MAS221 Number Systems and the Foundations of Analysis

Semester 1: Mock Exam

SECTION A

Section A is the same as for MAS121 except that it is out of 40 instead of 50 . The marks for Section A questions are A1 16; A2 4; A3 8; A4 8; A5 4.

SECTION B

Each question in this section is worth a total of 30 marks. Section B questions are the same as for MAS121 except that they have the following additional parts: each of which is worth 5 marks.

B6. (d) Let a and b be integers and assume that $a+s b=p$ is prime for some integer s. Set $t=s+k p$, where $k \in \mathbb{Z}$. Show that $a+t b$ is composite. Hence show that the sequence

$$
a, a+b, a+2 b, a+3 b, \ldots
$$

contains infinitely many composite numbers.
B7. (e) Show that $f_{n}^{2}+f_{n} f_{n-1}=f_{n} f_{n+1}$, for all $n \geq 2$. Hence show that $f_{n}^{2}=f_{n} f_{n+1}-$ $f_{n} f_{n-1}$ and use this to show that

$$
f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

for all $n \geq 1$.
B8. (e) Let s and t be natural numbers such that $\operatorname{gcd}(s, t)=1$ and define

$$
x=2 s t, y=s^{2}-t^{2}, z=s^{2}+t^{2} .
$$

Show that $x^{2}+y^{2}=z^{2}$. If p is an odd prime such that $p \mid x$ show that p does not divide y.

