6 + 0. (2.18)

This givesgcd(12378, 3054) = 6.
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Next we work back from (2.17) to (2.13) to find integersu, v such that6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)

= 162 · 6− (3054− 162 · 18) · 7 = 162 · 132− 3054 · 7 from (2.14)

= (12738− 3054 · 4) · 132− 3054 · 7 = 12378 · 132− 3054 · 535 from (2.13).

Thus
6 = 12378 · 132 + 3054 · (−535) (2.19)

so we may takeu = 132 andv = −535.

Multiplying through equation (2.19) by−12 gives

−72 = 12378 · 1584 + 3054 · (−6420)

and this gives

−72 = 12378 · 1584− 3054 · 6420

so we have a solutionx = 1584 andy = 6420.

The method above of finding integer solutions can be extended to find all such solutions to
equations of this kind. Here we establish conditions which determine whether or not there exists
a solution. Later on we’ll see how to describe all solutions.

Lemma 2.24.Leta, b andc be integers (a, b not both zero). The equation

ax + by = c (2.20)
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has integer solutionsx, y if and only ifgcd(a, b)|c.

Proof. Let gcd(a, b) = d. First suppose thatd|c. Then there existsq ∈ Z such thatc = dq. From

Theorem2.21there exist integersu andv such thatd = au + bv. Thereforea(uq) + b(vq) =

(au + bv)q = dq = c. That is the equation has integer solutionx = uq andy = vq.

Now suppose that equation (2.20) has a solution: that is there are integersx, y such that

ax + by = c. As d|a andd|b there are integersp andq such thata = dp andb = dq. Therefore

c = ax + by = (dp)x + (dq)y = d(px + qy); sod|c, as claimed.

Example 2.25.Are there integersx andy such that2600x + 2028y = 130?

No. Becausegcd(2600, 2028) = 52 and52 - 130.

Example 2.26.For whichc does the equation72x + 49y = c have a solution?gcd(72, 49) = 1
so the equation72x + 49y = c has a solution for every choice ofc.

2.5 Objectives

After covering this chapter of the course you should be able to:

(i) use terms such asDefinition, Lemmaandproofwith confidence;

(ii) read and understand simple proofs;
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(iii) remember Definition2.5of a dividesb, for integersa andb;

(iv) apply this definition to prove simple divisibility properties;

(v) state the Division Algorithm and be able to use it to demonstrate properties of integers;

(vi) remember the definition of greatest common divisor of two integers;

(vii) apply this definition to prove results;

(viii) apply the Euclidean algorithm and explain why it works;

(ix) find solutions to equations of the kind given in Section2.4.

2.6 Exercises

2.1 For each of the following pairsa, b of integers findgcd(a, b) and integersr ands such that
gcd(a, b) = ra + sb.

(a) a = 13, b = 1000;

(b) a = 306, b = 657;

(c) a = 1729, b = 703;

(d) a = 1147, b = 851;

(e) a = 5213, b = 2867.

2.2 Prove the following using only the definition of division (Definition2.5). In each case
indicate where in your proof you have used the definition.

(a) 13|169, 13|1859 and143|1859.

(b) 5|(5n2 +25n+75n), for all integersn.

(c) 5|(5n2 + 4)2 − 1, for all n ∈ Z.

2.3 Use the Division Algorithm to show that, ifn is an integer then

(a) n2 is either of the form3k or 3k + 1;

(b) n2 is either of the form4k or 4k + 1;

(c) n3 has one of the forms9k, 9k + 1 or 9k + 8;

(d) n4 is of the form either5k or 5k + 1.

2.4 Show that5|n5 − n, for all integersn.

2.5 Use the Division Algorithm to prove that for any integera one of the integersa, a + 2,
a + 4 is divisible by3. Indicate where and how you use the Division Algorithm in your
proof.

2.6 Use the Division Algorithm to prove that for any integera one of the integersa, a + 2,
a + 4, a + 6 or a + 8 is divisible by5. Indicate where and how you use the Division
Algorithm in your proof.
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2.7 Use only the definition of division, Definition2.5, to prove the following facts. Donot
mention the Division Algorithm, Theorem2.10. Let a, b andc be integers.

(a) Prove that ifc|a then−c|a andc|(−a).

(b) Prove that ifa|b andb|c thena|c.

2.8 Let a andb be integers.

(a) Prove thatgcd(a, b) = gcd(−a, b) = gcd(−a,−b).

(b) If a > 0 show thatgcd(a, 0) = a. What isgcd(a, 0) if a < 0?

2.9 Determine integer solutionsx, y to the following equations.

(a) 56x + 72y = 40;

(b) 24x + 138y = 18;

(c) 221x + 35y = 11;

(d) 5x + 17y = 22;

(e) 63x + 45y = 783;

(f) 119x− 6y = 7.

2.10 Which of the following equations have integer solutions? (Justify your answers but do not
find the solutions.)

(a) 56x + 72y = 88;

(b) 24x + 138y = 88;

(c) 221x + 35y = 88;

(d) 5x + 17y = 88;

(e) 63x + 45y = 88;

(f) 119x− 6y = 88.



Chapter 3

Logic and Proof

First we look at some of the forms that our results commonly take. Then we discuss two common
methods of proof, namely Contradiction and Induction.

3.1 Menagerie

“There exists ...”

Many of the Lemmas and Examples in Chapter2 assert the existence of something. For in-
stance Example2.4asked for integersx andy such that2028x − 626y = gcd(2028, 626). One
such pairx = 96, y = 311, was found by applying the Euclidean Algorithm. Once such a pair
has been found we haveprovedthe truth of the statement

“There exist integersx andy such that2028x− 626y = gcd(2028, 626).”

It is only necessary to findonepair x, y to prove that this statement is true. (There are lots of
other pairs besides the one given,x = 409, y = 1325, for example, but this doesn’t matter. The
assertion can be seen to be true once we’ve found our first solution.)

Notation: the symbol “∃” is read “there exists”.

Example 3.1.Prove that∃q ∈ Z such that7q = 28.

This is merely a matter of pointing out that ifq = 4 then7q = 28. This constitutes a proof of the

assertion. This time there is only one possible value ofq that will do, in contrast to the previous

29
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example. Again, this doesn’t matter.

Example 3.2.Prove that∃x ∈ R such thatx · 0 = 0.

We can setx = 1 and then we’ll findx · 0 = 1 · 0 = 0. This proves that the assertion is true. As

it happens anyx ∈ R would have done – but that doesn’t matter to us.

“For all...”

In Example2.7 we proved thatn|6n + 6, for all integersn. It is easy to see that, for particular

values ofn this holds. For example whenn = 2 we have6n + 6 = 18, which is divisible by

n = 2. The point of Example2.7 is that somehow we manage to check that this holds forall

integers. This is done by allowingn to represent an arbitrary integer. That is,n can take any

value, as long as it is an integer value. The big difference between the proof of this “for all”

kind of statement and the previous section is that now, to show that the statement holds for some
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single value ofn doesnot prove the statement. It provides evidence that the statement may be

true and that’s all.

Similarly in Examples2.8, 2.13and2.14we show that something holds for all integers. In
each case we do this by using a lettern to represent an arbitrary integer. Again, it is easy to
verify these results for particular values ofn but this does not prove that the statements holdfor
all integers.

Counter–example and disproof

Is the following statement true or false?

3|n2 + 2n, for all n ∈ Z.

It’s only true if it holds for all possible integer values ofn. This means it is false if there is

just one value ofn for which it fails. Can we find such a value ofn? If we taken = 1 then

n2 + 2n = 3 and as3|3 we conclude that the statement holds ifn = 3. This doesn’t show the

statement is true for alln ∈ Z and it doesn’t show it is false either. We continue looking for a

value ofn which makes the statement fail. Tryn = 2. In this case we haven2 + 2n = 8 and

3 - 8. Therefore the statement fails forn = 2 and we can safely say that it is a false statement.
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We say thatn = 2 is acounter–exampleto the given statement.

Notation: the symbol “∀” is read “for all”.

Example 3.3.Show, by finding a counter–example that the statement

“n2 is even,∀n ∈ Z”

is false.

To demonstrate that this statement is false we must show that there is at least one value ofn for

which it fails. Let’s taken = 1. Thenn2 = 1 which is not even. Therefore the statement fails

whenn = 1. We conclude that the statement is false. We can say thatn = 1 is a counter–example

to the statement.

Example 3.4.Disprove the assertion that

“∃n ∈ Z such thatn3 can be written as4k + 2, with k ∈ Z”.

To show that this is false we must show that it fails for all values ofn. We can use the result of

Example2.14. There we showed that ifn is an integer thenn3 has the form4k, 4k +1 or 4k +3,
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with k ∈ Z. From the uniqueness part of the Division Algorithm it follows thatn3 is not of the

form 4k + 2. As this holds for alln ∈ Z the given statement is disproved.

Example 3.5.Consider the statement

“∃x ∈ R such thatx2 = −10.

I believe this is false. To prove it’s false I must show it fails for allx ∈ R (infinitely many). I can
use a basic property of real number arithmetic to do this. Namely, ifx ∈ R thenx2 ≥ 0. Thus,
no matter what valueb takes the statement is false. Note that a counter–example is no use here
as I must check all possible values ofx.

“If ... then ...”

Example 3.6.Consider the assertion,

“if x > 2 thenx2 + x− 6 > 0”.

If x is a real number then, sincex2 + x is increasing, forx > 0, andx2 + x = 6 whenx = 2,

this is true. What we’ve done here is check all values ofx > 2. What we donot have to do is to

check values ofx ≤ 2. It’s easy to findx ≤ 2 with x2 + x− 6 ≤ 0, for examplex = 2 or x = 0.

It doesn’t matter: the “if” restricts us tox > 2.

In statements of the form “if A then B” it is crucial that “A” occurs between “if” and “then”
and that “B’ occurs after “then”. If we swap A and B around we end up with something that has
a different meaning. This is easy to understand on the level of everyday language. For example
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“If I am a frog then I can swim”

is a plausible enough statement which for arguments sake we can assume is true. The A part is
“I am a frog” and the B part is “I can swim”. Switching the order of A and B we have

“If I can swim then I am a frog”.

This can’t be true, unless lots of people we know are in fact frogs!

Example 3.7. If we switch the order of A and B in Example3.6we obtain the statement

“If x2 + x− 6 > 0 thenx > 2. ”

This is clearly untrue. Takex = −4. In fact elementary algebra shows thatx2 + x − 6 > 0 for

x > 2 and forx < −3. Before we switched A and B the statement was of course true, for all real

numbers.

Switching A and B always gives a new statement (as long as we don’t consider statements
where A and B are the same). The switched statement is called theconverseof the original.

Example 3.8.The converse of

“If x2 > 0 thenx > 0”

is

“If x > 0 thenx2 > 0”.

This time, ifx ∈ R, the original statement is false but its converse is true.

As in the above examples, even if the original statement is true its converse may not be, and
vice–versa. In some circumstances it may turn out however that both statements are true: as in
the next example.
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“... if and only if ...”

Example 3.9.Let a, b, c ∈ R with a > 0. Consider the statement

“If b2 − 4ac ≥ 0 thenax2 + bx + c = 0 has a real solution.”

We know that this is true.

Switching A and B here we obtain the converse

“if ax2 + bx + c = 0 has a real solution thenb2 − 4ac ≥ 0”.

To see that the converse is true we complete the square.

ax2 +bx+c = 0 ⇔ x2 +(b/a)x+(c/a) = 0 ⇔ (x+b/2a)2 +c/a−b2/4a = 0 ⇔ b2−4ac ≥ 0.

Hence both the statement and its converse are true in this case.

What we have seen in the previous example is that

“[if b2 − 4ac ≥ 0 thenax2 + bx + c = 0 has a real solution]
AND

[if ax2 + bx + c = 0 has a real solution thenb2 − 4ac ≥ 0]”

is a true statement. We have a shorthand for statements of this form: we say

“ax2 + bx + c = 0 has a real solutionif and only if b2 − 4ac ≥ 0”

instead. Sometimes “if and only if” is shortened to “iff”. In general a statement of the form
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“A if and only if B”

means

“[if A then B] AND [if B then A]”.

Here is an “if and only if” version of Lemma2.18.3.

Corollary 3.10. Assume thata andb are positive integers. Thena|b if and only ifgcd(a, b) = a.

Proof. The statement of the Corollary uses shorthand and when written out in full becomes
“[if a|b thengcd(b, a) = a] AND [if gcd(b, a) = a thena|b]”.

The general rule in a proof of such a statement isprove each part separately.

Part(1). Prove that ifa|b thengcd(a, b) = a. This follows directly from Lemma2.16if we set

b = s anda = t because then we haveb = aq + 0 sogcd(b, a) = gcd(a, 0) = a. The

last part follows because every integer divides0 anda > 0.

Part(2). Prove that ifgcd(a, b) = a thena|b. This is true by definition of greatest common

divisor.

We have proved both statements are true so we have completed the proof of the Lemma.

In general terms to show that

“A if and only if B”

is true we must establish the truth of both

“if A then B”

and

“if B then A”.
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Synonyms

There are several different ways of saying things like “if ... then ...” and “... if and only if ...”.
The symbol⇒ is read “implies”. All the entries on a given line of the following table mean the
same thing.

if A then B A ⇒ B B if A

if B then A A ⇐ B A if B

A if and only if B A ⇔ B A iff B

3.2 Contradiction

I was driving home last night and there was a bus travelling very slowly in front of me. I wanted

to overtake but it’s a windy road. I could see no headlights approaching so I pulled out and

overtook. I arrived home safely. Although I could not see in the dark I was able to overtake

safely. The deductive process was the following.

Step(1) Make an assumption (there is a car approaching in the opposite direction).

Step(2) Derive some consequences of the assumption (the headlights will shine and I’ll see them

coming even from round a corner).
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Step(3) Show that one of these consequences is impossible or false (actually there are no lights

atall).

Step(4) Conclude that my original assumption was wrong (so there can’t be a car coming after

all).

Most of the proofs we have seen so far are direct. Look for example at Lemma2.16. Here we
prove that ifs, t andu are integers ands = tq + u, for someq ∈ Z, thengcd(s, t) = gcd(t, u).
The proof starts with the assumption thats = tq + u and makes deductions until the required
result is reached. Here is a mathematical example of the second kind of, indirect, argument.

Example 3.11.Show thatx2 = −1 has no real solution.

Step(1) Assume the opposite of what is to be proved.Let us suppose that there is a real number
r such thatr2 = −1 and see where this leads us.

Step(2) Derive some consequences of the assumption.As r ∈ R we have0 ≤ r2.

Step(3) Show that something we’ve derived is false.Combining the fact above with the as-
sumption thatr2 = −1 we obtain0 ≤ −1, which is clearly false.

Step(4) Conclude that the assumption is false and so prove the required result.The false
statement in Step(3) was a direct consequence of the assumption that a solutionx = r
to x2 = −1 exists. We are forced to conclude that there is no such solution.

This is a technique of argument known ascontradiction. We start by assuming that whatever
we wish to prove is false. This assumption is then used to make deductions. We hope that these
deductions lead to something which we know is false: that is to a contradiction. We conclude
that our assumption is wrong so what we want to prove is true.

3.3 Examples: proof by contradiction

The proof thatq > 0 in the proof of Lemma2.18.3 is a proof by contradiction.

Theorem 3.12.There are no natural numbersx andy such thatx2 − 2y2 = 0.

Proof.
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Step(1) Assume the opposite of what we want to prove. That is, assume that there exist natural

numbersx andy such thatx2 − 2y2 = 0.

Step(2) Now see where the assumption of Step(1) leads. Given that there exist natural numbers

x andy such thatx2−2y2 = 0, the following is also true. There exist natural numbersx0

andy0 such thatx2
0 − 2y2

0 = 0 and for all pairsa, b of natural numbers witha < x0, we

havea2−2b2 6= 0. To see that this is true start with any pairx, y such thatx2−2y2 = 0.

If there is another pair of the same sort with smallerx then take that instead. Repeat the

process as often as possible. Each timex gets smaller but stays positive. This cannot go

on forever so at some stage there is no other pair with smallerx. At this stage we have

reachedx0, y0.

Now x2
0 − 2y2

0 = 0 so x2
0 = 2y2

0. This means thatx2
0 is even. From Exercise3.3b it
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follows thatx0 is even: that is2|x0. Therefore there is somex1 ∈ Z such thatx0 = 2x1.

Note thatx0 > x1 > 0 asx0 > 0 and2 > 1. Now we have

x2
0 − 2y2

0 = 0

⇒ (2x1)
2 − 2y2

0 = 0

⇒ 4x2
1 − 2y2

0 = 0

⇒ 2x2
1 − y2

0 = 0

⇒ y2
0 − 2x2

1 = 0.

This means that we have a new solutionx = y0, y = x1.

Step(3) Show that what we’ve deduced is impossible.

We havex2
0 = 2y2

0, sox2
0 > y2

0; and sincex0, y0 > 0 this impliesx0 > y0. Thus the
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solutionx = y0 > 0, y = x1 > 0 contradicts the choice ofx0 as being as small as

possible. This contradiction shows that the assumption of Step(1) is false. Hence there

are no such natural numbersx andy.

We can use this to prove something that may seem more familiar, namely that
√

2 is not a
rational number. As this follows easily from the Theorem we call it a Corollary. (A corollary is
a consequence of another result which is (usually) easy to prove given the other result.) Again
we use proof by contradiction.

Corollary 3.13. There is no rational numberr such thatr2 = 2. That is
√

2 /∈ Q.

Proof.

Step(1) Suppose that there is a rational numberr such thatr2 = 2.

Step(2) As r ∈ Q we haver = p/q, wherep, q ∈ Z andq 6= 0. We have(
p

q

)2

= 2

⇒ p2

q2
= 2

⇒ p2 = 2q2, asq 6= 0,

⇒ |p|2 = 2|q|2

⇒ |p|2 − 2|q|2 = 0.

The introduction of| · | is justified because(−x)2 = x2 = |x|2, for all x ∈ R.

Step(3) As r2 = 2 it cannot be the case thatp = 0, because then we’d have2 = 0. Thusp
andq are non–zero. Therefore|p| and |q| are natural numbers and we have deduced,
in Step(2), a contradiction to Theorem3.12. It follows that there is no such rational
numberr.

Note that
√

2 by definition has square equal to2: so we’ve shown it can’t be inQ.
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3.4 Objectives

After covering this chapter of the course you should be able to:

(i) recognise and use the symbols∃, ∀,⇒,⇐ and⇔;

(ii) apply appropriate arguments to show whether or not statements of the form

“∃ ...”,

“∀ ...”

“if ... then ... ”

and

“... if and only if ...”

are true.

(iii) explain what aCorollary is;

(iv) understand and use proof by contradiction.



MAS121 Notes 43

3.5 Exercises

3.1 TRUE or FALSE?

(a) If x > 10 then2x > 15.

(b) If n ∈ N thenn + 1 ∈ N.

(c) ∃n ∈ N such thatn + 1 /∈ N.

(d) ∃n ∈ N such thatn− 1 /∈ N.

(e) n + 1 ∈ N,∀n ∈ N.

(f) n− 1 /∈ N,∀n ∈ N.

(g) ∀x ∈ R, x > 0 ⇒ 1/x > 0.

(h) ∃x ∈ R, x2 = 4.

(i) ∃x ∈ R, x2 = −1.

3.2 Disprove the following by finding a counterexample.

(a) If x2 > 16 thenx > 4.

(b) ∀m ∈ N, ∃n ∈ N such thatn + 1 = m.

(c) ∀m ∈ Z, ∃n ∈ Z such thatmn = 1.

(d) ∀m ∈ Q, ∃n ∈ Q such thatmn = 1.

(e) For all real numbersx ≥ 1, there is a real numberδ > 0 such thatx− δ ≥ 1.

3.3 A lecturer rashly claims that:

(a) if a|b andc|d then(a + c)|(b + d) and (b) if ac|bc thena|b.

Give counter–examples to show that these beliefs are ill–founded.

3.4 Disprove the following assertions. Use Questions2.3 and3.8 – that is assume that the
results of these questions have been established – but indicate where you use them. You
should also indicate where you use the Division Algorithm (if you do).

(a) ∃n ∈ Z such that3 - n(n + 1)(n + 2).

(b) ∃n ∈ Z such that3 - n(2n2 + 7).

(c) ∃n ∈ Z such thatn2 has the form3k + 2, for some integerk.

(d) ∃n ∈ Z such thatn3 has the form9k + 2, for some integerk.

3.5 Are the statements below true or false? Write down the converse of each. Is the converse
true or false?

(a) If a2 − b2 = 0 thena = b = 0.

(b) If a 6= 0 then2a 6= 0.

(c) If a = b thena2 = (−b)2.

(d) If a2 = 1 thena = −1.

3.6 What, if anything, is wrong with the following.

(a) If I am a dog then I have a nose. I have a nose. Therefore I am a dog.
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(b) If you are not a reptile then you are not an alligator. I am an alligator so I am also a
reptile.

(c) If you are not a fish then you cannot be a haddock. I am a fish so I must be a haddock.

3.7 Prove each statement below using only the definition of division (and basic laws of arith-
metic). Point out where in your proof you use the definition of division. Leta, b, c, d be
integers. The following hold.

(a) a|a2.

(b) If a|b thena|bc andac|bc.
(c) If a|b andc|d thenac|bd.

(d) If 0|a thena = 0.

(e) a|1 if and only if a = ±1. [Hint : Consider casesa > 0 anda < 0 separately. If
a > 0 use the previous part of the question. Ifa < 0 apply the result fora > 0 to−a.
Cana = 0?]

(f) If a|b andb|a thenb = ±a.

3.8 Use the Division Algorithm and Question3.7 to prove that for an arbitrary integera

(a) 2|a(a + 1);

(b) 3|a(a + 1)(a + 2);

(c) 3|a(2a2 + 7);

(d) if a is odd then32|(a2 + 3)(a2 + 7).

In each case indicate where the Division Algorithm and results of Question3.7 are used
and how.

3.9 Show that there do not exist integersx, y such thatx2 − 4y = 3. [Hint: first prove that
there are no such numbers withx even, then that there no such withx odd.]

3.10 Show that there is no pair of natural numbersx, y such thatx2−3y2 = 0. Use this to show
that there is no rational numberr such thatr2 = 3.

3.11 Show that there is no pair of natural numbersx, y such thatx2−5y2 = 0. Use this to show
that there is no rational numberr such thatr2 = 5.
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Proof by Induction

4.1 Induction

Some properties of sets and numbers are so obvious that we treat them as natural laws which
do not require proof. We call such a property anaxiom. For instance all the properties of numbers
listed at the beginning of Section2.2are axioms for numbers. The method of proof by induction
is based on the following property which is really an axiom for the natural numbersN.

The Principle of proof by induction

Assume thatP (n) is a statement, for alln ∈ N. Assume further that it can be shown that

(1) P (1) is true and

(2) if P (k) is true thenP (k + 1) is true, fork ≥ 1.

ThenP (n) is true for alln ∈ N.

In the following example we use “sigma” notation for sums, that is we define
n∑

j=1

aj = a1 + · · ·+ an.

Example 4.1.Suppose that we wish to prove that
n∑

j=1

1

j(j + 1)
= 1− 1

n + 1
, for all n ∈ N.

HereP (n) is the statement
n∑

j=1

1

j(j + 1)
= 1− 1

n + 1
,

and we wish to proveP (1), P (2), P (3), . . ..
Proof by induction takes the following form.

45
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Step 1.The basis of inductionShow thatP (1) is true. P (1) is obtained by replacingn by 1

throughoutP (n), soP (1) is

1∑
j=1

1

j(j + 1)
= 1− 1

1 + 1
.

That is

1

1(1 + 1)
= 1− 1

1 + 1

or

1

2
=

1

2
,

soP (1) is true, as required.

Step 2.The inductive hypothesis (IH)Assume thatP (k) is true, for somek ≥ 1. In this case
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we assume that

k∑
j=1

1

j(j + 1)
= 1− 1

k + 1

is true, since this isP (k).

Step 3.The inductive stepUse the inductive hypothesis to show thatP (k + 1) is true. In this

caseP (k + 1) is

k+1∑
j=1

1

j(j + 1)
= 1− 1

(k + 1) + 1
,

and we want to show that this really is an equality. In this example we’ll start with the

lefthand side ofP (k + 1) and by applying the inductive step, show that it does equal the
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righthand side. Starting with the lefthand side ofP (k + 1) we have

k+1∑
j=1

1

j(j + 1)
=

(
k∑

j=1

1

j(j + 1)

)
+

1

(k + 1)((k + 1) + 1)

=

(
1− 1

k + 1

)
+

1

(k + 1)(k + 2)
, by applying the inductive hypothesis,

= 1 +
1− (k + 2)

(k + 1)(k + 2)

= 1− k + 1

(k + 1)(k + 2)

= 1− 1

k + 2
,

which is the righthand side ofP (k + 1). ThereforeP (k + 1) holds.

Step 4.ConclusionWe’ve shown that (1′) and (2′) above hold so, by the principle of proof by

induction,P (n) is true for alln ∈ N.
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Example 4.2 (Bernoulli’s Inequality). Prove that

(1 + x)n ≥ 1 + nx, for all n ∈ N and for allx ∈ R, x > 0.
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Example 4.3 (Summing a geometric progression).Prove that

n−1∑
j=0

arj =
a(rn − 1)

r − 1
, for all a ∈ R andr ∈ R, r 6= 1, and for alln ∈ N.
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Example 4.4 (Special cases of summing geometric progressions).

(1) a = 1, r = x (6= 1):

From Example4.3

1 + x + x2 + · · ·+ xn−1 =
xn − 1

x− 1
.

Multiplying through byx− 1 gives

(1 + x + x2 + · · ·+ xn−1)(x− 1) = xn − 1.

If we defined division for polynomials as we’ve done for integers, in Definition2.5, we could
say that this shows that

(x− 1)|(xn − 1)

and that
(1 + x + x2 + · · ·+ xn−1)|(xn − 1).

For example
(1 + x)(x− 1) = x2 − 1,

(1 + x + x2)(x− 1) = x3 − 1,

(1 + x + x2 + x3)(x− 1) = x4 − 1.
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(2) a = 1, r = −x (x 6= −1), n = 2m + 1, m ∈ N:

The lefthand side of the equality of Example4.3becomes

2m∑
j=0

arj =
2m∑
j=0

(−x)j

= 1− x + x2 − · · ·+ (−1)2mx2m

= 1− x + x2 − · · ·+ x2m.

The righthand side is

a(rn − 1)

r − 1
=

(−x)2m+1 − 1

−x− 1

=
x2m+1 + 1

x + 1
.

From Example4.3

1− x + x2 − · · ·+ x2m =
x2m+1 + 1

x + 1
.

Multiplying by x + 1 gives

(1− x + x2 − · · ·+ x2m)(x + 1) = x2m+1 + 1.

For example
(1− x + x2)(x + 1) = x3 + 1,

(1− x + x2 − x3 + x4)(x + 1) = x5 + 1,

(1− x + x2 − x3 + x4 − x5 + x6)(x + 1) = x7 + 1.

We can say
(x + 1)|(x2m+1 + 1)

and
(1− x + x2 − · · ·+ x2m)|(x2m+1 + 1).

4.2 Change of basis

It is sometimes useful to be able to start the induction at some point other thann = 1. In this
case we use the following alternative statement of the Principle of Induction.

Let s ∈ Z. Assume thatP (n) is a statement, for alln ≥ s. Assume further that it can be
shown that

(1′) P (s) is true and

(2′) if P (k) is true thenP (k + 1) is true, fork ≥ s.
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ThenP (n) is true for alln ≥ s.

Example 4.5.Show that2n > n3, for all n ≥ 10.

Basis:P (10) is the statement that210 > 103. As 210 = 1024 and103 = 1000 this is true.

Inductive Hypothesis: AssumeP (k) holds for somek ≥ 10. That is2k > k3.

Inductive Step: The lefthand side ofP (k + 1) is

2k+1 = 2 · 2k > 2k3, using IH.

The righthand side ofP (k + 1) is

(k + 1)3 = k3 + 3k2 + 3k + 1.
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Now

2k3 = k3 + k3 ≥ k3 + 10k2, ask ≥ 10,

= k3 + 3k2 + 7k2

≥ k3 + 3k2 + 70k, ask ≥ 10,

= k3 + 3k2 + 3k + 67k

> k3 + 3k2 + 3k + 1, ask ≥ 10.

HenceP (k + 1) holds.

Conclusion: Therefore, by induction,P (n) holds for alln ≥ 10.

Note that29 = 512 < 729 = 93, so the result does not hold whenn = 9.
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4.3 Pascal’s triangle and Fibonacci numbers

Thebinomial coefficientor choice number
(

n

k

)
is given by the formula

(
n

k

)
=

n!

(n− k)!k!
,

for non-negative integersn andk, with 0 ≤ k ≤ n. We define0! = 1 so that

(
n

0

)
=

(
n

n

)
= 1,

for all n. As you can verify (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

We can use this fact to generate binomial coefficients, as follows. Start with

(
0

0

)
and write out

succesive rows starting with1 =

(
n

0

)
and ending with

(
n

n

)
= 1. Fill the rows making thekth

entry on thenth row the sum of the(k − 1)th andkth entries from the row above.

(
0

0

)
↙ ↘(

1

0

) (
1

1

)
↙ ↘ ↙ ↘(

2

0

) (
2

1

) (
2

2

)
↙ ↘ ↙ ↘ ↙ ↘(

3

0

) (
3

1

) (
3

2

) (
3

3

)

Then the(n + 1)st row will contain the binomial coefficients

(
n

k

)
, for k = 0, . . . , n. This array

is known asPascal’s triangleand is more familiar as
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1

↙ ↘
1 1

↙ ↘ ↙ ↘
1 2 1

↙ ↘ ↙ ↘ ↙ ↘
1 3 3 1

Write out Pascal’s triangle with the left hand “1”s aligned in a column, as follows.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Now add numbers on the diagonals running from lower left to upper right:

1

1

1 + 1 = 2

1 + 2 = 3

1 + 3 + 1 = 5

1 + 4 + 3 = 8

1 + 5 + 6 + 1 = 13

1 + 6 + 10 + 4 = 21.

These are the first8 of theFibonaccinumbers, which are generated by the rules

f1 = 1

f2 = 1

fn+1 = fn + fn−1, for n ≥ 2.

Thus the Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .
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Do the diagonals of Pascal’s triangle sum to the Fibonacci numbers after the first8? They do
because each entry on a diagonal is the sum of one number from the diagonal one row above it
and a second number from the diagonal two rows above it. Thus each diagonal is the sum of the
two diagonals above it: as on the following diagram.

We could write out an algebraic proof based on the idea above using induction.

Example 4.6.Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7

f4 + f5 = 8

f2 + f5 + f9 = 1 + 5 + 34 = 40

f3 + f7 + f10 = 2 + 13 + 55 = 70.
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Each of these numbers has been written as a sum of different Fibonacci numbers (no Fibonacci
number appears twice in any sum). We’ll prove by induction that any natural number can be
written as a sum of different Fibonacci numbers.

P (n) is the statement thatn can be written as a sum of Fibonacci numbers without repetition.

Basis: From the above exampleP (1) is true (as areP (2), . . . , P (8)). Inductive Hypothesis:

AssumeP (k) holds for somek ≥ 1. That isk can be written as a sum of Fibonacci numbers

without repetition.

Inductive Step: If k+1 is a Fibonacci number, then there is nothing more to do. If not then letfs

be the largest Fibonacci number less thatk+1. Thenk+1−fs = m and we have1 < m < k+1.

Hence, using the Inductive Hypothesis,m is a sum of Fibonacci numbers without repetition. Fur-

thermorefs+1 > k + 1 andfs+1 = fs + fs−1. Hencek + 1 = fs + m < fs + fs−1 som < fs−1.

Thereforem is a sum of the Fibonacci numbers betweenf1 andfs−2. Thusk + 1 = m + fs is a
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sum of Fibonacci numbers without repetition, as required.

Conclusion: Therefore by induction,P (n) holds for alln ≥ 1.

Example 4.7. If we take every third Fibonacci number we obtain a new sequence of numbers,

f3, f6, f9, f12, . . .

with values

2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, . . .

We shall prove, by induction thatf3n is even, for alln ≥ 1.

P (n) is the statement thatf3n is even.

Basis: From the above exampleP (1) is true. Inductive Hypothesis: AssumeP (k) holds for

somek ≥ 1. That isf3k is even.

Inductive Step: We must show thatf3(k+1) = f3k+3 is even. Asf3k is even we havef3k = 2q,
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for someq ∈ Z. Then

f3k+3 = f3k+2 + f3k+1

= (f3k+1 + f3k) + f3k+1

= 2f3k+1 + 2q,

using the inductive hypothesis. Thusf3(k+1) is even.

Conclusion: Therefore by induction,P (n) holds for alln ≥ 1.

Example 4.8 (The binomial theorem).This example is not examinable

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk, for all n ∈ N and allx, y ∈ R.

We shall prove this by induction.

Basis:P (1) is

(x + y) =
1∑

k=0

(
1

k

)
x1−kyk
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and, as
1∑

k=0

(
1

k

)
x1−kyk =

(
1

0

)
x +

(
1

1

)
y = x + y,

P (1) holds, for allx, y ∈ R.

Inductive Hypothesis: AssumeP (k) holds for somem ≥ 1. That is

(x + y)m =
m∑

k=0

(
m

k

)
xm−kyk, for all x, y ∈ R.

Inductive Step: Given the inductive hypothesis we wish to show thatP (m + 1) holds. That is

(x + y)m+1 =
m+1∑
k=0

(
m + 1

k

)
xm+1−kyk, for all x, y ∈ R.

We have

(x + y)m+1 = (x + y)m(x + y)

=

[
m∑

k=0

(
m

k

)
xm−kyk

]
(x + y), using the inductive hypothesis,

=

[
m∑

k=0

(
m

k

)
xm+1−kyk

]
+

[
m∑

k=0

(
m

k

)
xm−kyk+1

]
.

Now settings = k + 1 we can write(
m

k

)
xm−kyk+1 =

(
m

s− 1

)
xm+1−sys,

for k = 0, . . . m. Therefore

m∑
k=0

(
m

k

)
xm−kyk+1 =

m+1∑
s=1

(
m

s− 1

)
xm+1−sys =

m+1∑
k=1

(
m

k − 1

)
xm+1−kyk.

Hence

(x + y)m+1 =

[
m∑

k=0

(
m

k

)
xm+1−kyk

]
+

[
m+1∑
k=1

(
m

k − 1

)
xm+1−kyk

]

=

(
m

0

)
xm+1 +

m∑
k=1

[(
m

k

)
+

(
m

k − 1

)]
xm+1−kyk +

(
m

m

)
ym+1.
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We have (
m

0

)
=

(
m

m

)
=

(
m + 1

0

)
=

(
m + 1

m + 1

)
= 1

and, for1 ≤ k ≤ m,(
m

k

)
+

(
m

k − 1

)
=

m!

k!(m− k)!
+

m!

(k − 1)!(m + 1− k)!

=
m!(m + 1− k) + m!k

k!(m− k)!(m + 1− k)

=
m!(m + 1)

k!(m + 1− k)!

=
(m + 1)!

k!(m + 1− k)!

=

(
m + 1

k

)
.

Thus

(x + y)m+1 =

(
m + 1

0

)
xm+1 +

m∑
k=1

(
m + 1

k

)
xm+1−kyk +

(
m + 1

m + 1

)
ym+1

=
m+1∑
k=0

(
m + 1

k

)
xm+1−kyk.

That is,P (m + 1) holds.

Conclusion: Therefore, by induction,P (n) holds for alln ∈ N.

4.4 Objectives

After covering this chapter of the course you should be able to:

(i) understand the principle of proof by induction;

(ii) carry out proof by induction, both starting with the integer1 and starting with an integer
other than1;

(iii) remember the definition of binomial coefficients;

(iv) remember the definition of the Fibonacci numbers.
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4.5 Exercises

4.1 A infinite sequencex1, x2, x3, . . . of integers is defined by the rulesx1 = 2 andxn+1 =
xn + 2(n + 1), for all n ≥ 1. Show by induction thatxn = n(n + 1), for all n ∈ N.

4.2 Prove thatn! > 2n for all n ∈ N with n ≥ 4.

4.3 Prove by induction that:

(1 + x)n ≥ 1 + nx +
1

2
n(n− 1)x2,

for all n ∈ N andx ∈ R, x ≥ 0.

4.4 Prove by induction that:
n∑

k=1

k3 =

[
1

2
n(n + 1)

]2

for all n ∈ N.

4.5 Prove by induction that:

n∑
k=1

k(k + 1) =
1

3
n(n + 1)(n + 2)

for all n ∈ N.

4.6 Prove by induction that:

n∑
k=1

k(k + 1) . . . (k + a) =
1

(a + 2)
n(n + 1)(n + 2) . . . (n + a + 1)

for all n ∈ N and alla ∈ N.

4.7 Use proof by induction to show that each of the following hold, for alln ≥ 1.

(a) 8|52n + 7; [Hint: 52(k+1) + 7 = 52(52k + 7) + (7− 52 · 7)]

(b) 15|24n − 1;

(c) 5|33n+1 + 2n+1;

(d) 21|4n+1 + 52n−1;

(e) 24|2 · 7n + 3 · 5n − 5.

4.8 Geography made simple.What is wrong with the following “proof by induction” of the
fact that all British towns have the same name. Prove, by induction, that any collection
of n towns have the same name. This is true whenn = 1. Assume the truth of the
statement for any collection ofk towns, wherek ≥ 1. Now take a collection ofk + 1
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towns. Exclude1 town from the collection to leave a collection ofk towns, which by the
inductive hypothesis, all have the same name. Now take thek + 1 towns and exclude a
different one. The remainingk towns all have the same name and this time include the one
that was left out before. Therefore allk + 1 towns have the same name and the statement
holds for alln ≥ 1.

4.9 Prove the following.

(a) Every4th Fibonacci number is divisible by3, that is3|f4n, for all n ≥ 1.

(b) Every5th Fibonacci number is divisible by5, that is5|f5n, for all n ≥ 1.

4.10 In Maple type the command

with(combinat, fibonacci);

Now Maple will return thenth Fibonacci number in response to the command

fibonacci(n);

We can write a loop to generate and print Fibonacci numbers:

for i from 1 to 20 do
print("f",i,"=",fibonacci(i));
od;

The output can be restricted to every6th Fibonacci number and then divided by4:

for i from 1 to 20 do
print("f",6*i,"=",fibonacci(6*i), "and ", fibonacci(6*i)/4);
od;

What does this suggest? Can you prove it? Try to some other numbers to see if you can
detectnth Fibonacci numbers which they divide.



Chapter 5

Primes and Coprimes

A central concept of number theory is that of the prime number which is introduced in this
chapter. These numbers form the basic building blocks out of which the integers are formed and
into which they can be decomposed. We shall barely scratch the surface of the theory of prime
numbers here. We shall establish the Fundamental Theorem of Arithmetic, which shows that
every integer factors uniquely as a product of primes, and we shall see that there are infinitely
many primes. We begin by considering a property of pairs of integers.

5.1 Greatest common divisors again

First we establish a few more properties of the greatest common divisor. Recall that whenever
we ran the Euclidean Algorithm, on natural numbersa andb, we obtained not onlygcd(a, b) but
also integersu andv such that

gcd(a, b) = au + bv,

and from this fact we obtained Theorem2.21. We’ll now give an alternative proof of this Theo-
rem.

Second proof of Theorem2.21
Suppose that we have positive integersa andb. (The cases wherea or b are non-positive

follow easily from this case, and are left to the reader.) This proof depends on analysis of the set

S = {ak + bl ∈ Z : ak + bl > 0 andk, l ∈ Z}.

65
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This is clearly a set of positive integers. We shall prove the theorem by showing that it’s
smallest element isgcd(a, b). First of all we need to show that it does have a smallest element. It
is a fundamental property of numbers that every non-empty set of positive integers has a smallest
element. Then, asS contains only positive integers it must have a smallest element unless it’s
empty. It’s easy to seeS is non-empty as it contains, for examplea + b. ThereforeS has a
smallest element,s say. The fact thats ∈ S means

s = ak + bl, for somek, l ∈ Z. (5.1)

Now, using the Division Algorithm, we can write

a = sq + r, where0 ≤ r < s.

Substituting fors using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

so
r = a(1− kq) + b(−lq), with 0 ≤ r < s.

If r 6= 0 then we haver ∈ S andr < s, a contradiction. Thereforer = 0 anda = sq. That is,
s|a. Similarly s|b.

Now suppose thatc|a andc|b. Thena = cu andb = cv, for someu, v ∈ Z. Substitution in
(5.1) gives

s = c(uk) + c(vl) = c(uk + vl).

Thereforec|s and from Lemma2.18.3we havec ≤ s. This completes the proof thats = gcd(a, b)
and we’ve already foundk, l such thats = ak + bl, so Theorem2.21follows.

5.2 Coprimes and Euclid’s Lemma

Pairs of integers have greatest common divisor1 have particularly nice properties and it’s
useful to have a name for them.

Definition 5.1. If a andb are integers withgcd(a, b) = 1 then we say thata andb arecoprime.

Example 5.2. It is easy to see that6 and35 are coprime, for example. Now from Theorem2.21
it follows that there are integersu andv such that6u + 35v = 1. For instance we may setu = 6
andv = −1. (There are other possibilities: see the exercises.)

On the other hand suppose that for some integersa and b we happen to know that, say,
5a− 2b = 1. Does this mean thatgcd(a, b) = 1?

Corollary 5.3. Integersa andb are coprime if and only if there exist integersu andv such that
au + bv = 1.

Proof. This is an if and only if proof so has two halves.
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Step(1) Prove that ifa andb are coprime then there exist integersu andv such thatau+ bv = 1.
If a andb are coprime then it follows directly from Theorem2.21that suchu andv exist.

Step(2) Prove that if there exist integersu andv such thatau + bv = 1 thengcd(a, b) = 1.
Assume that there are integersu andv such thatau + bv = 1. Let d = gcd(a, b). Then
d|a andd|b sod|(au + bv):

Therefored|1. As d > 0 (why?) it follows, thatd ≤ 1:

Thusd = 1, soa andb are coprime, as required.

Corollary5.3allows us to prove a result known as Euclid’s Lemma.

Lemma 5.4 (Euclid’s Lemma). Leta, b andc be integers withgcd(a, b) = 1. If a|bc thena|c.
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Proof.

5.3 Application to solving equations

We’ve already seen (Lemma2.24) that a linear Diophantine equation, that is an equation of
the formax + by = c, wherea, b andc are integers, has integer solutionx andy if and only if
c| gcd(a, b). We can now use Euclid’s lemma to find all solutions to such equations.

Theorem 5.5.Leta, b, c be integers and letd = gcd(a, b). The equation

ax + by = c (5.2)

has an integer solution if and only ifd|c. If d|c then equation(5.2) has infinitely many solutions
and ifx = u0, y = v0 is one solution thenx = u1, y = v1 is a solution if and only if

u1 = u0 + (b/d)t andv1 = v0 − (a/d)t, for somet ∈ Z.

Proof. The first part of the theorem follows from Lemma2.24. We may suppose then thatd|c
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and thatx = u0, y = v0 is a solution to (5.2). Let u1, v1 be as given above. Then

au1 + bv1 = a(u0 + (b/d)t) + b(v0 − (a/d)t)

= au0 + bv0 + (ab/d)t− (ba/d)t

= au0 + bv0

= c,

sox = u1, y = v1 is a solution, for allt ∈ Z.

Conversely, suppose thatx = u2, y = v2 is a solution. Thenau0 + bv0 = c = au2 + bv2 so

b(v0 − v2) = a(u2 − u0). Let a = dp andb = dq. Now ar + bs = d, for some integersr and

s, sodpr + dqs = d, and cancellingd we havepr + qs = 1. Thusgcd(p, q) = 1. Moreover

we havedp(u2 − u0) = dq(v0 − v2) and sop(u2 − u0) = q(v0 − v2). This meansp|q(v0 − v2),
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so from Euclid’s Lemma,p|(v0 − v2). Thereforev0 − v2 = pt, for some integert, and so

v2 = v0−pt = v0−(a/d)t. Nowp(u2−u0) = pqt sou2−u0 = qt andu2 = u0+qt = u0+(b/d)t,

for somet ∈ Z.

Example 5.6. In Example2.22we saw thatgcd(2600, 2028) = 52 and that the equation2600x+
2028y = 104 has a solutionx = −14, y = 18. As2600/52 = 50 and2028/52 = 39 the solutions
to this equation are

x = −14 + 39t, y = 18− 50t, for t ∈ Z.

For each integert we have a solution, some of which are shown below.

t x y

-2 -92 -118
-1 -53 68
0 -14 18
1 25 -32
2 64 -82

5.4 Prime Numbers

It follows from the definition of division that every integern is divisible by±1 and by±n.
Amongst the positive integers a special case is the integer1 which has only one positive divisor,
namely 1. All other positive integersn have at least 2 positive divisors, 1 andn, and may have
more.

Definition 5.7. A positive integerp > 1 is called aprime if the only positive divisors ofp are1
andp. An integer which is not prime is calledcomposite.

For example2, 5, 7, 11, 13, 17 and19 are prime whilst the first few composite integers are:

4 which is divisible by 2
6 which is divisible by 2 and 3
8 which is divisible by 2 and 4
9 which is divisible by 3
10 which is divisible by 2 and 5.

A fundamental property of prime numbers is the following.

Theorem 5.8 (The prime divisor property). If p is a prime andp|ab thenp|a or p|b.
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Proof. If p|a then we have nothing to prove. Ifp - a then the common divisors ofa andp are±1
(since the only divisors ofp are±1 and±p). Hencegcd(a, p) = 1. From Lemma5.4 (Euclid’s
Lemma) it follows thatp|b, as required.

Example 5.9. If 3|bc then either3|b or 3|c. The same goes for29: if 29|bc then29|b or 29|c. This
does not hold for all integers. For instance6|24 and24 = 8 · 3, so6|8 · 3 but6 - 8 and6 - 3. Once
we’ve discussed prime factorisation it will be easy to see why this property doesn’t hold for any
composite integers.

The Theorem above can easily be extended to products of more than2 integers. For example,
if 3|abc then, from the Theorem either3|ab or 3|c. If 3|ab then, from the Theorem again,3|a or
3|b. Therefore, if3|abc then3|a or 3|b or 3|c.

Corollary 5.10. If p is prime andp|a1 · · · an thenp|ai, for somei.

Proof. The proof is by induction onn, starting withn = 2.

Basis:P (2) follows from Theorem5.8.

Inductive Hypothesis: If n ≥ 2 andp|a1 · · · an thenp|ai, for somei.

Inductive Step: Suppose thatp|a1 · · · an+1. Let

a = a1 · · · an andb = an+1.

Thenp|ab so, from Theorem5.8, p|a or p|b. If p|a the inductive hypothesis implies thatp|ai, for
somei with 1 ≤ i ≤ n. If p|b thenp|an+1. Hencep|ai, for somei, as required.

5.5 Prime Factorisation

We now come to the main result of this chapter: the Fundamental Theorem of Arithmetic. It
may seem that this theorem does not say anything very much or that what it does say is obvious.
However there are number systems in which the theorem does not hold: examples are left to the
exercises. During the nineteenth century there were attempts to prove Fermat’s last theorem using
so called “algebraic” number systems. It escaped the attention of mathematicians for some time
that these proofs were incorrect precisely because of the failure of the Fundamental Theorem of
Arithmetic in the algebraic number systems concerned.

An expression of an integern as a product of primes is called aprime factorisation of n.
For example12 and25 have prime factorisations12 = 2 · 2 · 3 and25 = 5 · 5, respectively. We
aim to show that every positive integer greater than one has a prime factorisation and that this
prime factorisation is unique, up to the order in which the prime factors occur. For instance

2 · 5 · 2 · 7,
2 · 7 · 2 · 5,
7 · 2 · 2 · 5

are all prime factorisations of140 but are regarded as the same because the number of2’s, 5’s
and7’s is the same in each.
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Example 5.11.It’s easy enough to see that7 cannot be written as a product of primes other than
by writing it as ... well ... 7. What about a larger prime like6991 say? Can I write this as a
product of primes: other than the length one product6991?

By listing all possible factorisations it’s easy to see that small integers have unique prime
factorisation. In the proof of the next theorem we’ll show that this is true for all integersn > 1.

Theorem 5.12 (The Fundamental Theorem of Arithmetic).Every integern > 1 is a product
of one or more primes. This product is unique apart from the order in which the primes occur.
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Proof. Step(1) Prove that everyn > 1 has a prime factorisation.
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Step(2) Prove that prime factorisations are unique.

It is often convenient to write the prime factorisation of an integer with all like primes col-
lected together, in ascending order, and with exponential notation. For example we could write
the prime factorisations of140 and2200 as

140 = 22 · 5 · 7 and

2200 = 23 · 52 · 11.

We call this thecollected prime factorisation of an integern or say that we’ve writtenn in
standard form. From the Fundamental Theorem of Arithmetic it follows that collected prime
factorisations are unique. We record this fact in the following corollary.

Corollary 5.13. Letn > 1 be an integer. Thenn may be written uniquely as

n = pa1
1 · · · p

ak
k ,

wherek ≥ 1, p1 < · · · < pk, pi is prime andai ≥ 1.
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Example 5.14.It is easy to multiply together integers in standard form: we just add correspond-
ing superscripts. For example3388 = 22 · 7 · 112 and2200 = 23 · 52 · 11 so 3388 · 2200 =
25 · 52 · 7 · 113. In general if integersa andb have standard forms

a = pα1
1 · · · pαn

n and

b = pβ1

1 · · · pβn
n

thenab has standard form

ab = pα1+β1

1 · · · pαn+βn
n .

Here we’ve padded out the collected prime factorisations (withp0
i where necessary) to make

them the same length: as in the following example.

2200 = 23 · 52 · 11 = 23 · 52 · 70 · 111 · 130 and

572572 = 22 · 7 · 112 · 132 = 22 · 50 · 71 · 112 · 132

so

2200 · 572572 = 25 · 52 · 71 · 113 · 132.

Example 5.15.Reversing the idea of the previous example, it’s easy to find the divisors of an
integer given in standard form. For instance ifa|3388 then

3388 = 22 · 7 · 112 = ab,
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for some integerb.
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Example 5.16.As 2200 has standard form23 · 52 · 11 the positive divisor of2200 are of the form
2a5b11c, where0 ≤ a ≤ 3, 0 ≤ b ≤ 2 and0 ≤ c ≤ 1. First list all such triples(a, b, c):

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 2, 0) (0, 2, 1)
(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 2, 0) (1, 2, 1)
(2, 0, 0) (2, 0, 1) (2, 1, 0) (2, 1, 1) (2, 2, 0) (2, 2, 1)
(3, 0, 0) (3, 0, 1) (3, 1, 0) (3, 1, 1) (3, 2, 0) (3, 2, 1)

The positive divisors of2200 are therefore:

1 11 5 5 · 11 52 52 · 11
2 2 · 11 2 · 5 2 · 5 · 11 2 · 52 2 · 52 · 11
22 22 · 11 22 · 5 22 · 5 · 11 22 · 52 22 · 52 · 11
23 23 · 11 23 · 5 23 · 5 · 11 23 · 52 23 · 52 · 11

Example 5.17. If two numbers are expressed in standard form its easy to find their greatest
common divisor. The standard form of572572 is 22 · 7 · 112 · 132 so any divisor of572572 has
the form2e7f11g13h, with 0 ≤ e ≤ 2, 0 ≤ f ≤ 1, 0 ≤ g ≤ 2 and0 ≤ h ≤ 2. Hence common
divisors of2200 and572572 have the form2u11v, with 0 ≤ u ≤ 2 and0 ≤ v ≤ 1. Therefore
gcd(2200, 572572) = 22 · 11 = 44.

Example 5.18.Findgcd(11990979, 637637).

We have

11990979 = 32 · 7 · 114 · 13 and637637 = 73 · 11 · 132.

Therefore

gcd(11990979, 637637) = 7 · 11 · 13 = 1001.

5.6 Fermat’s Method of Factorisation

Factoring an integern > 1 means finding a pair of positive integersa > 1 andb > 1 such that
ab = n. If n is given as a collected prime factorisation then we’ve seen that it’s easy to do this.
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However if all we are given isn then to find a factorisationn = ab is generally much harder than
to multiply a andb to given. In fact many commonly used methods of sending coded messages
(from an automatic cash machine to your bank for example) rely on the relative difficulty of
factoring to multiplying. Consequently there is currently alot of attention focused on methods of
factorisation and there are cash prizes (from “RSA laboratories”) available for factoring certain
large integers. Here we’ll look at one method of factoring, discovered by Fermat, which works
well in some cases.

First of all, even integers are easy to factorise, because we can always take one factor to be2.

So we only need to bother with odd integers. Suppose thatn is an odd composite integer, say

n = ab, where1 < a ≤ b < n. Then botha andb are odd, so

s = (a + b)/2 andt = (a− b)/2

are both integers anda = s + t, s− t. Therefore

s2 − t2 = (s + t)(s− t) = ab = n.

On the other hand ifn, s andt are integers andn = s2− t2 thenn = (s + t)(s− t), and we have
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a factorisation ofn (as long ass + t 6= n).

To factorise an integern we try to express it as a difference of two squares: that is we try

to find integersx andy such thatn = x2 − y2. To do so we rearrange the equation above as

y2 = n − x2 and, starting with the smallest possible valuex can take, test to see ifn − x2 is a

perfect square. The smallest valuex can take is the least integer greater than
√

n; so call thisu.

We try

u2 − n

(u + 1)2 − n

(u + 2)2 − n

...
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untill we get a perfect square. Note that this process will not continue indefinitely, because when

x reaches(n + 1)/2 thenx2 − n = (n− 1)2/2 (as you can check).

Example 5.19. Use Fermat’s method of factorisation to find factors of266004389. We have
16309 <

√
266004389 < 16310. Therefore we start withu = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580

163142 − 266004389 = 142207

163152 − 266004389 = 174836

163162 − 266004389 = 207467

163172 − 266004389 = 240100 = 4902.

Therefore266004389 = 163172−4902 = (16317+490)(16317−490). As16317+490 = 16807
and16317− 490 = 15827 we’ve found the factorisation

266004389 = 16807 · 15827.

Unfortunately, ifn does not have2 factors of similar size then this method of factoring can
be very slow. (It does however form the basis of some more powerful methods.)

5.7 Primality testing

One way to see whether or not an integern > 1 is prime is to test it for divisibility by all
prime numbersp such that1 < p < n. If none of these primes dividen then the Fundamental
Theorem of Arithmetic implies thatn is prime. This is very time consuming but does allow us
to build up a list of primes. The process can be speeded up significantly by using the observation
that if n is composite then it has a prime divisorp ≤

√
n. This is the content of the following

lemma.

Lemma 5.20. An integern > 1 is composite if and only if it has a prime divisorp such that
p <

√
n.

Proof. If n has such a prime divisor then it is composite. Conversely, suppose thatn is composite.

Then there existsa, b with 1 < a ≤ b < n such thatn = ab. If a >
√

n thenab > a2 > n,
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a contradiction. Hencea ≤
√

n. Now a > 1 soa has a prime divisorp andp ≤ a ≤
√

n, as

required.

Example 5.21.To find all primes in the range1 to 45:

note that the only primes less than45 are2, 3 and5. Therefore, if1 < n ≤ 45 thenn is prime if

and only if it is not divisible by2, 3 or 5. List the integers2, ..., 45. First cross out all multiples

of 2, except2 itself, leaving odd integers2, 3, 5, 7, 9, ..., 43, 45. Now cross out from this list all

multiples of3, except3 itself, leaving2, 3, 5, 7, 11, 13, 17, 19, 23, 25, ..., 43, 45. Now cross out

from this list all multiples of5, except5 itself, leaving

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43.

This is now a complete list of primes between1 and45. This method of constructing lists of
primes is known as theSieve of Eratosthenes. In fact it is still too inefficient to use in practice to
determine if a large number is prime.

5.8 A Theorem of Euclid

The following theorem appears in Book IX of theElements, a mathematical textbook written
by Euclid: a Greek mathematician who lived around 300 bc.

Theorem 5.22.There are infinitely many primes.

Proof. The proof is by contradiction.

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Euclid.html
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Assume the Theorem is false.Suppose that there only finitely many primes and let them be

p1, . . . , pn.

See where this takes us.Define

N = p1 · · · pn + 1.

ThenN > 1 soN has a prime divisor: that ispi|N , for somei. Also pi|p1 · · · pn so there

are integersx andy such thatN = xpi andp1 · · · pn = ypi. Therefore

n− (p1 · · · pn) = (x− y)pi,

that is

pi|N − (p1 · · · pn) = 1.

Derive a contradiction. As pi|1 there is a positive integerz such that1 = zpi. Sincez ≥ 1 this
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implies thatpi = 1 · pi ≤ zpi = 1 and we obtainpi ≤ 1, a contradiction.

Conclusion. It follows that there are infinitely many primes.

5.9 Objectives

After covering this chapter of the course you should be able to:

(i) recall Theorem2.21and understand its proof;

(ii) define a coprime pair of integers;

(iii) recall Corollary5.3and Euclid’s Lemma and understand their proofs;

(iv) define prime and composite numbers;

(v) recall the prime divisor property, Theorem5.8, and understand its proof;

(vi) recall the Fundamental Theorem of Arithmetic, Theorem5.12, and understand its proof;

(vii) recognise and write down the prime factorisation and standard form or collected prime
factorisation of an integer;

(viii) use prime factorisation to find divisors and greatest common divisors;

(ix) recall the statement of Theorem5.22and understand its proof.
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5.10 Exercises

5.1 Let a, b andc be integers such thatgcd(a, b) = 1 anda|c andb|c. Prove thatab|c. [Hint:
Use Theorem2.21and multiply byc.]

5.2 Let a, b andn be integers such thatgcd(a, n) = 1 = gcd(b, n). Prove thatgcd(ab, n) = 1.
[Hint: Use Corollary5.3.]

5.3 Let a andb be integers, not both zero.

(a) Show that ifk > 0 and gcd (a, b) = d then gcd (ka, kb) = kd. [Hint: Use an
appropriate result to expressd asd = ax + by. Multiply both sides byk.]

(b) Prove that ifa andb be integers withgcd(a, b) = d then

gcd

(
a

d
,
b

d

)
= 1.

[Hint: Use the previous part of the question.]

5.4 Write down the collected prime factorisation of4725, 17460, 1234 and36000. Hence find
gcd(4725, 17460).

5.5 Write down the collected prime factorisation ofa = 252, b = 1470 andc = 525. Hence
find gcd(a, b), gcd(a, c) andgcd(b, c) and list all divisors of252.

5.6 (a) Suppose thatn1, . . . , nt are integers and thatni = 3qi + ri, with ri = 0 or 1, for
i = 1, . . . , t. Show thatn1 · · ·nt has the form3q + r, with r = 0 or 1.

(b) Show that an integer of the form3n + 2 has a prime factor of the same form.

5.7 (a) Show that, if2n − 1 is a prime thenn must also be a prime. [Hint: an − 1 =
(a− 1)(an−1 + · · ·+ 1).] Primes of this form are called Mersenne primes. Show that
211 − 1 is not a prime.

(b) Show that, if2n + 1 is a prime thenn must be a power of2. [Hint: a5 + 1 =
(a + 1)(a4 − a3 + a2 − a1 + 1).] Primes of this form are called Fermat primes.

5.8 Let p, q1 andq2 be prime and suppose thatp|q1q2. Show, without using the Fundamental
Theorem of Arithmetic, thatp = q1 or p = q2.

5.9 Let n be an integern > 1. Assume thatn has the property that

“if n|ab thenn|a or n|b”.

Show thatn is prime. Conclude, by quoting an appropriate result, thatp is prime if and
only if p has the prime divisor property.
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5.10 (a) Let a1, . . . , am andb be integers such thatai andb are coprime, for alli. Let c =
a1 · · · am. Prove by induction thatb andc are coprime. (Use the result of question
5.2.)

(b) Let a1, . . . , an be integers such thatai andaj are coprime wheneveri 6= j. Show by
induction that ifai|b, for i = 1, . . . , n, thena1 · · · an|b. (Use the result of question
5.1.)

5.11 Use Fermat Factorisation to factorise
(i) 143; (ii) 2279; (iii) 43; (iv) 11413.

5.12 Use Fermat Factorisation to factorise
(i) 8051; (ii) 73; (iii) 45009; (iv) 11021.

5.13 Write out the odd integers from3 to 100 and then use the sieve of Eratosthenes to reduce
this list to a list of primes between3 and100.

5.14 Using the solutions to Question2.9, determine the general form of the solutionx, y to the
following equations.

(a) 56x + 72y = 40;

(b) 24x + 138y = 18;

(c) 221x + 35y = 11;

(d) 5x + 17y = 22;

(e) 63x + 45y = 783;

(f) 119x− 6y = 7.



Chapter 6

Finite Arithmetic

In this chapter we introduce some new number systems and study their arithmetic. These number
systems are based on the idea ofcongruencein the integers. Congruence arithmetic was devel-
oped by one of the greatest of all mathematicians,Carl Friedrich Gauss, in the 19th Century. It
is an important and useful part of mathematics which has many applications both theoretical and
practical. We’ll look at one application at the end of the Chapter: there are many more. We begin
with some curiosities which can be understood once we’ve developed the theory.

6.1 Casting Out Nines

This is a method of testing integers for divisibility by9. In fact it outputs the unique remainder
obtained (by the Division Algorithm) on expressing a positive integer as9q + r, with 0 ≤ r < 9.
The procedure is the following.

Procedure 6.1 (Casting Out Nines).Given a non–negative integern (written in base10) repeat
the following steps (in any order) until a number less than9 is obtained.

1 Cross out any digits that sum to9 or a multiple of9.

2 Add the remaining digits.

The result is the remainder of division ofn by 9.

Example 6.2.Cast out Nines from215763401.

86

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Gauss.html 
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Example 6.3.Cast out Nines from51422211.

The casting out nines procedure can be used to check the results of numerical calculations.

Example 6.4.Check the computation

215763401× 51422216 = 11095032211116616.

Casting out nines from both numbers on the left hand side we’re left with2× 5 = 10 ≡ 1.

Casting out nines from11095032211116616 ≡ 11 + 8 ≡ 19 ≡ 1. Both sides result in the

same answer, so no mistake was found.

Example 6.5.Check
57 + 3 = 78128 = 304× 257

for arithmetic mistakes.

Casting out nines78128 ≡ 8, 304 ≡ 7 and257 ≡ 5. Thus304 × 254 ≡ 7 × 5 = 35 ≡ 8

and the right hand equality is checked. We have52 = 25 ≡ 7 so 53 ≡ 5 × 7 = 35 ≡ 8 and
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54 ≡ 7× 7 = 49 ≡ 4. Hence57 = 54× 53 ≡ 4× 8 = 32 ≡ 5. Thus57 + 3 ≡ 8 and the left hand

equality is checked.

These examples do notguaranteethe results of calculations. All that can be said is that if we
cast out nines and get different answers then we’ve made a mistake.

We can also use casting out nines to check for divisibility by9. A number is divisible by9 if
and only if the result is0.

Example 6.6.Decide which of215763401, 51422216 and3254787 is divisible by9.

From the above the first two are not divisible by9. Casting out nines we have3254787 ≡

5 + 7 + 8 + 7 ≡ 12 + 15 ≡ 3 + 6 ≡ 0. Thus9|3254787.

The Telephone Number Trick

1 Write down your telephone number.

2 Write down your telephone number with digits reversed.

3 Subtract the smaller of these two numbers from the larger.

4 By casting out nines from the result decide whether or not it is divisible by9.
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6.2 The “Odd & Even” Number System



MAS121 Notes 90



MAS121 Notes 91

6.3 Red, white and blue arithmetic
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6.4 Congruence

In the Red, White and Blue number system we collected together all integers which left re-
mainder1, after attempting division by3, and called them blue. Notice that ifa andb are blue
then3|b− a.

Conversely, given any two integersa andb such that3|b− a we can write

b− a = 3k, for somek ∈ Z.

Using the division algorithm we can also write

b = 3q + r, for r = 0, 1 or 2.

Therefore

a = b− 3k = 3(q − k) + r.

That isa andb are both the same colour in the Red, White and Blue number system.
Our analysis shows thata andb are the same colour if and only if3|b− a. Generalising this

from 3 to an arbitrary integern leads us to the definition of congruence.

Definition 6.7. Let n be a positive integer and leta, b ∈ Z. If n|b − a then we say thata is
congruent to b modulo n, and write

a ≡ b (mod n).

For instance17 ≡ 5 (mod 12) and216 ≡ 6 (mod 7). As in the casen = 3 above,a ≡ b
(mod n) if and only if a andb both leave the same remainder after attempting division byn. In
fact, if

a = nq + r andb = np + r, where0 ≤ r < n (6.1)

then

b− a = n(p− q),

son|b− a: that isa ≡ b (mod n).
On the other hand if we know thata ≡ b (mod n) thenn|b−a so, using the argument above,

with n instead of3, we’ll find that there is somer such that (6.1) holds.

Example 6.8.Congruence modulo2 gives rise to the Odd and Even number system.
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Example 6.9.Congruence modulo3 gives rise to the Red, White and Blue number system.

Example 6.10.Supposen = 10. Then0 ≡ 10 (mod 10), 10 ≡ 101090 (mod 10), 11 ≡ 121
(mod 10) and 27 ≡ 253427 (mod 10). Every positive integer is congruent to its last digit
(written to base10). In particular integers congruent to0 all end in the digit0. These are exactly
the integers divisible by10.

Congruence is not the same as equality but it does share some of the properties of equality.
If we have any integersa, b andc andn is a positive integer then

1. a ≡ a (mod n),

2. if a ≡ b (mod n) thenb ≡ a (mod n) and

3. if a ≡ b (mod n) andb ≡ c (mod n) thena ≡ c (mod n).

These are all properties of equality. Let’s check them for congruence. The first one is easy since
n|0 = a− a, for all integersa. We’ll check the last one here and leave the second as an exercise.
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6.5 Modular arithmetic

Arithmetic with congruences is calledmodulararithmetic. We’ve already seen a couple of
examples: Odd & Even arithmetic and Red, White and Blue arithmetic. The idea is to add and
multiply integers in the usual way but to regard two numbers as the same if they are congruent.
There is a possible problem with this. Suppose we work modulo10, that isn = 10. Now take
two integers which are congruent modulo10, say23 and3. We are to regard these as the same.
This means that if we do something to one, say add6, then we should get the same answer as if
we add6 to the other. Here “the same answer” means the same answer modulo10. Let’s see:

23 + 6 = 29 and3 + 6 = 9.

This is alright because29 ≡ 9 (mod 10) and so we regard29 and9 as the same. Does this
always work? The purpose of the next Lemma is to reassure us that it does.

Lemma 6.11.Letn be a positive integer. Suppose thata, b, u andv are integers such that

a ≡ u (mod n)

and

b ≡ v (mod n).

Then

(i) −a ≡ −u (mod n);

(ii) a + b ≡ u + v (mod n) and

(iii) ab ≡ uv (mod n).

Proof. We prove parts (i) and (iii ) here, leaving part (ii ) as an exercise.
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(i) If a ≡ u (mod n) thenu− a = nk, k ∈ Z, which implies that

−u− (−a) = −(u− a) = n(−k)

so

−a ≡ −u (mod n).

(ii) As beforea ≡ u (mod n) sou− a = nk, k ∈ Z. Thus, for allt ∈ Z, ut− at = n(kt) and

soat ≡ ut (mod n), for all t ∈ Z. (*)

Similarly if b ≡ v (mod n) thensb ≡ sv (mod n), for all s ∈ Z. (**)

With t = b in (*) and s = u in (**) we haveab ≡ ub (mod n) andub ≡ uv (mod n).

From text on page94ab ≡ uv (mod n).

Lemma 6.12.Every integer is congruent modulon to one and only one of the integers in the list
0, 1, . . . , n− 1.
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Proof. This follows from the division algorithm because ifa ∈ Z then we can writea = nq + r,
with 0 ≤ r < n. Thenn|a − r soa ≡ r (mod n) andr is in the given list. Ifa ≡ r (mod n)
anda ≡ s (mod n) then, from the above,r ≡ s with 0 ≤ r < n and0 ≤ s < n. Assuming that
r > s thenn|r− s andn > r ≥ r− s, contradicting Lemma2.18.3. Thusa is congruent to only
one integer in the list.

Example 6.13.In Modular arithmetic we can always avoid computation with large numbers. For
example working modulo10 we have

7459898790352045324 ≡ 4 (mod 10)

and
9874558754423 ≡ 3 (mod 10).

Therefore

7459898790352045324 · 9874558754423 ≡ 4 · 3 = 12 ≡ 2 (mod 10).

Similarly, working modulo7 we have

4543362 ≡ 5 (mod 7).

Therefore
45433622 ≡ 52 ≡ 25 ≡ 4 (mod 7)

and
45433623 = 4543362 · 45433622 ≡ 5 · 4 ≡ 20 ≡ 6 (mod 7).

6.6 Divisibility Tests

Divisibility by 9

When we write a number like20195 to base10 we are expressing the number

2× 104 + 0× 103 + 1× 102 + 9× 101 + 5

in shorthand (there’s a1 in the100’s column etc.).
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Applying this argument in general we write

amam−1 · · · a1a0

for the number
am × 10m + am−1 × 10m−1 + · · ·+ a1 × 10 + a0.

As 10k ≡ 1 (mod 9), for k = 1, . . . ,m, we have

amam−1 · · · a1a0 ≡ am + am−1 + · · ·+ a1 + a0 (mod 9). (6.2)

Now consider Casting out Nines, Procedure6.1. Suppose we cast out nines from an integer
m. In Step1 we cross out any digits which sum to a multiple of9. The sum of these digits is
congruent to zero modulo9 so, from (6.2), the result is an integer congruent tom modulo9. In
Step2 we add the digits and again, from (6.2), the result is an integer congruent tom modulo9.
Thus the casting out nines procedure results at every stage in an integer congruent tom modulo
9. The procedure ends with a numberr such that0 ≤ r < 9 andr ≡ m (mod 9). Therefore
9|m − r, from which it follows thatm = 9q + r, for someq ∈ Z and0 ≤ r < 9. That is, the
output from Casting out Nines is the unique remainder guaranteed by the division algorithm, on
attempting division by9.

The following lemma follows from (6.2).

Lemma 6.14.An integer is divisible by9 if and only if the sum of its digits is divisible by9.

Example 6.15.Are 31357989921 or 5179183229478 divisible by9?
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Divisibility by 4

Now 102 ≡ 0 (mod 4). Thus, for example,

1932526 = (19325× 100) + 26 ≡ 26 (mod 4)

and

93975656489084357745565568738675 =

(939756564890843577455655687386× 100) + 75 ≡ 75 (mod 4).

More generally, ifam · · · a1a0 is an integer written to base10 then

am · · · a1a0 = (am · · · a2 × 100) + a1a0 ≡ a1a0 (mod 4).

Therefore

am · · · a1a0 ≡ 0 (mod 4) if and only if a1a0 ≡ 0 (mod 4).

That is

4|am · · · a1a0 ⇔ 4|a1a0.

Example 6.16.Does4 divide937475900345 or 80345003732?

6.7 Inverses in modular arithmetic

If we work in the rational numbersQ we can find a multiplicative inverse for any non-zero
element. For example the inverse of11/201 is 201/11. The same is true inR where the inverse
of x 6= 0 is 1/x. In general ifx is a number andy has the property thatxy = 1 then we say that
x hasinversey. Most elements ofZ don’t have inverses inZ. For example2 has no inverse. In
fact±1 are the only elements ofZ which have inverses. What about arithmetic modulon.
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Example 6.17.Try to find the inverse of2 modulo6.

Example 6.18.Do either3 or 7 have inverses modulo10?
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Example 6.19.Which numbers have inverses modulo8?
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Lemma 6.20.An integera has an inverse modulon if and only ifgcd(a, n) = 1.

Proof.

What happens if we do arithmetic modulo a prime numberp? In this case, for every integer
a either
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1 p - a in which casegcd(a, p) = 1 or

2 p|a in which casea ≡ 0 (mod p).

Thus every integer which is not congruent to zero modulop has an inverse. This means that
arithmetic modulop resembles arithmetic inQ more closely that arithmetic inZ.

Example 6.21. Write out the multiplication table for arithmetic modulo5 with the integers
0, 1, 2, 3 and4. Hence find the inverse of every integer which is not congruent to zero mod-
ulo 5.
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6.8 Solving Congruences

Example 6.22.Find all integersx such that

2x ≡ 4 (mod 6). (6.3)

We call such equationscongruencesand this is an example of alinear congruence. Note that if
x = a is a solution anda ≡ b thenx = b is also a solution: so if there’s one solution there are
infinitely many. Every integer is congruent to one of

0, 1, . . . , n− 1 modulon

so we seek solutions to congruences in this range. Once we know the solutions in this range
then, given the preceeding remark, we know all solutions. One method of solving the congruence
above is to construct a table:

x 0 1 2 3 4 5
2x (mod 6)

From the table we see that the only solutions arex = 2 andx = 5.

This method certainly works but it require alot of work. A more efficient method is to use
the results of Section5.3. Suppose we wish to find solutions to the congruence

ax ≡ b (mod n). (6.4)

By definition of congruencex is a solution to (6.4) if and only if n|(ax − b): that is if and only
if ax − b = ny, for some integery. Rearranging the last equation,x is a solution if and only
if ax − ny = b, for somey ∈ Z. This is an equation of the form solved in Section5.3 and we
know from Theorem5.5 that it has a solution if and only ifgcd(a, n)|b. If gcd(a, n)|b then, as



MAS121 Notes 105

in Section5.3, we can use the Euclidean algorithm to find a particular solution to the equation.
Also, writing gcd(a, n) = d, if d|b andx = u, y = v is a solution then the list of solutions to this
equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.

Therefore, ifd|b andx = u is one solution to the congruence (6.4) then the list of solutions to
(6.4) consists of the integers of the formu− (n/d)t, for t ∈ Z.

Applying this to congruence (6.3) above,

we havegcd(2, 6) = 2 and2|4 so there are solutions. It’s easy to see thatx = 2 is a solution

and so the other solutions are of the form2 − 3t, for t ∈ Z. The only one of these in the range

0, . . . , 5 is x = 5 (whent = −1). This gives us the complete list of solutions as before.

In the general case (of congruence (6.4)) the only remaining question is which of the solutions
we have found are congruent?

Let us consider what happens if two of our solutionsx = u − (n/d)t andx = u − (n/d)s are
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congruent, for some integerss andt. Then

u− (n/d)t ≡ u− (n/d)s (mod n)

⇔ (n/d)(s− t) ≡ 0 (mod n)

⇔ n|(n/d)(s− t)

⇔ (n/d)(s− t) = kn, for somek ∈ Z

⇔ (s− t) = dk, for somek ∈ Z

⇔ s ≡ t (mod d).

Thusu − (n/d)t ≡ u − (n/d)s (mod n) if and only if s ≡ t (mod d). This means that there

are exactlyd solutions

u, u− (n/d), u− 2(n/d), . . . , u− (d− 1)(n/d)
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no two of which are congruent to each other.
We summarise our findings in a Theorem.

Theorem 6.23.Leta, b andn be integers withn > 0 and letd = gcd(a, n). Then the congruence
(6.4) has a solution if and only ifd|n. If d|n then there are exactlyd pairwise incongruent
solutions to(6.4).

Example 6.24.Find all solutions to the congruence

2x ≡ 3 (mod 6).

There are no solutions becausegcd(2, 6) - 3.

Example 6.25.Find all solutions to the congruence6x ≡ 9 (mod 15).

gcd(6, 15) = 3 and3|15 so there are solutions.15/3 = 5 so there are5 solutions. x = 4 is

a solution and solutions all differ from one another by multiples of5. Therefore solutions are

x = 4, 9, 14, 19 and24.

Example 6.26.Compare the solutions to the congruences

2x ≡ 4 (mod 6) andx ≡ 2 (mod 6).

The first congruence has solutionsx = 2, 5. The second has only one solutionx = 2. Cancella-

tion of 2 from both sides of the former congruence results in a new congruence with a different
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set of solutions: it’s not a sensible thing to do if you want to find all solutions.2 does not have

an inverse modulo6. Cancellation really involves multiplication by the inverse so is not always

useful when solving congruences.

6.9 Random numbers: an application

A sequence of numbers in which each new term is selected independently of the previous
term is called a sequence ofrandom numbers. Such sequences can be obtained mechanically;
by rolling a dice, spinning a roulette wheel, or running the lottery. However if the sequence is to
be used in a scientific experiment then it is often desirable to be able to repeat the experiment.
This means producing a sequence whichlooks random but which can be reconstructed when we
wish to verify our experimental results. Such sequences cannot be truly random and are called
pseudo-random. Pseudo-random numbers are often generated by computer but this means that
we need to find good algorithms to produce them. The art and science of pseudo-random number
generation is highly developed and very sophisticated: look at the web pageRandom number
generators– The pLab Project Home Page at http://random.mat.sbg.ac.at/.

Here we present a pseudo-random number generator, first proposed by D.H. Lehmer in 1949,
that is easy to understand and for many purposes does a good enough job. To generate a sequence
of pseudo-random integersa0, a1, a2, . . . perform the following process.

1 Fix a positive numbern and two integersm andc, with 2 ≤ m < n and0 ≤ c < n.

2 Choose a start valuea0, such that0 ≤ a0 ≤ n.

3 Generate elements of the sequence successively using the formula

ak+1 = mak + c (mod n), where0 ≤ ak+1 < n.

If a large value ofn is chosen the sequence appears random, at least to start with.

Example 6.27.With n = 800, m = 71, c = 57, anda0 = 2 the first ten elements of the sequence
are

2, 199, 586, 63, 530, 87, 634, 271, 98, 615.

Now alteringa0 to 551 the sequence produced is

551, 778, 95, 402, 599, 186, 463, 130, 487, 234.

http://random.mat.sbg.ac.at/
http://random.mat.sbg.ac.at/
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Keeping everything fixed exceptn = 8000 we obtain

551, 7178, 5695, 4402, 599, 2586, 7663, 130, 1287, 3434.

With n = 40, m = 22, c = 20 anda0 = 13 we obtain

13, 26, 32, 4, 28, 36, 12, 4, 28, 36, 12.

Of course such sequences are not random (by definition) and we have a formula for the terms.

Theorem 6.28.Thekth term of the sequence generated by the process above is

ak =

(
mka0 +

c(mk − 1)

(m− 1)

)
(mod n),

with 0 ≤ ak < n.

Also note that there are at mostn values for the terms of the sequence, which must all lie between

0 andn− 1. Therefore, after at mostn terms have been generated there are two terms which are

the same. Since thek + 1 term depends only on thek term this means that the sequence repeats

itself from this point on: ifas = at, with s > t, thenas+1 = at+1, as+2 = at+2, and so on.

The sequence then looks far from random. Theperiod of the sequence is the smallest integerd

such that, for somes, t, we haveas = as+d. The period is at mostn; but some choices ofc, m

andn result in periods shorter thann. In fact it can be shown that the period isn if and only if
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gcd(c, n) = 1, m ≡ 1 (mod p), for all primesp dividing n, andm ≡ 1 (mod 4) if 4|n.

Analysis of “how random” a pseudo-random sequence is involves applying statistical tests to
the sequence. For instance the frequency of occurence of a particular integers in the sequence
can be tested; as can the frequency of occurence of pairs of integers.

6.10 Objectives

After covering this chapter of the course you should be able to:

(i) recall the definition of congruence;

(ii) recall the statement of Lemma6.11and understand its proof;

(iii) do arithmetic modulon;

(iv) understand how various divisibility tests work and be able to apply them;

(v) decide whether or not an integer has an inverse modulon;

(vi) generate a sequence of pseudo-random numbers.
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6.11 Exercises

6.1 Perform the following calculations in arithmetic modulon for n = 2, 10 and9. In each
case give your answer as an integer in the range0 to n− 1.
(a)1 + 2; (b) 2 · 3; (c) 4 · (3 + 5); (d) 6 · 7; (e) (6 + 5) · (5 + 7).

6.2 Perform the following calculations in arithmetic modulon for n = 2, 10 and9. In each
case give your answer as an integer in the range0 to n− 1.
(a)1 + 1; (b) 0 · 1; (c) 3 · (4 + 5); (d) 2 · 5; (e) (4 + 5) · (6 + 7).

6.3 Construct tables for addition and multiplication modulo4. Which integers if any have
inverses modulo4?

6.4 Complete the following tables which give the rules for addition and multiplication modulo

10

+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3
4 4
5 5
6 6
7 7
8 8
9 9

· 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5
4 0 8 2 6
5 0 5
6 0
7 0
8 0
9 0

Which integers have inverse modulo10?

6.5 Construct tables, similar to those in Question6.4, for addition and multiplication in modulo
9. Which integers have inverse modulo9?

6.6 Let n be a natural number and leta, b ∈ Z. Use the definition of congruence to show that
if

a ≡ b (mod n) then b ≡ a (mod n).

6.7 Let n be a natural number and leta, b ∈ Z. Use the definition of congruence, Lemma6.11
and induction to show that ifa ≡ b (mod n) then

ak ≡ bk (mod n), for all integersk ≥ 0.

6.8 Find all solutions of the following congruences modulo5 and modulo8.

(a) 3x ≡ 7;

(b) 4x + 6 ≡ 3;

(c) x + 3 ≡ 3x + 11;

(d) 6x + 1 ≡ x− 2;

(e) −x + 2 ≡ 3;

(f) −4x− 3 ≡ −3x + 2.

6.9 Find all solutions of the following congruences.
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(a) 3x ≡ 5 (mod 11);

(b) 10x + 9 ≡ 9 (mod 15);

(c) 18x ≡ 18 (mod 27);

(d) 182x + 21 ≡ 112 (mod 1001);

(e) 42x + 100 ≡ 53 (mod 105);

(f) −63x ≡ 0 (mod 99).

6.10 We say thata is asquare rootof b in arithmetic modulon if

a2 ≡ b (mod n).

Show that3 is a square root of(−1) in arithmetic modulo10. Find all of the square roots
of (−1) in arithmetic modulo10: that is find all solutions of the congruence

x2 ≡ −1 (mod 10).

6.11 Show thatx = 7 is a solution of the quadratic equationx2 − 5x + 6 ≡ 0 (mod 10). Find
all the solutions of this quadratic equation modulo10.

6.12 Find all solutions to the following simultaneous congruences modulo6 and11.

(a)
7x + 10 ≡ 2
3x + 9 ≡ 4

; (b)
2x + 3y ≡ 8
5x + 4y ≡ 8

;

(c)
4x + 15y ≡ 3
3x + 2y ≡ 5

; (d)
5x + 3y ≡ 7
7x + 2y ≡ 1

.

6.13 (a) Show that an integer is divisible by3 if and only if the sum of its digits is divisible
by 3.

(b) Show that an integer is divisible by5 if and only if its last digit is divisible by5.

(c) Show that the integer
amam−1 · · · a1a0

is divisible by11 if and only if the alternating sum

a0 − a1 + · · ·+ (−1)m−1am−1 + (−1)mam

is divisible by11.

(d) Test the following for divisibility by3, 5 and11: the numbers13451, 800834, 23422345,
234221054 and2987090.

6.14 Use induction onk to prove Theorem6.28.



Appendix A

Proof that the Euclidean Algorithm works

This appendix is included for information only: the material it contains is not examinable.

From the examples of Chapter2 we can see that with the input of Examples2.3and2.4 the
Euclidean Algorithm does give the correct output. As we can always replace an integer by its
absolute value, without changing the set of its positive divisors, the algorithm is only ever needed
to find the greatest common divisor of a pair of positive integers. We may therefore assume that
the input to the Euclidean Algorithm is a pair of natural numbersa andb with a < b.

Suppose then that we are givena andb with 0 < a < b and that we wish to explain why the
output from the Euclidean Algorithm isgcd(b, a).

EA1. We input the pair(b, a).

EA2. Expressb asb = aq0 + r0, for some integersq0 andr0, with 0 ≤ r0 < a. We know that we
can always do this because the Division Algorithm, Theorem2.10, tells us so.

EA3. Do nothing ifr0 6= 0. We’ll come back to what happens ifr0 = 0 later.

EA4. If we reach this step then we must have hadr0 > 0 in Step EA3. In this case we replace
(b, a) with (a, r0). Then we go back to Step EA1 and begin again.

Next time we reach Step EA2 we expressa = r0q1 + r1, for some integersq1 andr1 with
0 ≤ r1 < r0. Assuming thatr1 > 0 we’ll reach Step EA4 again and replace(a, r0) with the
pair (r0, r1). We’ll then start again at Step EA1. This process continues: we replace(r0, r1) with
(r1, r2) wherer0 = r1q2 + r2 and0 ≤ r2 < r1 and so on, as long as none of theri’s is zero. The
result is a sequence of positive integers

b > a > r0 > r1 > · · · > rn > 0,

with ri−1 = riqi+1 + ri+1, for i = 1, . . . , n − 1. These are equations are Equations2.1–2.5 in
Example2.3and theri’s are the remainders which occur there. The algorithm continues adding
to this sequence if the remainderrn is non–zero. This cannot continue indefinitely asb is a fixed
positive integer. Therefore, at some stage we’ll input(rn, rn+1) at Step EA1 and when we reach

113
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Step EA3 find that we havern = rn+1qn+2 +0, for some integerqn+2. As in the examples above,
at this point we have

gcd(b, a) = gcd(a, r0) = gcd(r0, r1) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn

(using Lemma2.16). Now Step EA3 outputsrn and stops. Thus the Euclidean Algorithm does
indeed give the correct answer.
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Appendix B

Glossary of notation

{a, b, c} the set with elementsa, b, c
∈ is a member of
/∈ is not a member of
∅ the empty set
X ⊂ Y X is a subset ofY
X 6⊂ Y X is not a subset ofY
X ⊃ Y Y is a subset ofX
X 6⊃ Y Y is a not a subset ofX
: or | such that
N the set of natural numbers
Z the set of integers
Q the set of rational numbers
R the set of real numbers
{x ∈ S : x has propertyP} the set of elements of the setS which have propertyP
X ∪ Y the union ofX andY
X ∩ Y the intersection ofX andY
X\Y the difference ofX andY
X ′ the complement ofX (in a given setE)
∃ there exists
∀ for all
A ⇒ B A impliesB (or if A thenB)
A ⇐ B B impliesA (or if A thenB)
A ⇔ B A if and only if B (or A iff B)
a|b a dividesb (or a is a factor ofb, or a is a divisor ofb)
a - b a does not divideb
|x| the modulus (or absolute value) ofx
gcd(a, b) greatest common divisor ofa andb
hcf(a, b) highest common factor ofa andb (gcd(a, b) = hcf(a, b))

n∑
j=1

aj a1 + · · ·+ an

a ≡ b (mod n) a is congruent tob modulon
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