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A puzzle

Move forward to a time after the collapse of the banking system
when we have returned to bartering. In the university 1 loaf of
bread can be exchanged for 11 apples and a chocolate cake
can be exchanged for 15 apples. A professor has baked a
batch of cakes and a student turns out to have a dozen loaves
of bread and hundreds of apples. The professor wants just one
apple, so would like to exchange some cakes for one apple and
some loaves of bread. Can this be done, and if so how?



Solution

1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63 64 65 66

Is there more than one solution? We can describe the problem
algebraically. Let a, b and c and stand for the value of an apple,
a cake and a loaf of bread, respectively. Then c = 15a and
b = 11a.
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More barterning

Now suppose that at bottle of French wine is worth 30 apples
and a bottle of English wine is worth 24 apples. A lecturer has
a crate of french wine and some apples and the professor now
wants 6 apples, but only has a crate of English wine. Can a fair
transaction be made so that the prof ends up with 6 apples?

We can describe the problem algebraically again. Let f and e
stand for the values of French and English wine, respectively.
Solve to find whole numbers x and y which are both positive.



Solution

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 39 30
31 32 33 34 35
36 37 38 39 40



Equations with integer solutions

The crucial feature of these problems are that we are only
interested in solutions which are natural numbers (defined in
Section A.6).Solutions would be very easy to find if we allowed
ourselves to use rational numbers or real numbers (see Section
A.6).
On the other hand integer solutions are no easier to find than
natural number solutions (integers are also defined in Section
A.6).
This chapter looks into some of the properties of natural
numbers and integers that, among other things, prove useful in
solving problems such as the bartering ones above.We’ll look
at a a step by step recipe which would give us a number, like 6
in the second problem above, which can be used to simplify the
problem and in fact determines whether or not there is a
solution. We shall investigate, in some detail, how and why this
works.
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Greatest Common Divisors

What is the biggest positive number that divides both 24 and
30?
Make two lists.

Positive divisors of 24 : 1, 2, 3, 4, 6, 8, 12, 24

Positive divisors of 30 : 1, 2, 3, 5, 6, 10, 15, 30

Pick the largest number which appears on both of the lists,
which is 6.
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Example 1.1
Find the biggest number which divides both 2028 and 2600.
Positive divisors of

2028 : 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169,
338, 507, 676, 1014, 2028

2600 : 1, 2, 4, 5, 8, 10, 13, 20, 25, 26, 40, 50, 52, 65,
100, 104, 130, 200, 260,325, 520, 650, 1300, 2600

The biggest number dividing both 2028 and 2600 is 52.
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The Euclidean Algorithm

The biggest natural number which divides both natural numbers
a and b is called the greatest common divisor of a and b.

Given natural numbers a and b we wish to find their greatest
common divisor.

The recipe works as follows.

EA1. Input the pair (b,a), with 0 < a < b.
EA2. Write b = aq + r , where q and r are integers with

0 ≤ r < a.
EA3. If r = 0 then output gcd(a,b) = a and stop.
EA4. Replace the ordered pair (b,a) with (a, r).

Repeat from EA2.
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Example 1.2
Find the greatest common divisor d of 12 and 63. Find x ,y ∈ Z
such that 12x +63y = d .



Example 1.3
Find the greatest common divisor d of 2600 and 2028. Find
integers x and y such that d = 2600x +2028y .

We write out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 ·1+572 (1.1)

(1.2)

(1.3)

(1.4)

(1.5)

This gives gcd(2600,2028) = 52, as we found in Example 1.1.
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To find the integers x ,y we work back from (1.4) to (1.1).

52 = 312−260 ·1 from (1.4)

= 312− (572−312 ·1)= 312 ·2−572 from (1.3)

= (2028−572 ·3) ·2−572 = 2028 ·2−572 ·7 from (1.2)

= 2028 ·2− (2600−2028 ·1) ·7 = 2028 ·9−2600 ·7 from (1.1).

Thus 52 = 2600 · (−7)+2028 ·9 so we may take x = −7 and
y = 9.
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Find the greatest common divisor d of 2028 and 626. Find
x ,y ∈ Z such that 2028x −626y = d .
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This gives gcd(2028,626) = 2.
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To find the integers x ,y we work back from (1.10) to (1.6) to
find an expression for 2.

2 = 20 ·1−6 ·3 from (1.10)

Thus 2 = 2028 ·96−626 ·311 so we may take x = 96 and
y = 311.
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Divisibility in the integers

Definition 1.5
Let a and b be integers. If there exists an integer q such that b = qa
then we say that a divides b, or a|b,.

A definition establishes once and for all the meaning of a
word. From now on whenever we say “divides” we mean
what it says above, nothing more, nothing less.

Other ways of saying a|b are that a is a factor of b, a is a
divisor of b or b is a multiple of a.

We write a ∤ b to denote “a does not divide b”.
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Example 1.6
From the definition we can easily check that 6|18 because
18 = 6 ·3.

In the same way we see that 6 divides 24,12,6,0 and −6.

Also it’s “obvious” 7 ∤ 16 and −11 ∤ 32: but these are not
immediate consequences of the definition of division.

Example 1.7
We shall prove that 6|(6n +6), for all integers n.



Example 1.6
From the definition we can easily check that 6|18 because
18 = 6 ·3.

In the same way we see that 6 divides 24,12,6,0 and −6.

Also it’s “obvious” 7 ∤ 16 and −11 ∤ 32: but these are not
immediate consequences of the definition of division.

Example 1.7
We shall prove that 6|(6n +6), for all integers n.



Example 1.6
From the definition we can easily check that 6|18 because
18 = 6 ·3.

In the same way we see that 6 divides 24,12,6,0 and −6.

Also it’s “obvious” 7 ∤ 16 and −11 ∤ 32: but these are not
immediate consequences of the definition of division.

Example 1.7
We shall prove that 6|(6n +6), for all integers n.



Example 1.6
From the definition we can easily check that 6|18 because
18 = 6 ·3.

In the same way we see that 6 divides 24,12,6,0 and −6.

Also it’s “obvious” 7 ∤ 16 and −11 ∤ 32: but these are not
immediate consequences of the definition of division.

Example 1.7
We shall prove that 6|(6n +6), for all integers n.



In Example 1.7 we have proved something is true for all
integers.
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Prove that 4|[(2n +1)2 −1], for all integers n.
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Definition 1.9
The modulus or absolute value of a real number x is denoted |x |
and is given by the formula

|x | =
{

x , if x ≥ 0
−x , if x < 0.

The definition above is what is known as a definition by
cases.

For example

|−6|= 6 = |6|,
102 = |102| = |−102| and

|0| = 0 = −0 = |−0|.
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Theorem 1.10 (The Division Algorithm)
Let a and b be integers with a 6= 0. Then there exist unique
integers q and r such that b = aq + r and 0 ≤ r < |a|.

(1) The condition that a 6= 0 is necessary. If it’s left out then the
statement becomes untrue.

(2) There are two parts to the conclusion of the Theorem.
Firstly it says that such q and r do exist. Secondly it says
that q and r are unique.

(3) Does the Theorem work in other settings?
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Example 1.11
Every integer n can be written as n = 2q + r , with 0 ≤ r < 2.

If r = 0 we say n is even and if r = 1 we say n is odd.

We’ve used the Division Algorithm (Theorem 1.10) to partition
of integers into odd and even.

Example 1.12
Here we have partitioned the integers into three:
those that leave remainder 0,
those that leave remainder 1 and
those that leave remainder 2,
on applying the Division Algorithm with a = 3.
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Example 1.13
Show that 3|n3 −n, for all integers n.

Example 1.14
Show that if n is an integer then n3 has the form 4k , 4k +1 or
4k +3, for some k ∈ Z.
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Properties of Division

Example 1.15
Consider the equation 112 = 20 ·5+12.

Why are the gcd’s are both the same?

Lemma 1.16
Let s, t and u be integers, which are not all zero, such that

s = tq +u,

for some q ∈ Z. Then gcd(s, t) = gcd(t ,u).

A lemma is a lesser result: not important enough to be
given the grand title of theorem. Lemmas are often small
steps made on the way to establishing a theorem.
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Strategy of the proof

Show that any integer that divides both s and t must also divide
u.

Then show that any integer that divides both t and u must also
divide s.

Then the set of common divisors of s and t is exactly the same
as the set of common divisors of t and u

and their greatest commond divisors are thus equal.
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Example 1.17
We can write 337 = 11 ·30+7 so ...

Lemma 1.18

1. n|n, for all integers n.

2. n|0, for all integers n.
3. If m and n are integers, m|n and n > 0 then m ≤ n.

4. If m and n are positive integers and m|n then
gcd(m,n) = m.
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The proof of the last part of the Lemma above is known as
proof by contradiction. This always works as follows.

Step(1) Start with some statement to be proved. In the
Lemma this is that m ≤ n, given that m|n and
n > 0.

Step(2) Assume the negation of what is to be proved.
In the Lemma this is that m ≤ n, given that m|n
and n > 0.

Step(3) Derive some consequences of the
assumption. We obtain n = mq, with q ≥ 1.

Step(4) Show that something we’ve derived is false.
We show that n ≥ m, which together with m > n
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happen that m > n because this forces n > n,
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Why the Euclidean Algorithm works

Example 1.19
Consider the Equations (1.6)–(1.11).

Stringing all these facts together we have

2 = gcd(6,2)

that is gcd(2028,626) = 2.
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And another thing

Given two integers a and b we can work back through the
output of the Euclidean algorithm, as we did in Examples 1.2,
1.3 and 1.4, to find integers x and y such that
ax +by = gcd(a,b).

Theorem 1.21
Let a and b be integers, not both zero, and let d = gcd(a,b).
Then there exist integers u and v such that d = au +bv.

The input to the Euclidean algorithm is a pair of positive
integers. What if a < 0?

gcd(a,b) = gcd(−a,b) = gcd(−a,−b) = gcd(a,−b) and from
this it follows that the Theorem holds in all cases.
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Theorem 1.21
Let a and b be integers, not both zero, and let d = gcd(a,b).
Then there exist integers u and v such that d = au +bv.

The input to the Euclidean algorithm is a pair of positive
integers. What if a < 0?

gcd(a,b) = gcd(−a,b) = gcd(−a,−b) = gcd(a,−b) and from
this it follows that the Theorem holds in all cases.



An application

Example 1.22
Find integers x and y such that 2600x +2028y = 104.



An application

Example 1.22
Find integers x and y such that 2600x +2028y = 104.

In Example 1.3 we ran the Euclidean Algorithm and found
gcd(2600,2028) = 52.



An application

Example 1.22
Find integers x and y such that 2600x +2028y = 104.

In Example 1.3 we ran the Euclidean Algorithm and found
gcd(2600,2028) = 52.

Once we’d done so we were able to use the equations
generated to find integers x and y such that

2600 · (−7)+2028 ·9 = 52. (1.12)
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Next we work back from (1.17) to (1.13) to find integers u, v
such that

6 = 12378u +3054v .

6 = 24−18 ·1 from (1.17)

= 24− (138−24 ·5)= 24 ·6−138 from (1.16)

= (162−138) ·6−138 = 162 ·6−138 ·7 from (1.15)

= 162 ·6− (3054−162 ·18) ·7
= 162 ·132−3054 ·7 from (1.14)

= (12738−3054 ·4) ·132−3054 ·7
= 12378 ·132−3054 ·535 from (1.13).

Thus
6 = 12378 ·132+3054 · (−535) (1.19)

and we may take u = 132 and v = −535.
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Existence of solutions

Lemma 1.24
Let a,b and c be integers (a,b not both zero). The equation

ax +by = c (1.20)

has integer solutions x, y if and only if gcd(a,b)|c.
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If and only if

The phrase “if and only if” in this Lemma is an important
part of the conclusion.

To say “the equation has solutions if and only if gcd(a,b)|c”
means two things:

1. if the equation has solutions then gcd(a,b)|c and

2. if gcd(a,b)|c then the equation has solutions.

The second statement is the converse of the first.

(More generally, the converse of “If A is true then B is true”
is “If B is true then A is true”.)
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cause it is possible for the converse of a true statement to
be false.
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To prove the lemma we must prove both statements be-
cause it is possible for the converse of a true statement to
be false.

This is apparent in everday life. For example it would be
quite reasonable to say that the statement “If I am a frog
then I can swim” is true.

The converse is “If I can swim then I am a frog”, and this is
commonly regarded as false.

More precise mathematical examples are not hard to find.
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Synonyms

There are several different ways of saying things like “if ...
then ...” and “... if and only if ...”.

The symbol ⇒ is read “implies”. All the entries on a given
line of the following table mean the same thing: entries on
different lines do not mean the same thing.

if A then B A ⇒ B B if A

if B then A A ⇐ B A if B

A if and only if B A ⇔ B A iff B
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so the equation 72x +49y = c has a solution for every choice of
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Concluding remarks

Fix integers a and b and let d = gcd(a,b).

Lemma 1.24 tells us that the equation ax +by = c has a
solution if and only if d |c. So

1. there is a solution if d = c and

2. there is no solution if 0 < c < d .

Conclusion: d is the smallest positive integer that can be
written in the form ax +by , with x ,y ∈ Z.

Now suppose that for our choice of a,b there exist integers u
and v such that au +bv = 1.

e.g. take a = 25132 and b = 15079, then 3a−5b = 1.

What can we say about gcd(a,b) in this case?
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Objectives
After covering this chapter of the course you should be able to:

(i) use terms such as Definition, Lemma, and proof with
confidence;

(ii) read and understand simple proofs;

(iii) remember Definition 1.5 of a divides b, for integers a and
b;

(iv) apply this definition to prove simple divisibility properties;

(v) state the Division Algorithm and be able to use it to
demonstrate properties of integers;

(vi) remember the definition of greatest common divisor of two
integers;

(vii) apply this definition to prove results;

(viii) apply the Euclidean algorithm and explain why it works;

(ix) find solutions to equations of the kind given above.



More Apples and Wine

The professor has been awarded a pay increase and decides to
throw a party. He wants French wine for this party.
Unfortunately in this department the pay is in bottles of English
wine. Lecturers in Classics are paid in French wine and apples;
so the professor wishes to trade English wine for apples and
French wine.

The prof still wants to eat six apples, as it happens.

Can the professor buy sufficient wine to make a really
memorable party?
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Solutions to a bartering problem

−1 0 1 2 3 4 5 6 7 8 9 10 11

8

7

6

5

4

3

2

1

0

−1

A B

C

D

x

y

4

5y +1 = 4x

5

http://www.mas.ncl.ac.uk/~najd2/teaching/mas1202/diophantine/diophantine_solutions.html


Section overview

In this section we’ll develop enough of the theory of integers to
enable us to write down a formula which tells us exactly which
values of x and y are solutions to equations of this type for
which we seek integer solutions (linear Diophantine equations).
The main new idea we need is that of pairs of “coprime”
numbers.
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Greatest common divisors again

The Euclidean Algorithm, run on natural numbers a and b,
gives not only gcd(a,b) but also integers u and v such that

gcd(a,b) = au +bv .

This gave us Theorem 1.21:

Let a and b be integers, not both zero, and let d = gcd(a,b).
Then there exist integers u and v such that d = au +bv .
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Second proof of Theorem 1.21

Suppose that we have positive integers a and b.

Consider the set

S = {ak +bl ∈ Z : ak +bl > 0 and k , l ∈ Z}.

This is a set of positive integers.

We shall prove the theorem by showing that it’s smallest
element is gcd(a,b).
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S = {ak +bl ∈ Z : ak +bl > 0 and k , l ∈ Z}

It is a fundamental property of numbers that every non-empty
set of positive integers has a smallest element.

It’s easy to see S is non-empty as it contains, for example a+b.

Therefore S has a smallest element, s say. Then

s = ak +bl , for some k , l ∈ Z. (2.1)

Now, using the Division Algorithm, we can write

a = sq + r , where 0 ≤ r < s.
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Substituting for s using (2.1) this becomes

a = (ak +bl)q + r

= a(kq)+b(lq)+ r ,

so
r = a(1−kq)+b(−lq), with 0 ≤ r < s.

If r 6= 0 then we have r ∈ S and r < s, a contradiction.

Therefore r = 0 and a = sq. That is, s|a.

Similarly s|b.
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Now suppose that c|a and c|b.

Then a = cu and b = cv , for some u,v ∈ Z.

Substitution in (2.1) gives

s = c(uk)+c(vl) = c(uk +vl).

Therefore c|s and from Lemma 1.18.3 we have c ≤ s.

This completes the proof that s = gcd(a,b)

and we’ve already found k , l such that s = ak +bl ,

so Theorem 1.21 follows.
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Coprime integers

Definition 2.1
If a and b are integers with gcd(a,b) = 1 then we say that a and b
are coprime.

Example 2.2
6 and 35 are coprime and

6 ·6−1 ·35 = 1.

What about

11375 ·3085622−7469451 ·4699= 1?

We have u and v such that 11375u +7469451v = 1.

Does this mean gcd(11375,7469451)= 1?
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Corollary 2.3
Integers a and b are coprime if and only if there exist integers u
and v such that au +bv = 1.

A corollary is something which follows easily from a previ-
ously proven fact.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that if a and b are coprime then there exist
integers u and v such that au +bv = 1.
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Step(2) Prove that if there exist integers u and v such that
au +bv = 1 then gcd(a,b) = 1.
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au +bv = 1.
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au +bv = 1 then gcd(a,b) = 1.

Assume that there are integers u and v such that
au +bv = 1.

Let d = gcd(a,b).



Step(2) Prove that if there exist integers u and v such that
au +bv = 1 then gcd(a,b) = 1.

Assume that there are integers u and v such that
au +bv = 1.

Let d = gcd(a,b).

We have d = 1, so a and b are coprime, as required.



Euclid’s Lemma

Lemma 2.4
Let a,b and c be integers with gcd(a,b) = 1. If a|bc then a|c.



Application to solving equations

A Linear Diophantine Equation is one of the form

ax +by = c,

where a, b and c are integers and we seek integer solutions.

Lemma 1.24 states that such an equation has a solution if and
only if gcd(a,b)|c.
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Theorem 2.5
Let a,b,c be integers and let d = gcd(a,b). The equation

ax +by = c (2.2)

has an integer solution if and only if d |c.

If d |c then equation (2.2) has infinitely many solutions

and if x = u0, y = v0 is one solution then x = u1, y = v1 is a
solution if and only if

u1 = u0 +(b/d)t

and
v1 = v0 − (a/d)t ,

for some t ∈ Z.
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Example 1.20 continued
Example 2.6
gcd(2600,2028) = 52 and the equation 2600x +2028y = 104
has a solution x = −14,y = 18.

As 2600/52 = 50 and 2028/52 = 39 the solutions to this
equation are

x = −14+39t , y = 18−50t , for t ∈ Z.

For each integer t we have a solution, some of which are
shown below.

t x y

-2 -92 118
-1 -53 68
0 -14 18
1 25 -32
2 64 -82
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Example 2.7
Find all integer solutions to the equation 63x +12y = 18.

List all solutions with x > −12 and y > 6.

From Example 1.2 we have gcd(63,12) = 3 and as 3|18 the
equation has solutions.

In Example 1.2 we also found that 63 ·1+12 · (−5) = 3.
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Example 2.8
Find the general form for integer solutions to the equation
12378x +3054y = 42.

Find all solutions x ,y with x > 0 and y > −2000.

Find all solutions with x > 0 and y > 0.

In Example 1.23 we found that gcd(12378,3054) = 6 and since
6|42 this equation has solutions.

In the given example we also found
12378 ·132+3054 · (−535)= 6.

Multiplying through by 7 gives
12378 ·132 ·7+3054 · (−535) ·7 = 42.

This gives a particular solution

x = 132 ·7 = 924 and y = (−535) ·7 = −3745.
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For the general form of the solution, in this case we have
a/d = 12378/6 = 2063 and b/d = 3054/6 = 509.

The general form of the solution is therefore

x = 924+509t and y = −3745−2063t ,

for t ∈ Z.

(We can check this is correct: with t = 1 we verify that
12373 ·1433+3054(−5808)= 42.)
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For solutions with x > 0 we require 924+509t > 0, that is
t > −924/509.

As t is an integer we therefore require t ≥−1.

We have solutions with y > −2000 if and only if
−3745−2063t > −2000

if and only if 3754+2063t < 2000

if and only if t < −1754/2063

if and only if t ≤−1.

Therefore there is a unique solution with x > 0 and y < −2000,
which we obtain by setting t = −1,

namely
x = 415,y = −1682.
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t ≤−2.

There are no such t so there are no solutions with x ,y > 0.
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Objectives

After covering this chapter of the course you should be able to:

(i) recall Theorem 1.21 and understand its proof;

(ii) define a coprime pair of integers;

(iii) recall Corollary 2.3 and Euclid’s Lemma and understand
their proofs;

(iv) find the general form of the solution of a linear Diophantine
equation in two variables.



A professor decides to reward his students by buying them
drinks in the bar after lectures. Drinks are bought for those who
answer questions correctly. The questions get harder
throughout the lecture so the number of drinks per question
increases. A correct answer to the 1st question merits 1 drink.
The 2nd gets 3, the 3rd gets 5, the 4th gets 7 and so on. The
prof needs a tray to carry all these drinks and discovers that a
square tray is always the perfect shape to carry all the drinks.
Why’s that then?
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Listing the number of drinks bought:

Questions answered Drinks bought Tray size
1 1 1×1
2 1+3 = 4 2×2
3 1+3+5 = 9 3×3
4 1+3+5+7 = 16 4×4
5 1+3+5+7+9= 25 5×5.

i.e. the sum of the first n positive odd numbers is n2, at least for
n = 1,2,3,4 and 5.
Does this hold for all positive integers greater than n?
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To answer this question we can begin by finding the difference
between: the sum of the first n positive odd numbers:

1+3+ · · ·+(2n−1)

and the sum of the first n +1 positive odd numbers:

1+3+ · · ·+(2n−1)+ (2n +1)

which is clearly 2n +1.
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Now find the difference between n2 and (n +1)2:

(n +1)2−n2 = (n2 +2n +1)−n2 = 2n +1

again.
The difference between the nth and (n +1)th sums of odd
integers is the same as the difference between n2 and (n +1)2.
This means that if

1+3+ · · ·+(2n−1) = n2 (3.1)

then the first n +1 sum to (n +1)2 (because both sides of (3.1)
are increased by 2n +1): that is

1+3+ · · ·+(2n−1)+ (2n +1) = (n +1)2. (3.2)
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Therefore if (3.1) holds then (3.2) holds as well.
We know that (3.1) holds for n = 5so (3.2) holds for n = 5 as
well.
This implies though that (3.1) holds for n = 6; so (3.2) holds for
n = 6.
In turn this means (3.1) holds for n = 7; so (3.2) holds for n = 7
... and so on. Continuing like this we can see that (3.1) holds
for all positive integers n.
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We have used the following simple property of sets of positive
numbers. Assume that P(n) is a statement, for all n ∈ N.
That is we have statements P(1), P(2), P(3), . . ..
The Principle of Induction goes like this. Assume it can be
shown

(1) that P(1) is true and
(2) that if P(k) is true then P(k +1) is true, for k ≥ 1.

Then P(n) is true for all n ∈ N.

A property, like the Principle of Induction, which we do not
try to prove because we believe it is a law of nature is called
an axiom.
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Example 3.1
Suppose that we wish to prove

1
1×2

+
1

2×3
+

1
3×4

+ · · ·+ 1
n(n +1)

= 1− 1
n +1

,

for all n ∈ N.
Here P(n) is the statement
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and we wish to prove that P(1),P(2),P(3), . . . are true.
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Change of basis

It is possible to start induction at some point other than n = 1.
In this case we use the following version of the Principle of
Induction.

Let s ∈ Z. Assume that P(n) is a statement, for all n ≥ s.
Assume further

(1′) that P(s) is true and

(2′) that if P(k) is true then P(k +1) is true, for k ≥ s.

Then P(n) is true for all n ≥ s.
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Example 3.2 (Bernoulli’s Inequality)
Prove that

(1+x)n ≥ 1+nx , for all n ∈ Z,n ≥ 0, and for all x ∈ R,x > −1.



Example 3.3
Show that 2n > n3, for all n ≥ 10.

Note that 29 = 512 < 729 = 93, so the result does not hold
when n = 9.
In fact, for any positive integer t and sufficiently large n we have
2n > nt . In our proof t = 3 and we show exactly what
“sufficiently large” means in this case.



Example 3.3
Show that 2n > n3, for all n ≥ 10.

Note that 29 = 512 < 729 = 93, so the result does not hold
when n = 9.
In fact, for any positive integer t and sufficiently large n we have
2n > nt . In our proof t = 3 and we show exactly what
“sufficiently large” means in this case.



Example 3.3
Show that 2n > n3, for all n ≥ 10.

Note that 29 = 512 < 729 = 93, so the result does not hold
when n = 9.
In fact, for any positive integer t and sufficiently large n we have
2n > nt . In our proof t = 3 and we show exactly what
“sufficiently large” means in this case.



Objectives

After covering this chapter of the course you should be able to:

(i) understand the principle of proof by induction;

(ii) carry out proof by induction, both starting with the integer 1
and starting with an integer other than 1;



Prime Numbers

It follows from the definition of division that every integer n is
divisible by ±1 and by ±n.

Amongst the positive integers a special case is the integer 1
which has only one positive divisor, namely 1.

All other positive integers n have at least 2 positive divisors, 1
and n, and may have more.

Definition 4.1
A positive integer p > 1 is called a prime if the only positive divisors
of p are 1 and p.

An integer greater than one which is not prime is called composite.
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Example 4.3
If 3|bc then either 3|b or 3|c.

The same goes for 29: if 29|bc then 29|b or 29|c.

This does not hold for all integers.
For instance 6|24 and 24 = 8 ·3, so 6|8 ·3 but 6 ∤ 8 and 6 ∤ 3.

Once we’ve discussed prime factorisation it will be easy to see
why this property doesn’t hold for any composite integers.

The Theorem above can easily be extended to products of
more than 2 integers.

For example, if 3|abc then, from the Theorem either 3|ab or 3|c.

If 3|ab then, from the Theorem again, 3|a or 3|b.

Therefore, if 3|abc then 3|a or 3|b or 3|c.
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An expression of an integer n as a product of primes is called a
prime factorisation of n.
For example 12 and 25 have prime factorisations 12 = 2 ·2 ·3
and 25 = 5 ·5, respectively.
We aim to show that every positive integer greater than one has
a prime factorisation and that this prime factorisation is unique,
up to the order in which the prime factors occur.
For instance

2 ·5 ·2 ·7,

2 ·7 ·2 ·5,

7 ·2 ·2 ·5

are all prime factorisations of 140 but are regarded as the same
because the number of 2’s, 5’s and 7’s is the same in each.
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7 and 3 ·7
We consider these as products of primes of length one and two
respectively.
We’ll see that all positive numbers > 1 are products of primes –
and no number has more than one factorisation as a product of
primes (if we count correctly).
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The Fundamental Theorem of Arithmetic

Theorem 4.6
Every integer n > 1 is a product of one or more primes. This
product is unique apart from the order in which the primes
occur.

Proof.

Step(1) Prove that every n > 1 has a prime factorisation.

Step(2) Prove that prime factorisations are unique.
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Rational numbers

Before continuing we shall pause to see that this theorem really
did need proving: that it is not a universal truth that holds in all
situations.
To begin with consider the rational numbers Q.
We can factor 2 as

2 = 4 · (1/2) = 8 · (1/4) = · · · = 2n · (1/2n−1) = · · · =

and in general as 2q · (1/q), for any non-zero element q ∈ Q.
Therefore there is no hope of anything like Theorem 4.6 holding
in Q.
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E-numbers
To see how the uniqueness part of the Theorem might fail: let E
denote the set of all even integers:

E = {. . . ,−4,−2,0,2,4, . . .}.

If we add two elements of E we obtain another element of E : if
2n and 2m are arbitrary elements of E then

2m +2n = 2(m +n) ∈ E .

(The same is true of subtraction.)
If we multiply together two elements of E the result is an
element of E :

2m ·2n = 2(2mn) ∈ E .

We can therefore regard E as a number system, the E-number
system, with operations of addition and multiplication.
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We shall can also define division.

Definition 4.7
If a and b are elements of E then we say that a E-divides b if b = aq,
where q is an element of E . Write a|Eb if a E-divides b.

With this definition 2|E8 because 8 = 2 ·4 and 4 ∈ E .
2 does not E-divide 6 because 6 = 2 ·3 and 3 /∈ E .
Also 2|E4 and 4|E24
but 2 ∤E 10.
Also 2 ∤E 2 and 4 ∤E 4 as 2 = 2 ·1 and 4 = 4 ·1.
More generally n ∤E n, for all E -numbers n.
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Now we can define E-prime numbers (but here we don’t have to
worry about 1 which is not an E-number, and no number
divides itself).
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A positive E-number n is called an E-prime if it has no E-divisor.

2 is E-prime, 4 is not, 6 is E-prime.
The first few E-primes are

2,6,10,14,18,22,26,30.



E-primes

Now we can define E-prime numbers (but here we don’t have to
worry about 1 which is not an E-number, and no number
divides itself).

Definition 4.8
A positive E-number n is called an E-prime if it has no E-divisor.

2 is E-prime, 4 is not, 6 is E-prime.
The first few E-primes are

2,6,10,14,18,22,26,30.



E-primes

Now we can define E-prime numbers (but here we don’t have to
worry about 1 which is not an E-number, and no number
divides itself).

Definition 4.8
A positive E-number n is called an E-prime if it has no E-divisor.

2 is E-prime, 4 is not, 6 is E-prime.
The first few E-primes are

2,6,10,14,18,22,26,30.



E-primes

Now we can define E-prime numbers (but here we don’t have to
worry about 1 which is not an E-number, and no number
divides itself).

Definition 4.8
A positive E-number n is called an E-prime if it has no E-divisor.

2 is E-prime, 4 is not, 6 is E-prime.
The first few E-primes are

2,6,10,14,18,22,26,30.



E-primes

Now we can define E-prime numbers (but here we don’t have to
worry about 1 which is not an E-number, and no number
divides itself).

Definition 4.8
A positive E-number n is called an E-prime if it has no E-divisor.

2 is E-prime, 4 is not, 6 is E-prime.
The first few E-primes are

2,6,10,14,18,22,26,30.



E-primes

Now we can define E-prime numbers (but here we don’t have to
worry about 1 which is not an E-number, and no number
divides itself).

Definition 4.8
A positive E-number n is called an E-prime if it has no E-divisor.

2 is E-prime, 4 is not, 6 is E-prime.
The first few E-primes are

2,6,10,14,18,22,26,30.



E-prime factorisation

The numbers 4, 8 and 12 have E-prime factorisations

4 = 2 ·2, 8 = 2 ·2 ·2 and 12 = 2 ·6.

In fact Theorem 4.6 can be adapted to show that every
E-number has an E-prime factorisation.
However 60 has two prime factorisations

60 = 2 ·30 and 60 = 6 ·10.

Therefore the uniqueness part of Theorem 4.6 does not extend
to E-numbers.
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Collected prime factorisation

It is often convenient to write the prime factorisation of an
integer with all like primes collected together, in ascending
order, and with exponential notation.
For example we could write the prime factorisations of 140 and
2200 as

140 = 22 ·5 ·7 and

We call this the collected prime factorisation of an integer n
or say that we’ve written n in standard form.

From the Fundamental Theorem of Arithmetic it follows that
collected prime factorisations are unique.
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Collected prime factorisation

Corollary 4.9
Let n > 1 be an integer. Then n may be written uniquely as

n = pa1
1 · · ·pak

k ,

where k ≥ 1, p1 < · · · < pk , pi is prime and ai ≥ 1.



The square root of 2

If n is a positive integer and has collected prime factorisation
n = pα1

1 · · ·pαk
k

then n2 = (pα1
1 · · ·pαk

k )(pα1
1 · · ·pαk

k )

An integer m is of the form n2, for some integer n, if and only if
every prime in the prime factorisation of m has even exponent.

Corollary 4.10
There is no rational number r such that r2 = 2. That is

√
2 /∈ Q.
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Primality testing

Is n prime?

Test it for divisibility by all prime numbers p such that 1 < p < n.

Better to use the following lemma.

Lemma 4.11
An integer n > 1 is composite if and only if it has a prime divisor
p such that p ≤

√
n.
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Example 4.12
To find all primes in the range 1 to 45:

2,3,5,7,11,13,17,19,23,29,31,37,41,43

is now a complete list of primes between 1 and 45.

This method of constructing lists of primes is known as the
Sieve of Eratosthenes.

In fact it is still too inefficient to use in practice to determine if a
large number is prime.
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A Theorem of Euclid

The following theorem appears in Book IX of the Elements, a
mathematical textbook written by Euclid: a Greek
mathematician who lived around 300 bc.

Theorem 4.13
There are infinitely many primes.

The proof is by contradiction.

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Euclid.html
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Objectives

After covering this chapter of the course you should be able to:

(i) define prime and composite numbers;

(ii) recall the prime divisor property, Theorem 4.2, and
understand its proof;

(iii) recall the Fundamental Theorem of Arithmetic, Theorem
4.6, and understand its proof;

(iv) recognise and write down the prime factorisation and
standard form or collected prime factorisation of an
integer;

(v) use the sieve of Eratosthenes;

(vi) recall the statement of Theorem 4.13 and understand its
proof.



Casting Out Nines

This is a method of testing integers for divisibility by 9.

Procedure 5.1
Given a non–negative integer (written in base 10) repeat the
following steps (in any order) until a number less than 9 is
obtained.

1. Cross out any digits that sum to 9 or a multiple of 9.
2. Add the remaining digits.

The result is the remainder of division of n by 9.
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Example 5.2
Cast out Nines from 215763401.

Example 5.3
Check the computation

215763401×51422218 = 11095032642643428.
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The Telephone Number Trick

1. Write down your telephone number.

2. Write down your telephone number with digits reversed.

3. Subtract the smaller of these two numbers from the larger.

4. By casting out nines from the result decide whether or not
it is divisible by 9.
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The “Odd & Even” Number System



Red, white and blue arithmetic



Congruence

In the Red, White and Blue number system we collected
together all integers which left remainder 0, 1 or 2 after division
by 3, and called them white, red or blue.

We saw that a and b are the same colour if and only if 3|b−a.

Generalising this from 3 to an arbitrary integer n leads us to the
definition of congruence.
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Definition 5.4
Let n be a positive integer and let a,b ∈ Z.

If n|b−a then we say that a is congruent to b modulo n, and write

a ≡ b (mod n).

For instance 17 ≡ 5 (mod 12) and 216 ≡ 6 (mod 7).

As in the case n = 3 above, a ≡ b (mod n) if and only if a and b
both leave the same remainder after division by n.
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In fact, if

a = nq + r and b = np + r , where 0 ≤ r < n (5.1)

then
b−a = n(p−q),

so n|b−a: that is a ≡ b (mod n).

On the other hand if a ≡ b (mod n) then n|b−a so b−a = np,
for some p.

In this case if a = nq + r , with 0 ≤ r < n, then b = np +a

so b = n(p +q)+ r and (5.1) holds.
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Example 5.5
Congruence modulo 2 gives rise to the Odd and Even number
system.

Example 5.6
Congruence modulo 3 gives rise to the Red, White and Blue
number system.
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Example 5.7
Suppose n = 10.

Then 0 ≡ 10 (mod 10), 10 ≡ 101090 (mod 10), 11 ≡ 121
(mod 10) and 27 ≡ 253427 (mod 10).

Every positive integer is congruent to its last digit (written to
base 10).

In particular integers congruent to 0 all end in the digit 0.

These are exactly the integers divisible by 10.
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Congruence is not the same as equality but it does share some
of the properties of equality.

If we have any integers a, b and c and n is a positive integer

then

1. a ≡ a (mod n),

2. if a ≡ b (mod n) then b ≡ a (mod n) and

3. if a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n).

These are all properties of equality.

Let’s check them for congruence.

The first one is easy since n|0 = a−a, for all integers a.
We’ll check the last one here and leave the second as an
exercise.
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Modular arithmetic
Arithmetic with congruences is called modular arithmetic.

We’ve already seen a couple of examples: Odd & Even
arithmetic and Red, White and Blue arithmetic.

The idea is to add and multiply integers in the usual way but to
regard two numbers as the same if they are congruent.

There is a possible problem with this. Suppose we work
modulo 10, that is n = 10.

Now take two integers which are congruent modulo 10, say 23
and 3. We are to regard these as the same.

This means that if we do something to one, say add 6, then we
should get the same answer as if we add 6 to the other.

Here “the same answer” means the same answer modulo 10.



Modular arithmetic
Arithmetic with congruences is called modular arithmetic.

We’ve already seen a couple of examples: Odd & Even
arithmetic and Red, White and Blue arithmetic.

The idea is to add and multiply integers in the usual way but to
regard two numbers as the same if they are congruent.

There is a possible problem with this. Suppose we work
modulo 10, that is n = 10.

Now take two integers which are congruent modulo 10, say 23
and 3. We are to regard these as the same.

This means that if we do something to one, say add 6, then we
should get the same answer as if we add 6 to the other.

Here “the same answer” means the same answer modulo 10.



Modular arithmetic
Arithmetic with congruences is called modular arithmetic.

We’ve already seen a couple of examples: Odd & Even
arithmetic and Red, White and Blue arithmetic.

The idea is to add and multiply integers in the usual way but to
regard two numbers as the same if they are congruent.

There is a possible problem with this. Suppose we work
modulo 10, that is n = 10.

Now take two integers which are congruent modulo 10, say 23
and 3. We are to regard these as the same.

This means that if we do something to one, say add 6, then we
should get the same answer as if we add 6 to the other.

Here “the same answer” means the same answer modulo 10.



Modular arithmetic
Arithmetic with congruences is called modular arithmetic.

We’ve already seen a couple of examples: Odd & Even
arithmetic and Red, White and Blue arithmetic.

The idea is to add and multiply integers in the usual way but to
regard two numbers as the same if they are congruent.

There is a possible problem with this. Suppose we work
modulo 10, that is n = 10.

Now take two integers which are congruent modulo 10, say 23
and 3. We are to regard these as the same.

This means that if we do something to one, say add 6, then we
should get the same answer as if we add 6 to the other.

Here “the same answer” means the same answer modulo 10.



Modular arithmetic
Arithmetic with congruences is called modular arithmetic.

We’ve already seen a couple of examples: Odd & Even
arithmetic and Red, White and Blue arithmetic.

The idea is to add and multiply integers in the usual way but to
regard two numbers as the same if they are congruent.

There is a possible problem with this. Suppose we work
modulo 10, that is n = 10.

Now take two integers which are congruent modulo 10, say 23
and 3. We are to regard these as the same.

This means that if we do something to one, say add 6, then we
should get the same answer as if we add 6 to the other.

Here “the same answer” means the same answer modulo 10.



Modular arithmetic
Arithmetic with congruences is called modular arithmetic.

We’ve already seen a couple of examples: Odd & Even
arithmetic and Red, White and Blue arithmetic.

The idea is to add and multiply integers in the usual way but to
regard two numbers as the same if they are congruent.

There is a possible problem with this. Suppose we work
modulo 10, that is n = 10.

Now take two integers which are congruent modulo 10, say 23
and 3. We are to regard these as the same.

This means that if we do something to one, say add 6, then we
should get the same answer as if we add 6 to the other.

Here “the same answer” means the same answer modulo 10.



Modular arithmetic
Arithmetic with congruences is called modular arithmetic.

We’ve already seen a couple of examples: Odd & Even
arithmetic and Red, White and Blue arithmetic.

The idea is to add and multiply integers in the usual way but to
regard two numbers as the same if they are congruent.

There is a possible problem with this. Suppose we work
modulo 10, that is n = 10.

Now take two integers which are congruent modulo 10, say 23
and 3. We are to regard these as the same.

This means that if we do something to one, say add 6, then we
should get the same answer as if we add 6 to the other.

Here “the same answer” means the same answer modulo 10.



Let’s see:
23+6 = 29 and 3+6 = 9.

This is alright because 29 ≡ 9 (mod 10) and so we regard 29
and 9 as the same.

Does this always work? The purpose of the next Lemma is to
reassure us that it does.
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Modular arithmetic is consistent

Lemma 5.8
Let n be a positive integer. Suppose that a,b,u and v are
integers such that

a ≡ u (mod n)

and
b ≡ v (mod n).

Then
(i) −a ≡−u (mod n);
(ii) a+b ≡ u +v (mod n) and
(iii) ab ≡ uv (mod n).

We prove parts (i) and (iii) here, leaving part (ii) as an exercise.
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Lemma 5.9
Every integer is congruent modulo n to one and only one of the
integers in the list 0,1, . . . ,n−1.

Proof.
This follows from the division algorithm because if a ∈ Z then
we can write a = nq + r , with 0 ≤ r < n.

Then n|a− r so a ≡ r (mod n) and r is in the given list.

If a ≡ r (mod n) and a ≡ s (mod n) then, from the above, r ≡ s
with 0 ≤ r < n and 0 ≤ s < n.

Assuming that r > s then n|r −s and n > r ≥ r −s, contradicting
Lemma 1.18.3.

Thus a is congruent to only one integer in the list.
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Example 5.10
In modular arithmetic we can always avoid computation with
large numbers.

For example working modulo 10 we have

7459898790352045324≡ 4 (mod 10)

and
9874558754423≡ 3 (mod 10).

Therefore

7459898790352045324·9874558754423≡ 4·3 = 12≡ 2 (mod 10).
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Similarly, working modulo 7 we have

4543362≡ 5 (mod 7).

Therefore
45433622 ≡ 52 ≡ 25 ≡ 4 (mod 7)

and

45433623 = 4543362 ·45433622 ≡ 5 ·4 ≡ 20 ≡ 6 (mod 7).
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Divisibility by 9
When we write a number like 20195 to base 10 we are
expressing the number

2×104 +0×103 +1×102 +9×101 +5

in shorthand (there’s a 1 in the 100’s column etc.).

Applying this argument in general we write

amam−1 · · ·a1a0

for the number

am ×10m +am−1 ×10m−1 + · · ·+a1 ×10+a0.

As 10k ≡ 1 (mod 9), for k = 1, . . . ,m, we have

amam−1 · · ·a1a0 ≡ am +am−1 + · · ·+a1 +a0 (mod 9). (5.2)
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Casting out nines again

Suppose we cast out nines (Procedure 5.1) from an integer m.

In Step 1 we cross out any digits which sum to a multiple of 9.

The sum of these digits is congruent to zero modulo 9 so, from
(5.2), the result is an integer congruent to m modulo 9.

In Step 2 we add the digits and again, from (5.2), the result is
an integer congruent to m modulo 9.
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Thus the casting out nines procedure results at every stage in
an integer congruent to m modulo 9.

The procedure ends with a number r such that 0 ≤ r < 9 and
r ≡ m (mod 9).

As 9|m− r , from which it follows that m = 9q + r , for some q ∈ Z
and 0 ≤ r < 9.

That is, the output from Casting out Nines is the unique
remainder (guaranteed by the division algorithm) on attempting
division of m by 9.
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Divisibility by 9

The following lemma follows from (5.2).

Lemma 5.11
An integer is divisible by 9 if and only if the sum of its digits is
divisible by 9.

Example 5.12
Are either of 215763401 or 215743401 divisible by 9?
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Divisibility by 4

Now 102 ≡ 0 (mod 4). Thus, for example,

1932526 = (19325×100)+26≡ 26 (mod 4)

and

93975656489084357745565568738675=
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Divisibility by 4

Now 102 ≡ 0 (mod 4). Thus, for example,

1932526 = (19325×100)+26≡ 26 (mod 4)

and

93975656489084357745565568738675 =

(939756564890843577455655687386×100)+75≡ 75 (mod 4).



More generally, if am · · ·a1a0 is an integer written to base 10

then

am · · ·a1a0 = (am · · ·a2 ×100)+a1a0 ≡ a1a0 (mod 4).

Therefore

am · · ·a1a0 ≡ 0 (mod 4) if and only if a1a0 ≡ 0 (mod 4).

That is
4|am · · ·a1a0 ⇔ 4|a1a0.

Example 5.13
Does 4 divide 937475900345 or 80345003732?
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Inverses in modular arithmetic

If we work in the rational numbers Q we can find a multiplicative
inverse for any non-zero element.

For example the inverse of 11/201 is 201/11.

The same is true in R where the inverse of x 6= 0 is 1/x .

In general if x is a number and y has the property that xy = 1
then we say that x has inverse y .

Most elements of Z don’t have inverses in Z. For example 2
has no inverse.

In fact ±1 are the only elements of Z which have inverses.
What about arithmetic modulo n.
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Try to find the inverse of 2 modulo 6.

Example 5.15
Do either 3 or 7 have inverses modulo 10?

Example 5.16
Which numbers have inverses modulo 8?
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Lemma 5.17
An integer a has an inverse modulo n if and only if

gcd(a,n) = 1.

What happens if we do arithmetic modulo a prime number p?

In this case, for every integer a either

1. p ∤ a in which case gcd(a,p) = 1 or

2. p|a in which case a ≡ 0 (mod p).

Thus every integer which is not congruent to zero modulo p has
an inverse.

In this way arithmetic modulo p resembles arithmetic in Q more
closely that arithmetic in Z.
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Example 5.18
Write out the multiplication table for arithmetic modulo 5 with
the integers 0,1,2,3 and 4.

Hence find the inverse of every integer which is not congruent
to zero modulo 5.
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Hence find the inverse of every integer which is not congruent
to zero modulo 5.



Solving Congruences

Example 5.19
Find all integers x such that

6x ≡ 4 (mod 8). (5.3)

We call such equations congruences and this is an example of
a linear congruence.

If x = a is a solution and a ≡ b then x = b is also a solution: so
if there’s one solution there are infinitely many.

Every integer is congruent to one of

0,1, . . . ,n−1 modulo n

so we seek solutions to congruences in this range.
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Exhaustive search

x 0 1 2 3 4 5 6 7
6x (mod 8)

From the table we see that the only solutions are x = 2 and
x = 6.

Cancellation does not always work when solving
congruences.
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A method of solution

ax ≡ b (mod n) (5.4)

x is a solution to (5.4) if and only if n|(ax −b)

if and only if ax −b = ny , for some integer y

if and only if ax −ny = b, for some y ∈ Z.

From Theorem 2.5 this has a solution if and only if gcd(a,n)|b.

Therefore, if d = gcd(a,n) then the congruence ax ≡ b (mod n)
has solutions if and only if d |b.
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Finding all solutions to ax ≡ b (mod n)
If d = gcd(a,n)|b then we can use the Euclidean algorithm to
find a particular solution to the equation

ax −ny = b. (∗ )

If d |b and x = u, y = v is a solution to the equation (∗)

then the general solution is

x = u− (n/d)t

and
y = v − (a/d)t ,

for t ∈ Z.

So if x = u is a particular solution to (5.4)
then the general solutions is

x = u− (n/d)t ,

where t runs through the integers Z.
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Applying the method to congruence (5.3) above:

How many of the solutions to congruence (5.4) which we have
found are congruent?

If d |b and x = u is one solution to the congruence (5.4)

then the list of solutions to (5.4) consists of the integers of the
form

u− (n/d)t ,

for t ∈ Z.
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Summary

Theorem 5.20
Let a,b and n be integers with n > 0 and let d = gcd(a,n).

Then the congruence ax ≡ b (mod n) has a solution if and only
if d |b.

If d |b then there are exactly d pairwise incongruent solutions.

Example 5.21
Find all solutions to the congruence

2x ≡ 3 (mod 6).

Example 5.22
Find all solutions to the congruence 6x ≡ 9 (mod 15).
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Summary

Theorem 5.20
Let a,b and n be integers with n > 0 and let d = gcd(a,n).

Then the congruence ax ≡ b (mod n) has a solution if and only
if d |b.

If d |b then there are exactly d pairwise incongruent solutions.
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Cancellation again

Example 5.23
Compare the solutions to the congruences

2x ≡ 4 (mod 6) and x ≡ 2 (mod 6).



Random numbers: an application

In situations where we require random numbers we often wish
to give a machine the task of generating these numbers.
In many cases we’d also like the machine to be able to
reproduce the sequence of random numbers that it outputs so
that we can verify our results.
Such sequences cannot be truly random and are called
pseudo-random.
Pseudo-random numbers are often generated by computer but
this means that we need to find good algorithms to produce
them.
The art and science of random number generation is highly
developed and very sophisticated. You can see this by looking
at the web page Random number generators – The pLab
Project Home Page at http://random.mat.sbg.ac.at/.

http://random.mat.sbg.ac.at/
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D.H. Lehmer’s method (1949)

To generate a sequence of “random looking” integers

a0,a1,a2, . . .

use the following process.

1. Fix a positive number n and two integers m and c, with
2 ≤ m < n and 0 ≤ c < n.

2. Choose a start value a0, such that 0 ≤ a0 ≤ n.

3. Generate elements of the sequence successively using the
formula

ak+1 = mak +c (mod n), where 0 ≤ ak+1 < n.

If a large value of n is chosen the sequence appears random,
at least to start with.
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Example 5.24
With n = 800, m = 71, c = 57, and a0 = 2 the first ten elements
of the sequence are

2,199,586,63,530,87,634,271,98,615.

Now altering a0 to 551 the sequence produced is

551,778,95,402,599,186,463,130,487,234.

Keeping everything fixed except n = 8000 we obtain

551,7178,5695,4402,599,2586,7663,130,1287,3434.

With n = 40, m = 22, c = 20 and a0 = 13 we obtain

13,26,32,4,28,36,12,4,28,36,12.
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Of course such sequences are not random (by definition) and
we have a formula for the terms.

Theorem 5.25
The kth term of the sequence generated by the process above
is

ak =

(

mka0 +
c(mk −1)

(m−1)

)

(mod n),

with 0 ≤ ak < n.

Analysis of “how random” a pseudo-random sequence is
involves applying statistical tests to the sequence.
For instance the frequency of occurence of a particular integers
in the sequence can be tested;
as can the frequency of occurence of pairs of integers.
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Objectives

After covering this chapter of the course you should be able to:

(i) recall the definition of congruence;

(ii) recall the statement of Lemma 5.8 and understand its
proof;

(iii) do arithmetic modulo n;

(iv) understand how various divisibility tests work and be able
to apply them;

(v) decide whether or not an integer has an inverse modulo n;

(vi) generate a sequence of random looking numbers.
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