
Definitions, Lemmas and so on

Definition – like a dictionary definition

Theorem – important conclusion

Lemma – less important conclusion

Corollary – a result which follows more or less obviously from a previous theorem
or lemma

Proof – a sequence of logical steps, which can be followed to pass from an
assumption or definition to a conclusion (i.e. a Theorem, Lemma or ....)

Example – illustrative calculation or very minor result

Build up gradually to surprising or well–hidden conclusions.
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Sets

Set - a collection of objects together with some method of (in principle)
identifying which objects belong to the collection and which do not.

If S is a set and x is an object which belongs to S then we say that x is an
element of S or a member of S.

x ∈ S reads “x is an element of S”

y /∈ S reads “y is not an element of S”

{1, 2, 3, 4, 5} = the set with elements 1, 2, 3, 4, 5

N = {1, 2, 3, . . .} is the set of positive whole numbers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is the set of all whole numbers
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Subsets

A set S is a subset of a set T if every element of S is also an element of T .

For example {a, b} is a subset of the set {a, b, c}.

⊂ reads “is a subset of”:

{1, 2, 3, . . .} ⊂ {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
6⊂ reads “is a not a subset of”:

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} 6⊂ {1, 2, 3, . . .}.

Every set is a subset of itself: S ⊂ S, for all sets S.

Similarly {78, 69, 45, 32} ⊃ {78, 45}
{78, 69, 45, 32} ⊃ {78, 32, 69, 45}

and
{78, 69, 45, 32} 6⊃ {78, 32, 69, 45}
{78, 69, 45, 32} 6⊃ {78, 31, 64, 49}.
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The empty set

The set with no elements is called the empty set denoted ∅.

The empty set ∅ is a subset of S, for all sets S.

There are no elements in ∅ so no element of ∅ fails to belong to S.

Beware: The set {∅} has one element, namely ∅, so is not the empty set.
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Some sets of numbers

We have standard names for some sets of numbers.

(1) The positive whole numbers are called the natural numbers and the set
{1, 2, 3, . . .} of natural numbers is denoted N.

(2) The elements of {. . .−3,−2,−1, 0, 1, 2, 3, . . .}, the set of all whole numbers,
positive, negative and zero are called the integers and the set of integers is
denoted Z.

(3) A number which can be expressed as a fraction p/q, where p and q are
integers and q 6= 0 is called a rational number and the set of all rational
numbers is denoted Q.

(4) A number which has a decimal expansion is called a real number and the set
of all real numbers is denoted R.

Note that N ⊂ Z ⊂ Q ⊂ R. However Z 6⊂ N, Q 6⊂ Z and R 6⊂ Q.
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Specification of new sets from old

“:” reads “with the property that” or “such that”.

For example:
{n ∈ N : n is even } = {2, 4, 6, 8, . . .}

{n ∈ N : n > 9} = {10, 11, 12, . . .}

{n ∈ N : n ≥ 11 and n < 16} = {11, 12, 13, 14, 15}.

Sometimes “|” is used instead of “:” as in

{n ∈ N |n is a multiple of 10} = {10, 20, 30, . . .}.
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Unions and intersections

The union of two sets S and T , denoted S ∪ T is the set consisting of all those
elements which either belong to S or belong to T . For example

{A,B, C} ∪ {X, Y, Z} = {A,B, C, X, Y, Z}

and
{A,B,C, Y, Z} ∪ {A,X, Y, Z} = {A,B, C, X, Y, Z}.

The intersection of two sets S and T , denoted S ∩ T is the set consisting of
only those elements which belong to both S and T . For example

{A,B, C, L, M} ∩ {L,M,X, Y, Z} = {L,M}

and
{A,B, C} ∩ {X, Y, Z} = ∅.
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Complement and difference

If S is a subset of a set E then the complement of S in E, denoted S′, is the
set consisting of those elements of E which do not belong to S. That is

S′ = {x ∈ E : x /∈ S}.

For example if E = {a, b, c, d, e, f} and S = {a, b, c} then S′ = {d, e, f}.

The difference of two sets S and T (in that order), denoted S\T , is the set of
elements of S which do not belong to T .

For example if S = {A,B, C, D, E, F} and T = {D,E, F, G,H, I} then S\T =
{A,B, C}.

– Typeset by FoilTEX – 9



Objectives

After covering this section of the course you should be able to:

(i) understand the use of terms such as Definition, Lemma, Theorem,...

(ii) read and use the symbols ∈, {. . .}, ⊂, 6⊂, ⊃, 6⊃ and ∅;

(iii) know which sets of numbers N, Z, Q and R refer to;

(iv) understand notation of the form {n ∈ Z : n > 10};

(v) know what unions, intersections, complements and differences of sets are
and understand the meaning of X ∪ Y , X ∩ Y , X\Y and X ′, where X and
Y are sets.
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A puzzle

A professor decides to reward the class by handing out toffees. There are 24
toffees in a packet and the professor buys several packets. On the way to the
lecture the prof eats 6 toffees. There are 30 students in the lecture and each
receives the same number of toffees. There are then no toffees left. What’s the
least number of packets the prof could have bought and how many toffees would
each student then get?
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Solution

We can solve this problem algebraically.

Suppose that
the number of packets of toffees bought = x
the number of toffees each student gets = y

We can easily work out:
Total number of toffees bought: = 24x
Number of toffees handed out to class = 24x− 6

Since each student gets y toffees and there are 30 students

24x− 6 = 30y.
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24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.
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24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

First divide through by 6 and the equation becomes

4x− 1 = 5y.
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24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

First divide through by 6 and the equation becomes

4x− 1 = 5y.

Try values of x until we find one which works.
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24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

First divide through by 6 and the equation becomes

4x− 1 = 5y.

Try values of x until we find one which works.

x 1 2 3 4
4x− 1 3 7 11 15

y? ??? ??? ??? 3

When x is 4 and y is 3 we have 4x− 1 = 5y so 24x− 6 = 30 as well.
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24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

First divide through by 6 and the equation becomes

4x− 1 = 5y.

Try values of x until we find one which works.

x 1 2 3 4
4x− 1 3 7 11 15

y? ??? ??? ??? 3

When x is 4 and y is 3 we have 4x− 1 = 5y so 24x− 6 = 30 as well.

No smaller value of x makes 4x− 1 equal to a multiple of 5.
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24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

First divide through by 6 and the equation becomes

4x− 1 = 5y.

Try values of x until we find one which works.

x 1 2 3 4
4x− 1 3 7 11 15

y? ??? ??? ??? 3

When x is 4 and y is 3 we have 4x− 1 = 5y so 24x− 6 = 30 as well.

No smaller value of x makes 4x− 1 equal to a multiple of 5.

We now know that the prof could have got away with buying just x = 4 packets
of toffees. Each of the students would then have received 3 toffees.
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The Euclidean Algorithm

What is the biggest positive number that divides both 24 and 30?

Make two lists.
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The Euclidean Algorithm

What is the biggest positive number that divides both 24 and 30?

Make two lists.

Positive divisors of 24 : 1, 2, 3, 4, 6, 8, 12, 24

Positive divisors of 30 : 1, 2, 3, 5, 6, 10, 15, 30
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The Euclidean Algorithm

What is the biggest positive number that divides both 24 and 30?

Make two lists.

Positive divisors of 24 : 1, 2, 3, 4, 6, 8, 12, 24

Positive divisors of 30 : 1, 2, 3, 5, 6, 10, 15, 30

Pick the largest number which appears on both of the lists, which is 6.
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Example 2.1. Find the biggest number which divides both 2028 and 2600.
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Example 2.1. Find the biggest number which divides both 2028 and 2600.

Positive divisors of

2028 : 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028
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Example 2.1. Find the biggest number which divides both 2028 and 2600.

Positive divisors of

2028 : 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028

2600 : 1, 2, 4, 5, 8, 10, 13, 20, 25, 26, 40, 50, 52, 65, 100, 104, 130, 200, 260,
325, 520, 650, 1300, 2600
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Example 2.1. Find the biggest number which divides both 2028 and 2600.

Positive divisors of

2028 : 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028

2600 : 1, 2, 4, 5, 8, 10, 13, 20, 25, 26, 40, 50, 52, 65, 100, 104, 130, 200, 260,
325, 520, 650, 1300, 2600

The biggest number dividing both 2028 and 2600 is 52.
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The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

– Typeset by FoilTEX – 16



The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest common divisor.
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The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest common divisor.

The recipe works as follows.

EA1. Input the pair (b, a), with 0 < a < b.
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The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest common divisor.

The recipe works as follows.

EA1. Input the pair (b, a), with 0 < a < b.

EA2. Write b = aq + r, where q and r are integers with 0 ≤ r < a.
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The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest common divisor.

The recipe works as follows.

EA1. Input the pair (b, a), with 0 < a < b.

EA2. Write b = aq + r, where q and r are integers with 0 ≤ r < a.

EA3. If r = 0 then output gcd(a, b) = a and stop.
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The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest common divisor.

The recipe works as follows.

EA1. Input the pair (b, a), with 0 < a < b.

EA2. Write b = aq + r, where q and r are integers with 0 ≤ r < a.

EA3. If r = 0 then output gcd(a, b) = a and stop.

EA4. Replace the ordered pair (b, a) with (a, r). Repeat from (2).

Example 2.2. Find the greatest common divisor d of 12 and 63. Find x, y ∈ Z
such that 12x + 63y = d.

– Typeset by FoilTEX – 16



Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.
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Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

– Typeset by FoilTEX – 17



Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)
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Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)

(572,312) 572 = 312 · 1 + 260 (2.3)
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Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)

(572,312) 572 = 312 · 1 + 260 (2.3)

(312,260) 312 = 260 · 1 + 52 (2.4)
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Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)

(572,312) 572 = 312 · 1 + 260 (2.3)

(312,260) 312 = 260 · 1 + 52 (2.4)

(260,52) 260 = 52 · 5 + 0. (2.5)
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Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)

(572,312) 572 = 312 · 1 + 260 (2.3)

(312,260) 312 = 260 · 1 + 52 (2.4)

(260,52) 260 = 52 · 5 + 0. (2.5)

This gives gcd(2600, 2028) = 52, as we found in Example 2.1.
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To find the integers x, y we work back from (2.4) to (2.1).
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To find the integers x, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

– Typeset by FoilTEX – 18



To find the integers x, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

= 312− (572− 312 · 1) = 312 · 2− 572 from (2.3)
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To find the integers x, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

= 312− (572− 312 · 1) = 312 · 2− 572 from (2.3)

= (2028− 572 · 3) · 2− 572 = 2028 · 2− 572 · 7 from (2.2)
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To find the integers x, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

= 312− (572− 312 · 1) = 312 · 2− 572 from (2.3)

= (2028− 572 · 3) · 2− 572 = 2028 · 2− 572 · 7 from (2.2)

= 2028 · 2− (2600− 2028 · 1) · 7 = 2028 · 9− 2600 · 7 from (2.1).
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To find the integers x, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

= 312− (572− 312 · 1) = 312 · 2− 572 from (2.3)

= (2028− 572 · 3) · 2− 572 = 2028 · 2− 572 · 7 from (2.2)

= 2028 · 2− (2600− 2028 · 1) · 7 = 2028 · 9− 2600 · 7 from (2.1).

Thus 52 = 2600 · (−7) + 2028 · 9 so we may take x = −7 and y = 9.
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Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.
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Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)
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Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)
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Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)
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Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)

(26,20) 26 = 20 · 1 + 6 (2.9)
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Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)

(26,20) 26 = 20 · 1 + 6 (2.9)

(20,6) 20 = 6 · 3 + 2 (2.10)
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Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)

(26,20) 26 = 20 · 1 + 6 (2.9)

(20,6) 20 = 6 · 3 + 2 (2.10)

(6,2) 6 = 2 · 3 + 0. (2.11)
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Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)

(26,20) 26 = 20 · 1 + 6 (2.9)

(20,6) 20 = 6 · 3 + 2 (2.10)

(6,2) 6 = 2 · 3 + 0. (2.11)

This gives gcd(2028, 626) = 2.
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To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.
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To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)
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To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)
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To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)

= (150 · 1− 26 · 5) · 4− 26 · 3 = 150 · 4− 26 · 23 from (2.8)
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To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)

= (150 · 1− 26 · 5) · 4− 26 · 3 = 150 · 4− 26 · 23 from (2.8)

= 150 · 4− (626− 150 · 4) · 23 = 150 · 96− 626 · 23 from (2.7)
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To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)

= (150 · 1− 26 · 5) · 4− 26 · 3 = 150 · 4− 26 · 23 from (2.8)

= 150 · 4− (626− 150 · 4) · 23 = 150 · 96− 626 · 23 from (2.7)

= (2028− 626 · 3) · 96− 626 · 23 = 2028 · 96− 626 · 311 from (2.6).
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To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)

= (150 · 1− 26 · 5) · 4− 26 · 3 = 150 · 4− 26 · 23 from (2.8)

= 150 · 4− (626− 150 · 4) · 23 = 150 · 96− 626 · 23 from (2.7)

= (2028− 626 · 3) · 96− 626 · 23 = 2028 · 96− 626 · 311 from (2.6).

Thus 2 = 2028 · 96− 626 · 311 so we may take x = 96 and y = 311.
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Divisibility in the integers

Definition 2.5. Let a and b be integers. If there exists an integer q such that
b = qa then we say that a divides b, or a|b,.
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Divisibility in the integers

Definition 2.5. Let a and b be integers. If there exists an integer q such that
b = qa then we say that a divides b, or a|b,.

Other ways of saying a|b are that a is a factor of b, a is a divisor of b or b is a
multiple of a.
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Divisibility in the integers

Definition 2.5. Let a and b be integers. If there exists an integer q such that
b = qa then we say that a divides b, or a|b,.

Other ways of saying a|b are that a is a factor of b, a is a divisor of b or b is a
multiple of a.

We write a - b to denote “a does not divide b”.
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Example 2.6. From the definition we can easily check that 6|18 because 18 = 6·3.
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Example 2.6. From the definition we can easily check that 6|18 because 18 = 6·3.

In the same way we see that 6 divides 24, 12, 6, 0 and −6.
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Example 2.6. From the definition we can easily check that 6|18 because 18 = 6·3.

In the same way we see that 6 divides 24, 12, 6, 0 and −6.

Example 2.7. We shall prove that 6|(6n + 6), for all integers n.
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Example 2.6. From the definition we can easily check that 6|18 because 18 = 6·3.

In the same way we see that 6 divides 24, 12, 6, 0 and −6.

Example 2.7. We shall prove that 6|(6n + 6), for all integers n.

Example 2.8. Prove that 4|[(2n + 1)2 − 1], for all integers n.
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Definition 2.9. The modulus or absolute value of a real number x is denoted
|x| and is given by the formula

|x| =
{

x, if x ≥ 0
−x, if x < 0.
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Definition 2.9. The modulus or absolute value of a real number x is denoted
|x| and is given by the formula

|x| =
{

x, if x ≥ 0
−x, if x < 0.

For example

| − 6| = 6 = |6|,
102 = |102| = | − 102| and

|0| = 0 = −0 = | − 0|.
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Theorem 2.10. [The Division Algorithm] Let a and b be integers with a 6= 0.
Then there exist unique integers q and r such that b = aq + r and 0 ≤ r < |a|.
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Theorem 2.10. [The Division Algorithm] Let a and b be integers with a 6= 0.
Then there exist unique integers q and r such that b = aq + r and 0 ≤ r < |a|.

(1) The condition that a 6= 0 is necessary. If it’s left out then the statement
becomes untrue.
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Theorem 2.10. [The Division Algorithm] Let a and b be integers with a 6= 0.
Then there exist unique integers q and r such that b = aq + r and 0 ≤ r < |a|.

(1) The condition that a 6= 0 is necessary. If it’s left out then the statement
becomes untrue.

(2) There are two parts to the conclusion of the Theorem. Firstly it says that
such q and r do exist. Secondly it says that q and r are unique.
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Theorem 2.10. [The Division Algorithm] Let a and b be integers with a 6= 0.
Then there exist unique integers q and r such that b = aq + r and 0 ≤ r < |a|.

(1) The condition that a 6= 0 is necessary. If it’s left out then the statement
becomes untrue.

(2) There are two parts to the conclusion of the Theorem. Firstly it says that
such q and r do exist. Secondly it says that q and r are unique.

(3) Does the Theorem work in other settings?
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Example 2.11. Every integer n can be written as n = 2q + r, with 0 ≤ r < 2.
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Example 2.11. Every integer n can be written as n = 2q + r, with 0 ≤ r < 2.

If r = 0 we say n is even and if r = 1 we say n is odd.
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Example 2.11. Every integer n can be written as n = 2q + r, with 0 ≤ r < 2.

If r = 0 we say n is even and if r = 1 we say n is odd.

We’ve used the Division Algorithm (Theorem 2.10) to partition of integers into
odd and even.
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Example 2.11. Every integer n can be written as n = 2q + r, with 0 ≤ r < 2.

If r = 0 we say n is even and if r = 1 we say n is odd.

We’ve used the Division Algorithm (Theorem 2.10) to partition of integers into
odd and even.

Example 2.12. Here we have partitioned the integers into three: those that leave
remainder 0, those that leave remainder 1 and those that leave remainder 2, on
applying the Division Algorithm with a = 3.

– Typeset by FoilTEX – 25



Example 2.13. Show that 3|n3 − n, for all integers n.
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Example 2.13. Show that 3|n3 − n, for all integers n.

Example 2.14. Show that if n is an integer then n3 has the form 4k, 4k + 1 or
4k + 3, for some k ∈ Z.
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Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.
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Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

Why are the gcd’s are both the same?
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Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

Why are the gcd’s are both the same?

Lemma 2.16. Let s, t and u be integers, which are not all zero, such that

s = tq + u,

for some q ∈ Z. Then gcd(s, t) = gcd(t, u).
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Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

Why are the gcd’s are both the same?

Lemma 2.16. Let s, t and u be integers, which are not all zero, such that

s = tq + u,

for some q ∈ Z. Then gcd(s, t) = gcd(t, u).

Strategy: show that any integer that divides both s and t must also divide u.
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Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

Why are the gcd’s are both the same?

Lemma 2.16. Let s, t and u be integers, which are not all zero, such that

s = tq + u,

for some q ∈ Z. Then gcd(s, t) = gcd(t, u).

Strategy: show that any integer that divides both s and t must also divide u.

Then show that any integer that divides both t and u must also divide s.
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Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

Why are the gcd’s are both the same?

Lemma 2.16. Let s, t and u be integers, which are not all zero, such that

s = tq + u,

for some q ∈ Z. Then gcd(s, t) = gcd(t, u).

Strategy: show that any integer that divides both s and t must also divide u.

Then show that any integer that divides both t and u must also divide s.

Then the set of common divisors of s and t is exactly the same as the set of
common divisors of t and u and their greatest commond divisors are thus equal.
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Example 2.17. We can write 337 = 11 · 30 + 7.
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Example 2.17. We can write 337 = 11 · 30 + 7.

Therefore gcd(337, 11) = gcd(11, 7) = 1.
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Example 2.17. We can write 337 = 11 · 30 + 7.

Therefore gcd(337, 11) = gcd(11, 7) = 1.

Lemma 2.18.

1. a|a, for all integers a.
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Example 2.17. We can write 337 = 11 · 30 + 7.

Therefore gcd(337, 11) = gcd(11, 7) = 1.

Lemma 2.18.

1. a|a, for all integers a.

2. a|0, for all integers a.
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Example 2.17. We can write 337 = 11 · 30 + 7.

Therefore gcd(337, 11) = gcd(11, 7) = 1.

Lemma 2.18.

1. a|a, for all integers a.

2. a|0, for all integers a.

3. If a and b are integers, a|b and b > 0 then a ≤ b.
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Example 2.17. We can write 337 = 11 · 30 + 7.

Therefore gcd(337, 11) = gcd(11, 7) = 1.

Lemma 2.18.

1. a|a, for all integers a.

2. a|0, for all integers a.

3. If a and b are integers, a|b and b > 0 then a ≤ b.

4. If a and b are positive integers and a|b then gcd(a, b) = a.
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Why the Euclidean Algorithm works

Example 2.19. Consider the Equations (2.6)–(2.11).
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Why the Euclidean Algorithm works

Example 2.19. Consider the Equations (2.6)–(2.11).

Stringing all these facts together we have

2 = gcd(6, 2)

= gcd(20, 6)

= gcd(26, 20)

= gcd(150, 26)

= gcd(626, 150)

= gcd(2028, 626),

that is gcd(2028, 626) = 2.
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Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)
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Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)
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Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

gcd(572, 312) = gcd(312, 260),using Equation (2.3)
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Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

gcd(572, 312) = gcd(312, 260),using Equation (2.3)

gcd(312, 260) = gcd(260, 52),using Equation (2.4).
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Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

gcd(572, 312) = gcd(312, 260),using Equation (2.3)

gcd(312, 260) = gcd(260, 52),using Equation (2.4).

From Equation (2.5) we see that 52|260 so gcd(52, 260) = 52.
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Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

gcd(572, 312) = gcd(312, 260),using Equation (2.3)

gcd(312, 260) = gcd(260, 52),using Equation (2.4).

From Equation (2.5) we see that 52|260 so gcd(52, 260) = 52.

Therefore

52 = gcd(260, 52) = gcd(312, 260) =

gcd(572, 312) = gcd(2028, 572) = gcd(2600, 2028),
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Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

gcd(572, 312) = gcd(312, 260),using Equation (2.3)

gcd(312, 260) = gcd(260, 52),using Equation (2.4).

From Equation (2.5) we see that 52|260 so gcd(52, 260) = 52.

Therefore

52 = gcd(260, 52) = gcd(312, 260) =

gcd(572, 312) = gcd(2028, 572) = gcd(2600, 2028),

that is gcd(2600, 2028) = 52.
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And another thing

Given two integers a and b we can work back through the output of the Euclidean
algorithm, as we did in Examples 2.2, 2.3 and 2.4, to find integers x and y such
that ax + by = gcd(a, b).
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And another thing

Given two integers a and b we can work back through the output of the Euclidean
algorithm, as we did in Examples 2.2, 2.3 and 2.4, to find integers x and y such
that ax + by = gcd(a, b).

Theorem 2.21. Let a and b be integers, not both zero, and let d = gcd(a, b).
Then there exist integers u and v such that d = au + bv.
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And another thing

Given two integers a and b we can work back through the output of the Euclidean
algorithm, as we did in Examples 2.2, 2.3 and 2.4, to find integers x and y such
that ax + by = gcd(a, b).

Theorem 2.21. Let a and b be integers, not both zero, and let d = gcd(a, b).
Then there exist integers u and v such that d = au + bv.

The input to the Euclidean algorithm is a pair of positive integers. What if a < 0?
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And another thing

Given two integers a and b we can work back through the output of the Euclidean
algorithm, as we did in Examples 2.2, 2.3 and 2.4, to find integers x and y such
that ax + by = gcd(a, b).

Theorem 2.21. Let a and b be integers, not both zero, and let d = gcd(a, b).
Then there exist integers u and v such that d = au + bv.

The input to the Euclidean algorithm is a pair of positive integers. What if a < 0?

gcd(a, b) = gcd(−a, b) = gcd(−a,−b) = gcd(a,−b) and from this it follows that
the Theorem holds in all cases.
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An application

Example 2.22. Find integers x and y such that 2600x + 2082y = 104.
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An application

Example 2.22. Find integers x and y such that 2600x + 2082y = 104.

In Example 2.3 we ran the Euclidean Algorithm and found gcd(2600, 2082) = 52.
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An application

Example 2.22. Find integers x and y such that 2600x + 2082y = 104.

In Example 2.3 we ran the Euclidean Algorithm and found gcd(2600, 2082) = 52.

Once we’d done so we were able to use the equations generated to find integers
x and y such that

2600 · (−7) + 2028 · 9 = 52. (2.12)
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Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.
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Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).
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Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)
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Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)
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Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

(162,138) 162= 138 · 1 + 24 (2.15)
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Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

(162,138) 162= 138 · 1 + 24 (2.15)

(138,24) 138= 24 · 5 + 18 (2.16)
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Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

(162,138) 162= 138 · 1 + 24 (2.15)

(138,24) 138= 24 · 5 + 18 (2.16)

(24,18) 24= 18 · 1 + 6 (2.17)
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Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

(162,138) 162= 138 · 1 + 24 (2.15)

(138,24) 138= 24 · 5 + 18 (2.16)

(24,18) 24= 18 · 1 + 6 (2.17)

(18,6) 18 = 3 · 6 + 0. (2.18)
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Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

(162,138) 162= 138 · 1 + 24 (2.15)

(138,24) 138= 24 · 5 + 18 (2.16)

(24,18) 24= 18 · 1 + 6 (2.17)

(18,6) 18 = 3 · 6 + 0. (2.18)

This gives gcd(12378, 3054) = 6.
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Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.
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Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)
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Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)
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Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)
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Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)

= 162 · 6− (3054− 162 · 18) · 7 = 162 · 132− 3054 · 7 from (2.14)
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Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)

= 162 · 6− (3054− 162 · 18) · 7 = 162 · 132− 3054 · 7 from (2.14)

= (12738− 3054 · 4) · 132− 3054 · 7 = 12378 · 132− 3054 · 535 from (2.13).
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Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)

= 162 · 6− (3054− 162 · 18) · 7 = 162 · 132− 3054 · 7 from (2.14)

= (12738− 3054 · 4) · 132− 3054 · 7 = 12378 · 132− 3054 · 535 from (2.13).

Thus
6 = 12378 · 132 + 3054 · (−535) (2.19)
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Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)

= 162 · 6− (3054− 162 · 18) · 7 = 162 · 132− 3054 · 7 from (2.14)

= (12738− 3054 · 4) · 132− 3054 · 7 = 12378 · 132− 3054 · 535 from (2.13).

Thus
6 = 12378 · 132 + 3054 · (−535) (2.19)

and we may take u = 132 and v = −535.
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Existence of solutions
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Existence of solutions

Lemma 2.24. Let a, b and c be integers (a, b not both zero). The equation

ax + by = c (2.20)

has integer solutions x, y if and only if gcd(a, b)|c.
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Lemma 2.24. Let a, b and c be integers (a, b not both zero). The equation

ax + by = c (2.20)

has integer solutions x, y if and only if gcd(a, b)|c.

Example 2.25. Are there integers x and y such that 2600x + 2028y = 130?
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has integer solutions x, y if and only if gcd(a, b)|c.

Example 2.25. Are there integers x and y such that 2600x + 2028y = 130?

Example 2.26. For which c does the equation 72x + 49y = c have a solution?
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Existence of solutions

Lemma 2.24. Let a, b and c be integers (a, b not both zero). The equation

ax + by = c (2.20)

has integer solutions x, y if and only if gcd(a, b)|c.

Example 2.25. Are there integers x and y such that 2600x + 2028y = 130?

Example 2.26. For which c does the equation 72x + 49y = c have a solution?

gcd(72, 49) = 1
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Existence of solutions
Lemma 2.24. Let a, b and c be integers (a, b not both zero). The equation

ax + by = c (2.20)

has integer solutions x, y if and only if gcd(a, b)|c.

Example 2.25. Are there integers x and y such that 2600x + 2028y = 130?

Example 2.26. For which c does the equation 72x + 49y = c have a solution?

gcd(72, 49) = 1

so the equation 72x + 49y = c has a solution for every choice of c.
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Objectives

After covering this chapter of the course you should be able to:

(i) use terms such as Definition, Lemma, and proof with confidence;

(ii) read and understand simple proofs;

(iii) remember Definition 2.5 of a divides b, for integers a and b;

(iv) apply this definition to prove simple divisibility properties;

(v) state the Division Algorithm and be able to use it to demonstrate properties
of integers;

(vi) remember the definition of greatest common divisor of two integers;

(vii) apply this definition to prove results;
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(viii) apply the Euclidean algorithm and explain why it works;

(ix) find solutions to equations of the kind given above.
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“There exists ...”

Example 2.4 asked for integers x and y such that 2028x−626y = gcd(2028, 626).

One such pair x = 96, y = 311, was found by applying the Euclidean Algorithm.

Once such a pair has been found we have proved the truth of the statement
“There exist integers x and y such that 2028x− 626y = gcd(2028, 626).”

It is only necessary to find one pair x, y to prove that this statement is true.

There are lots of other pairs besides the one given, x = 409, y = 1325, for
example, but this doesn’t matter.

The assertion can be seen to be true once we’ve found our first solution.
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Notation: the symbol “∃” is read “there exists”.

Example 3.1. Prove that ∃q ∈ Z such that 7q = 28.

Example 3.2. Prove that ∃x ∈ R such that x · 0 = 0.
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“For all...”

Examples 2.8, 2.13 and 2.14 we show that something holds for all integers.

In each case we do this by using a letter n to represent an arbitrary integer.

Again, it is easy to verify these results for particular values of n but this does not
prove that the statements hold for all integers.
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Counter–example and disproof

Is the following statement true or false?

3|n2 + 2n, for all n ∈ Z.
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Notation: the symbol “∀” is read “for all”.

Example 3.3. Show, by finding a counter–example that the statement

“n2 is even, ∀n ∈ Z”

is false.
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Example 3.4. Disprove the assertion that

“∃n ∈ Z such that n3 can be written as 4k + 2, with k ∈ Z”.
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Example 3.5. Consider the statement

“∃x ∈ R such that x2 = −10.
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Example 3.5. Consider the statement

“∃x ∈ R such that x2 = −10.

To prove it’s false I must show it fails for all x ∈ R (infinitely many).
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Example 3.5. Consider the statement

“∃x ∈ R such that x2 = −10.

To prove it’s false I must show it fails for all x ∈ R (infinitely many).

I can use a basic property of real number arithmetic to do this. Namely, if x ∈ R
then x2 ≥ 0.
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Example 3.5. Consider the statement

“∃x ∈ R such that x2 = −10.

To prove it’s false I must show it fails for all x ∈ R (infinitely many).

I can use a basic property of real number arithmetic to do this. Namely, if x ∈ R
then x2 ≥ 0.

Thus, no matter what value b takes the statement is false.
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Example 3.5. Consider the statement

“∃x ∈ R such that x2 = −10.

To prove it’s false I must show it fails for all x ∈ R (infinitely many).

I can use a basic property of real number arithmetic to do this. Namely, if x ∈ R
then x2 ≥ 0.

Thus, no matter what value b takes the statement is false.

Note that a counter–example is no use here as I must check all possible values of
x.
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“If ... then ...”

Example 3.6. Consider the assertion

“if x > 2 then x2 + x− 6 > 0”.
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“if A then B” and “if B then A”

“If I am a frog then I can swim”

is a plausible enough statement.

Switching A and B we have:

“If I can swim then I am a frog”.

This can’t be true!
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Example 3.7. If we switch the order of A and B in Example 3.6 we obtain the
statement

“If x2 + x− 6 > 0 then x > 2. ”
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The Converse

Switching A and B gives a new statement (unless A and B are the same).

The switched statement is called the converse of the original.

– Typeset by FoilTEX – 48



The Converse

Switching A and B gives a new statement (unless A and B are the same).

The switched statement is called the converse of the original.
Example 3.8. The converse of

“If x2 > 0 then x > 0”

is

“If x > 0 then x2 > 0”.
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Switching A and B gives a new statement (unless A and B are the same).

The switched statement is called the converse of the original.
Example 3.8. The converse of

“If x2 > 0 then x > 0”

is

“If x > 0 then x2 > 0”.

This time the original statement is false but its converse is true.
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The Converse

Switching A and B gives a new statement (unless A and B are the same).

The switched statement is called the converse of the original.
Example 3.8. The converse of

“If x2 > 0 then x > 0”

is

“If x > 0 then x2 > 0”.

This time the original statement is false but its converse is true.

Even if the original statement is true its converse may not be, and vice–versa.
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The Converse

Switching A and B gives a new statement (unless A and B are the same).

The switched statement is called the converse of the original.
Example 3.8. The converse of

“If x2 > 0 then x > 0”

is

“If x > 0 then x2 > 0”.

This time the original statement is false but its converse is true.

Even if the original statement is true its converse may not be, and vice–versa.

In some circumstances it may turn out however that both statements are true.
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“... if and only if ...”

Example 3.9. Let a, b, c ∈ R with a > 0.
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“... if and only if ...”

Example 3.9. Let a, b, c ∈ R with a > 0.

Consider the statement

“If b2 − 4ac ≥ 0 then ax2 + bx + c = 0 has a real solution.”
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“... if and only if ...”

Example 3.9. Let a, b, c ∈ R with a > 0.

Consider the statement

“If b2 − 4ac ≥ 0 then ax2 + bx + c = 0 has a real solution.”

We know that this is true.
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Shorthand

What we have shown in the previous example is that

“[if b2 − 4ac ≥ 0 then ax2 + bx + c = 0 has a real solution]
AND

[if ax2 + bx + c = 0 has a real solution then b2 − 4ac ≥ 0]”

is a true statement.
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Shorthand

What we have shown in the previous example is that

“[if b2 − 4ac ≥ 0 then ax2 + bx + c = 0 has a real solution]
AND

[if ax2 + bx + c = 0 has a real solution then b2 − 4ac ≥ 0]”

is a true statement.

Instead we may say

“ax2 + bx + c = 0 has a real solution if and only if b2 − 4ac ≥ 0.”
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Shorthand

What we have shown in the previous example is that

“[if b2 − 4ac ≥ 0 then ax2 + bx + c = 0 has a real solution]
AND

[if ax2 + bx + c = 0 has a real solution then b2 − 4ac ≥ 0]”

is a true statement.

Instead we may say

“ax2 + bx + c = 0 has a real solution if and only if b2 − 4ac ≥ 0.”

Sometimes
“if and only if”

is shortened to
“iff”.
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In general a statement of the form

“A if and only if B”

means

“[if A then B] AND [if B then A]”.
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Lemma 3.10. Assume that a and b are positive integers. Then a|b if and only
if gcd(a, b) = a.
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Lemma 3.10. Assume that a and b are positive integers. Then a|b if and only
if gcd(a, b) = a.

Proof. The statement of the Lemma uses shorthand and when written out in full
becomes
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Lemma 3.10. Assume that a and b are positive integers. Then a|b if and only
if gcd(a, b) = a.

Proof. The statement of the Lemma uses shorthand and when written out in full
becomes

“[if a|b then gcd(b, a) = a] AND [if gcd(b, a) = a then a|b]”.
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Lemma 3.10. Assume that a and b are positive integers. Then a|b if and only
if gcd(a, b) = a.

Proof. The statement of the Lemma uses shorthand and when written out in full
becomes

“[if a|b then gcd(b, a) = a] AND [if gcd(b, a) = a then a|b]”.

The general rule in a proof of such a statement is prove each part separately.
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In general terms to show that

“A if and only if B”

is true we must establish the truth of both

“if A then B”

and

“if B then A”.
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Synonyms

All the entries on a given line of the following table mean the same thing.

if A then B A ⇒ B B if A

if B then A A ⇐ B A if B

A if and only if B A ⇔ B A iff B
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Contradiction

Most of the proofs we have seen so far are direct.
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Contradiction

Most of the proofs we have seen so far are direct.

In Lemma 2.16 we prove that if s, t and u are integers and s = tq + u, for some
q ∈ Z, then gcd(s, t) = gcd(t, u).
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Contradiction

Most of the proofs we have seen so far are direct.

In Lemma 2.16 we prove that if s, t and u are integers and s = tq + u, for some
q ∈ Z, then gcd(s, t) = gcd(t, u).

The proof starts with the assumption that s = tq + u and makes deductions until
the required result is reached.
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Contradiction

Most of the proofs we have seen so far are direct.

In Lemma 2.16 we prove that if s, t and u are integers and s = tq + u, for some
q ∈ Z, then gcd(s, t) = gcd(t, u).

The proof starts with the assumption that s = tq + u and makes deductions until
the required result is reached.

Here is an example of another kind of, indirect, argument.

Example 3.11. Show that x2 = −1 has no real solution.

– Typeset by FoilTEX – 55



Step(1) Assume the opposite of what is to be proved.
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Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.
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Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.
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Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.
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Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

Step(3) Show that something we’ve derived is false.
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Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

Step(3) Show that something we’ve derived is false.

Combining the fact above with the assumption that r2 = −1 we obtain
0 ≤ −1, which is clearly false.
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Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

Step(3) Show that something we’ve derived is false.

Combining the fact above with the assumption that r2 = −1 we obtain
0 ≤ −1, which is clearly false.

Step(4) Conclude that the assumption is false and so prove the required
result.
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Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

Step(3) Show that something we’ve derived is false.

Combining the fact above with the assumption that r2 = −1 we obtain
0 ≤ −1, which is clearly false.

Step(4) Conclude that the assumption is false and so prove the required
result.

The false statement in Step(3) was a direct consequence of the
assumption that a solution x = r to x2 = −1 exists.
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Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

Step(3) Show that something we’ve derived is false.

Combining the fact above with the assumption that r2 = −1 we obtain
0 ≤ −1, which is clearly false.

Step(4) Conclude that the assumption is false and so prove the required
result.

The false statement in Step(3) was a direct consequence of the
assumption that a solution x = r to x2 = −1 exists.

We are forced to conclude that no solution exists.
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Indirect argument

This is a technique of argument known as contradiction.
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Indirect argument

This is a technique of argument known as contradiction.

We start by assuming that whatever we wish to prove is false.
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Indirect argument

This is a technique of argument known as contradiction.

We start by assuming that whatever we wish to prove is false.

This assumption is then used to make deductions.
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Indirect argument

This is a technique of argument known as contradiction.

We start by assuming that whatever we wish to prove is false.

This assumption is then used to make deductions.

We hope that these deductions lead to something which we know is false: that is
to a contradiction.
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Indirect argument

This is a technique of argument known as contradiction.

We start by assuming that whatever we wish to prove is false.

This assumption is then used to make deductions.

We hope that these deductions lead to something which we know is false: that is
to a contradiction.

We conclude that our assumption is wrong so what we want to prove is true.
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Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
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Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
Theorem 3.12. There are no natural numbers x and y such that x2−2y2 = 0.
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Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
Theorem 3.12. There are no natural numbers x and y such that x2−2y2 = 0.

We can use this to prove something that may seem more familiar, namely that√
2 is not a rational number.
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Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
Theorem 3.12. There are no natural numbers x and y such that x2−2y2 = 0.

We can use this to prove something that may seem more familiar, namely that√
2 is not a rational number.

As this follows easily from the Theorem we call it a Corollary.
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Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
Theorem 3.12. There are no natural numbers x and y such that x2−2y2 = 0.

We can use this to prove something that may seem more familiar, namely that√
2 is not a rational number.

As this follows easily from the Theorem we call it a Corollary.

Again we use proof by contradiction.

– Typeset by FoilTEX – 58



Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
Theorem 3.12. There are no natural numbers x and y such that x2−2y2 = 0.

We can use this to prove something that may seem more familiar, namely that√
2 is not a rational number.

As this follows easily from the Theorem we call it a Corollary.

Again we use proof by contradiction.

Corollary 3.13. There is no rational number r such that r2 = 2. That is√
2 /∈ Q.
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Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

– Typeset by FoilTEX – 59



Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.
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Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

We have (
p

q

)2

= 2
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Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

We have (
p

q

)2

= 2

⇒ p2

q2
= 2
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Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

We have (
p

q

)2

= 2

⇒ p2

q2
= 2

⇒ p2 = 2q2, as q 6= 0,
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Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

We have (
p

q

)2

= 2

⇒ p2

q2
= 2

⇒ p2 = 2q2, as q 6= 0,

⇒ |p|2 = 2|q|2
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Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

We have (
p

q

)2

= 2

⇒ p2

q2
= 2

⇒ p2 = 2q2, as q 6= 0,

⇒ |p|2 = 2|q|2

⇒ |p|2 − 2|q|2 = 0.

The introduction of | · | is justified because (−x)2 = x2 = |x|2, for all
x ∈ R.
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Step(3) As r2 = 2 it cannot be the case that p = 0, because then we’d have
2 = 0.
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Step(3) As r2 = 2 it cannot be the case that p = 0, because then we’d have
2 = 0.

Thus p and q are non–zero.
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Step(3) As r2 = 2 it cannot be the case that p = 0, because then we’d have
2 = 0.

Thus p and q are non–zero.

Therefore |p| and |q| are natural numbers and we have deduced, in
Step(2), a contradiction to Theorem 3.12.

– Typeset by FoilTEX – 60



Step(3) As r2 = 2 it cannot be the case that p = 0, because then we’d have
2 = 0.

Thus p and q are non–zero.

Therefore |p| and |q| are natural numbers and we have deduced, in
Step(2), a contradiction to Theorem 3.12.

It follows that there is no such rational number r.
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Step(3) As r2 = 2 it cannot be the case that p = 0, because then we’d have
2 = 0.

Thus p and q are non–zero.

Therefore |p| and |q| are natural numbers and we have deduced, in
Step(2), a contradiction to Theorem 3.12.

It follows that there is no such rational number r.

Note that
√

2 by definition has square equal to 2: so we’ve shown it can’t be in
Q.
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Objectives

After covering this chapter of the course you should be able to:

(i) recognise and use the symbols ∃, ∀, ⇒, ⇐ and ⇔;

(ii) apply appropriate arguments to show whether or not statements of the form

“∃ ...”,

“∀ ...”

“if ... then ... ”

and

“... if and only if ...”

are true;

(iii) explain what a Corollary is;

(iv) understand and use proof by contradiction.
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Induction

Some properties of sets and numbers are so obvious that we treat them as natural
laws which do not require proof.
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Induction

Some properties of sets and numbers are so obvious that we treat them as natural
laws which do not require proof.

We call such a property an axiom.
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Induction

Some properties of sets and numbers are so obvious that we treat them as natural
laws which do not require proof.

We call such a property an axiom.

For instance all the properties of numbers listed at the beginning of Section 2.2
are axioms for numbers.
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Induction

Some properties of sets and numbers are so obvious that we treat them as natural
laws which do not require proof.

We call such a property an axiom.

For instance all the properties of numbers listed at the beginning of Section 2.2
are axioms for numbers.

The method of proof by induction is based on the following property which is
really an axiom for the natural numbers N.

– Typeset by FoilTEX – 62



The Principle of proof by induction

Assume that P (n) is a statement, for all n ∈ N.
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The Principle of proof by induction

Assume that P (n) is a statement, for all n ∈ N.

Assume further that it can be shown that

(1) P (1) is true and
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The Principle of proof by induction

Assume that P (n) is a statement, for all n ∈ N.

Assume further that it can be shown that

(1) P (1) is true and

(2) if P (k) is true then P (k + 1) is true, for k ≥ 1.
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The Principle of proof by induction

Assume that P (n) is a statement, for all n ∈ N.

Assume further that it can be shown that

(1) P (1) is true and

(2) if P (k) is true then P (k + 1) is true, for k ≥ 1.

Then P (n) is true for all n ∈ N.
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Example 4.1. Suppose that we wish to prove that

n∑
j=1

1
j(j + 1)

= 1− 1
n + 1

, for all n ∈ N.
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Example 4.1. Suppose that we wish to prove that

n∑
j=1

1
j(j + 1)

= 1− 1
n + 1

, for all n ∈ N.

Here P (n) is the statement

n∑
j=1

1
j(j + 1)

= 1− 1
n + 1

,
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Example 4.1. Suppose that we wish to prove that

n∑
j=1

1
j(j + 1)

= 1− 1
n + 1

, for all n ∈ N.

Here P (n) is the statement

n∑
j=1

1
j(j + 1)

= 1− 1
n + 1

,

and we wish to prove P (1), P (2), P (3), . . ..
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Example 4.2 (Bernoulli’s Inequality). Prove that

(1 + x)n ≥ 1 + nx, for all n ∈ N and for all x ∈ R, x > 0.
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Example 4.3 (Summing a geometric progression). Prove that

n−1∑
j=0

arj =
a(rn − 1)

r − 1
, for all a ∈ R and r ∈ R, r 6= 1, and for all n ∈ N.
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Example 4.4 (Special cases of summing gp’s).

(1) a = 1, r = x (6= 1):

From Example 4.3

1 + x + x2 + · · ·+ xn−1 =
xn − 1
x− 1

.
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Example 4.4 (Special cases of summing gp’s).

(1) a = 1, r = x (6= 1):

From Example 4.3

1 + x + x2 + · · ·+ xn−1 =
xn − 1
x− 1

.

Multiplying through by x− 1 gives

(1 + x + x2 + · · ·+ xn−1)(x− 1) = xn − 1.
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If we defined division for polynomials as we’ve done for integers, in Definition
2.5, we could say that this shows that

(x− 1)|(xn − 1)

and that
(1 + x + x2 + · · ·+ xn−1)|(xn − 1).
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If we defined division for polynomials as we’ve done for integers, in Definition
2.5, we could say that this shows that

(x− 1)|(xn − 1)

and that
(1 + x + x2 + · · ·+ xn−1)|(xn − 1).

For example
(1 + x)(x− 1) = x2 − 1,

(1 + x + x2)(x− 1) = x3 − 1,

(1 + x + x2 + x3)(x− 1) = x4 − 1.
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(2) a = 1, r = −x (x 6= −1), n = 2m + 1, m ∈ N:

The lefthand side of the equality of Example 4.3 becomes

2m∑
j=0

arj =
2m∑
j=0

(−x)j
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(2) a = 1, r = −x (x 6= −1), n = 2m + 1, m ∈ N:

The lefthand side of the equality of Example 4.3 becomes

2m∑
j=0

arj =
2m∑
j=0

(−x)j

= 1− x + x2 − · · ·+ (−1)2mx2m
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(2) a = 1, r = −x (x 6= −1), n = 2m + 1, m ∈ N:

The lefthand side of the equality of Example 4.3 becomes

2m∑
j=0

arj =
2m∑
j=0

(−x)j

= 1− x + x2 − · · ·+ (−1)2mx2m

= 1− x + x2 − · · ·+ x2m.
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(2) a = 1, r = −x (x 6= −1), n = 2m + 1, m ∈ N:

The lefthand side of the equality of Example 4.3 becomes

2m∑
j=0

arj =
2m∑
j=0

(−x)j

= 1− x + x2 − · · ·+ (−1)2mx2m

= 1− x + x2 − · · ·+ x2m.

The righthand side is

a(rn − 1)
r − 1

=
(−x)2m+1 − 1

−x− 1

=
x2m+1 + 1

x + 1
.
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From Example 4.3

1− x + x2 − · · ·+ x2m =
x2m+1 + 1

x + 1
.
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From Example 4.3

1− x + x2 − · · ·+ x2m =
x2m+1 + 1

x + 1
.

Multiplying by x + 1 gives

(1− x + x2 − · · ·+ x2m)(x + 1) = x2m+1 + 1.
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For example

(1− x + x2)(x + 1) = x3 + 1,
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For example

(1− x + x2)(x + 1) = x3 + 1,

(1− x + x2 − x3 + x4)(x + 1) = x5 + 1,
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For example

(1− x + x2)(x + 1) = x3 + 1,

(1− x + x2 − x3 + x4)(x + 1) = x5 + 1,

(1− x + x2 − x3 + x4 − x5 + x6)(x + 1) = x7 + 1.
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For example

(1− x + x2)(x + 1) = x3 + 1,

(1− x + x2 − x3 + x4)(x + 1) = x5 + 1,

(1− x + x2 − x3 + x4 − x5 + x6)(x + 1) = x7 + 1.

We can say

(x + 1)|(x2m+1 + 1) and

(1− x + x2 − · · ·+ x2m)|(x2m+1 + 1).
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Change of basis

It is sometimes useful to be able to start the induction at some point other than
n = 1.

In this case we use the following fact which follows from the Axiom of Induction.

Let s ∈ Z. Assume that P (n) is a statement, for all n ≥ s.

Assume further that it can be shown that

(1′) P (s) is true and

(2′) if P (k) is true then P (k + 1) is true, for k ≥ s.

Then P (n) is true for all n ≥ s.
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Example 4.5. Show that 2n > n3, for all n ≥ 10.

Note that 29 = 512 < 729 = 93, so the result does not hold when n = 9.

– Typeset by FoilTEX – 73



Binomial coefficients

The binomial coefficient or choice number

(
n

k

)
is given by the formula

(
n

k

)
=

n!
(n− k)!k!

,

for non-negative integers n and k, with 0 ≤ k ≤ n.
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Binomial coefficients

The binomial coefficient or choice number

(
n

k

)
is given by the formula

(
n

k

)
=

n!
(n− k)!k!

,

for non-negative integers n and k, with 0 ≤ k ≤ n.

We define 0! = 1 so that

(
n

0

)
=

(
n

n

)
= 1, for all n.
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As you can verify (
n

k

)
=

(
n− 1

k

)
+

(
n− 1
k − 1

)
.

– Typeset by FoilTEX – 75



As you can verify (
n

k

)
=

(
n− 1

k

)
+

(
n− 1
k − 1

)
.

We can use this fact to generate binomial coefficients. Start with

(
0
0

)
and write

out succesive rows starting with 1 =
(

n

0

)
and ending with

(
n

n

)
= 1.
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As you can verify (
n

k

)
=

(
n− 1

k

)
+

(
n− 1
k − 1

)
.

We can use this fact to generate binomial coefficients. Start with

(
0
0

)
and write

out succesive rows starting with 1 =
(

n

0

)
and ending with

(
n

n

)
= 1.

Fill the rows making the kth entry on the nth row the sum of the (k − 1)th and
kth entries from the row above.
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(
0
0

)
↙ ↘(

1
0

) (
1
1

)
↙ ↘ ↙ ↘(

2
0

) (
2
1

) (
2
2

)
↙ ↘ ↙ ↘ ↙ ↘(

3
0

) (
3
1

) (
3
2

) (
3
3

)

Then the (n+1)st row will contain the binomial coefficients

(
n

k

)
, for k = 0, . . . , n.
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This array is known as Pascal’s triangle and is more familiar as

1

↙ ↘
1 1

↙ ↘ ↙ ↘
1 2 1

↙ ↘ ↙ ↘ ↙ ↘
1 3 3 1
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Diagonal sums

Write out Pascal’s triangle with the left hand “1”s aligned in a column.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
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Diagonal sums

Write out Pascal’s triangle with the left hand “1”s aligned in a column.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Now add numbers on the diagonals running from lower left to upper right:
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1

1

1 + 1 = 2

1 + 2 = 3

1 + 3 + 1 = 5

1 + 4 + 3 = 8

1 + 5 + 6 + 1 = 13

1 + 6 + 10 + 4 = 21.
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1

1

1 + 1 = 2

1 + 2 = 3

1 + 3 + 1 = 5

1 + 4 + 3 = 8

1 + 5 + 6 + 1 = 13

1 + 6 + 10 + 4 = 21.

These are the first 8 of the Fibonacci numbers.
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Fibonacci numbers

The Fibonacci numbers are generated by the rules

f1 = 1

f2 = 1

fn+1 = fn + fn−1, for n ≥ 2.
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Fibonacci numbers

The Fibonacci numbers are generated by the rules

f1 = 1

f2 = 1

fn+1 = fn + fn−1, for n ≥ 2.

Thus the Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .
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Do the diagonals of Pascal’s triangle sum to the Fibonacci numbers after the first
8?

– Typeset by FoilTEX – 81



Do the diagonals of Pascal’s triangle sum to the Fibonacci numbers after the first
8?

They do because each entry on a diagonal is the sum of one number from the
diagonal one row above it and a second number from the diagonal two rows
above it.
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Do the diagonals of Pascal’s triangle sum to the Fibonacci numbers after the first
8?

They do because each entry on a diagonal is the sum of one number from the
diagonal one row above it and a second number from the diagonal two rows
above it.

Thus each diagonal is the sum of the two diagonals above it.
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Example 4.6. Consider the following.

f2 = 1
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Example 4.6. Consider the following.

f2 = 1

f3 = 2
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Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3
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Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4
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Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5
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Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6
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Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7
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Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7

f4 + f5 = 8
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Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7

f4 + f5 = 8

f2 + f5 + f9 = 1 + 5 + 34 = 40
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Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7

f4 + f5 = 8

f2 + f5 + f9 = 1 + 5 + 34 = 40

f3 + f7 + f10 = 2 + 13 + 55 = 70.
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Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7

f4 + f5 = 8

f2 + f5 + f9 = 1 + 5 + 34 = 40

f3 + f7 + f10 = 2 + 13 + 55 = 70.

Is every integer a sum of different Fibonacci numbers?
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Example 4.7. If we take every third Fibonacci number we obtain a new sequence
of numbers,

f3, f6, f9, f12, . . .
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Example 4.7. If we take every third Fibonacci number we obtain a new sequence
of numbers,

f3, f6, f9, f12, . . .

with values
2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, . . .
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Example 4.7. If we take every third Fibonacci number we obtain a new sequence
of numbers,

f3, f6, f9, f12, . . .

with values
2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, . . .

We shall prove, by induction that f3n is even, for all n ≥ 1.
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Example 4.8 (The binomial theorem). This example is not examinable

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk, for all n ∈ N and all x, y ∈ R.
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Objectives

After covering this chapter of the course you should be able to:

(i) understand the principle of proof by induction;

(ii) carry out proof by induction, both starting with the integer 1 and starting
with an integer other than 1;

(iii) remember the definition of binomial coefficients;

(iv) remember the definition of the Fibonacci numbers.
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Greatest common divisors again

Whenever we ran the Euclidean Algorithm, on natural numbers a and b, we
obtained not only gcd(a, b) but also integers u and v such that

gcd(a, b) = au + bv.
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Greatest common divisors again

Whenever we ran the Euclidean Algorithm, on natural numbers a and b, we
obtained not only gcd(a, b) but also integers u and v such that

gcd(a, b) = au + bv.

This gave us Theorem 2.21:

Let a and b be integers, not both zero, and let d = gcd(a, b). Then there exist
integers u and v such that d = au + bv.
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Greatest common divisors again

Whenever we ran the Euclidean Algorithm, on natural numbers a and b, we
obtained not only gcd(a, b) but also integers u and v such that

gcd(a, b) = au + bv.

This gave us Theorem 2.21:

Let a and b be integers, not both zero, and let d = gcd(a, b). Then there exist
integers u and v such that d = au + bv.
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Second proof of Theorem 2.21

Suppose that we have positive integers a and b.
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Second proof of Theorem 2.21

Suppose that we have positive integers a and b.

Consider the set

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}.
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Second proof of Theorem 2.21

Suppose that we have positive integers a and b.

Consider the set

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}.

This is a set of positive integers.
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Second proof of Theorem 2.21

Suppose that we have positive integers a and b.

Consider the set

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}.

This is a set of positive integers.

We shall prove the theorem by showing that it’s smallest element is gcd(a, b).
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S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}
It is a fundamental property of numbers that every non-empty set of positive
integers has a smallest element.
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S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}
It is a fundamental property of numbers that every non-empty set of positive
integers has a smallest element.

It’s easy to see S is non-empty as it contains, for example a + b.
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S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}
It is a fundamental property of numbers that every non-empty set of positive
integers has a smallest element.

It’s easy to see S is non-empty as it contains, for example a + b.

Therefore S has a smallest element, s say. Then
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S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}
It is a fundamental property of numbers that every non-empty set of positive
integers has a smallest element.

It’s easy to see S is non-empty as it contains, for example a + b.

Therefore S has a smallest element, s say. Then

s = ak + bl, for some k, l ∈ Z. (5.1)
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S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}
It is a fundamental property of numbers that every non-empty set of positive
integers has a smallest element.

It’s easy to see S is non-empty as it contains, for example a + b.

Therefore S has a smallest element, s say. Then

s = ak + bl, for some k, l ∈ Z. (5.1)

Now, using the Division Algorithm, we can write

a = sq + r, where 0 ≤ r < s.
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Substituting for s using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,
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Substituting for s using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

so
r = a(1− kq) + b(−lq), with 0 ≤ r < s.
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Substituting for s using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

so
r = a(1− kq) + b(−lq), with 0 ≤ r < s.

If r 6= 0 then we have r ∈ S and r < s, a contradiction.
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Substituting for s using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

so
r = a(1− kq) + b(−lq), with 0 ≤ r < s.

If r 6= 0 then we have r ∈ S and r < s, a contradiction.

Therefore r = 0 and a = sq. That is, s|a.
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Substituting for s using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

so
r = a(1− kq) + b(−lq), with 0 ≤ r < s.

If r 6= 0 then we have r ∈ S and r < s, a contradiction.

Therefore r = 0 and a = sq. That is, s|a.

Similarly s|b.
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Now suppose that c|a and c|b.
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Now suppose that c|a and c|b.

Then a = cu and b = cv, for some u, v ∈ Z.
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Now suppose that c|a and c|b.

Then a = cu and b = cv, for some u, v ∈ Z.

Substitution in (5.1) gives

s = c(uk) + c(vl) = c(uk + vl).
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Now suppose that c|a and c|b.

Then a = cu and b = cv, for some u, v ∈ Z.

Substitution in (5.1) gives

s = c(uk) + c(vl) = c(uk + vl).

Therefore c|s and from Lemma 2.18.3 we have c ≤ s.
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Now suppose that c|a and c|b.

Then a = cu and b = cv, for some u, v ∈ Z.

Substitution in (5.1) gives

s = c(uk) + c(vl) = c(uk + vl).

Therefore c|s and from Lemma 2.18.3 we have c ≤ s.

This completes the proof that s = gcd(a, b) and we’ve already found k, l such
that s = ak + bl, so Theorem 2.21 follows.
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Coprime integers

Definition 5.1. If a and b are integers with gcd(a, b) = 1 then we say that a
and b are coprime.
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Coprime integers

Definition 5.1. If a and b are integers with gcd(a, b) = 1 then we say that a
and b are coprime.

Example 5.2. 6 and 35 are coprime and

6 · 6− 1 · 35 = 1.
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Coprime integers

Definition 5.1. If a and b are integers with gcd(a, b) = 1 then we say that a
and b are coprime.

Example 5.2. 6 and 35 are coprime and

6 · 6− 1 · 35 = 1.

What about
5 · 5− 12 · 2 = 1?
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Coprime integers

Definition 5.1. If a and b are integers with gcd(a, b) = 1 then we say that a
and b are coprime.

Example 5.2. 6 and 35 are coprime and

6 · 6− 1 · 35 = 1.

What about
5 · 5− 12 · 2 = 1?

We have u and v such that 15u + 12v = 1.

Does this force gcd(15, 12) = 1?

In this example the gcd is 1, but this could be a coincidence.
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Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.
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Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.
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Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.
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Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

Step(2) Prove that if there exist integers u and v such that au + bv = 1 then
gcd(a, b) = 1.
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Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

Step(2) Prove that if there exist integers u and v such that au + bv = 1 then
gcd(a, b) = 1.

Assume that there are integers u and v such that au + bv = 1.
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Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

Step(2) Prove that if there exist integers u and v such that au + bv = 1 then
gcd(a, b) = 1.

Assume that there are integers u and v such that au + bv = 1.

Let d = gcd(a, b).
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Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

Step(2) Prove that if there exist integers u and v such that au + bv = 1 then
gcd(a, b) = 1.

Assume that there are integers u and v such that au + bv = 1.

Let d = gcd(a, b).

Then d|a and d|b so d|(au + bv):
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Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

Step(2) Prove that if there exist integers u and v such that au + bv = 1 then
gcd(a, b) = 1.

Assume that there are integers u and v such that au + bv = 1.

Let d = gcd(a, b).

Then d|a and d|b so d|(au + bv):

We have d = 1, so a and b are coprime, as required.
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Euclid’s Lemma

Lemma 5.4. Let a, b and c be integers with gcd(a, b) = 1. If a|bc then a|c.
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Application to solving equations

Lemma 2.24: an equation of the form ax + by = c has solution if and only if
c| gcd(a, b).
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Application to solving equations

Lemma 2.24: an equation of the form ax + by = c has solution if and only if
c| gcd(a, b).

Theorem 5.5. Let a, b, c be integers and let d = gcd(a, b). The equation

ax + by = c (5.2)

has an integer solution if and only if d|c. If d|c then equation (5.2) has
infinitely many solutions
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Application to solving equations

Lemma 2.24: an equation of the form ax + by = c has solution if and only if
c| gcd(a, b).

Theorem 5.5. Let a, b, c be integers and let d = gcd(a, b). The equation

ax + by = c (5.2)

has an integer solution if and only if d|c. If d|c then equation (5.2) has
infinitely many solutions

and if x = u0, y = v0 is one solution then x = u1, y = v1 is a solution if and
only if

u1 = u0 + (b/d)t and v1 = v0 − (a/d)t, for some t ∈ Z.
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Example 2.20 continued

Example 5.6.
gcd(2600, 2028) = 52 and the equation 2600x + 2028y = 104 has a solution
x = −14, y = 18.

– Typeset by FoilTEX – 95



Example 2.20 continued

Example 5.6.
gcd(2600, 2028) = 52 and the equation 2600x + 2028y = 104 has a solution
x = −14, y = 18.

As 2600/52 = 50 and 2028/52 = 39 the solutions to this equation are

x = −14 + 39t, y = 18− 50t, for t ∈ Z.
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Example 2.20 continued

Example 5.6.
gcd(2600, 2028) = 52 and the equation 2600x + 2028y = 104 has a solution
x = −14, y = 18.

As 2600/52 = 50 and 2028/52 = 39 the solutions to this equation are

x = −14 + 39t, y = 18− 50t, for t ∈ Z.

For each integer t we have a solution, some of which are shown below.

t x y

-2 -92 -118
-1 -53 68
0 -14 18
1 25 -32
2 64 -82
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Prime Numbers

It follows from the definition of division that every integer n is divisible by ±1
and by ±n.

Amongst the positive integers a special case is the integer 1 which has only one
positive divisor, namely 1.

All other positive integers n have at least 2 positive divisors, 1 and n, and may
have more.

Definition 5.7. A positive integer p > 1 is called a prime if the only positive
divisors of p are 1 and p. An integer which is not prime is called composite.
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For example 2, 5, 7, 11, 13, 17 and 19 are prime whilst the first few composite
integers are:

4 which is divisible by 2
6 which is divisible by 2 and 3
8 which is divisible by 2 and 4
9 which is divisible by 3
10 which is divisible by 2 and 5.
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The prime divisor property

A fundamental property of prime numbers is the following.

Theorem 5.8. If p is a prime and p|ab then p|a or p|b.
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The prime divisor property

A fundamental property of prime numbers is the following.

Theorem 5.8. If p is a prime and p|ab then p|a or p|b.

If p|a then we have nothing to prove.
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The prime divisor property

A fundamental property of prime numbers is the following.

Theorem 5.8. If p is a prime and p|ab then p|a or p|b.

If p|a then we have nothing to prove.

If p - a then the common divisors of a and p are ±1 (since the only divisors of p
are ±1 and ±p).

– Typeset by FoilTEX – 98



The prime divisor property

A fundamental property of prime numbers is the following.

Theorem 5.8. If p is a prime and p|ab then p|a or p|b.

If p|a then we have nothing to prove.

If p - a then the common divisors of a and p are ±1 (since the only divisors of p
are ±1 and ±p).

Hence gcd(a, p) = 1.
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The prime divisor property

A fundamental property of prime numbers is the following.

Theorem 5.8. If p is a prime and p|ab then p|a or p|b.

If p|a then we have nothing to prove.

If p - a then the common divisors of a and p are ±1 (since the only divisors of p
are ±1 and ±p).

Hence gcd(a, p) = 1.

From Lemma 5.4 (Euclid’s Lemma) it follows that p|b, as required.

– Typeset by FoilTEX – 98



Example 5.9. If 3|bc then either 3|b or 3|c.
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Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.
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Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.
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Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

Once we’ve discussed prime factorisation it will be easy to see why this property
doesn’t hold for any composite integers.
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Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

Once we’ve discussed prime factorisation it will be easy to see why this property
doesn’t hold for any composite integers.

The Theorem above can easily be extended to products of more than 2 integers.
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Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

Once we’ve discussed prime factorisation it will be easy to see why this property
doesn’t hold for any composite integers.

The Theorem above can easily be extended to products of more than 2 integers.

For example, if 3|abc then, from the Theorem either 3|ab or 3|c.

– Typeset by FoilTEX – 99



Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

Once we’ve discussed prime factorisation it will be easy to see why this property
doesn’t hold for any composite integers.

The Theorem above can easily be extended to products of more than 2 integers.

For example, if 3|abc then, from the Theorem either 3|ab or 3|c.

If 3|ab then, from the Theorem again, 3|a or 3|b.
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Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

Once we’ve discussed prime factorisation it will be easy to see why this property
doesn’t hold for any composite integers.

The Theorem above can easily be extended to products of more than 2 integers.

For example, if 3|abc then, from the Theorem either 3|ab or 3|c.

If 3|ab then, from the Theorem again, 3|a or 3|b.

Therefore, if 3|abc then 3|a or 3|b or 3|c.
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Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.
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Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.
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Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.
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Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

Inductive Hypothesis: If n ≥ 2 and p|a1 · · · an then p|ai, for some i.
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Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

Inductive Hypothesis: If n ≥ 2 and p|a1 · · · an then p|ai, for some i.

Inductive Step: Suppose that p|a1 · · · an+1. Let

a = a1 · · · an and b = an+1.

Then p|ab so, from Theorem 5.8, p|a or p|b.
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Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

Inductive Hypothesis: If n ≥ 2 and p|a1 · · · an then p|ai, for some i.

Inductive Step: Suppose that p|a1 · · · an+1. Let

a = a1 · · · an and b = an+1.

Then p|ab so, from Theorem 5.8, p|a or p|b.

If p|a the inductive hypothesis implies that p|ai, for some i with 1 ≤ i ≤ n.
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Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

Inductive Hypothesis: If n ≥ 2 and p|a1 · · · an then p|ai, for some i.

Inductive Step: Suppose that p|a1 · · · an+1. Let

a = a1 · · · an and b = an+1.

Then p|ab so, from Theorem 5.8, p|a or p|b.

If p|a the inductive hypothesis implies that p|ai, for some i with 1 ≤ i ≤ n.

If p|b then p|an+1.
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Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

Inductive Hypothesis: If n ≥ 2 and p|a1 · · · an then p|ai, for some i.

Inductive Step: Suppose that p|a1 · · · an+1. Let

a = a1 · · · an and b = an+1.

Then p|ab so, from Theorem 5.8, p|a or p|b.

If p|a the inductive hypothesis implies that p|ai, for some i with 1 ≤ i ≤ n.

If p|b then p|an+1.

Hence p|ai, for some i, as required.
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Prime Factorisation

An expression of an integer n as a product of primes is called a prime factorisation
of n.
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Prime Factorisation

An expression of an integer n as a product of primes is called a prime factorisation
of n.

For example 12 and 25 have prime factorisations 12 = 2 · 2 · 3 and 25 = 5 · 5,
respectively.
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Prime Factorisation

An expression of an integer n as a product of primes is called a prime factorisation
of n.

For example 12 and 25 have prime factorisations 12 = 2 · 2 · 3 and 25 = 5 · 5,
respectively.

We aim to show that every positive integer greater than one has a prime
factorisation and that this prime factorisation is unique, up to the order in which
the prime factors occur.
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Prime Factorisation

An expression of an integer n as a product of primes is called a prime factorisation
of n.

For example 12 and 25 have prime factorisations 12 = 2 · 2 · 3 and 25 = 5 · 5,
respectively.

We aim to show that every positive integer greater than one has a prime
factorisation and that this prime factorisation is unique, up to the order in which
the prime factors occur.

For instance

2 · 5 · 2 · 7,

2 · 7 · 2 · 5,

7 · 2 · 2 · 5

are all prime factorisations of 140 but are regarded as the same because the
number of 2’s, 5’s and 7’s is the same in each.
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Example 5.11. Write 7 and 21 as a products of primes:
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Example 5.11. Write 7 and 21 as a products of primes:

7 and 3 · 7
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Example 5.11. Write 7 and 21 as a products of primes:

7 and 3 · 7

We consider these as products of primes of length one and two respectively.
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Example 5.11. Write 7 and 21 as a products of primes:

7 and 3 · 7

We consider these as products of primes of length one and two respectively.

We cannot write 7 as a product of primes of length more than one.
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Example 5.11. Write 7 and 21 as a products of primes:

7 and 3 · 7

We consider these as products of primes of length one and two respectively.

We cannot write 7 as a product of primes of length more than one.

What about a larger prime like 6991 say? Can I write this as a product of primes:
other than the length one product 6991?
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The Fundamental Theorem of Arithmetic

Theorem 5.12. Every integer n > 1 is a product of one or more primes. This
product is unique apart from the order in which the primes occur.
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The Fundamental Theorem of Arithmetic

Theorem 5.12. Every integer n > 1 is a product of one or more primes. This
product is unique apart from the order in which the primes occur.

Proof.

Step(1) Prove that every n > 1 has a prime factorisation.

Step(2) Prove that prime factorisations are unique.
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Collected prime factorisation

It is often convenient to write the prime factorisation of an integer with all like
primes collected together, in ascending order, and with exponential notation.
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Collected prime factorisation

It is often convenient to write the prime factorisation of an integer with all like
primes collected together, in ascending order, and with exponential notation.

For example we could write the prime factorisations of 140 and 2200 as

140 = 22 · 5 · 7 and

2200 = 23 · 52 · 11.
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Collected prime factorisation

It is often convenient to write the prime factorisation of an integer with all like
primes collected together, in ascending order, and with exponential notation.

For example we could write the prime factorisations of 140 and 2200 as

140 = 22 · 5 · 7 and

2200 = 23 · 52 · 11.

We call this the collected prime factorisation of an integer n or say that we’ve
written n in standard form.
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Collected prime factorisation

It is often convenient to write the prime factorisation of an integer with all like
primes collected together, in ascending order, and with exponential notation.

For example we could write the prime factorisations of 140 and 2200 as

140 = 22 · 5 · 7 and

2200 = 23 · 52 · 11.

We call this the collected prime factorisation of an integer n or say that we’ve
written n in standard form.

From the Fundamental Theorem of Arithmetic it follows that collected prime
factorisations are unique. We record this fact in the following corollary.
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Corollary 5.13. Let n > 1 be an integer. Then n may be written uniquely as

n = pa1
1 · · · pak

k ,

where k ≥ 1, p1 < · · · < pk, pi is prime and ai ≥ 1.
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Corollary 5.13. Let n > 1 be an integer. Then n may be written uniquely as

n = pa1
1 · · · pak

k ,

where k ≥ 1, p1 < · · · < pk, pi is prime and ai ≥ 1.

Example 5.14. It is easy to multiply together integers in standard form: we just
add corresponding superscripts.

For example
3388 = 22 · 7 · 112

and
2200 = 23 · 52 · 11

so
3388 · 2200 = 25 · 52 · 7 · 113.
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In general if integers a and b have standard forms

a = pα1
1 · · · pαn

n and b = pβ1
1 · · · pβn

n

then ab has standard form

ab = pα1+β1
1 · · · pαn+βn

n .
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In general if integers a and b have standard forms

a = pα1
1 · · · pαn

n and b = pβ1
1 · · · pβn

n

then ab has standard form

ab = pα1+β1
1 · · · pαn+βn

n .

Here we’ve padded out the collected prime factorisations (with p0
i where

necessary) to make them the same length: as in the following example.

2200 = 23 · 52 · 11 = 23 · 52 · 70 · 111 · 130

and
572572 = 22 · 7 · 112 · 132 = 22 · 50 · 71 · 112 · 132

so
2200 · 572572 = 25 · 52 · 71 · 113 · 132.
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Example 5.15. Reversing the idea of the previous example, it’s easy to find the
divisors of an integer given in standard form.

For instance if a|3388 then

3388 = 22 · 7 · 112 = ab,

for some integer b.
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Example 5.16. As 2200 has standard form

23 · 52 · 11

the positive divisor of 2200 are of the form

2a5b11c,

where
0 ≤ a ≤ 3, 0 ≤ b ≤ 2 and 0 ≤ c ≤ 1.
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First list all such triples (a, b, c):

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 2, 0) (0, 2, 1)
(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 2, 0) (1, 2, 1)
(2, 0, 0) (2, 0, 1) (2, 1, 0) (2, 1, 1) (2, 2, 0) (2, 2, 1)
(3, 0, 0) (3, 0, 1) (3, 1, 0) (3, 1, 1) (3, 2, 0) (3, 2, 1)
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First list all such triples (a, b, c):

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 2, 0) (0, 2, 1)
(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 2, 0) (1, 2, 1)
(2, 0, 0) (2, 0, 1) (2, 1, 0) (2, 1, 1) (2, 2, 0) (2, 2, 1)
(3, 0, 0) (3, 0, 1) (3, 1, 0) (3, 1, 1) (3, 2, 0) (3, 2, 1)

The positive divisors of 2200 are therefore:

1 11 5 5 · 11 52 52 · 11
2 2 · 11 2 · 5 2 · 5 · 11 2 · 52 2 · 52 · 11
22 22 · 11 22 · 5 22 · 5 · 11 22 · 52 22 · 52 · 11
23 23 · 11 23 · 5 23 · 5 · 11 23 · 52 23 · 52 · 11
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Example 5.17. It’s easy to find the greatest common divisor of numbers in
standard form.

The standard form of 572572 is

22 · 7 · 112 · 132

so any divisor of 572572 has the form

2e7f11g13h,

with

0 ≤ e ≤ 2, 0 ≤ f ≤ 1, 0 ≤ g ≤ 2 and 0 ≤ h ≤ 2.

– Typeset by FoilTEX – 110



Example 5.17. It’s easy to find the greatest common divisor of numbers in
standard form.

The standard form of 572572 is

22 · 7 · 112 · 132

so any divisor of 572572 has the form

2e7f11g13h,

with

0 ≤ e ≤ 2, 0 ≤ f ≤ 1, 0 ≤ g ≤ 2 and 0 ≤ h ≤ 2.

Hence common divisors of 2200 and 572572 have the form 2u11v, with 0 ≤ u ≤ 2
and 0 ≤ v ≤ 1.
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Example 5.17. It’s easy to find the greatest common divisor of numbers in
standard form.

The standard form of 572572 is

22 · 7 · 112 · 132

so any divisor of 572572 has the form

2e7f11g13h,

with

0 ≤ e ≤ 2, 0 ≤ f ≤ 1, 0 ≤ g ≤ 2 and 0 ≤ h ≤ 2.

Hence common divisors of 2200 and 572572 have the form 2u11v, with 0 ≤ u ≤ 2
and 0 ≤ v ≤ 1.

Therefore gcd(2200, 572572) = 22 · 11 = 44.
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Example 5.18. Find gcd(11990979, 637637).
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Fermat’s Method of Factorisation

Multiplying: easy
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Fermat’s Method of Factorisation

Multiplying: easy

Factoring: difficult
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Fermat’s Method of Factorisation

Multiplying: easy

Factoring: difficult

See www.rsasecurity.com/rsalabs/node.asp?id=2094#GetTheNumbers
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Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.
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Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:
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Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711
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Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332
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Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955
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Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580
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Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580

163142 − 266004389 = 142207
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Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580

163142 − 266004389 = 142207

163152 − 266004389 = 174836
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Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580

163142 − 266004389 = 142207

163152 − 266004389 = 174836

163162 − 266004389 = 207467
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Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580

163142 − 266004389 = 142207

163152 − 266004389 = 174836

163162 − 266004389 = 207467

163172 − 266004389 = 240100 = 4902.

– Typeset by FoilTEX – 113



Therefore 266004389 = 163172 − 4902 = (16317 + 490)(16317− 490).
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Therefore 266004389 = 163172 − 4902 = (16317 + 490)(16317− 490).

16317 + 490 = 16807 and 16317− 490 = 15827 so

266004389 = 16807 · 15827.
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Therefore 266004389 = 163172 − 4902 = (16317 + 490)(16317− 490).

16317 + 490 = 16807 and 16317− 490 = 15827 so

266004389 = 16807 · 15827.

Unfortunately, if n does not have 2 factors of similar size then this method of
factoring can be very slow.

(It does however form the basis of some more powerful methods.)
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Primality testing

Is n prime?
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Primality testing

Is n prime?

Test it for divisibility by all prime numbers p such that 1 < p < n.
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Primality testing

Is n prime?

Test it for divisibility by all prime numbers p such that 1 < p < n.

Better to use the following lemma.
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Primality testing

Is n prime?

Test it for divisibility by all prime numbers p such that 1 < p < n.

Better to use the following lemma.

Lemma 5.20. An integer n > 1 is composite if and only if it has a prime
divisor p such that p <

√
n.
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Example 5.21. To find all primes in the range 1 to 45:
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Example 5.21. To find all primes in the range 1 to 45:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43

is now a complete list of primes between 1 and 45.

– Typeset by FoilTEX – 116



Example 5.21. To find all primes in the range 1 to 45:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43

is now a complete list of primes between 1 and 45.

This method of constructing lists of primes is known as the Sieve of Eratosthenes.
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Example 5.21. To find all primes in the range 1 to 45:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43

is now a complete list of primes between 1 and 45.

This method of constructing lists of primes is known as the Sieve of Eratosthenes.

In fact it is still too inefficient to use in practice to determine if a large number is
prime.
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A Theorem of Euclid

The following theorem appears in Book IX of the Elements, a mathematical
textbook written by Euclid: a Greek mathematician who lived around 300 bc.

Theorem 5.22. There are infinitely many primes.
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A Theorem of Euclid

The following theorem appears in Book IX of the Elements, a mathematical
textbook written by Euclid: a Greek mathematician who lived around 300 bc.

Theorem 5.22. There are infinitely many primes.

The proof is by contradiction.
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Objectives

After covering this chapter of the course you should be able to:

(i) recall Theorem 2.21 and understand its proof;

(ii) define a coprime pair of integers;

(iii) recall Corollary 5.3 and Euclid’s Lemma and understand their proofs;

(iv) define prime and composite numbers;

(v) recall the prime divisor property, Theorem 5.8, and understand its proof;

(vi) recall the Fundamental Theorem of Arithmetic, Theorem 5.12, and
understand its proof;

(vii) recognise and write down the prime factorisation and standard form or
collected prime factorisation of an integer;
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(viii) use prime factorisation to find divisors and greatest common divisors;

(ix) recall the statement of Theorem 5.22 and understand its proof.
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Casting Out Nines

This is a method of testing integers for divisibility by 9.

Procedure 6.1. Given a non–negative integer (written in base 10) repeat the
following steps (in any order) until a number less than 9 is obtained.

1. Cross out any digits that sum to 9 or a multiple of 9.

2. Add the remaining digits.
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Casting Out Nines

This is a method of testing integers for divisibility by 9.

Procedure 6.1. Given a non–negative integer (written in base 10) repeat the
following steps (in any order) until a number less than 9 is obtained.

1. Cross out any digits that sum to 9 or a multiple of 9.

2. Add the remaining digits.

The result is the remainder of division of n by 9.
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Casting Out Nines

This is a method of testing integers for divisibility by 9.

Procedure 6.1. Given a non–negative integer (written in base 10) repeat the
following steps (in any order) until a number less than 9 is obtained.

1. Cross out any digits that sum to 9 or a multiple of 9.

2. Add the remaining digits.

The result is the remainder of division of n by 9.

Example 6.2. Cast out Nines from 215763401.
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Casting Out Nines

This is a method of testing integers for divisibility by 9.

Procedure 6.1. Given a non–negative integer (written in base 10) repeat the
following steps (in any order) until a number less than 9 is obtained.

1. Cross out any digits that sum to 9 or a multiple of 9.

2. Add the remaining digits.

The result is the remainder of division of n by 9.

Example 6.2. Cast out Nines from 215763401.
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Example 6.3. Cast out Nines from 51422211.
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Arithmetic checking

The casting out nines procedure can be used to check the results of numerical
calculations.
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Arithmetic checking

The casting out nines procedure can be used to check the results of numerical
calculations.
Example 6.4. Check the computation

215763401× 51422216 = 11095032211116616.
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Arithmetic checking

The casting out nines procedure can be used to check the results of numerical
calculations.
Example 6.4. Check the computation

215763401× 51422216 = 11095032211116616.

Example 6.5. Check
57 + 3 = 78128 = 304× 257

for arithmetic mistakes.
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Divisiblity by 9

We can also use casting out nines to check for divisibility by 9. A number is
divisible by 9 if and only if the result is 0.
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Divisiblity by 9

We can also use casting out nines to check for divisibility by 9. A number is
divisible by 9 if and only if the result is 0.
Example 6.6. Decide which of 215763401, 51422216 and 3254787 is divisible by
9.
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The Telephone Number Trick

1. Write down your telephone number.

2. Write down your telephone number with digits reversed.

3. Subtract the smaller of these two numbers from the larger.

4. By casting out nines from the result decide whether or not it is divisible by 9.
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The “Odd & Even” Number System
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Red, white and blue arithmetic
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Congruence

In the Red, White and Blue number system we collected together all integers
which left remainder 1, after attempting division by 3, and called them blue.

Notice that if a and b are blue then 3|b− a.

Conversely, given any two integers a and b such that 3|b− a we can write

b− a = 3k, for some k ∈ Z.

Using the division algorithm we can also write

b = 3q + r, for r = 0, 1 or 2.

Therefore
a = b− 3k = 3(q − k) + r.
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That is a and b are both the same colour in the Red, White and Blue number
system.

Our analysis shows that a and b are the same colour if and only if 3|b − a.
Generalising this from 3 to an arbitrary integer n leads us to the definition of
congruence.
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Definition 6.7. Let n be a positive integer and let a, b ∈ Z. If n|b− a then we
say that a is congruent to b modulo n, and write

a ≡ b (mod n).

For instance 17 ≡ 5 (mod 12) and 216 ≡ 6 (mod 7).

As in the case n = 3 above, a ≡ b (mod n) if and only if a and b both leave the
same remainder after attempting division by n.

In fact, if
a = nq + r and b = np + r, where 0 ≤ r < n (6.1)

then
b− a = n(p− q),

so n|b− a: that is a ≡ b (mod n).

On the other hand if we know that a ≡ b (mod n) then n|b − a so, using the
argument above, with n instead of 3, we’ll find that there is some r such that
(6.1) holds.
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Example 6.8. Congruence modulo 2 gives rise to the Odd and Even number
system.

Example 6.9. Congruence modulo 3 gives rise to the Red, White and Blue
number system.

Example 6.10. Suppose n = 10.

Then 0 ≡ 10 (mod 10), 10 ≡ 101090 (mod 10), 11 ≡ 121 (mod 10) and
27 ≡ 253427 (mod 10).

Every positive integer is congruent to its last digit (written to base 10).

In particular integers congruent to 0 all end in the digit 0.

These are exactly the integers divisible by 10.
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Congruence is not the same as equality but it does share some of the properties
of equality.

If we have any integers a, b and c and n is a positive integer then

1. a ≡ a (mod n),

2. if a ≡ b (mod n) then b ≡ a (mod n) and

3. if a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n).

These are all properties of equality.

Let’s check them for congruence.

The first one is easy since n|0 = a− a, for all integers a.

We’ll check the last one here and leave the second as an exercise.
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Modular arithmetic

Arithmetic with congruences is called modular arithmetic.

We’ve already seen a couple of examples: Odd & Even arithmetic and Red, White
and Blue arithmetic.

The idea is to add and multiply integers in the usual way but to regard two
numbers as the same if they are congruent.

There is a possible problem with this. Suppose we work modulo 10, that is
n = 10.

Now take two integers which are congruent modulo 10, say 23 and 3. We are to
regard these as the same.

This means that if we do something to one, say add 6, then we should get the
same answer as if we add 6 to the other.

Here “the same answer” means the same answer modulo 10. Let’s see:

23 + 6 = 29 and 3 + 6 = 9.
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This is alright because 29 ≡ 9 (mod 10) and so we regard 29 and 9 as the same.

Does this always work? The purpose of the next Lemma is to reassure us that it
does.
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Modular arithmetic is consistent

Lemma 6.11. Let n be a positive integer. Suppose that a, b, u and v are integers
such that

a ≡ u (mod n)

and
b ≡ v (mod n).

Then

(i) −a ≡ −u (mod n);

(ii) a + b ≡ u + v (mod n) and

(iii) ab ≡ uv (mod n).

We prove parts (i) and (iii) here, leaving part (ii) as an exercise.
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Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.
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Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because if a ∈ Z then we can
write a = nq + r, with 0 ≤ r < n.
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Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because if a ∈ Z then we can
write a = nq + r, with 0 ≤ r < n.

Then n|a− r so a ≡ r (mod n) and r is in the given list.
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Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because if a ∈ Z then we can
write a = nq + r, with 0 ≤ r < n.

Then n|a− r so a ≡ r (mod n) and r is in the given list.

If a ≡ r (mod n) and a ≡ s (mod n) then, from the above, r ≡ s with 0 ≤ r < n
and 0 ≤ s < n.
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Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because if a ∈ Z then we can
write a = nq + r, with 0 ≤ r < n.

Then n|a− r so a ≡ r (mod n) and r is in the given list.

If a ≡ r (mod n) and a ≡ s (mod n) then, from the above, r ≡ s with 0 ≤ r < n
and 0 ≤ s < n.

Assuming that r > s then n|r−s and n > r ≥ r−s, contradicting Lemma 2.18.3.
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Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because if a ∈ Z then we can
write a = nq + r, with 0 ≤ r < n.

Then n|a− r so a ≡ r (mod n) and r is in the given list.

If a ≡ r (mod n) and a ≡ s (mod n) then, from the above, r ≡ s with 0 ≤ r < n
and 0 ≤ s < n.

Assuming that r > s then n|r−s and n > r ≥ r−s, contradicting Lemma 2.18.3.

Thus a is congruent to only one integer in the list.
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Example 6.13. In modular arithmetic we can always avoid computation with
large numbers.

For example working modulo 10 we have

7459898790352045324 ≡ 4 (mod 10)

and
9874558754423 ≡ 3 (mod 10).

Therefore

7459898790352045324 · 9874558754423 ≡ 4 · 3 = 12 ≡ 2 (mod 10).
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Similarly, working modulo 7 we have

4543362 ≡ 5 (mod 7).

Therefore
45433622 ≡ 52 ≡ 25 ≡ 4 (mod 7)

and
45433623 = 4543362 · 45433622 ≡ 5 · 4 ≡ 20 ≡ 6 (mod 7).
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Divisibility by 9

When we write a number like 20195 to base 10 we are expressing the number

2× 104 + 0× 103 + 1× 102 + 9× 101 + 5

in shorthand (there’s a 1 in the 100’s column etc.).

Applying this argument in general we write

amam−1 · · · a1a0

for the number

am × 10m + am−1 × 10m−1 + · · ·+ a1 × 10 + a0.

As 10k ≡ 1 (mod 9), for k = 1, . . . ,m, we have

amam−1 · · · a1a0 ≡ am + am−1 + · · ·+ a1 + a0 (mod 9). (6.2)
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Casting out nines again

Suppose we cast out nines (Procedure 6.1) from an integer m.

In Step 1 we cross out any digits which sum to a multiple of 9.

The sum of these digits is congruent to zero modulo 9 so, from (6.2), the result
is an integer congruent to m modulo 9.

In Step 2 we add the digits and again, from (6.2), the result is an integer
congruent to m modulo 9.

Thus the casting out nines procedure results at every stage in an integer congruent
to m modulo 9.

The procedure ends with a number r such that 0 ≤ r < 9 and r ≡ m (mod 9).

Therefore 9|m − r, from which it follows that m = 9q + r, for some q ∈ Z and
0 ≤ r < 9.

That is, the output from Casting out Nines is the unique remainder guaranteed
by the division algorithm, on attempting division by 9.
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Divisibility by 9
The following lemma follows from (6.2).

Lemma 6.14. An integer is divisible by 9 if and only if the sum of its digits is
divisible by 9.

Example 6.15. Are 31357989921 or 5179183229478 divisible by 9?
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Divisibility by 4

Now 102 ≡ 0 (mod 4). Thus, for example,

1932526 = (19325× 100) + 26 ≡ 26 (mod 4)

and

93975656489084357745565568738675 =

(939756564890843577455655687386× 100) + 75 ≡ 75 (mod 4).
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More generally, if am · · · a1a0 is an integer written to base 10 then

am · · · a1a0 = (am · · · a2 × 100) + a1a0 ≡ a1a0 (mod 4).

Therefore

am · · · a1a0 ≡ 0 (mod 4) if and only if a1a0 ≡ 0 (mod 4).

That is
4|am · · · a1a0 ⇔ 4|a1a0.

Example 6.16. Does 4 divide 937475900345 or 80345003732?
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Inverses in modular arithmetic

If we work in the rational numbers Q we can find a multiplicative inverse for any
non-zero element.

For example the inverse of 11/201 is 201/11.

The same is true in R where the inverse of x 6= 0 is 1/x.

In general if x is a number and y has the property that xy = 1 then we say that
x has inverse y.

Most elements of Z don’t have inverses in Z. For example 2 has no inverse.

In fact ±1 are the only elements of Z which have inverses. What about arithmetic
modulo n.
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Inverses modulo n

Example 6.17. Try to find the inverse of 2 modulo 6.

Example 6.18. Do either 3 or 7 have inverses modulo 10?

Example 6.19. Which numbers have inverses modulo 8?
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Lemma 6.20. An integer a has an inverse modulo n if and only if

gcd(a, n) = 1.
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Lemma 6.20. An integer a has an inverse modulo n if and only if

gcd(a, n) = 1.

What happens if we do arithmetic modulo a prime number p?

In this case, for every integer a either
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Lemma 6.20. An integer a has an inverse modulo n if and only if

gcd(a, n) = 1.

What happens if we do arithmetic modulo a prime number p?

In this case, for every integer a either

1. p - a in which case gcd(a, p) = 1 or
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Lemma 6.20. An integer a has an inverse modulo n if and only if

gcd(a, n) = 1.

What happens if we do arithmetic modulo a prime number p?

In this case, for every integer a either

1. p - a in which case gcd(a, p) = 1 or

2. p|a in which case a ≡ 0 (mod p).
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Lemma 6.20. An integer a has an inverse modulo n if and only if

gcd(a, n) = 1.

What happens if we do arithmetic modulo a prime number p?

In this case, for every integer a either

1. p - a in which case gcd(a, p) = 1 or

2. p|a in which case a ≡ 0 (mod p).

Thus every integer which is not congruent to zero modulo p has an inverse.

In this way arithmetic modulo p resembles arithmetic in Q more closely that
arithmetic in Z.
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Example 6.21. Write out the multiplication table for arithmetic modulo 5 with
the integers 0, 1, 2, 3 and 4. Hence find the inverse of every integer which is not
congruent to zero modulo 5.
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Solving Congruences

Example 6.22. Find all integers x such that

2x ≡ 4 (mod 6). (6.3)

We call such equations congruences and this is an example of a linear congruence.
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Solving Congruences

Example 6.22. Find all integers x such that

2x ≡ 4 (mod 6). (6.3)

We call such equations congruences and this is an example of a linear congruence.

If x = a is a solution and a ≡ b then x = b is also a solution: so if there’s one
solution there are infinitely many.
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Solving Congruences

Example 6.22. Find all integers x such that

2x ≡ 4 (mod 6). (6.3)

We call such equations congruences and this is an example of a linear congruence.

If x = a is a solution and a ≡ b then x = b is also a solution: so if there’s one
solution there are infinitely many.

Every integer is congruent to one of

0, 1, . . . , n− 1 modulo n

so we seek solutions to congruences in this range.
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Method 1

x 0 1 2 3 4 5
2x (mod 6)
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Method 1

x 0 1 2 3 4 5
2x (mod 6)

From the table we see that the only solutions are x = 2 and x = 5.
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Method 2

ax ≡ b (mod n) (6.4)
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Method 2

ax ≡ b (mod n) (6.4)

x is a solution to (6.4) if and only if n|(ax− b)
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Method 2

ax ≡ b (mod n) (6.4)

x is a solution to (6.4) if and only if n|(ax− b)

if and only if ax− b = ny, for some integer y
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Method 2

ax ≡ b (mod n) (6.4)

x is a solution to (6.4) if and only if n|(ax− b)

if and only if ax− b = ny, for some integer y

if and only if ax− ny = b, for some y ∈ Z.
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Method 2

ax ≡ b (mod n) (6.4)

x is a solution to (6.4) if and only if n|(ax− b)

if and only if ax− b = ny, for some integer y

if and only if ax− ny = b, for some y ∈ Z.

From Theorem 5.5 this has a solution if and only if gcd(a, n)|b.
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Method 2

ax ≡ b (mod n) (6.4)

x is a solution to (6.4) if and only if n|(ax− b)

if and only if ax− b = ny, for some integer y

if and only if ax− ny = b, for some y ∈ Z.

From Theorem 5.5 this has a solution if and only if gcd(a, n)|b.

If gcd(a, n)|b then we can use the Euclidean algorithm to find a particular solution
to the equation.
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Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution
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Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

then the list of solutions to this equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.
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Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

then the list of solutions to this equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.

Applying this to congruence (6.3) above,
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Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

then the list of solutions to this equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.

Applying this to congruence (6.3) above,

In the general case (of congruence (6.4)) the only remaining question is which of
the solutions we have found are congruent?
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Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

then the list of solutions to this equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.

Applying this to congruence (6.3) above,

In the general case (of congruence (6.4)) the only remaining question is which of
the solutions we have found are congruent?

If d|b and x = u is one solution to the congruence (6.4)
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Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

then the list of solutions to this equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.

Applying this to congruence (6.3) above,

In the general case (of congruence (6.4)) the only remaining question is which of
the solutions we have found are congruent?

If d|b and x = u is one solution to the congruence (6.4)

then the list of solutions to (6.4) consists of the integers of the form u− (n/d)t,
for t ∈ Z.
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Theorem 6.23. Let a, b and n be integers with n > 0 and let d = gcd(a, n).
Then the congruence (6.4) has a solution if and only if d|n. If d|n then there
are exactly d pairwise incongruent solutions to (6.4).
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Theorem 6.23. Let a, b and n be integers with n > 0 and let d = gcd(a, n).
Then the congruence (6.4) has a solution if and only if d|n. If d|n then there
are exactly d pairwise incongruent solutions to (6.4).

Example 6.24. Find all solutions to the congruence

2x ≡ 3 (mod 6).
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Theorem 6.23. Let a, b and n be integers with n > 0 and let d = gcd(a, n).
Then the congruence (6.4) has a solution if and only if d|n. If d|n then there
are exactly d pairwise incongruent solutions to (6.4).

Example 6.24. Find all solutions to the congruence

2x ≡ 3 (mod 6).

Example 6.25. Find all solutions to the congruence 6x ≡ 9 (mod 15).
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Theorem 6.23. Let a, b and n be integers with n > 0 and let d = gcd(a, n).
Then the congruence (6.4) has a solution if and only if d|n. If d|n then there
are exactly d pairwise incongruent solutions to (6.4).

Example 6.24. Find all solutions to the congruence

2x ≡ 3 (mod 6).

Example 6.25. Find all solutions to the congruence 6x ≡ 9 (mod 15).

Example 6.26. Compare the solutions to the congruences

2x ≡ 4 (mod 6) and x ≡ 2 (mod 6).
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Random numbers: an application

In situations where we require random numbers we often wish to give a machine
the task of generating these numbers.
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Random numbers: an application

In situations where we require random numbers we often wish to give a machine
the task of generating these numbers.

In many cases we’d also like the machine to be able to reproduce the sequence of
random numbers that it outputs so that we can verify our results.
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In situations where we require random numbers we often wish to give a machine
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In many cases we’d also like the machine to be able to reproduce the sequence of
random numbers that it outputs so that we can verify our results.

Such sequences cannot be truly random and are called pseudo-random.
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Random numbers: an application

In situations where we require random numbers we often wish to give a machine
the task of generating these numbers.

In many cases we’d also like the machine to be able to reproduce the sequence of
random numbers that it outputs so that we can verify our results.

Such sequences cannot be truly random and are called pseudo-random.

Pseudo-random numbers are often generated by computer but this means that
we need to find good algorithms to produce them.
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Random numbers: an application

In situations where we require random numbers we often wish to give a machine
the task of generating these numbers.

In many cases we’d also like the machine to be able to reproduce the sequence of
random numbers that it outputs so that we can verify our results.

Such sequences cannot be truly random and are called pseudo-random.

Pseudo-random numbers are often generated by computer but this means that
we need to find good algorithms to produce them.

The art and science of random number generation is highly developed and very
sophisticated. You can see this by looking at the web page Random number
generators – The pLab Project Home Page at http://random.mat.sbg.ac.at/.
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D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0, a1, a2, . . .

use the following process.
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D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0, a1, a2, . . .

use the following process.

1. Fix a positive number n and two integers m and c, with 2 ≤ m < n and
0 ≤ c < n.
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D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0, a1, a2, . . .

use the following process.

1. Fix a positive number n and two integers m and c, with 2 ≤ m < n and
0 ≤ c < n.

2. Choose a start value a0, such that 0 ≤ a0 ≤ n.
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D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0, a1, a2, . . .

use the following process.

1. Fix a positive number n and two integers m and c, with 2 ≤ m < n and
0 ≤ c < n.

2. Choose a start value a0, such that 0 ≤ a0 ≤ n.

3. Generate elements of the sequence successively using the formula

ak+1 = mak + c (mod n), where 0 ≤ ak+1 < n.
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D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0, a1, a2, . . .

use the following process.

1. Fix a positive number n and two integers m and c, with 2 ≤ m < n and
0 ≤ c < n.

2. Choose a start value a0, such that 0 ≤ a0 ≤ n.

3. Generate elements of the sequence successively using the formula

ak+1 = mak + c (mod n), where 0 ≤ ak+1 < n.

If a large value of n is chosen the sequence appears random, at least to start
with.
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Example 6.27. With n = 800, m = 71, c = 57, and a0 = 2 the first ten elements
of the sequence are

2, 199, 586, 63, 530, 87, 634, 271, 98, 615.
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Example 6.27. With n = 800, m = 71, c = 57, and a0 = 2 the first ten elements
of the sequence are

2, 199, 586, 63, 530, 87, 634, 271, 98, 615.

Now altering a0 to 551 the sequence produced is

551, 778, 95, 402, 599, 186, 463, 130, 487, 234.
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Example 6.27. With n = 800, m = 71, c = 57, and a0 = 2 the first ten elements
of the sequence are

2, 199, 586, 63, 530, 87, 634, 271, 98, 615.

Now altering a0 to 551 the sequence produced is

551, 778, 95, 402, 599, 186, 463, 130, 487, 234.

Keeping everything fixed except n = 8000 we obtain

551, 7178, 5695, 4402, 599, 2586, 7663, 130, 1287, 3434.
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Example 6.27. With n = 800, m = 71, c = 57, and a0 = 2 the first ten elements
of the sequence are

2, 199, 586, 63, 530, 87, 634, 271, 98, 615.

Now altering a0 to 551 the sequence produced is

551, 778, 95, 402, 599, 186, 463, 130, 487, 234.

Keeping everything fixed except n = 8000 we obtain

551, 7178, 5695, 4402, 599, 2586, 7663, 130, 1287, 3434.

With n = 40, m = 22, c = 20 and a0 = 13 we obtain

13, 26, 32, 4, 28, 36, 12, 4, 28, 36, 12.
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Of course such sequences are not random (by definition) and we have a formula
for the terms.
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Of course such sequences are not random (by definition) and we have a formula
for the terms.

Theorem 6.28. The kth term of the sequence generated by the process above
is

ak =
(

mka0 +
c(mk − 1)
(m− 1)

)
(mod n),

with 0 ≤ ak < n.
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for the terms.
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is

ak =
(
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c(mk − 1)
(m− 1)

)
(mod n),

with 0 ≤ ak < n.

Analysis of “how random” a pseudo-random sequence is involves applying
statistical tests to the sequence.
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Analysis of “how random” a pseudo-random sequence is involves applying
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For instance the frequency of occurence of a particular integers in the sequence
can be tested;
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Of course such sequences are not random (by definition) and we have a formula
for the terms.

Theorem 6.28. The kth term of the sequence generated by the process above
is

ak =
(

mka0 +
c(mk − 1)
(m− 1)

)
(mod n),

with 0 ≤ ak < n.

Analysis of “how random” a pseudo-random sequence is involves applying
statistical tests to the sequence.

For instance the frequency of occurence of a particular integers in the sequence
can be tested;

as can the frequency of occurence of pairs of integers.
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Objectives

After covering this chapter of the course you should be able to:

(i) recall the definition of congruence;

(ii) recall the statement of Lemma 6.11 and understand its proof;

(iii) do arithmetic modulo n;

(iv) understand how various divisibility tests work and be able to apply them;

(v) decide whether or not an integer has an inverse modulo n;

(vi) generate a sequence of random looking numbers.
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