
Definitions, Lemmas and so on

Definition – like a dictionary definition

Theorem – important conclusion

Lemma – less important conclusion

Corollary – a result which follows more or less obviously from a previous theorem
or lemma

Proof – a sequence of logical steps, which can be followed to pass from an
assumption or definition to a conclusion (i.e. a Theorem, Lemma or)

Example – illustrative calculation or very minor result

Build up gradually to surprising or well–hidden conclusions.

– Typeset by FoilTEX – 1

Sets

Set - a collection of objects together with some method of (in principle)
identifying which objects belong to the collection and which do not.

If S is a set and x is an object which belongs to S then we say that x is an
element of S or a member of S.

x ∈ S reads “x is an element of S”

y /∈ S reads “y is not an element of S”

{1, 2, 3, 4, 5} = the set with elements 1, 2, 3, 4, 5

N = {1, 2, 3, . . .} is the set of positive whole numbers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is the set of all whole numbers

– Typeset by FoilTEX – 2

Subsets

A set S is a subset of a set T if every element of S is also an element of T .

For example {a, b} is a subset of the set {a, b, c}.

⊂ reads “is a subset of”:

{1, 2, 3, . . .} ⊂ {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
6⊂ reads “is a not a subset of”:

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} 6⊂ {1, 2, 3, . . .}.

Every set is a subset of itself: S ⊂ S, for all sets S.

Similarly {78, 69, 45, 32} ⊃ {78, 45}
{78, 69, 45, 32} ⊃ {78, 32, 69, 45}

and
{78, 69, 45, 32} 6⊃ {78, 32, 69, 45}
{78, 69, 45, 32} 6⊃ {78, 31, 64, 49}.

– Typeset by FoilTEX – 3

– Typeset by FoilTEX – 4

The empty set

The set with no elements is called the empty set denoted ∅.

The empty set ∅ is a subset of S, for all sets S.

There are no elements in ∅ so no element of ∅ fails to belong to S.

Beware: The set {∅} has one element, namely ∅, so is not the empty set.

– Typeset by FoilTEX – 5

Some sets of numbers

We have standard names for some sets of numbers.

(1) The positive whole numbers are called the natural numbers and the set
{1, 2, 3, . . .} of natural numbers is denoted N.

(2) The elements of {. . .−3,−2,−1, 0, 1, 2, 3, . . .}, the set of all whole numbers,
positive, negative and zero are called the integers and the set of integers is
denoted Z.

(3) A number which can be expressed as a fraction p/q, where p and q are
integers and q 6= 0 is called a rational number and the set of all rational
numbers is denoted Q.

(4) A number which has a decimal expansion is called a real number and the set
of all real numbers is denoted R.

Note that N ⊂ Z ⊂ Q ⊂ R. However Z 6⊂ N, Q 6⊂ Z and R 6⊂ Q.

– Typeset by FoilTEX – 6

Specification of new sets from old

“:” reads “with the property that” or “such that”.

For example:
{n ∈ N : n is even } = {2, 4, 6, 8, . . .}

{n ∈ N : n > 9} = {10, 11, 12, . . .}

{n ∈ N : n ≥ 11 and n < 16} = {11, 12, 13, 14, 15}.

Sometimes “|” is used instead of “:” as in

{n ∈ N |n is a multiple of 10} = {10, 20, 30, . . .}.

– Typeset by FoilTEX – 7

Unions and intersections

The union of two sets S and T , denoted S ∪ T is the set consisting of all those
elements which either belong to S or belong to T . For example

{A,B, C} ∪ {X, Y, Z} = {A,B, C, X, Y, Z}

and
{A,B,C, Y, Z} ∪ {A,X, Y, Z} = {A,B, C, X, Y, Z}.

The intersection of two sets S and T , denoted S ∩ T is the set consisting of
only those elements which belong to both S and T . For example

{A,B, C, L, M} ∩ {L,M,X, Y, Z} = {L,M}

and
{A,B, C} ∩ {X, Y, Z} = ∅.

– Typeset by FoilTEX – 8

Complement and difference

If S is a subset of a set E then the complement of S in E, denoted S′, is the
set consisting of those elements of E which do not belong to S. That is

S′ = {x ∈ E : x /∈ S}.

For example if E = {a, b, c, d, e, f} and S = {a, b, c} then S′ = {d, e, f}.

The difference of two sets S and T (in that order), denoted S\T , is the set of
elements of S which do not belong to T .

For example if S = {A,B, C, D, E, F} and T = {D,E, F, G,H, I} then S\T =
{A,B, C}.

– Typeset by FoilTEX – 9

Objectives

After covering this section of the course you should be able to:

(i) understand the use of terms such as Definition, Lemma, Theorem,...

(ii) read and use the symbols ∈, {. . .}, ⊂, 6⊂, ⊃, 6⊃ and ∅;

(iii) know which sets of numbers N, Z, Q and R refer to;

(iv) understand notation of the form {n ∈ Z : n > 10};

(v) know what unions, intersections, complements and differences of sets are
and understand the meaning of X ∪ Y , X ∩ Y , X\Y and X ′, where X and
Y are sets.

– Typeset by FoilTEX – 10

A puzzle

A professor decides to reward the class by handing out toffees. There are 24
toffees in a packet and the professor buys several packets. On the way to the
lecture the prof eats 6 toffees. There are 30 students in the lecture and each
receives the same number of toffees. There are then no toffees left. What’s the
least number of packets the prof could have bought and how many toffees would
each student then get?

– Typeset by FoilTEX – 11

Solution

We can solve this problem algebraically.

Suppose that
the number of packets of toffees bought = x
the number of toffees each student gets = y

We can easily work out:
Total number of toffees bought: = 24x
Number of toffees handed out to class = 24x− 6

Since each student gets y toffees and there are 30 students

24x− 6 = 30y.

– Typeset by FoilTEX – 12

24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

– Typeset by FoilTEX – 13

24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

First divide through by 6 and the equation becomes

4x− 1 = 5y.

– Typeset by FoilTEX – 13

24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

First divide through by 6 and the equation becomes

4x− 1 = 5y.

Try values of x until we find one which works.

– Typeset by FoilTEX – 13

24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

First divide through by 6 and the equation becomes

4x− 1 = 5y.

Try values of x until we find one which works.

x 1 2 3 4
4x− 1 3 7 11 15

y? ??? ??? ??? 3

When x is 4 and y is 3 we have 4x− 1 = 5y so 24x− 6 = 30 as well.

– Typeset by FoilTEX – 13

24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

First divide through by 6 and the equation becomes

4x− 1 = 5y.

Try values of x until we find one which works.

x 1 2 3 4
4x− 1 3 7 11 15

y? ??? ??? ??? 3

When x is 4 and y is 3 we have 4x− 1 = 5y so 24x− 6 = 30 as well.

No smaller value of x makes 4x− 1 equal to a multiple of 5.

– Typeset by FoilTEX – 13

24x− 6 = 30y

Solve to find whole numbers x and y which are both positive.

First divide through by 6 and the equation becomes

4x− 1 = 5y.

Try values of x until we find one which works.

x 1 2 3 4
4x− 1 3 7 11 15

y? ??? ??? ??? 3

When x is 4 and y is 3 we have 4x− 1 = 5y so 24x− 6 = 30 as well.

No smaller value of x makes 4x− 1 equal to a multiple of 5.

We now know that the prof could have got away with buying just x = 4 packets
of toffees. Each of the students would then have received 3 toffees.

– Typeset by FoilTEX – 13

The Euclidean Algorithm

What is the biggest positive number that divides both 24 and 30?

Make two lists.

– Typeset by FoilTEX – 14

The Euclidean Algorithm

What is the biggest positive number that divides both 24 and 30?

Make two lists.

Positive divisors of 24 : 1, 2, 3, 4, 6, 8, 12, 24

Positive divisors of 30 : 1, 2, 3, 5, 6, 10, 15, 30

– Typeset by FoilTEX – 14

The Euclidean Algorithm

What is the biggest positive number that divides both 24 and 30?

Make two lists.

Positive divisors of 24 : 1, 2, 3, 4, 6, 8, 12, 24

Positive divisors of 30 : 1, 2, 3, 5, 6, 10, 15, 30

Pick the largest number which appears on both of the lists, which is 6.

– Typeset by FoilTEX – 14

Example 2.1. Find the biggest number which divides both 2028 and 2600.

– Typeset by FoilTEX – 15

Example 2.1. Find the biggest number which divides both 2028 and 2600.

Positive divisors of

2028 : 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028

– Typeset by FoilTEX – 15

Example 2.1. Find the biggest number which divides both 2028 and 2600.

Positive divisors of

2028 : 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028

2600 : 1, 2, 4, 5, 8, 10, 13, 20, 25, 26, 40, 50, 52, 65, 100, 104, 130, 200, 260,
325, 520, 650, 1300, 2600

– Typeset by FoilTEX – 15

Example 2.1. Find the biggest number which divides both 2028 and 2600.

Positive divisors of

2028 : 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028

2600 : 1, 2, 4, 5, 8, 10, 13, 20, 25, 26, 40, 50, 52, 65, 100, 104, 130, 200, 260,
325, 520, 650, 1300, 2600

The biggest number dividing both 2028 and 2600 is 52.

– Typeset by FoilTEX – 15

The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

– Typeset by FoilTEX – 16

The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest common divisor.

– Typeset by FoilTEX – 16

The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest common divisor.

The recipe works as follows.

EA1. Input the pair (b, a), with 0 < a < b.

– Typeset by FoilTEX – 16

The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest common divisor.

The recipe works as follows.

EA1. Input the pair (b, a), with 0 < a < b.

EA2. Write b = aq + r, where q and r are integers with 0 ≤ r < a.

– Typeset by FoilTEX – 16

The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest common divisor.

The recipe works as follows.

EA1. Input the pair (b, a), with 0 < a < b.

EA2. Write b = aq + r, where q and r are integers with 0 ≤ r < a.

EA3. If r = 0 then output gcd(a, b) = a and stop.

– Typeset by FoilTEX – 16

The algorithm

The biggest natural number which divides both natural numbers a and b is called
the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest common divisor.

The recipe works as follows.

EA1. Input the pair (b, a), with 0 < a < b.

EA2. Write b = aq + r, where q and r are integers with 0 ≤ r < a.

EA3. If r = 0 then output gcd(a, b) = a and stop.

EA4. Replace the ordered pair (b, a) with (a, r). Repeat from (2).

Example 2.2. Find the greatest common divisor d of 12 and 63. Find x, y ∈ Z
such that 12x + 63y = d.

– Typeset by FoilTEX – 16

Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

– Typeset by FoilTEX – 17

Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

– Typeset by FoilTEX – 17

Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)

– Typeset by FoilTEX – 17

Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)

(572,312) 572 = 312 · 1 + 260 (2.3)

– Typeset by FoilTEX – 17

Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)

(572,312) 572 = 312 · 1 + 260 (2.3)

(312,260) 312 = 260 · 1 + 52 (2.4)

– Typeset by FoilTEX – 17

Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)

(572,312) 572 = 312 · 1 + 260 (2.3)

(312,260) 312 = 260 · 1 + 52 (2.4)

(260,52) 260 = 52 · 5 + 0. (2.5)

– Typeset by FoilTEX – 17

Example 2.3. Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x + 2028y.

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (2.1)

(2028,572) 2028 = 572 · 3 + 312 (2.2)

(572,312) 572 = 312 · 1 + 260 (2.3)

(312,260) 312 = 260 · 1 + 52 (2.4)

(260,52) 260 = 52 · 5 + 0. (2.5)

This gives gcd(2600, 2028) = 52, as we found in Example 2.1.

– Typeset by FoilTEX – 17

To find the integers x, y we work back from (2.4) to (2.1).

– Typeset by FoilTEX – 18

To find the integers x, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

– Typeset by FoilTEX – 18

To find the integers x, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

= 312− (572− 312 · 1) = 312 · 2− 572 from (2.3)

– Typeset by FoilTEX – 18

To find the integers x, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

= 312− (572− 312 · 1) = 312 · 2− 572 from (2.3)

= (2028− 572 · 3) · 2− 572 = 2028 · 2− 572 · 7 from (2.2)

– Typeset by FoilTEX – 18

To find the integers x, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

= 312− (572− 312 · 1) = 312 · 2− 572 from (2.3)

= (2028− 572 · 3) · 2− 572 = 2028 · 2− 572 · 7 from (2.2)

= 2028 · 2− (2600− 2028 · 1) · 7 = 2028 · 9− 2600 · 7 from (2.1).

– Typeset by FoilTEX – 18

To find the integers x, y we work back from (2.4) to (2.1).

52 = 312− 260 · 1 from (2.4)

= 312− (572− 312 · 1) = 312 · 2− 572 from (2.3)

= (2028− 572 · 3) · 2− 572 = 2028 · 2− 572 · 7 from (2.2)

= 2028 · 2− (2600− 2028 · 1) · 7 = 2028 · 9− 2600 · 7 from (2.1).

Thus 52 = 2600 · (−7) + 2028 · 9 so we may take x = −7 and y = 9.

– Typeset by FoilTEX – 18

Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

– Typeset by FoilTEX – 19

Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

– Typeset by FoilTEX – 19

Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

– Typeset by FoilTEX – 19

Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)

– Typeset by FoilTEX – 19

Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)

(26,20) 26 = 20 · 1 + 6 (2.9)

– Typeset by FoilTEX – 19

Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)

(26,20) 26 = 20 · 1 + 6 (2.9)

(20,6) 20 = 6 · 3 + 2 (2.10)

– Typeset by FoilTEX – 19

Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)

(26,20) 26 = 20 · 1 + 6 (2.9)

(20,6) 20 = 6 · 3 + 2 (2.10)

(6,2) 6 = 2 · 3 + 0. (2.11)

– Typeset by FoilTEX – 19

Example 2.4. Find the greatest common divisor d of 2028 and 626. Find x, y ∈ Z
such that 2028x− 626y = d.

(2028,626) 2028 = 626 · 3 + 150 (2.6)

(626,150) 626 = 150 · 4 + 26 (2.7)

(150,26) 150 = 26 · 5 + 20 (2.8)

(26,20) 26 = 20 · 1 + 6 (2.9)

(20,6) 20 = 6 · 3 + 2 (2.10)

(6,2) 6 = 2 · 3 + 0. (2.11)

This gives gcd(2028, 626) = 2.

– Typeset by FoilTEX – 19

To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

– Typeset by FoilTEX – 20

To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

– Typeset by FoilTEX – 20

To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)

– Typeset by FoilTEX – 20

To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)

= (150 · 1− 26 · 5) · 4− 26 · 3 = 150 · 4− 26 · 23 from (2.8)

– Typeset by FoilTEX – 20

To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)

= (150 · 1− 26 · 5) · 4− 26 · 3 = 150 · 4− 26 · 23 from (2.8)

= 150 · 4− (626− 150 · 4) · 23 = 150 · 96− 626 · 23 from (2.7)

– Typeset by FoilTEX – 20

To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)

= (150 · 1− 26 · 5) · 4− 26 · 3 = 150 · 4− 26 · 23 from (2.8)

= 150 · 4− (626− 150 · 4) · 23 = 150 · 96− 626 · 23 from (2.7)

= (2028− 626 · 3) · 96− 626 · 23 = 2028 · 96− 626 · 311 from (2.6).

– Typeset by FoilTEX – 20

To find the integers x, y we work back from (2.10) to (2.6) to find an expression
for 2.

2 = 20 · 1− 6 · 3 from (2.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (2.9)

= (150 · 1− 26 · 5) · 4− 26 · 3 = 150 · 4− 26 · 23 from (2.8)

= 150 · 4− (626− 150 · 4) · 23 = 150 · 96− 626 · 23 from (2.7)

= (2028− 626 · 3) · 96− 626 · 23 = 2028 · 96− 626 · 311 from (2.6).

Thus 2 = 2028 · 96− 626 · 311 so we may take x = 96 and y = 311.

– Typeset by FoilTEX – 20

Divisibility in the integers

Definition 2.5. Let a and b be integers. If there exists an integer q such that
b = qa then we say that a divides b, or a|b,.

– Typeset by FoilTEX – 21

Divisibility in the integers

Definition 2.5. Let a and b be integers. If there exists an integer q such that
b = qa then we say that a divides b, or a|b,.

Other ways of saying a|b are that a is a factor of b, a is a divisor of b or b is a
multiple of a.

– Typeset by FoilTEX – 21

Divisibility in the integers

Definition 2.5. Let a and b be integers. If there exists an integer q such that
b = qa then we say that a divides b, or a|b,.

Other ways of saying a|b are that a is a factor of b, a is a divisor of b or b is a
multiple of a.

We write a - b to denote “a does not divide b”.

– Typeset by FoilTEX – 21

Example 2.6. From the definition we can easily check that 6|18 because 18 = 6·3.

– Typeset by FoilTEX – 22

Example 2.6. From the definition we can easily check that 6|18 because 18 = 6·3.

In the same way we see that 6 divides 24, 12, 6, 0 and −6.

– Typeset by FoilTEX – 22

Example 2.6. From the definition we can easily check that 6|18 because 18 = 6·3.

In the same way we see that 6 divides 24, 12, 6, 0 and −6.

Example 2.7. We shall prove that 6|(6n + 6), for all integers n.

– Typeset by FoilTEX – 22

Example 2.6. From the definition we can easily check that 6|18 because 18 = 6·3.

In the same way we see that 6 divides 24, 12, 6, 0 and −6.

Example 2.7. We shall prove that 6|(6n + 6), for all integers n.

Example 2.8. Prove that 4|[(2n + 1)2 − 1], for all integers n.

– Typeset by FoilTEX – 22

Definition 2.9. The modulus or absolute value of a real number x is denoted
|x| and is given by the formula

|x| =
{

x, if x ≥ 0
−x, if x < 0.

– Typeset by FoilTEX – 23

Definition 2.9. The modulus or absolute value of a real number x is denoted
|x| and is given by the formula

|x| =
{

x, if x ≥ 0
−x, if x < 0.

For example

| − 6| = 6 = |6|,
102 = |102| = | − 102| and

|0| = 0 = −0 = | − 0|.

– Typeset by FoilTEX – 23

Theorem 2.10. [The Division Algorithm] Let a and b be integers with a 6= 0.
Then there exist unique integers q and r such that b = aq + r and 0 ≤ r < |a|.

– Typeset by FoilTEX – 24

Theorem 2.10. [The Division Algorithm] Let a and b be integers with a 6= 0.
Then there exist unique integers q and r such that b = aq + r and 0 ≤ r < |a|.

(1) The condition that a 6= 0 is necessary. If it’s left out then the statement
becomes untrue.

– Typeset by FoilTEX – 24

Theorem 2.10. [The Division Algorithm] Let a and b be integers with a 6= 0.
Then there exist unique integers q and r such that b = aq + r and 0 ≤ r < |a|.

(1) The condition that a 6= 0 is necessary. If it’s left out then the statement
becomes untrue.

(2) There are two parts to the conclusion of the Theorem. Firstly it says that
such q and r do exist. Secondly it says that q and r are unique.

– Typeset by FoilTEX – 24

Theorem 2.10. [The Division Algorithm] Let a and b be integers with a 6= 0.
Then there exist unique integers q and r such that b = aq + r and 0 ≤ r < |a|.

(1) The condition that a 6= 0 is necessary. If it’s left out then the statement
becomes untrue.

(2) There are two parts to the conclusion of the Theorem. Firstly it says that
such q and r do exist. Secondly it says that q and r are unique.

(3) Does the Theorem work in other settings?

– Typeset by FoilTEX – 24

Example 2.11. Every integer n can be written as n = 2q + r, with 0 ≤ r < 2.

– Typeset by FoilTEX – 25

Example 2.11. Every integer n can be written as n = 2q + r, with 0 ≤ r < 2.

If r = 0 we say n is even and if r = 1 we say n is odd.

– Typeset by FoilTEX – 25

Example 2.11. Every integer n can be written as n = 2q + r, with 0 ≤ r < 2.

If r = 0 we say n is even and if r = 1 we say n is odd.

We’ve used the Division Algorithm (Theorem 2.10) to partition of integers into
odd and even.

– Typeset by FoilTEX – 25

Example 2.11. Every integer n can be written as n = 2q + r, with 0 ≤ r < 2.

If r = 0 we say n is even and if r = 1 we say n is odd.

We’ve used the Division Algorithm (Theorem 2.10) to partition of integers into
odd and even.

Example 2.12. Here we have partitioned the integers into three: those that leave
remainder 0, those that leave remainder 1 and those that leave remainder 2, on
applying the Division Algorithm with a = 3.

– Typeset by FoilTEX – 25

Example 2.13. Show that 3|n3 − n, for all integers n.

– Typeset by FoilTEX – 26

Example 2.13. Show that 3|n3 − n, for all integers n.

Example 2.14. Show that if n is an integer then n3 has the form 4k, 4k + 1 or
4k + 3, for some k ∈ Z.

– Typeset by FoilTEX – 26

Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

– Typeset by FoilTEX – 27

Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

Why are the gcd’s are both the same?

– Typeset by FoilTEX – 27

Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

Why are the gcd’s are both the same?

Lemma 2.16. Let s, t and u be integers, which are not all zero, such that

s = tq + u,

for some q ∈ Z. Then gcd(s, t) = gcd(t, u).

– Typeset by FoilTEX – 27

Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

Why are the gcd’s are both the same?

Lemma 2.16. Let s, t and u be integers, which are not all zero, such that

s = tq + u,

for some q ∈ Z. Then gcd(s, t) = gcd(t, u).

Strategy: show that any integer that divides both s and t must also divide u.

– Typeset by FoilTEX – 27

Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

Why are the gcd’s are both the same?

Lemma 2.16. Let s, t and u be integers, which are not all zero, such that

s = tq + u,

for some q ∈ Z. Then gcd(s, t) = gcd(t, u).

Strategy: show that any integer that divides both s and t must also divide u.

Then show that any integer that divides both t and u must also divide s.

– Typeset by FoilTEX – 27

Why does the Euclidean Algorithm work?

Example 2.15. Consider the equation 112 = 20 · 5 + 12.

Why are the gcd’s are both the same?

Lemma 2.16. Let s, t and u be integers, which are not all zero, such that

s = tq + u,

for some q ∈ Z. Then gcd(s, t) = gcd(t, u).

Strategy: show that any integer that divides both s and t must also divide u.

Then show that any integer that divides both t and u must also divide s.

Then the set of common divisors of s and t is exactly the same as the set of
common divisors of t and u and their greatest commond divisors are thus equal.

– Typeset by FoilTEX – 27

Example 2.17. We can write 337 = 11 · 30 + 7.

– Typeset by FoilTEX – 28

Example 2.17. We can write 337 = 11 · 30 + 7.

Therefore gcd(337, 11) = gcd(11, 7) = 1.

– Typeset by FoilTEX – 28

Example 2.17. We can write 337 = 11 · 30 + 7.

Therefore gcd(337, 11) = gcd(11, 7) = 1.

Lemma 2.18.

1. a|a, for all integers a.

– Typeset by FoilTEX – 28

Example 2.17. We can write 337 = 11 · 30 + 7.

Therefore gcd(337, 11) = gcd(11, 7) = 1.

Lemma 2.18.

1. a|a, for all integers a.

2. a|0, for all integers a.

– Typeset by FoilTEX – 28

Example 2.17. We can write 337 = 11 · 30 + 7.

Therefore gcd(337, 11) = gcd(11, 7) = 1.

Lemma 2.18.

1. a|a, for all integers a.

2. a|0, for all integers a.

3. If a and b are integers, a|b and b > 0 then a ≤ b.

– Typeset by FoilTEX – 28

Example 2.17. We can write 337 = 11 · 30 + 7.

Therefore gcd(337, 11) = gcd(11, 7) = 1.

Lemma 2.18.

1. a|a, for all integers a.

2. a|0, for all integers a.

3. If a and b are integers, a|b and b > 0 then a ≤ b.

4. If a and b are positive integers and a|b then gcd(a, b) = a.

– Typeset by FoilTEX – 28

Why the Euclidean Algorithm works

Example 2.19. Consider the Equations (2.6)–(2.11).

– Typeset by FoilTEX – 29

Why the Euclidean Algorithm works

Example 2.19. Consider the Equations (2.6)–(2.11).

Stringing all these facts together we have

2 = gcd(6, 2)

= gcd(20, 6)

= gcd(26, 20)

= gcd(150, 26)

= gcd(626, 150)

= gcd(2028, 626),

that is gcd(2028, 626) = 2.

– Typeset by FoilTEX – 29

Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

– Typeset by FoilTEX – 30

Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

– Typeset by FoilTEX – 30

Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

gcd(572, 312) = gcd(312, 260),using Equation (2.3)

– Typeset by FoilTEX – 30

Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

gcd(572, 312) = gcd(312, 260),using Equation (2.3)

gcd(312, 260) = gcd(260, 52),using Equation (2.4).

– Typeset by FoilTEX – 30

Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

gcd(572, 312) = gcd(312, 260),using Equation (2.3)

gcd(312, 260) = gcd(260, 52),using Equation (2.4).

From Equation (2.5) we see that 52|260 so gcd(52, 260) = 52.

– Typeset by FoilTEX – 30

Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

gcd(572, 312) = gcd(312, 260),using Equation (2.3)

gcd(312, 260) = gcd(260, 52),using Equation (2.4).

From Equation (2.5) we see that 52|260 so gcd(52, 260) = 52.

Therefore

52 = gcd(260, 52) = gcd(312, 260) =

gcd(572, 312) = gcd(2028, 572) = gcd(2600, 2028),

– Typeset by FoilTEX – 30

Example 2.20. Consider the Equations (2.1)–(2.5).

gcd(2600, 2028) = gcd(2028, 572),using Equation (2.1)

gcd(2028, 572) = gcd(572, 312),using Equation (2.2)

gcd(572, 312) = gcd(312, 260),using Equation (2.3)

gcd(312, 260) = gcd(260, 52),using Equation (2.4).

From Equation (2.5) we see that 52|260 so gcd(52, 260) = 52.

Therefore

52 = gcd(260, 52) = gcd(312, 260) =

gcd(572, 312) = gcd(2028, 572) = gcd(2600, 2028),

that is gcd(2600, 2028) = 52.

– Typeset by FoilTEX – 30

And another thing

Given two integers a and b we can work back through the output of the Euclidean
algorithm, as we did in Examples 2.2, 2.3 and 2.4, to find integers x and y such
that ax + by = gcd(a, b).

– Typeset by FoilTEX – 31

And another thing

Given two integers a and b we can work back through the output of the Euclidean
algorithm, as we did in Examples 2.2, 2.3 and 2.4, to find integers x and y such
that ax + by = gcd(a, b).

Theorem 2.21. Let a and b be integers, not both zero, and let d = gcd(a, b).
Then there exist integers u and v such that d = au + bv.

– Typeset by FoilTEX – 31

And another thing

Given two integers a and b we can work back through the output of the Euclidean
algorithm, as we did in Examples 2.2, 2.3 and 2.4, to find integers x and y such
that ax + by = gcd(a, b).

Theorem 2.21. Let a and b be integers, not both zero, and let d = gcd(a, b).
Then there exist integers u and v such that d = au + bv.

The input to the Euclidean algorithm is a pair of positive integers. What if a < 0?

– Typeset by FoilTEX – 31

And another thing

Given two integers a and b we can work back through the output of the Euclidean
algorithm, as we did in Examples 2.2, 2.3 and 2.4, to find integers x and y such
that ax + by = gcd(a, b).

Theorem 2.21. Let a and b be integers, not both zero, and let d = gcd(a, b).
Then there exist integers u and v such that d = au + bv.

The input to the Euclidean algorithm is a pair of positive integers. What if a < 0?

gcd(a, b) = gcd(−a, b) = gcd(−a,−b) = gcd(a,−b) and from this it follows that
the Theorem holds in all cases.

– Typeset by FoilTEX – 31

An application

Example 2.22. Find integers x and y such that 2600x + 2082y = 104.

– Typeset by FoilTEX – 32

An application

Example 2.22. Find integers x and y such that 2600x + 2082y = 104.

In Example 2.3 we ran the Euclidean Algorithm and found gcd(2600, 2082) = 52.

– Typeset by FoilTEX – 32

An application

Example 2.22. Find integers x and y such that 2600x + 2082y = 104.

In Example 2.3 we ran the Euclidean Algorithm and found gcd(2600, 2082) = 52.

Once we’d done so we were able to use the equations generated to find integers
x and y such that

2600 · (−7) + 2028 · 9 = 52. (2.12)

– Typeset by FoilTEX – 32

Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

– Typeset by FoilTEX – 33

Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

– Typeset by FoilTEX – 33

Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

– Typeset by FoilTEX – 33

Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

– Typeset by FoilTEX – 33

Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

(162,138) 162= 138 · 1 + 24 (2.15)

– Typeset by FoilTEX – 33

Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

(162,138) 162= 138 · 1 + 24 (2.15)

(138,24) 138= 24 · 5 + 18 (2.16)

– Typeset by FoilTEX – 33

Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

(162,138) 162= 138 · 1 + 24 (2.15)

(138,24) 138= 24 · 5 + 18 (2.16)

(24,18) 24= 18 · 1 + 6 (2.17)

– Typeset by FoilTEX – 33

Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

(162,138) 162= 138 · 1 + 24 (2.15)

(138,24) 138= 24 · 5 + 18 (2.16)

(24,18) 24= 18 · 1 + 6 (2.17)

(18,6) 18 = 3 · 6 + 0. (2.18)

– Typeset by FoilTEX – 33

Example 2.23. Find integers x and y such that −72 = 123738x− 3054y.

First we run the Euclidean Algorithm to find gcd(12378, 3054).

(123738,3054) 12378 = 3054 · 4 + 162 (2.13)

(3054,162) 3054= 162 · 18 + 138 (2.14)

(162,138) 162= 138 · 1 + 24 (2.15)

(138,24) 138= 24 · 5 + 18 (2.16)

(24,18) 24= 18 · 1 + 6 (2.17)

(18,6) 18 = 3 · 6 + 0. (2.18)

This gives gcd(12378, 3054) = 6.

– Typeset by FoilTEX – 33

Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

– Typeset by FoilTEX – 34

Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

– Typeset by FoilTEX – 34

Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

– Typeset by FoilTEX – 34

Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)

– Typeset by FoilTEX – 34

Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)

= 162 · 6− (3054− 162 · 18) · 7 = 162 · 132− 3054 · 7 from (2.14)

– Typeset by FoilTEX – 34

Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)

= 162 · 6− (3054− 162 · 18) · 7 = 162 · 132− 3054 · 7 from (2.14)

= (12738− 3054 · 4) · 132− 3054 · 7 = 12378 · 132− 3054 · 535 from (2.13).

– Typeset by FoilTEX – 34

Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)

= 162 · 6− (3054− 162 · 18) · 7 = 162 · 132− 3054 · 7 from (2.14)

= (12738− 3054 · 4) · 132− 3054 · 7 = 12378 · 132− 3054 · 535 from (2.13).

Thus
6 = 12378 · 132 + 3054 · (−535) (2.19)

– Typeset by FoilTEX – 34

Next we work back from (2.17) to (2.13) to find integers u, v such that

6 = 123738u + 3054v.

6 = 24− 18 · 1 from (2.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (2.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (2.15)

= 162 · 6− (3054− 162 · 18) · 7 = 162 · 132− 3054 · 7 from (2.14)

= (12738− 3054 · 4) · 132− 3054 · 7 = 12378 · 132− 3054 · 535 from (2.13).

Thus
6 = 12378 · 132 + 3054 · (−535) (2.19)

and we may take u = 132 and v = −535.

– Typeset by FoilTEX – 34

Existence of solutions

– Typeset by FoilTEX – 35

Existence of solutions

Lemma 2.24. Let a, b and c be integers (a, b not both zero). The equation

ax + by = c (2.20)

has integer solutions x, y if and only if gcd(a, b)|c.

– Typeset by FoilTEX – 35

Existence of solutions

Lemma 2.24. Let a, b and c be integers (a, b not both zero). The equation

ax + by = c (2.20)

has integer solutions x, y if and only if gcd(a, b)|c.

Example 2.25. Are there integers x and y such that 2600x + 2028y = 130?

– Typeset by FoilTEX – 35

Existence of solutions

Lemma 2.24. Let a, b and c be integers (a, b not both zero). The equation

ax + by = c (2.20)

has integer solutions x, y if and only if gcd(a, b)|c.

Example 2.25. Are there integers x and y such that 2600x + 2028y = 130?

Example 2.26. For which c does the equation 72x + 49y = c have a solution?

– Typeset by FoilTEX – 35

Existence of solutions

Lemma 2.24. Let a, b and c be integers (a, b not both zero). The equation

ax + by = c (2.20)

has integer solutions x, y if and only if gcd(a, b)|c.

Example 2.25. Are there integers x and y such that 2600x + 2028y = 130?

Example 2.26. For which c does the equation 72x + 49y = c have a solution?

gcd(72, 49) = 1

– Typeset by FoilTEX – 35

Existence of solutions
Lemma 2.24. Let a, b and c be integers (a, b not both zero). The equation

ax + by = c (2.20)

has integer solutions x, y if and only if gcd(a, b)|c.

Example 2.25. Are there integers x and y such that 2600x + 2028y = 130?

Example 2.26. For which c does the equation 72x + 49y = c have a solution?

gcd(72, 49) = 1

so the equation 72x + 49y = c has a solution for every choice of c.

– Typeset by FoilTEX – 35

Objectives

After covering this chapter of the course you should be able to:

(i) use terms such as Definition, Lemma, and proof with confidence;

(ii) read and understand simple proofs;

(iii) remember Definition 2.5 of a divides b, for integers a and b;

(iv) apply this definition to prove simple divisibility properties;

(v) state the Division Algorithm and be able to use it to demonstrate properties
of integers;

(vi) remember the definition of greatest common divisor of two integers;

(vii) apply this definition to prove results;

– Typeset by FoilTEX – 36

(viii) apply the Euclidean algorithm and explain why it works;

(ix) find solutions to equations of the kind given above.

– Typeset by FoilTEX – 37

“There exists ...”

Example 2.4 asked for integers x and y such that 2028x−626y = gcd(2028, 626).

One such pair x = 96, y = 311, was found by applying the Euclidean Algorithm.

Once such a pair has been found we have proved the truth of the statement
“There exist integers x and y such that 2028x− 626y = gcd(2028, 626).”

It is only necessary to find one pair x, y to prove that this statement is true.

There are lots of other pairs besides the one given, x = 409, y = 1325, for
example, but this doesn’t matter.

The assertion can be seen to be true once we’ve found our first solution.

– Typeset by FoilTEX – 38

Notation: the symbol “∃” is read “there exists”.

Example 3.1. Prove that ∃q ∈ Z such that 7q = 28.

Example 3.2. Prove that ∃x ∈ R such that x · 0 = 0.

– Typeset by FoilTEX – 39

“For all...”

Examples 2.8, 2.13 and 2.14 we show that something holds for all integers.

In each case we do this by using a letter n to represent an arbitrary integer.

Again, it is easy to verify these results for particular values of n but this does not
prove that the statements hold for all integers.

– Typeset by FoilTEX – 40

Counter–example and disproof

Is the following statement true or false?

3|n2 + 2n, for all n ∈ Z.

– Typeset by FoilTEX – 41

Notation: the symbol “∀” is read “for all”.

Example 3.3. Show, by finding a counter–example that the statement

“n2 is even, ∀n ∈ Z”

is false.

– Typeset by FoilTEX – 42

Example 3.4. Disprove the assertion that

“∃n ∈ Z such that n3 can be written as 4k + 2, with k ∈ Z”.

– Typeset by FoilTEX – 43

Example 3.5. Consider the statement

“∃x ∈ R such that x2 = −10.

– Typeset by FoilTEX – 44

Example 3.5. Consider the statement

“∃x ∈ R such that x2 = −10.

To prove it’s false I must show it fails for all x ∈ R (infinitely many).

– Typeset by FoilTEX – 44

Example 3.5. Consider the statement

“∃x ∈ R such that x2 = −10.

To prove it’s false I must show it fails for all x ∈ R (infinitely many).

I can use a basic property of real number arithmetic to do this. Namely, if x ∈ R
then x2 ≥ 0.

– Typeset by FoilTEX – 44

Example 3.5. Consider the statement

“∃x ∈ R such that x2 = −10.

To prove it’s false I must show it fails for all x ∈ R (infinitely many).

I can use a basic property of real number arithmetic to do this. Namely, if x ∈ R
then x2 ≥ 0.

Thus, no matter what value b takes the statement is false.

– Typeset by FoilTEX – 44

Example 3.5. Consider the statement

“∃x ∈ R such that x2 = −10.

To prove it’s false I must show it fails for all x ∈ R (infinitely many).

I can use a basic property of real number arithmetic to do this. Namely, if x ∈ R
then x2 ≥ 0.

Thus, no matter what value b takes the statement is false.

Note that a counter–example is no use here as I must check all possible values of
x.

– Typeset by FoilTEX – 44

“If ... then ...”

Example 3.6. Consider the assertion

“if x > 2 then x2 + x− 6 > 0”.

– Typeset by FoilTEX – 45

“if A then B” and “if B then A”

“If I am a frog then I can swim”

is a plausible enough statement.

Switching A and B we have:

“If I can swim then I am a frog”.

This can’t be true!

– Typeset by FoilTEX – 46

Example 3.7. If we switch the order of A and B in Example 3.6 we obtain the
statement

“If x2 + x− 6 > 0 then x > 2. ”

– Typeset by FoilTEX – 47

The Converse

Switching A and B gives a new statement (unless A and B are the same).

The switched statement is called the converse of the original.

– Typeset by FoilTEX – 48

The Converse

Switching A and B gives a new statement (unless A and B are the same).

The switched statement is called the converse of the original.
Example 3.8. The converse of

“If x2 > 0 then x > 0”

is

“If x > 0 then x2 > 0”.

– Typeset by FoilTEX – 48

The Converse

Switching A and B gives a new statement (unless A and B are the same).

The switched statement is called the converse of the original.
Example 3.8. The converse of

“If x2 > 0 then x > 0”

is

“If x > 0 then x2 > 0”.

This time the original statement is false but its converse is true.

– Typeset by FoilTEX – 48

The Converse

Switching A and B gives a new statement (unless A and B are the same).

The switched statement is called the converse of the original.
Example 3.8. The converse of

“If x2 > 0 then x > 0”

is

“If x > 0 then x2 > 0”.

This time the original statement is false but its converse is true.

Even if the original statement is true its converse may not be, and vice–versa.

– Typeset by FoilTEX – 48

The Converse

Switching A and B gives a new statement (unless A and B are the same).

The switched statement is called the converse of the original.
Example 3.8. The converse of

“If x2 > 0 then x > 0”

is

“If x > 0 then x2 > 0”.

This time the original statement is false but its converse is true.

Even if the original statement is true its converse may not be, and vice–versa.

In some circumstances it may turn out however that both statements are true.

– Typeset by FoilTEX – 48

“... if and only if ...”

Example 3.9. Let a, b, c ∈ R with a > 0.

– Typeset by FoilTEX – 49

“... if and only if ...”

Example 3.9. Let a, b, c ∈ R with a > 0.

Consider the statement

“If b2 − 4ac ≥ 0 then ax2 + bx + c = 0 has a real solution.”

– Typeset by FoilTEX – 49

“... if and only if ...”

Example 3.9. Let a, b, c ∈ R with a > 0.

Consider the statement

“If b2 − 4ac ≥ 0 then ax2 + bx + c = 0 has a real solution.”

We know that this is true.

– Typeset by FoilTEX – 49

Shorthand

What we have shown in the previous example is that

“[if b2 − 4ac ≥ 0 then ax2 + bx + c = 0 has a real solution]
AND

[if ax2 + bx + c = 0 has a real solution then b2 − 4ac ≥ 0]”

is a true statement.

– Typeset by FoilTEX – 50

Shorthand

What we have shown in the previous example is that

“[if b2 − 4ac ≥ 0 then ax2 + bx + c = 0 has a real solution]
AND

[if ax2 + bx + c = 0 has a real solution then b2 − 4ac ≥ 0]”

is a true statement.

Instead we may say

“ax2 + bx + c = 0 has a real solution if and only if b2 − 4ac ≥ 0.”

– Typeset by FoilTEX – 50

Shorthand

What we have shown in the previous example is that

“[if b2 − 4ac ≥ 0 then ax2 + bx + c = 0 has a real solution]
AND

[if ax2 + bx + c = 0 has a real solution then b2 − 4ac ≥ 0]”

is a true statement.

Instead we may say

“ax2 + bx + c = 0 has a real solution if and only if b2 − 4ac ≥ 0.”

Sometimes
“if and only if”

is shortened to
“iff”.

– Typeset by FoilTEX – 50

In general a statement of the form

“A if and only if B”

means

“[if A then B] AND [if B then A]”.

– Typeset by FoilTEX – 51

Lemma 3.10. Assume that a and b are positive integers. Then a|b if and only
if gcd(a, b) = a.

– Typeset by FoilTEX – 52

Lemma 3.10. Assume that a and b are positive integers. Then a|b if and only
if gcd(a, b) = a.

Proof. The statement of the Lemma uses shorthand and when written out in full
becomes

– Typeset by FoilTEX – 52

Lemma 3.10. Assume that a and b are positive integers. Then a|b if and only
if gcd(a, b) = a.

Proof. The statement of the Lemma uses shorthand and when written out in full
becomes

“[if a|b then gcd(b, a) = a] AND [if gcd(b, a) = a then a|b]”.

– Typeset by FoilTEX – 52

Lemma 3.10. Assume that a and b are positive integers. Then a|b if and only
if gcd(a, b) = a.

Proof. The statement of the Lemma uses shorthand and when written out in full
becomes

“[if a|b then gcd(b, a) = a] AND [if gcd(b, a) = a then a|b]”.

The general rule in a proof of such a statement is prove each part separately.

– Typeset by FoilTEX – 52

In general terms to show that

“A if and only if B”

is true we must establish the truth of both

“if A then B”

and

“if B then A”.

– Typeset by FoilTEX – 53

Synonyms

All the entries on a given line of the following table mean the same thing.

if A then B A ⇒ B B if A

if B then A A ⇐ B A if B

A if and only if B A ⇔ B A iff B

– Typeset by FoilTEX – 54

Contradiction

Most of the proofs we have seen so far are direct.

– Typeset by FoilTEX – 55

Contradiction

Most of the proofs we have seen so far are direct.

In Lemma 2.16 we prove that if s, t and u are integers and s = tq + u, for some
q ∈ Z, then gcd(s, t) = gcd(t, u).

– Typeset by FoilTEX – 55

Contradiction

Most of the proofs we have seen so far are direct.

In Lemma 2.16 we prove that if s, t and u are integers and s = tq + u, for some
q ∈ Z, then gcd(s, t) = gcd(t, u).

The proof starts with the assumption that s = tq + u and makes deductions until
the required result is reached.

– Typeset by FoilTEX – 55

Contradiction

Most of the proofs we have seen so far are direct.

In Lemma 2.16 we prove that if s, t and u are integers and s = tq + u, for some
q ∈ Z, then gcd(s, t) = gcd(t, u).

The proof starts with the assumption that s = tq + u and makes deductions until
the required result is reached.

Here is an example of another kind of, indirect, argument.

Example 3.11. Show that x2 = −1 has no real solution.

– Typeset by FoilTEX – 55

Step(1) Assume the opposite of what is to be proved.

– Typeset by FoilTEX – 56

Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

– Typeset by FoilTEX – 56

Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

– Typeset by FoilTEX – 56

Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

– Typeset by FoilTEX – 56

Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

Step(3) Show that something we’ve derived is false.

– Typeset by FoilTEX – 56

Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

Step(3) Show that something we’ve derived is false.

Combining the fact above with the assumption that r2 = −1 we obtain
0 ≤ −1, which is clearly false.

– Typeset by FoilTEX – 56

Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

Step(3) Show that something we’ve derived is false.

Combining the fact above with the assumption that r2 = −1 we obtain
0 ≤ −1, which is clearly false.

Step(4) Conclude that the assumption is false and so prove the required
result.

– Typeset by FoilTEX – 56

Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

Step(3) Show that something we’ve derived is false.

Combining the fact above with the assumption that r2 = −1 we obtain
0 ≤ −1, which is clearly false.

Step(4) Conclude that the assumption is false and so prove the required
result.

The false statement in Step(3) was a direct consequence of the
assumption that a solution x = r to x2 = −1 exists.

– Typeset by FoilTEX – 56

Step(1) Assume the opposite of what is to be proved.

Suppose that there is a real number r such that r2 = −1 and see where
this leads us.

Step(2) Derive some consequences of the assumption.

As r ∈ R we have 0 ≤ r2.

Step(3) Show that something we’ve derived is false.

Combining the fact above with the assumption that r2 = −1 we obtain
0 ≤ −1, which is clearly false.

Step(4) Conclude that the assumption is false and so prove the required
result.

The false statement in Step(3) was a direct consequence of the
assumption that a solution x = r to x2 = −1 exists.

We are forced to conclude that no solution exists.

– Typeset by FoilTEX – 56

Indirect argument

This is a technique of argument known as contradiction.

– Typeset by FoilTEX – 57

Indirect argument

This is a technique of argument known as contradiction.

We start by assuming that whatever we wish to prove is false.

– Typeset by FoilTEX – 57

Indirect argument

This is a technique of argument known as contradiction.

We start by assuming that whatever we wish to prove is false.

This assumption is then used to make deductions.

– Typeset by FoilTEX – 57

Indirect argument

This is a technique of argument known as contradiction.

We start by assuming that whatever we wish to prove is false.

This assumption is then used to make deductions.

We hope that these deductions lead to something which we know is false: that is
to a contradiction.

– Typeset by FoilTEX – 57

Indirect argument

This is a technique of argument known as contradiction.

We start by assuming that whatever we wish to prove is false.

This assumption is then used to make deductions.

We hope that these deductions lead to something which we know is false: that is
to a contradiction.

We conclude that our assumption is wrong so what we want to prove is true.

– Typeset by FoilTEX – 57

Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.

– Typeset by FoilTEX – 58

Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
Theorem 3.12. There are no natural numbers x and y such that x2−2y2 = 0.

– Typeset by FoilTEX – 58

Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
Theorem 3.12. There are no natural numbers x and y such that x2−2y2 = 0.

We can use this to prove something that may seem more familiar, namely that√
2 is not a rational number.

– Typeset by FoilTEX – 58

Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
Theorem 3.12. There are no natural numbers x and y such that x2−2y2 = 0.

We can use this to prove something that may seem more familiar, namely that√
2 is not a rational number.

As this follows easily from the Theorem we call it a Corollary.

– Typeset by FoilTEX – 58

Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
Theorem 3.12. There are no natural numbers x and y such that x2−2y2 = 0.

We can use this to prove something that may seem more familiar, namely that√
2 is not a rational number.

As this follows easily from the Theorem we call it a Corollary.

Again we use proof by contradiction.

– Typeset by FoilTEX – 58

Examples: proof by contradiction

The proof that q > 0 in the proof of Lemma 2.18.3 is a proof by contradiction.
Theorem 3.12. There are no natural numbers x and y such that x2−2y2 = 0.

We can use this to prove something that may seem more familiar, namely that√
2 is not a rational number.

As this follows easily from the Theorem we call it a Corollary.

Again we use proof by contradiction.

Corollary 3.13. There is no rational number r such that r2 = 2. That is√
2 /∈ Q.

– Typeset by FoilTEX – 58

Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

– Typeset by FoilTEX – 59

Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

– Typeset by FoilTEX – 59

Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

We have (
p

q

)2

= 2

– Typeset by FoilTEX – 59

Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

We have (
p

q

)2

= 2

⇒ p2

q2
= 2

– Typeset by FoilTEX – 59

Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

We have (
p

q

)2

= 2

⇒ p2

q2
= 2

⇒ p2 = 2q2, as q 6= 0,

– Typeset by FoilTEX – 59

Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

We have (
p

q

)2

= 2

⇒ p2

q2
= 2

⇒ p2 = 2q2, as q 6= 0,

⇒ |p|2 = 2|q|2

– Typeset by FoilTEX – 59

Proof of Corollary 3.13

Step(1) Suppose that there is a rational number r such that r2 = 2.

Step(2) As r ∈ Q we have r = p/q, where p, q ∈ Z and q 6= 0.

We have (
p

q

)2

= 2

⇒ p2

q2
= 2

⇒ p2 = 2q2, as q 6= 0,

⇒ |p|2 = 2|q|2

⇒ |p|2 − 2|q|2 = 0.

The introduction of | · | is justified because (−x)2 = x2 = |x|2, for all
x ∈ R.

– Typeset by FoilTEX – 59

Step(3) As r2 = 2 it cannot be the case that p = 0, because then we’d have
2 = 0.

– Typeset by FoilTEX – 60

Step(3) As r2 = 2 it cannot be the case that p = 0, because then we’d have
2 = 0.

Thus p and q are non–zero.

– Typeset by FoilTEX – 60

Step(3) As r2 = 2 it cannot be the case that p = 0, because then we’d have
2 = 0.

Thus p and q are non–zero.

Therefore |p| and |q| are natural numbers and we have deduced, in
Step(2), a contradiction to Theorem 3.12.

– Typeset by FoilTEX – 60

Step(3) As r2 = 2 it cannot be the case that p = 0, because then we’d have
2 = 0.

Thus p and q are non–zero.

Therefore |p| and |q| are natural numbers and we have deduced, in
Step(2), a contradiction to Theorem 3.12.

It follows that there is no such rational number r.

– Typeset by FoilTEX – 60

Step(3) As r2 = 2 it cannot be the case that p = 0, because then we’d have
2 = 0.

Thus p and q are non–zero.

Therefore |p| and |q| are natural numbers and we have deduced, in
Step(2), a contradiction to Theorem 3.12.

It follows that there is no such rational number r.

Note that
√

2 by definition has square equal to 2: so we’ve shown it can’t be in
Q.

– Typeset by FoilTEX – 60

Objectives

After covering this chapter of the course you should be able to:

(i) recognise and use the symbols ∃, ∀, ⇒, ⇐ and ⇔;

(ii) apply appropriate arguments to show whether or not statements of the form

“∃ ...”,

“∀ ...”

“if ... then ... ”

and

“... if and only if ...”

are true;

(iii) explain what a Corollary is;

(iv) understand and use proof by contradiction.

– Typeset by FoilTEX – 61

Induction

Some properties of sets and numbers are so obvious that we treat them as natural
laws which do not require proof.

– Typeset by FoilTEX – 62

Induction

Some properties of sets and numbers are so obvious that we treat them as natural
laws which do not require proof.

We call such a property an axiom.

– Typeset by FoilTEX – 62

Induction

Some properties of sets and numbers are so obvious that we treat them as natural
laws which do not require proof.

We call such a property an axiom.

For instance all the properties of numbers listed at the beginning of Section 2.2
are axioms for numbers.

– Typeset by FoilTEX – 62

Induction

Some properties of sets and numbers are so obvious that we treat them as natural
laws which do not require proof.

We call such a property an axiom.

For instance all the properties of numbers listed at the beginning of Section 2.2
are axioms for numbers.

The method of proof by induction is based on the following property which is
really an axiom for the natural numbers N.

– Typeset by FoilTEX – 62

The Principle of proof by induction

Assume that P (n) is a statement, for all n ∈ N.

– Typeset by FoilTEX – 63

The Principle of proof by induction

Assume that P (n) is a statement, for all n ∈ N.

Assume further that it can be shown that

(1) P (1) is true and

– Typeset by FoilTEX – 63

The Principle of proof by induction

Assume that P (n) is a statement, for all n ∈ N.

Assume further that it can be shown that

(1) P (1) is true and

(2) if P (k) is true then P (k + 1) is true, for k ≥ 1.

– Typeset by FoilTEX – 63

The Principle of proof by induction

Assume that P (n) is a statement, for all n ∈ N.

Assume further that it can be shown that

(1) P (1) is true and

(2) if P (k) is true then P (k + 1) is true, for k ≥ 1.

Then P (n) is true for all n ∈ N.

– Typeset by FoilTEX – 63

Example 4.1. Suppose that we wish to prove that

n∑
j=1

1
j(j + 1)

= 1− 1
n + 1

, for all n ∈ N.

– Typeset by FoilTEX – 64

Example 4.1. Suppose that we wish to prove that

n∑
j=1

1
j(j + 1)

= 1− 1
n + 1

, for all n ∈ N.

Here P (n) is the statement

n∑
j=1

1
j(j + 1)

= 1− 1
n + 1

,

– Typeset by FoilTEX – 64

Example 4.1. Suppose that we wish to prove that

n∑
j=1

1
j(j + 1)

= 1− 1
n + 1

, for all n ∈ N.

Here P (n) is the statement

n∑
j=1

1
j(j + 1)

= 1− 1
n + 1

,

and we wish to prove P (1), P (2), P (3),

– Typeset by FoilTEX – 64

Example 4.2 (Bernoulli’s Inequality). Prove that

(1 + x)n ≥ 1 + nx, for all n ∈ N and for all x ∈ R, x > 0.

– Typeset by FoilTEX – 65

Example 4.3 (Summing a geometric progression). Prove that

n−1∑
j=0

arj =
a(rn − 1)

r − 1
, for all a ∈ R and r ∈ R, r 6= 1, and for all n ∈ N.

– Typeset by FoilTEX – 66

Example 4.4 (Special cases of summing gp’s).

(1) a = 1, r = x (6= 1):

From Example 4.3

1 + x + x2 + · · ·+ xn−1 =
xn − 1
x− 1

.

– Typeset by FoilTEX – 67

Example 4.4 (Special cases of summing gp’s).

(1) a = 1, r = x (6= 1):

From Example 4.3

1 + x + x2 + · · ·+ xn−1 =
xn − 1
x− 1

.

Multiplying through by x− 1 gives

(1 + x + x2 + · · ·+ xn−1)(x− 1) = xn − 1.

– Typeset by FoilTEX – 67

If we defined division for polynomials as we’ve done for integers, in Definition
2.5, we could say that this shows that

(x− 1)|(xn − 1)

and that
(1 + x + x2 + · · ·+ xn−1)|(xn − 1).

– Typeset by FoilTEX – 68

If we defined division for polynomials as we’ve done for integers, in Definition
2.5, we could say that this shows that

(x− 1)|(xn − 1)

and that
(1 + x + x2 + · · ·+ xn−1)|(xn − 1).

For example
(1 + x)(x− 1) = x2 − 1,

(1 + x + x2)(x− 1) = x3 − 1,

(1 + x + x2 + x3)(x− 1) = x4 − 1.

– Typeset by FoilTEX – 68

(2) a = 1, r = −x (x 6= −1), n = 2m + 1, m ∈ N:

The lefthand side of the equality of Example 4.3 becomes

2m∑
j=0

arj =
2m∑
j=0

(−x)j

– Typeset by FoilTEX – 69

(2) a = 1, r = −x (x 6= −1), n = 2m + 1, m ∈ N:

The lefthand side of the equality of Example 4.3 becomes

2m∑
j=0

arj =
2m∑
j=0

(−x)j

= 1− x + x2 − · · ·+ (−1)2mx2m

– Typeset by FoilTEX – 69

(2) a = 1, r = −x (x 6= −1), n = 2m + 1, m ∈ N:

The lefthand side of the equality of Example 4.3 becomes

2m∑
j=0

arj =
2m∑
j=0

(−x)j

= 1− x + x2 − · · ·+ (−1)2mx2m

= 1− x + x2 − · · ·+ x2m.

– Typeset by FoilTEX – 69

(2) a = 1, r = −x (x 6= −1), n = 2m + 1, m ∈ N:

The lefthand side of the equality of Example 4.3 becomes

2m∑
j=0

arj =
2m∑
j=0

(−x)j

= 1− x + x2 − · · ·+ (−1)2mx2m

= 1− x + x2 − · · ·+ x2m.

The righthand side is

a(rn − 1)
r − 1

=
(−x)2m+1 − 1

−x− 1

=
x2m+1 + 1

x + 1
.

– Typeset by FoilTEX – 69

From Example 4.3

1− x + x2 − · · ·+ x2m =
x2m+1 + 1

x + 1
.

– Typeset by FoilTEX – 70

From Example 4.3

1− x + x2 − · · ·+ x2m =
x2m+1 + 1

x + 1
.

Multiplying by x + 1 gives

(1− x + x2 − · · ·+ x2m)(x + 1) = x2m+1 + 1.

– Typeset by FoilTEX – 70

For example

(1− x + x2)(x + 1) = x3 + 1,

– Typeset by FoilTEX – 71

For example

(1− x + x2)(x + 1) = x3 + 1,

(1− x + x2 − x3 + x4)(x + 1) = x5 + 1,

– Typeset by FoilTEX – 71

For example

(1− x + x2)(x + 1) = x3 + 1,

(1− x + x2 − x3 + x4)(x + 1) = x5 + 1,

(1− x + x2 − x3 + x4 − x5 + x6)(x + 1) = x7 + 1.

– Typeset by FoilTEX – 71

For example

(1− x + x2)(x + 1) = x3 + 1,

(1− x + x2 − x3 + x4)(x + 1) = x5 + 1,

(1− x + x2 − x3 + x4 − x5 + x6)(x + 1) = x7 + 1.

We can say

(x + 1)|(x2m+1 + 1) and

(1− x + x2 − · · ·+ x2m)|(x2m+1 + 1).

– Typeset by FoilTEX – 71

Change of basis

It is sometimes useful to be able to start the induction at some point other than
n = 1.

In this case we use the following fact which follows from the Axiom of Induction.

Let s ∈ Z. Assume that P (n) is a statement, for all n ≥ s.

Assume further that it can be shown that

(1′) P (s) is true and

(2′) if P (k) is true then P (k + 1) is true, for k ≥ s.

Then P (n) is true for all n ≥ s.

– Typeset by FoilTEX – 72

Example 4.5. Show that 2n > n3, for all n ≥ 10.

Note that 29 = 512 < 729 = 93, so the result does not hold when n = 9.

– Typeset by FoilTEX – 73

Binomial coefficients

The binomial coefficient or choice number

(
n

k

)
is given by the formula

(
n

k

)
=

n!
(n− k)!k!

,

for non-negative integers n and k, with 0 ≤ k ≤ n.

– Typeset by FoilTEX – 74

Binomial coefficients

The binomial coefficient or choice number

(
n

k

)
is given by the formula

(
n

k

)
=

n!
(n− k)!k!

,

for non-negative integers n and k, with 0 ≤ k ≤ n.

We define 0! = 1 so that

(
n

0

)
=

(
n

n

)
= 1, for all n.

– Typeset by FoilTEX – 74

As you can verify (
n

k

)
=

(
n− 1

k

)
+

(
n− 1
k − 1

)
.

– Typeset by FoilTEX – 75

As you can verify (
n

k

)
=

(
n− 1

k

)
+

(
n− 1
k − 1

)
.

We can use this fact to generate binomial coefficients. Start with

(
0
0

)
and write

out succesive rows starting with 1 =
(

n

0

)
and ending with

(
n

n

)
= 1.

– Typeset by FoilTEX – 75

As you can verify (
n

k

)
=

(
n− 1

k

)
+

(
n− 1
k − 1

)
.

We can use this fact to generate binomial coefficients. Start with

(
0
0

)
and write

out succesive rows starting with 1 =
(

n

0

)
and ending with

(
n

n

)
= 1.

Fill the rows making the kth entry on the nth row the sum of the (k − 1)th and
kth entries from the row above.

– Typeset by FoilTEX – 75

(
0
0

)
↙ ↘(

1
0

) (
1
1

)
↙ ↘ ↙ ↘(

2
0

) (
2
1

) (
2
2

)
↙ ↘ ↙ ↘ ↙ ↘(

3
0

) (
3
1

) (
3
2

) (
3
3

)

Then the (n+1)st row will contain the binomial coefficients

(
n

k

)
, for k = 0, . . . , n.

– Typeset by FoilTEX – 76

This array is known as Pascal’s triangle and is more familiar as

1

↙ ↘
1 1

↙ ↘ ↙ ↘
1 2 1

↙ ↘ ↙ ↘ ↙ ↘
1 3 3 1

– Typeset by FoilTEX – 77

Diagonal sums

Write out Pascal’s triangle with the left hand “1”s aligned in a column.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

– Typeset by FoilTEX – 78

Diagonal sums

Write out Pascal’s triangle with the left hand “1”s aligned in a column.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Now add numbers on the diagonals running from lower left to upper right:

– Typeset by FoilTEX – 78

1

1

1 + 1 = 2

1 + 2 = 3

1 + 3 + 1 = 5

1 + 4 + 3 = 8

1 + 5 + 6 + 1 = 13

1 + 6 + 10 + 4 = 21.

– Typeset by FoilTEX – 79

1

1

1 + 1 = 2

1 + 2 = 3

1 + 3 + 1 = 5

1 + 4 + 3 = 8

1 + 5 + 6 + 1 = 13

1 + 6 + 10 + 4 = 21.

These are the first 8 of the Fibonacci numbers.

– Typeset by FoilTEX – 79

Fibonacci numbers

The Fibonacci numbers are generated by the rules

f1 = 1

f2 = 1

fn+1 = fn + fn−1, for n ≥ 2.

– Typeset by FoilTEX – 80

Fibonacci numbers

The Fibonacci numbers are generated by the rules

f1 = 1

f2 = 1

fn+1 = fn + fn−1, for n ≥ 2.

Thus the Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

– Typeset by FoilTEX – 80

Do the diagonals of Pascal’s triangle sum to the Fibonacci numbers after the first
8?

– Typeset by FoilTEX – 81

Do the diagonals of Pascal’s triangle sum to the Fibonacci numbers after the first
8?

They do because each entry on a diagonal is the sum of one number from the
diagonal one row above it and a second number from the diagonal two rows
above it.

– Typeset by FoilTEX – 81

Do the diagonals of Pascal’s triangle sum to the Fibonacci numbers after the first
8?

They do because each entry on a diagonal is the sum of one number from the
diagonal one row above it and a second number from the diagonal two rows
above it.

Thus each diagonal is the sum of the two diagonals above it.

– Typeset by FoilTEX – 81

Example 4.6. Consider the following.

f2 = 1

– Typeset by FoilTEX – 82

Example 4.6. Consider the following.

f2 = 1

f3 = 2

– Typeset by FoilTEX – 82

Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

– Typeset by FoilTEX – 82

Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

– Typeset by FoilTEX – 82

Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

– Typeset by FoilTEX – 82

Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

– Typeset by FoilTEX – 82

Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7

– Typeset by FoilTEX – 82

Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7

f4 + f5 = 8

– Typeset by FoilTEX – 82

Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7

f4 + f5 = 8

f2 + f5 + f9 = 1 + 5 + 34 = 40

– Typeset by FoilTEX – 82

Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7

f4 + f5 = 8

f2 + f5 + f9 = 1 + 5 + 34 = 40

f3 + f7 + f10 = 2 + 13 + 55 = 70.

– Typeset by FoilTEX – 82

Example 4.6. Consider the following.

f2 = 1

f3 = 2

f4 = 3

f2 + f4 = 4

f5 = 5

f2 + f5 = 6

f3 + f5 = 7

f4 + f5 = 8

f2 + f5 + f9 = 1 + 5 + 34 = 40

f3 + f7 + f10 = 2 + 13 + 55 = 70.

Is every integer a sum of different Fibonacci numbers?

– Typeset by FoilTEX – 82

Example 4.7. If we take every third Fibonacci number we obtain a new sequence
of numbers,

f3, f6, f9, f12, . . .

– Typeset by FoilTEX – 83

Example 4.7. If we take every third Fibonacci number we obtain a new sequence
of numbers,

f3, f6, f9, f12, . . .

with values
2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, . . .

– Typeset by FoilTEX – 83

Example 4.7. If we take every third Fibonacci number we obtain a new sequence
of numbers,

f3, f6, f9, f12, . . .

with values
2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, . . .

We shall prove, by induction that f3n is even, for all n ≥ 1.

– Typeset by FoilTEX – 83

Example 4.8 (The binomial theorem). This example is not examinable

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk, for all n ∈ N and all x, y ∈ R.

– Typeset by FoilTEX – 84

Objectives

After covering this chapter of the course you should be able to:

(i) understand the principle of proof by induction;

(ii) carry out proof by induction, both starting with the integer 1 and starting
with an integer other than 1;

(iii) remember the definition of binomial coefficients;

(iv) remember the definition of the Fibonacci numbers.

– Typeset by FoilTEX – 85

Greatest common divisors again

Whenever we ran the Euclidean Algorithm, on natural numbers a and b, we
obtained not only gcd(a, b) but also integers u and v such that

gcd(a, b) = au + bv.

– Typeset by FoilTEX – 86

Greatest common divisors again

Whenever we ran the Euclidean Algorithm, on natural numbers a and b, we
obtained not only gcd(a, b) but also integers u and v such that

gcd(a, b) = au + bv.

This gave us Theorem 2.21:

Let a and b be integers, not both zero, and let d = gcd(a, b). Then there exist
integers u and v such that d = au + bv.

– Typeset by FoilTEX – 86

Greatest common divisors again

Whenever we ran the Euclidean Algorithm, on natural numbers a and b, we
obtained not only gcd(a, b) but also integers u and v such that

gcd(a, b) = au + bv.

This gave us Theorem 2.21:

Let a and b be integers, not both zero, and let d = gcd(a, b). Then there exist
integers u and v such that d = au + bv.

– Typeset by FoilTEX – 86

Second proof of Theorem 2.21

Suppose that we have positive integers a and b.

– Typeset by FoilTEX – 87

Second proof of Theorem 2.21

Suppose that we have positive integers a and b.

Consider the set

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}.

– Typeset by FoilTEX – 87

Second proof of Theorem 2.21

Suppose that we have positive integers a and b.

Consider the set

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}.

This is a set of positive integers.

– Typeset by FoilTEX – 87

Second proof of Theorem 2.21

Suppose that we have positive integers a and b.

Consider the set

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}.

This is a set of positive integers.

We shall prove the theorem by showing that it’s smallest element is gcd(a, b).

– Typeset by FoilTEX – 87

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}
It is a fundamental property of numbers that every non-empty set of positive
integers has a smallest element.

– Typeset by FoilTEX – 88

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}
It is a fundamental property of numbers that every non-empty set of positive
integers has a smallest element.

It’s easy to see S is non-empty as it contains, for example a + b.

– Typeset by FoilTEX – 88

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}
It is a fundamental property of numbers that every non-empty set of positive
integers has a smallest element.

It’s easy to see S is non-empty as it contains, for example a + b.

Therefore S has a smallest element, s say. Then

– Typeset by FoilTEX – 88

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}
It is a fundamental property of numbers that every non-empty set of positive
integers has a smallest element.

It’s easy to see S is non-empty as it contains, for example a + b.

Therefore S has a smallest element, s say. Then

s = ak + bl, for some k, l ∈ Z. (5.1)

– Typeset by FoilTEX – 88

S = {ak + bl ∈ Z : ak + bl > 0 and k, l ∈ Z}
It is a fundamental property of numbers that every non-empty set of positive
integers has a smallest element.

It’s easy to see S is non-empty as it contains, for example a + b.

Therefore S has a smallest element, s say. Then

s = ak + bl, for some k, l ∈ Z. (5.1)

Now, using the Division Algorithm, we can write

a = sq + r, where 0 ≤ r < s.

– Typeset by FoilTEX – 88

Substituting for s using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

– Typeset by FoilTEX – 89

Substituting for s using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

so
r = a(1− kq) + b(−lq), with 0 ≤ r < s.

– Typeset by FoilTEX – 89

Substituting for s using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

so
r = a(1− kq) + b(−lq), with 0 ≤ r < s.

If r 6= 0 then we have r ∈ S and r < s, a contradiction.

– Typeset by FoilTEX – 89

Substituting for s using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

so
r = a(1− kq) + b(−lq), with 0 ≤ r < s.

If r 6= 0 then we have r ∈ S and r < s, a contradiction.

Therefore r = 0 and a = sq. That is, s|a.

– Typeset by FoilTEX – 89

Substituting for s using (5.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

so
r = a(1− kq) + b(−lq), with 0 ≤ r < s.

If r 6= 0 then we have r ∈ S and r < s, a contradiction.

Therefore r = 0 and a = sq. That is, s|a.

Similarly s|b.

– Typeset by FoilTEX – 89

Now suppose that c|a and c|b.

– Typeset by FoilTEX – 90

Now suppose that c|a and c|b.

Then a = cu and b = cv, for some u, v ∈ Z.

– Typeset by FoilTEX – 90

Now suppose that c|a and c|b.

Then a = cu and b = cv, for some u, v ∈ Z.

Substitution in (5.1) gives

s = c(uk) + c(vl) = c(uk + vl).

– Typeset by FoilTEX – 90

Now suppose that c|a and c|b.

Then a = cu and b = cv, for some u, v ∈ Z.

Substitution in (5.1) gives

s = c(uk) + c(vl) = c(uk + vl).

Therefore c|s and from Lemma 2.18.3 we have c ≤ s.

– Typeset by FoilTEX – 90

Now suppose that c|a and c|b.

Then a = cu and b = cv, for some u, v ∈ Z.

Substitution in (5.1) gives

s = c(uk) + c(vl) = c(uk + vl).

Therefore c|s and from Lemma 2.18.3 we have c ≤ s.

This completes the proof that s = gcd(a, b) and we’ve already found k, l such
that s = ak + bl, so Theorem 2.21 follows.

– Typeset by FoilTEX – 90

Coprime integers

Definition 5.1. If a and b are integers with gcd(a, b) = 1 then we say that a
and b are coprime.

– Typeset by FoilTEX – 91

Coprime integers

Definition 5.1. If a and b are integers with gcd(a, b) = 1 then we say that a
and b are coprime.

Example 5.2. 6 and 35 are coprime and

6 · 6− 1 · 35 = 1.

– Typeset by FoilTEX – 91

Coprime integers

Definition 5.1. If a and b are integers with gcd(a, b) = 1 then we say that a
and b are coprime.

Example 5.2. 6 and 35 are coprime and

6 · 6− 1 · 35 = 1.

What about
5 · 5− 12 · 2 = 1?

– Typeset by FoilTEX – 91

Coprime integers

Definition 5.1. If a and b are integers with gcd(a, b) = 1 then we say that a
and b are coprime.

Example 5.2. 6 and 35 are coprime and

6 · 6− 1 · 35 = 1.

What about
5 · 5− 12 · 2 = 1?

We have u and v such that 15u + 12v = 1.

Does this force gcd(15, 12) = 1?

In this example the gcd is 1, but this could be a coincidence.

– Typeset by FoilTEX – 91

Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

– Typeset by FoilTEX – 92

Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

– Typeset by FoilTEX – 92

Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

– Typeset by FoilTEX – 92

Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

Step(2) Prove that if there exist integers u and v such that au + bv = 1 then
gcd(a, b) = 1.

– Typeset by FoilTEX – 92

Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

Step(2) Prove that if there exist integers u and v such that au + bv = 1 then
gcd(a, b) = 1.

Assume that there are integers u and v such that au + bv = 1.

– Typeset by FoilTEX – 92

Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

Step(2) Prove that if there exist integers u and v such that au + bv = 1 then
gcd(a, b) = 1.

Assume that there are integers u and v such that au + bv = 1.

Let d = gcd(a, b).

– Typeset by FoilTEX – 92

Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

Step(2) Prove that if there exist integers u and v such that au + bv = 1 then
gcd(a, b) = 1.

Assume that there are integers u and v such that au + bv = 1.

Let d = gcd(a, b).

Then d|a and d|b so d|(au + bv):

– Typeset by FoilTEX – 92

Corollary 5.3. Integers a and b are coprime if and only if there exist integers
u and v such that au + bv = 1.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist integers u and v such
that au + bv = 1.

If a and b are coprime then it follows directly from Theorem 2.21 that
such u and v exist.

Step(2) Prove that if there exist integers u and v such that au + bv = 1 then
gcd(a, b) = 1.

Assume that there are integers u and v such that au + bv = 1.

Let d = gcd(a, b).

Then d|a and d|b so d|(au + bv):

We have d = 1, so a and b are coprime, as required.

– Typeset by FoilTEX – 92

Euclid’s Lemma

Lemma 5.4. Let a, b and c be integers with gcd(a, b) = 1. If a|bc then a|c.

– Typeset by FoilTEX – 93

Application to solving equations

Lemma 2.24: an equation of the form ax + by = c has solution if and only if
c| gcd(a, b).

– Typeset by FoilTEX – 94

Application to solving equations

Lemma 2.24: an equation of the form ax + by = c has solution if and only if
c| gcd(a, b).

Theorem 5.5. Let a, b, c be integers and let d = gcd(a, b). The equation

ax + by = c (5.2)

has an integer solution if and only if d|c. If d|c then equation (5.2) has
infinitely many solutions

– Typeset by FoilTEX – 94

Application to solving equations

Lemma 2.24: an equation of the form ax + by = c has solution if and only if
c| gcd(a, b).

Theorem 5.5. Let a, b, c be integers and let d = gcd(a, b). The equation

ax + by = c (5.2)

has an integer solution if and only if d|c. If d|c then equation (5.2) has
infinitely many solutions

and if x = u0, y = v0 is one solution then x = u1, y = v1 is a solution if and
only if

u1 = u0 + (b/d)t and v1 = v0 − (a/d)t, for some t ∈ Z.

– Typeset by FoilTEX – 94

Example 2.20 continued

Example 5.6.
gcd(2600, 2028) = 52 and the equation 2600x + 2028y = 104 has a solution
x = −14, y = 18.

– Typeset by FoilTEX – 95

Example 2.20 continued

Example 5.6.
gcd(2600, 2028) = 52 and the equation 2600x + 2028y = 104 has a solution
x = −14, y = 18.

As 2600/52 = 50 and 2028/52 = 39 the solutions to this equation are

x = −14 + 39t, y = 18− 50t, for t ∈ Z.

– Typeset by FoilTEX – 95

Example 2.20 continued

Example 5.6.
gcd(2600, 2028) = 52 and the equation 2600x + 2028y = 104 has a solution
x = −14, y = 18.

As 2600/52 = 50 and 2028/52 = 39 the solutions to this equation are

x = −14 + 39t, y = 18− 50t, for t ∈ Z.

For each integer t we have a solution, some of which are shown below.

t x y

-2 -92 -118
-1 -53 68
0 -14 18
1 25 -32
2 64 -82

– Typeset by FoilTEX – 95

Prime Numbers

It follows from the definition of division that every integer n is divisible by ±1
and by ±n.

Amongst the positive integers a special case is the integer 1 which has only one
positive divisor, namely 1.

All other positive integers n have at least 2 positive divisors, 1 and n, and may
have more.

Definition 5.7. A positive integer p > 1 is called a prime if the only positive
divisors of p are 1 and p. An integer which is not prime is called composite.

– Typeset by FoilTEX – 96

For example 2, 5, 7, 11, 13, 17 and 19 are prime whilst the first few composite
integers are:

4 which is divisible by 2
6 which is divisible by 2 and 3
8 which is divisible by 2 and 4
9 which is divisible by 3
10 which is divisible by 2 and 5.

– Typeset by FoilTEX – 97

The prime divisor property

A fundamental property of prime numbers is the following.

Theorem 5.8. If p is a prime and p|ab then p|a or p|b.

– Typeset by FoilTEX – 98

The prime divisor property

A fundamental property of prime numbers is the following.

Theorem 5.8. If p is a prime and p|ab then p|a or p|b.

If p|a then we have nothing to prove.

– Typeset by FoilTEX – 98

The prime divisor property

A fundamental property of prime numbers is the following.

Theorem 5.8. If p is a prime and p|ab then p|a or p|b.

If p|a then we have nothing to prove.

If p - a then the common divisors of a and p are ±1 (since the only divisors of p
are ±1 and ±p).

– Typeset by FoilTEX – 98

The prime divisor property

A fundamental property of prime numbers is the following.

Theorem 5.8. If p is a prime and p|ab then p|a or p|b.

If p|a then we have nothing to prove.

If p - a then the common divisors of a and p are ±1 (since the only divisors of p
are ±1 and ±p).

Hence gcd(a, p) = 1.

– Typeset by FoilTEX – 98

The prime divisor property

A fundamental property of prime numbers is the following.

Theorem 5.8. If p is a prime and p|ab then p|a or p|b.

If p|a then we have nothing to prove.

If p - a then the common divisors of a and p are ±1 (since the only divisors of p
are ±1 and ±p).

Hence gcd(a, p) = 1.

From Lemma 5.4 (Euclid’s Lemma) it follows that p|b, as required.

– Typeset by FoilTEX – 98

Example 5.9. If 3|bc then either 3|b or 3|c.

– Typeset by FoilTEX – 99

Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

– Typeset by FoilTEX – 99

Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

– Typeset by FoilTEX – 99

Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

Once we’ve discussed prime factorisation it will be easy to see why this property
doesn’t hold for any composite integers.

– Typeset by FoilTEX – 99

Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

Once we’ve discussed prime factorisation it will be easy to see why this property
doesn’t hold for any composite integers.

The Theorem above can easily be extended to products of more than 2 integers.

– Typeset by FoilTEX – 99

Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

Once we’ve discussed prime factorisation it will be easy to see why this property
doesn’t hold for any composite integers.

The Theorem above can easily be extended to products of more than 2 integers.

For example, if 3|abc then, from the Theorem either 3|ab or 3|c.

– Typeset by FoilTEX – 99

Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

Once we’ve discussed prime factorisation it will be easy to see why this property
doesn’t hold for any composite integers.

The Theorem above can easily be extended to products of more than 2 integers.

For example, if 3|abc then, from the Theorem either 3|ab or 3|c.

If 3|ab then, from the Theorem again, 3|a or 3|b.

– Typeset by FoilTEX – 99

Example 5.9. If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.

For instance 6|24 and 24 = 8 · 3, so 6|8 · 3 but 6 - 8 and 6 - 3.

Once we’ve discussed prime factorisation it will be easy to see why this property
doesn’t hold for any composite integers.

The Theorem above can easily be extended to products of more than 2 integers.

For example, if 3|abc then, from the Theorem either 3|ab or 3|c.

If 3|ab then, from the Theorem again, 3|a or 3|b.

Therefore, if 3|abc then 3|a or 3|b or 3|c.

– Typeset by FoilTEX – 99

Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

– Typeset by FoilTEX – 100

Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

– Typeset by FoilTEX – 100

Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

– Typeset by FoilTEX – 100

Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

Inductive Hypothesis: If n ≥ 2 and p|a1 · · · an then p|ai, for some i.

– Typeset by FoilTEX – 100

Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

Inductive Hypothesis: If n ≥ 2 and p|a1 · · · an then p|ai, for some i.

Inductive Step: Suppose that p|a1 · · · an+1. Let

a = a1 · · · an and b = an+1.

Then p|ab so, from Theorem 5.8, p|a or p|b.

– Typeset by FoilTEX – 100

Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

Inductive Hypothesis: If n ≥ 2 and p|a1 · · · an then p|ai, for some i.

Inductive Step: Suppose that p|a1 · · · an+1. Let

a = a1 · · · an and b = an+1.

Then p|ab so, from Theorem 5.8, p|a or p|b.

If p|a the inductive hypothesis implies that p|ai, for some i with 1 ≤ i ≤ n.

– Typeset by FoilTEX – 100

Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

Inductive Hypothesis: If n ≥ 2 and p|a1 · · · an then p|ai, for some i.

Inductive Step: Suppose that p|a1 · · · an+1. Let

a = a1 · · · an and b = an+1.

Then p|ab so, from Theorem 5.8, p|a or p|b.

If p|a the inductive hypothesis implies that p|ai, for some i with 1 ≤ i ≤ n.

If p|b then p|an+1.

– Typeset by FoilTEX – 100

Corollary 5.10. If p is prime and p|a1 · · · an then p|ai, for some i.

Proof. The proof is by induction on n, starting with n = 2.

Basis: P (2) follows from Theorem 5.8.

Inductive Hypothesis: If n ≥ 2 and p|a1 · · · an then p|ai, for some i.

Inductive Step: Suppose that p|a1 · · · an+1. Let

a = a1 · · · an and b = an+1.

Then p|ab so, from Theorem 5.8, p|a or p|b.

If p|a the inductive hypothesis implies that p|ai, for some i with 1 ≤ i ≤ n.

If p|b then p|an+1.

Hence p|ai, for some i, as required.

– Typeset by FoilTEX – 100

Prime Factorisation

An expression of an integer n as a product of primes is called a prime factorisation
of n.

– Typeset by FoilTEX – 101

Prime Factorisation

An expression of an integer n as a product of primes is called a prime factorisation
of n.

For example 12 and 25 have prime factorisations 12 = 2 · 2 · 3 and 25 = 5 · 5,
respectively.

– Typeset by FoilTEX – 101

Prime Factorisation

An expression of an integer n as a product of primes is called a prime factorisation
of n.

For example 12 and 25 have prime factorisations 12 = 2 · 2 · 3 and 25 = 5 · 5,
respectively.

We aim to show that every positive integer greater than one has a prime
factorisation and that this prime factorisation is unique, up to the order in which
the prime factors occur.

– Typeset by FoilTEX – 101

Prime Factorisation

An expression of an integer n as a product of primes is called a prime factorisation
of n.

For example 12 and 25 have prime factorisations 12 = 2 · 2 · 3 and 25 = 5 · 5,
respectively.

We aim to show that every positive integer greater than one has a prime
factorisation and that this prime factorisation is unique, up to the order in which
the prime factors occur.

For instance

2 · 5 · 2 · 7,

2 · 7 · 2 · 5,

7 · 2 · 2 · 5

are all prime factorisations of 140 but are regarded as the same because the
number of 2’s, 5’s and 7’s is the same in each.

– Typeset by FoilTEX – 101

Example 5.11. Write 7 and 21 as a products of primes:

– Typeset by FoilTEX – 102

Example 5.11. Write 7 and 21 as a products of primes:

7 and 3 · 7

– Typeset by FoilTEX – 102

Example 5.11. Write 7 and 21 as a products of primes:

7 and 3 · 7

We consider these as products of primes of length one and two respectively.

– Typeset by FoilTEX – 102

Example 5.11. Write 7 and 21 as a products of primes:

7 and 3 · 7

We consider these as products of primes of length one and two respectively.

We cannot write 7 as a product of primes of length more than one.

– Typeset by FoilTEX – 102

Example 5.11. Write 7 and 21 as a products of primes:

7 and 3 · 7

We consider these as products of primes of length one and two respectively.

We cannot write 7 as a product of primes of length more than one.

What about a larger prime like 6991 say? Can I write this as a product of primes:
other than the length one product 6991?

– Typeset by FoilTEX – 102

The Fundamental Theorem of Arithmetic

Theorem 5.12. Every integer n > 1 is a product of one or more primes. This
product is unique apart from the order in which the primes occur.

– Typeset by FoilTEX – 103

The Fundamental Theorem of Arithmetic

Theorem 5.12. Every integer n > 1 is a product of one or more primes. This
product is unique apart from the order in which the primes occur.

Proof.

Step(1) Prove that every n > 1 has a prime factorisation.

Step(2) Prove that prime factorisations are unique.

– Typeset by FoilTEX – 103

Collected prime factorisation

It is often convenient to write the prime factorisation of an integer with all like
primes collected together, in ascending order, and with exponential notation.

– Typeset by FoilTEX – 104

Collected prime factorisation

It is often convenient to write the prime factorisation of an integer with all like
primes collected together, in ascending order, and with exponential notation.

For example we could write the prime factorisations of 140 and 2200 as

140 = 22 · 5 · 7 and

2200 = 23 · 52 · 11.

– Typeset by FoilTEX – 104

Collected prime factorisation

It is often convenient to write the prime factorisation of an integer with all like
primes collected together, in ascending order, and with exponential notation.

For example we could write the prime factorisations of 140 and 2200 as

140 = 22 · 5 · 7 and

2200 = 23 · 52 · 11.

We call this the collected prime factorisation of an integer n or say that we’ve
written n in standard form.

– Typeset by FoilTEX – 104

Collected prime factorisation

It is often convenient to write the prime factorisation of an integer with all like
primes collected together, in ascending order, and with exponential notation.

For example we could write the prime factorisations of 140 and 2200 as

140 = 22 · 5 · 7 and

2200 = 23 · 52 · 11.

We call this the collected prime factorisation of an integer n or say that we’ve
written n in standard form.

From the Fundamental Theorem of Arithmetic it follows that collected prime
factorisations are unique. We record this fact in the following corollary.

– Typeset by FoilTEX – 104

Corollary 5.13. Let n > 1 be an integer. Then n may be written uniquely as

n = pa1
1 · · · pak

k ,

where k ≥ 1, p1 < · · · < pk, pi is prime and ai ≥ 1.

– Typeset by FoilTEX – 105

Corollary 5.13. Let n > 1 be an integer. Then n may be written uniquely as

n = pa1
1 · · · pak

k ,

where k ≥ 1, p1 < · · · < pk, pi is prime and ai ≥ 1.

Example 5.14. It is easy to multiply together integers in standard form: we just
add corresponding superscripts.

For example
3388 = 22 · 7 · 112

and
2200 = 23 · 52 · 11

so
3388 · 2200 = 25 · 52 · 7 · 113.

– Typeset by FoilTEX – 105

In general if integers a and b have standard forms

a = pα1
1 · · · pαn

n and b = pβ1
1 · · · pβn

n

then ab has standard form

ab = pα1+β1
1 · · · pαn+βn

n .

– Typeset by FoilTEX – 106

In general if integers a and b have standard forms

a = pα1
1 · · · pαn

n and b = pβ1
1 · · · pβn

n

then ab has standard form

ab = pα1+β1
1 · · · pαn+βn

n .

Here we’ve padded out the collected prime factorisations (with p0
i where

necessary) to make them the same length: as in the following example.

2200 = 23 · 52 · 11 = 23 · 52 · 70 · 111 · 130

and
572572 = 22 · 7 · 112 · 132 = 22 · 50 · 71 · 112 · 132

so
2200 · 572572 = 25 · 52 · 71 · 113 · 132.

– Typeset by FoilTEX – 106

Example 5.15. Reversing the idea of the previous example, it’s easy to find the
divisors of an integer given in standard form.

For instance if a|3388 then

3388 = 22 · 7 · 112 = ab,

for some integer b.

– Typeset by FoilTEX – 107

Example 5.16. As 2200 has standard form

23 · 52 · 11

the positive divisor of 2200 are of the form

2a5b11c,

where
0 ≤ a ≤ 3, 0 ≤ b ≤ 2 and 0 ≤ c ≤ 1.

– Typeset by FoilTEX – 108

First list all such triples (a, b, c):

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 2, 0) (0, 2, 1)
(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 2, 0) (1, 2, 1)
(2, 0, 0) (2, 0, 1) (2, 1, 0) (2, 1, 1) (2, 2, 0) (2, 2, 1)
(3, 0, 0) (3, 0, 1) (3, 1, 0) (3, 1, 1) (3, 2, 0) (3, 2, 1)

– Typeset by FoilTEX – 109

First list all such triples (a, b, c):

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 2, 0) (0, 2, 1)
(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 2, 0) (1, 2, 1)
(2, 0, 0) (2, 0, 1) (2, 1, 0) (2, 1, 1) (2, 2, 0) (2, 2, 1)
(3, 0, 0) (3, 0, 1) (3, 1, 0) (3, 1, 1) (3, 2, 0) (3, 2, 1)

The positive divisors of 2200 are therefore:

1 11 5 5 · 11 52 52 · 11
2 2 · 11 2 · 5 2 · 5 · 11 2 · 52 2 · 52 · 11
22 22 · 11 22 · 5 22 · 5 · 11 22 · 52 22 · 52 · 11
23 23 · 11 23 · 5 23 · 5 · 11 23 · 52 23 · 52 · 11

– Typeset by FoilTEX – 109

Example 5.17. It’s easy to find the greatest common divisor of numbers in
standard form.

The standard form of 572572 is

22 · 7 · 112 · 132

so any divisor of 572572 has the form

2e7f11g13h,

with

0 ≤ e ≤ 2, 0 ≤ f ≤ 1, 0 ≤ g ≤ 2 and 0 ≤ h ≤ 2.

– Typeset by FoilTEX – 110

Example 5.17. It’s easy to find the greatest common divisor of numbers in
standard form.

The standard form of 572572 is

22 · 7 · 112 · 132

so any divisor of 572572 has the form

2e7f11g13h,

with

0 ≤ e ≤ 2, 0 ≤ f ≤ 1, 0 ≤ g ≤ 2 and 0 ≤ h ≤ 2.

Hence common divisors of 2200 and 572572 have the form 2u11v, with 0 ≤ u ≤ 2
and 0 ≤ v ≤ 1.

– Typeset by FoilTEX – 110

Example 5.17. It’s easy to find the greatest common divisor of numbers in
standard form.

The standard form of 572572 is

22 · 7 · 112 · 132

so any divisor of 572572 has the form

2e7f11g13h,

with

0 ≤ e ≤ 2, 0 ≤ f ≤ 1, 0 ≤ g ≤ 2 and 0 ≤ h ≤ 2.

Hence common divisors of 2200 and 572572 have the form 2u11v, with 0 ≤ u ≤ 2
and 0 ≤ v ≤ 1.

Therefore gcd(2200, 572572) = 22 · 11 = 44.

– Typeset by FoilTEX – 110

Example 5.18. Find gcd(11990979, 637637).

– Typeset by FoilTEX – 111

Fermat’s Method of Factorisation

Multiplying: easy

– Typeset by FoilTEX – 112

Fermat’s Method of Factorisation

Multiplying: easy

Factoring: difficult

– Typeset by FoilTEX – 112

Fermat’s Method of Factorisation

Multiplying: easy

Factoring: difficult

See www.rsasecurity.com/rsalabs/node.asp?id=2094#GetTheNumbers

– Typeset by FoilTEX – 112

Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

– Typeset by FoilTEX – 113

Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

– Typeset by FoilTEX – 113

Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

– Typeset by FoilTEX – 113

Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

– Typeset by FoilTEX – 113

Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

– Typeset by FoilTEX – 113

Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580

– Typeset by FoilTEX – 113

Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580

163142 − 266004389 = 142207

– Typeset by FoilTEX – 113

Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580

163142 − 266004389 = 142207

163152 − 266004389 = 174836

– Typeset by FoilTEX – 113

Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580

163142 − 266004389 = 142207

163152 − 266004389 = 174836

163162 − 266004389 = 207467

– Typeset by FoilTEX – 113

Example 5.19. Use Fermat’s method of factorisation to find factors of 266004389.

We have 16309 <
√

266004389 < 16310. Therefore we start with u = 16310:

163102 − 266004389 = 11711

163112 − 266004389 = 44332

163122 − 266004389 = 76955

163132 − 266004389 = 109580

163142 − 266004389 = 142207

163152 − 266004389 = 174836

163162 − 266004389 = 207467

163172 − 266004389 = 240100 = 4902.

– Typeset by FoilTEX – 113

Therefore 266004389 = 163172 − 4902 = (16317 + 490)(16317− 490).

– Typeset by FoilTEX – 114

Therefore 266004389 = 163172 − 4902 = (16317 + 490)(16317− 490).

16317 + 490 = 16807 and 16317− 490 = 15827 so

266004389 = 16807 · 15827.

– Typeset by FoilTEX – 114

Therefore 266004389 = 163172 − 4902 = (16317 + 490)(16317− 490).

16317 + 490 = 16807 and 16317− 490 = 15827 so

266004389 = 16807 · 15827.

Unfortunately, if n does not have 2 factors of similar size then this method of
factoring can be very slow.

(It does however form the basis of some more powerful methods.)

– Typeset by FoilTEX – 114

Primality testing

Is n prime?

– Typeset by FoilTEX – 115

Primality testing

Is n prime?

Test it for divisibility by all prime numbers p such that 1 < p < n.

– Typeset by FoilTEX – 115

Primality testing

Is n prime?

Test it for divisibility by all prime numbers p such that 1 < p < n.

Better to use the following lemma.

– Typeset by FoilTEX – 115

Primality testing

Is n prime?

Test it for divisibility by all prime numbers p such that 1 < p < n.

Better to use the following lemma.

Lemma 5.20. An integer n > 1 is composite if and only if it has a prime
divisor p such that p <

√
n.

– Typeset by FoilTEX – 115

Example 5.21. To find all primes in the range 1 to 45:

– Typeset by FoilTEX – 116

Example 5.21. To find all primes in the range 1 to 45:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43

is now a complete list of primes between 1 and 45.

– Typeset by FoilTEX – 116

Example 5.21. To find all primes in the range 1 to 45:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43

is now a complete list of primes between 1 and 45.

This method of constructing lists of primes is known as the Sieve of Eratosthenes.

– Typeset by FoilTEX – 116

Example 5.21. To find all primes in the range 1 to 45:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43

is now a complete list of primes between 1 and 45.

This method of constructing lists of primes is known as the Sieve of Eratosthenes.

In fact it is still too inefficient to use in practice to determine if a large number is
prime.

– Typeset by FoilTEX – 116

A Theorem of Euclid

The following theorem appears in Book IX of the Elements, a mathematical
textbook written by Euclid: a Greek mathematician who lived around 300 bc.

Theorem 5.22. There are infinitely many primes.

– Typeset by FoilTEX – 117

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Euclid.html

A Theorem of Euclid

The following theorem appears in Book IX of the Elements, a mathematical
textbook written by Euclid: a Greek mathematician who lived around 300 bc.

Theorem 5.22. There are infinitely many primes.

The proof is by contradiction.

– Typeset by FoilTEX – 117

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Euclid.html

Objectives

After covering this chapter of the course you should be able to:

(i) recall Theorem 2.21 and understand its proof;

(ii) define a coprime pair of integers;

(iii) recall Corollary 5.3 and Euclid’s Lemma and understand their proofs;

(iv) define prime and composite numbers;

(v) recall the prime divisor property, Theorem 5.8, and understand its proof;

(vi) recall the Fundamental Theorem of Arithmetic, Theorem 5.12, and
understand its proof;

(vii) recognise and write down the prime factorisation and standard form or
collected prime factorisation of an integer;

– Typeset by FoilTEX – 118

(viii) use prime factorisation to find divisors and greatest common divisors;

(ix) recall the statement of Theorem 5.22 and understand its proof.

– Typeset by FoilTEX – 119

Casting Out Nines

This is a method of testing integers for divisibility by 9.

Procedure 6.1. Given a non–negative integer (written in base 10) repeat the
following steps (in any order) until a number less than 9 is obtained.

1. Cross out any digits that sum to 9 or a multiple of 9.

2. Add the remaining digits.

– Typeset by FoilTEX – 120

Casting Out Nines

This is a method of testing integers for divisibility by 9.

Procedure 6.1. Given a non–negative integer (written in base 10) repeat the
following steps (in any order) until a number less than 9 is obtained.

1. Cross out any digits that sum to 9 or a multiple of 9.

2. Add the remaining digits.

The result is the remainder of division of n by 9.

– Typeset by FoilTEX – 120

Casting Out Nines

This is a method of testing integers for divisibility by 9.

Procedure 6.1. Given a non–negative integer (written in base 10) repeat the
following steps (in any order) until a number less than 9 is obtained.

1. Cross out any digits that sum to 9 or a multiple of 9.

2. Add the remaining digits.

The result is the remainder of division of n by 9.

Example 6.2. Cast out Nines from 215763401.

– Typeset by FoilTEX – 120

Casting Out Nines

This is a method of testing integers for divisibility by 9.

Procedure 6.1. Given a non–negative integer (written in base 10) repeat the
following steps (in any order) until a number less than 9 is obtained.

1. Cross out any digits that sum to 9 or a multiple of 9.

2. Add the remaining digits.

The result is the remainder of division of n by 9.

Example 6.2. Cast out Nines from 215763401.

– Typeset by FoilTEX – 120

Example 6.3. Cast out Nines from 51422211.

– Typeset by FoilTEX – 121

Arithmetic checking

The casting out nines procedure can be used to check the results of numerical
calculations.

– Typeset by FoilTEX – 122

Arithmetic checking

The casting out nines procedure can be used to check the results of numerical
calculations.
Example 6.4. Check the computation

215763401× 51422216 = 11095032211116616.

– Typeset by FoilTEX – 122

Arithmetic checking

The casting out nines procedure can be used to check the results of numerical
calculations.
Example 6.4. Check the computation

215763401× 51422216 = 11095032211116616.

Example 6.5. Check
57 + 3 = 78128 = 304× 257

for arithmetic mistakes.

– Typeset by FoilTEX – 122

Divisiblity by 9

We can also use casting out nines to check for divisibility by 9. A number is
divisible by 9 if and only if the result is 0.

– Typeset by FoilTEX – 123

Divisiblity by 9

We can also use casting out nines to check for divisibility by 9. A number is
divisible by 9 if and only if the result is 0.
Example 6.6. Decide which of 215763401, 51422216 and 3254787 is divisible by
9.

– Typeset by FoilTEX – 123

The Telephone Number Trick

1. Write down your telephone number.

2. Write down your telephone number with digits reversed.

3. Subtract the smaller of these two numbers from the larger.

4. By casting out nines from the result decide whether or not it is divisible by 9.

– Typeset by FoilTEX – 124

The “Odd & Even” Number System

– Typeset by FoilTEX – 125

Red, white and blue arithmetic

– Typeset by FoilTEX – 126

Congruence

In the Red, White and Blue number system we collected together all integers
which left remainder 1, after attempting division by 3, and called them blue.

Notice that if a and b are blue then 3|b− a.

Conversely, given any two integers a and b such that 3|b− a we can write

b− a = 3k, for some k ∈ Z.

Using the division algorithm we can also write

b = 3q + r, for r = 0, 1 or 2.

Therefore
a = b− 3k = 3(q − k) + r.

– Typeset by FoilTEX – 127

That is a and b are both the same colour in the Red, White and Blue number
system.

Our analysis shows that a and b are the same colour if and only if 3|b − a.
Generalising this from 3 to an arbitrary integer n leads us to the definition of
congruence.

– Typeset by FoilTEX – 128

Definition 6.7. Let n be a positive integer and let a, b ∈ Z. If n|b− a then we
say that a is congruent to b modulo n, and write

a ≡ b (mod n).

For instance 17 ≡ 5 (mod 12) and 216 ≡ 6 (mod 7).

As in the case n = 3 above, a ≡ b (mod n) if and only if a and b both leave the
same remainder after attempting division by n.

In fact, if
a = nq + r and b = np + r, where 0 ≤ r < n (6.1)

then
b− a = n(p− q),

so n|b− a: that is a ≡ b (mod n).

On the other hand if we know that a ≡ b (mod n) then n|b − a so, using the
argument above, with n instead of 3, we’ll find that there is some r such that
(6.1) holds.

– Typeset by FoilTEX – 129

Example 6.8. Congruence modulo 2 gives rise to the Odd and Even number
system.

Example 6.9. Congruence modulo 3 gives rise to the Red, White and Blue
number system.

Example 6.10. Suppose n = 10.

Then 0 ≡ 10 (mod 10), 10 ≡ 101090 (mod 10), 11 ≡ 121 (mod 10) and
27 ≡ 253427 (mod 10).

Every positive integer is congruent to its last digit (written to base 10).

In particular integers congruent to 0 all end in the digit 0.

These are exactly the integers divisible by 10.

– Typeset by FoilTEX – 130

Congruence is not the same as equality but it does share some of the properties
of equality.

If we have any integers a, b and c and n is a positive integer then

1. a ≡ a (mod n),

2. if a ≡ b (mod n) then b ≡ a (mod n) and

3. if a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n).

These are all properties of equality.

Let’s check them for congruence.

The first one is easy since n|0 = a− a, for all integers a.

We’ll check the last one here and leave the second as an exercise.

– Typeset by FoilTEX – 131

Modular arithmetic

Arithmetic with congruences is called modular arithmetic.

We’ve already seen a couple of examples: Odd & Even arithmetic and Red, White
and Blue arithmetic.

The idea is to add and multiply integers in the usual way but to regard two
numbers as the same if they are congruent.

There is a possible problem with this. Suppose we work modulo 10, that is
n = 10.

Now take two integers which are congruent modulo 10, say 23 and 3. We are to
regard these as the same.

This means that if we do something to one, say add 6, then we should get the
same answer as if we add 6 to the other.

Here “the same answer” means the same answer modulo 10. Let’s see:

23 + 6 = 29 and 3 + 6 = 9.

– Typeset by FoilTEX – 132

This is alright because 29 ≡ 9 (mod 10) and so we regard 29 and 9 as the same.

Does this always work? The purpose of the next Lemma is to reassure us that it
does.

– Typeset by FoilTEX – 133

Modular arithmetic is consistent

Lemma 6.11. Let n be a positive integer. Suppose that a, b, u and v are integers
such that

a ≡ u (mod n)

and
b ≡ v (mod n).

Then

(i) −a ≡ −u (mod n);

(ii) a + b ≡ u + v (mod n) and

(iii) ab ≡ uv (mod n).

We prove parts (i) and (iii) here, leaving part (ii) as an exercise.

– Typeset by FoilTEX – 134

Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

– Typeset by FoilTEX – 135

Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because if a ∈ Z then we can
write a = nq + r, with 0 ≤ r < n.

– Typeset by FoilTEX – 135

Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because if a ∈ Z then we can
write a = nq + r, with 0 ≤ r < n.

Then n|a− r so a ≡ r (mod n) and r is in the given list.

– Typeset by FoilTEX – 135

Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because if a ∈ Z then we can
write a = nq + r, with 0 ≤ r < n.

Then n|a− r so a ≡ r (mod n) and r is in the given list.

If a ≡ r (mod n) and a ≡ s (mod n) then, from the above, r ≡ s with 0 ≤ r < n
and 0 ≤ s < n.

– Typeset by FoilTEX – 135

Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because if a ∈ Z then we can
write a = nq + r, with 0 ≤ r < n.

Then n|a− r so a ≡ r (mod n) and r is in the given list.

If a ≡ r (mod n) and a ≡ s (mod n) then, from the above, r ≡ s with 0 ≤ r < n
and 0 ≤ s < n.

Assuming that r > s then n|r−s and n > r ≥ r−s, contradicting Lemma 2.18.3.

– Typeset by FoilTEX – 135

Lemma 6.12. Every integer is congruent modulo n to one and only one of the
integers in the list 0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because if a ∈ Z then we can
write a = nq + r, with 0 ≤ r < n.

Then n|a− r so a ≡ r (mod n) and r is in the given list.

If a ≡ r (mod n) and a ≡ s (mod n) then, from the above, r ≡ s with 0 ≤ r < n
and 0 ≤ s < n.

Assuming that r > s then n|r−s and n > r ≥ r−s, contradicting Lemma 2.18.3.

Thus a is congruent to only one integer in the list.

– Typeset by FoilTEX – 135

Example 6.13. In modular arithmetic we can always avoid computation with
large numbers.

For example working modulo 10 we have

7459898790352045324 ≡ 4 (mod 10)

and
9874558754423 ≡ 3 (mod 10).

Therefore

7459898790352045324 · 9874558754423 ≡ 4 · 3 = 12 ≡ 2 (mod 10).

– Typeset by FoilTEX – 136

Similarly, working modulo 7 we have

4543362 ≡ 5 (mod 7).

Therefore
45433622 ≡ 52 ≡ 25 ≡ 4 (mod 7)

and
45433623 = 4543362 · 45433622 ≡ 5 · 4 ≡ 20 ≡ 6 (mod 7).

– Typeset by FoilTEX – 137

Divisibility by 9

When we write a number like 20195 to base 10 we are expressing the number

2× 104 + 0× 103 + 1× 102 + 9× 101 + 5

in shorthand (there’s a 1 in the 100’s column etc.).

Applying this argument in general we write

amam−1 · · · a1a0

for the number

am × 10m + am−1 × 10m−1 + · · ·+ a1 × 10 + a0.

As 10k ≡ 1 (mod 9), for k = 1, . . . ,m, we have

amam−1 · · · a1a0 ≡ am + am−1 + · · ·+ a1 + a0 (mod 9). (6.2)

– Typeset by FoilTEX – 138

– Typeset by FoilTEX – 139

Casting out nines again

Suppose we cast out nines (Procedure 6.1) from an integer m.

In Step 1 we cross out any digits which sum to a multiple of 9.

The sum of these digits is congruent to zero modulo 9 so, from (6.2), the result
is an integer congruent to m modulo 9.

In Step 2 we add the digits and again, from (6.2), the result is an integer
congruent to m modulo 9.

Thus the casting out nines procedure results at every stage in an integer congruent
to m modulo 9.

The procedure ends with a number r such that 0 ≤ r < 9 and r ≡ m (mod 9).

Therefore 9|m − r, from which it follows that m = 9q + r, for some q ∈ Z and
0 ≤ r < 9.

That is, the output from Casting out Nines is the unique remainder guaranteed
by the division algorithm, on attempting division by 9.

– Typeset by FoilTEX – 140

Divisibility by 9
The following lemma follows from (6.2).

Lemma 6.14. An integer is divisible by 9 if and only if the sum of its digits is
divisible by 9.

Example 6.15. Are 31357989921 or 5179183229478 divisible by 9?

– Typeset by FoilTEX – 141

Divisibility by 4

Now 102 ≡ 0 (mod 4). Thus, for example,

1932526 = (19325× 100) + 26 ≡ 26 (mod 4)

and

93975656489084357745565568738675 =

(939756564890843577455655687386× 100) + 75 ≡ 75 (mod 4).

– Typeset by FoilTEX – 142

More generally, if am · · · a1a0 is an integer written to base 10 then

am · · · a1a0 = (am · · · a2 × 100) + a1a0 ≡ a1a0 (mod 4).

Therefore

am · · · a1a0 ≡ 0 (mod 4) if and only if a1a0 ≡ 0 (mod 4).

That is
4|am · · · a1a0 ⇔ 4|a1a0.

Example 6.16. Does 4 divide 937475900345 or 80345003732?

– Typeset by FoilTEX – 143

Inverses in modular arithmetic

If we work in the rational numbers Q we can find a multiplicative inverse for any
non-zero element.

For example the inverse of 11/201 is 201/11.

The same is true in R where the inverse of x 6= 0 is 1/x.

In general if x is a number and y has the property that xy = 1 then we say that
x has inverse y.

Most elements of Z don’t have inverses in Z. For example 2 has no inverse.

In fact ±1 are the only elements of Z which have inverses. What about arithmetic
modulo n.

– Typeset by FoilTEX – 144

Inverses modulo n

Example 6.17. Try to find the inverse of 2 modulo 6.

Example 6.18. Do either 3 or 7 have inverses modulo 10?

Example 6.19. Which numbers have inverses modulo 8?

– Typeset by FoilTEX – 145

Lemma 6.20. An integer a has an inverse modulo n if and only if

gcd(a, n) = 1.

– Typeset by FoilTEX – 146

Lemma 6.20. An integer a has an inverse modulo n if and only if

gcd(a, n) = 1.

What happens if we do arithmetic modulo a prime number p?

In this case, for every integer a either

– Typeset by FoilTEX – 146

Lemma 6.20. An integer a has an inverse modulo n if and only if

gcd(a, n) = 1.

What happens if we do arithmetic modulo a prime number p?

In this case, for every integer a either

1. p - a in which case gcd(a, p) = 1 or

– Typeset by FoilTEX – 146

Lemma 6.20. An integer a has an inverse modulo n if and only if

gcd(a, n) = 1.

What happens if we do arithmetic modulo a prime number p?

In this case, for every integer a either

1. p - a in which case gcd(a, p) = 1 or

2. p|a in which case a ≡ 0 (mod p).

– Typeset by FoilTEX – 146

Lemma 6.20. An integer a has an inverse modulo n if and only if

gcd(a, n) = 1.

What happens if we do arithmetic modulo a prime number p?

In this case, for every integer a either

1. p - a in which case gcd(a, p) = 1 or

2. p|a in which case a ≡ 0 (mod p).

Thus every integer which is not congruent to zero modulo p has an inverse.

In this way arithmetic modulo p resembles arithmetic in Q more closely that
arithmetic in Z.

– Typeset by FoilTEX – 146

Example 6.21. Write out the multiplication table for arithmetic modulo 5 with
the integers 0, 1, 2, 3 and 4. Hence find the inverse of every integer which is not
congruent to zero modulo 5.

– Typeset by FoilTEX – 147

Solving Congruences

Example 6.22. Find all integers x such that

2x ≡ 4 (mod 6). (6.3)

We call such equations congruences and this is an example of a linear congruence.

– Typeset by FoilTEX – 148

Solving Congruences

Example 6.22. Find all integers x such that

2x ≡ 4 (mod 6). (6.3)

We call such equations congruences and this is an example of a linear congruence.

If x = a is a solution and a ≡ b then x = b is also a solution: so if there’s one
solution there are infinitely many.

– Typeset by FoilTEX – 148

Solving Congruences

Example 6.22. Find all integers x such that

2x ≡ 4 (mod 6). (6.3)

We call such equations congruences and this is an example of a linear congruence.

If x = a is a solution and a ≡ b then x = b is also a solution: so if there’s one
solution there are infinitely many.

Every integer is congruent to one of

0, 1, . . . , n− 1 modulo n

so we seek solutions to congruences in this range.

– Typeset by FoilTEX – 148

Method 1

x 0 1 2 3 4 5
2x (mod 6)

– Typeset by FoilTEX – 149

Method 1

x 0 1 2 3 4 5
2x (mod 6)

From the table we see that the only solutions are x = 2 and x = 5.

– Typeset by FoilTEX – 149

Method 2

ax ≡ b (mod n) (6.4)

– Typeset by FoilTEX – 150

Method 2

ax ≡ b (mod n) (6.4)

x is a solution to (6.4) if and only if n|(ax− b)

– Typeset by FoilTEX – 150

Method 2

ax ≡ b (mod n) (6.4)

x is a solution to (6.4) if and only if n|(ax− b)

if and only if ax− b = ny, for some integer y

– Typeset by FoilTEX – 150

Method 2

ax ≡ b (mod n) (6.4)

x is a solution to (6.4) if and only if n|(ax− b)

if and only if ax− b = ny, for some integer y

if and only if ax− ny = b, for some y ∈ Z.

– Typeset by FoilTEX – 150

Method 2

ax ≡ b (mod n) (6.4)

x is a solution to (6.4) if and only if n|(ax− b)

if and only if ax− b = ny, for some integer y

if and only if ax− ny = b, for some y ∈ Z.

From Theorem 5.5 this has a solution if and only if gcd(a, n)|b.

– Typeset by FoilTEX – 150

Method 2

ax ≡ b (mod n) (6.4)

x is a solution to (6.4) if and only if n|(ax− b)

if and only if ax− b = ny, for some integer y

if and only if ax− ny = b, for some y ∈ Z.

From Theorem 5.5 this has a solution if and only if gcd(a, n)|b.

If gcd(a, n)|b then we can use the Euclidean algorithm to find a particular solution
to the equation.

– Typeset by FoilTEX – 150

Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

– Typeset by FoilTEX – 151

Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

then the list of solutions to this equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.

– Typeset by FoilTEX – 151

Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

then the list of solutions to this equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.

Applying this to congruence (6.3) above,

– Typeset by FoilTEX – 151

Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

then the list of solutions to this equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.

Applying this to congruence (6.3) above,

In the general case (of congruence (6.4)) the only remaining question is which of
the solutions we have found are congruent?

– Typeset by FoilTEX – 151

Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

then the list of solutions to this equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.

Applying this to congruence (6.3) above,

In the general case (of congruence (6.4)) the only remaining question is which of
the solutions we have found are congruent?

If d|b and x = u is one solution to the congruence (6.4)

– Typeset by FoilTEX – 151

Writing gcd(a, n) = d, if d|b and x = u, y = v is a solution

then the list of solutions to this equation consists of all the pairs

x = u− (n/d)t, y = v − (a/d)t, for t ∈ Z.

Applying this to congruence (6.3) above,

In the general case (of congruence (6.4)) the only remaining question is which of
the solutions we have found are congruent?

If d|b and x = u is one solution to the congruence (6.4)

then the list of solutions to (6.4) consists of the integers of the form u− (n/d)t,
for t ∈ Z.

– Typeset by FoilTEX – 151

Theorem 6.23. Let a, b and n be integers with n > 0 and let d = gcd(a, n).
Then the congruence (6.4) has a solution if and only if d|n. If d|n then there
are exactly d pairwise incongruent solutions to (6.4).

– Typeset by FoilTEX – 152

Theorem 6.23. Let a, b and n be integers with n > 0 and let d = gcd(a, n).
Then the congruence (6.4) has a solution if and only if d|n. If d|n then there
are exactly d pairwise incongruent solutions to (6.4).

Example 6.24. Find all solutions to the congruence

2x ≡ 3 (mod 6).

– Typeset by FoilTEX – 152

Theorem 6.23. Let a, b and n be integers with n > 0 and let d = gcd(a, n).
Then the congruence (6.4) has a solution if and only if d|n. If d|n then there
are exactly d pairwise incongruent solutions to (6.4).

Example 6.24. Find all solutions to the congruence

2x ≡ 3 (mod 6).

Example 6.25. Find all solutions to the congruence 6x ≡ 9 (mod 15).

– Typeset by FoilTEX – 152

Theorem 6.23. Let a, b and n be integers with n > 0 and let d = gcd(a, n).
Then the congruence (6.4) has a solution if and only if d|n. If d|n then there
are exactly d pairwise incongruent solutions to (6.4).

Example 6.24. Find all solutions to the congruence

2x ≡ 3 (mod 6).

Example 6.25. Find all solutions to the congruence 6x ≡ 9 (mod 15).

Example 6.26. Compare the solutions to the congruences

2x ≡ 4 (mod 6) and x ≡ 2 (mod 6).

– Typeset by FoilTEX – 152

Random numbers: an application

In situations where we require random numbers we often wish to give a machine
the task of generating these numbers.

– Typeset by FoilTEX – 153

Random numbers: an application

In situations where we require random numbers we often wish to give a machine
the task of generating these numbers.

In many cases we’d also like the machine to be able to reproduce the sequence of
random numbers that it outputs so that we can verify our results.

– Typeset by FoilTEX – 153

Random numbers: an application

In situations where we require random numbers we often wish to give a machine
the task of generating these numbers.

In many cases we’d also like the machine to be able to reproduce the sequence of
random numbers that it outputs so that we can verify our results.

Such sequences cannot be truly random and are called pseudo-random.

– Typeset by FoilTEX – 153

Random numbers: an application

In situations where we require random numbers we often wish to give a machine
the task of generating these numbers.

In many cases we’d also like the machine to be able to reproduce the sequence of
random numbers that it outputs so that we can verify our results.

Such sequences cannot be truly random and are called pseudo-random.

Pseudo-random numbers are often generated by computer but this means that
we need to find good algorithms to produce them.

– Typeset by FoilTEX – 153

Random numbers: an application

In situations where we require random numbers we often wish to give a machine
the task of generating these numbers.

In many cases we’d also like the machine to be able to reproduce the sequence of
random numbers that it outputs so that we can verify our results.

Such sequences cannot be truly random and are called pseudo-random.

Pseudo-random numbers are often generated by computer but this means that
we need to find good algorithms to produce them.

The art and science of random number generation is highly developed and very
sophisticated. You can see this by looking at the web page Random number
generators – The pLab Project Home Page at http://random.mat.sbg.ac.at/.

– Typeset by FoilTEX – 153

http://random.mat.sbg.ac.at/
http://random.mat.sbg.ac.at/

D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0, a1, a2, . . .

use the following process.

– Typeset by FoilTEX – 154

D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0, a1, a2, . . .

use the following process.

1. Fix a positive number n and two integers m and c, with 2 ≤ m < n and
0 ≤ c < n.

– Typeset by FoilTEX – 154

D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0, a1, a2, . . .

use the following process.

1. Fix a positive number n and two integers m and c, with 2 ≤ m < n and
0 ≤ c < n.

2. Choose a start value a0, such that 0 ≤ a0 ≤ n.

– Typeset by FoilTEX – 154

D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0, a1, a2, . . .

use the following process.

1. Fix a positive number n and two integers m and c, with 2 ≤ m < n and
0 ≤ c < n.

2. Choose a start value a0, such that 0 ≤ a0 ≤ n.

3. Generate elements of the sequence successively using the formula

ak+1 = mak + c (mod n), where 0 ≤ ak+1 < n.

– Typeset by FoilTEX – 154

D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0, a1, a2, . . .

use the following process.

1. Fix a positive number n and two integers m and c, with 2 ≤ m < n and
0 ≤ c < n.

2. Choose a start value a0, such that 0 ≤ a0 ≤ n.

3. Generate elements of the sequence successively using the formula

ak+1 = mak + c (mod n), where 0 ≤ ak+1 < n.

If a large value of n is chosen the sequence appears random, at least to start
with.

– Typeset by FoilTEX – 154

Example 6.27. With n = 800, m = 71, c = 57, and a0 = 2 the first ten elements
of the sequence are

2, 199, 586, 63, 530, 87, 634, 271, 98, 615.

– Typeset by FoilTEX – 155

Example 6.27. With n = 800, m = 71, c = 57, and a0 = 2 the first ten elements
of the sequence are

2, 199, 586, 63, 530, 87, 634, 271, 98, 615.

Now altering a0 to 551 the sequence produced is

551, 778, 95, 402, 599, 186, 463, 130, 487, 234.

– Typeset by FoilTEX – 155

Example 6.27. With n = 800, m = 71, c = 57, and a0 = 2 the first ten elements
of the sequence are

2, 199, 586, 63, 530, 87, 634, 271, 98, 615.

Now altering a0 to 551 the sequence produced is

551, 778, 95, 402, 599, 186, 463, 130, 487, 234.

Keeping everything fixed except n = 8000 we obtain

551, 7178, 5695, 4402, 599, 2586, 7663, 130, 1287, 3434.

– Typeset by FoilTEX – 155

Example 6.27. With n = 800, m = 71, c = 57, and a0 = 2 the first ten elements
of the sequence are

2, 199, 586, 63, 530, 87, 634, 271, 98, 615.

Now altering a0 to 551 the sequence produced is

551, 778, 95, 402, 599, 186, 463, 130, 487, 234.

Keeping everything fixed except n = 8000 we obtain

551, 7178, 5695, 4402, 599, 2586, 7663, 130, 1287, 3434.

With n = 40, m = 22, c = 20 and a0 = 13 we obtain

13, 26, 32, 4, 28, 36, 12, 4, 28, 36, 12.

– Typeset by FoilTEX – 155

Of course such sequences are not random (by definition) and we have a formula
for the terms.

– Typeset by FoilTEX – 156

Of course such sequences are not random (by definition) and we have a formula
for the terms.

Theorem 6.28. The kth term of the sequence generated by the process above
is

ak =
(

mka0 +
c(mk − 1)
(m− 1)

)
(mod n),

with 0 ≤ ak < n.

– Typeset by FoilTEX – 156

Of course such sequences are not random (by definition) and we have a formula
for the terms.

Theorem 6.28. The kth term of the sequence generated by the process above
is

ak =
(

mka0 +
c(mk − 1)
(m− 1)

)
(mod n),

with 0 ≤ ak < n.

Analysis of “how random” a pseudo-random sequence is involves applying
statistical tests to the sequence.

– Typeset by FoilTEX – 156

Of course such sequences are not random (by definition) and we have a formula
for the terms.

Theorem 6.28. The kth term of the sequence generated by the process above
is

ak =
(

mka0 +
c(mk − 1)
(m− 1)

)
(mod n),

with 0 ≤ ak < n.

Analysis of “how random” a pseudo-random sequence is involves applying
statistical tests to the sequence.

For instance the frequency of occurence of a particular integers in the sequence
can be tested;

– Typeset by FoilTEX – 156

Of course such sequences are not random (by definition) and we have a formula
for the terms.

Theorem 6.28. The kth term of the sequence generated by the process above
is

ak =
(

mka0 +
c(mk − 1)
(m− 1)

)
(mod n),

with 0 ≤ ak < n.

Analysis of “how random” a pseudo-random sequence is involves applying
statistical tests to the sequence.

For instance the frequency of occurence of a particular integers in the sequence
can be tested;

as can the frequency of occurence of pairs of integers.

– Typeset by FoilTEX – 156

Objectives

After covering this chapter of the course you should be able to:

(i) recall the definition of congruence;

(ii) recall the statement of Lemma 6.11 and understand its proof;

(iii) do arithmetic modulo n;

(iv) understand how various divisibility tests work and be able to apply them;

(v) decide whether or not an integer has an inverse modulo n;

(vi) generate a sequence of random looking numbers.

– Typeset by FoilTEX – 157

