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1. (a) Find the greatest common divisor of 1400 and 37730.

(b) Find integers x and y such that

1400x + 37730y = gcd(1400, 37730).

(c) Which of the following equations have integer solutions? In each case either find
integer solutions u and v or explain (briefly) why no solution exists.

(i) 1400u + 37730v = 210;

(ii) 1400u + 37730v = 102.

(d) Find the general solution for those equations in part (c) above which have a solution.

(e) Find all solutions with x > −1000 and y > 0.

[25 marks]

2. (a) Let a, b, c and d be integers such that a|b and c|d. Prove that ac|bd.

(b) Show that
5n2|(5n2 + 3)2 − 9,

for all n ∈ Z.

[5 marks]

3. Let a, b and c be non-zero integers such that gcd(a, b) = gcd(a, c) = 1. Show that
gcd(a, bc) = 1.

[5 marks]

4. (a) Show that n2 has the form 5k, 5k + 1 or 5k + 4, with k ∈ Z, for all integers n.

(b) Show, using the first part of the question, that if 5|n2 then 5|n.

[15 marks]

5. Prove by induction that:

n∑

k=1

k(k + 1) =
1

3
n(n + 1)(n + 2),

for all n ∈ N.
[10 marks]

6. Use Fermat’s method of factorisation to find factors of 253, showing all your working.
(You may use the fact that 15 <

√
253 < 16.)

[5 marks]
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7. (a) Complete the table below for multiplication modulo 8 using only the integers
0, 1, 2, . . . , 7.

× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4
3 0
4
5
6
7

(b) Which integers have inverses modulo 8?

(c) Compute 1323 (mod 8).

(d) State how many incongruent solutions there are to the following congruences. Jus-
tify your answers. Then find all solutions.

(i) 10x ≡ 6 (mod 18);

(ii) 10x ≡ 9 (mod 18).

[20 marks]

8. (a) Let a, b and c be integers such that a|b and a|c. Show that a|b − c.

(b) Let n be a positive integer and let S = n! + 1. Show that if p is a prime divisor of
S then p > n.

(c) Use the first part of the question to show that there are infinitely many primes.
[Hint: If there are finitely many primes then set n in the previous part of the
question equal to the largest prime.]

[15 marks]

THE END
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