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Chapter 1

Division and Greatest Common Divisors

Move forward to a time after the collapse of the banking systéhen we have returned to
bartering. In the university loaf of bread can be exchanged for 11 apples and a chocol&ie ca
can be exchanged fdb apples. A professor has baked baked a dozen loaves and astudes
out to have several cakes and hundreds of apples. The poofessits just one apple, so would
like to exchange some loaves for one apple and some cakeshiSde done, and if so how?

12 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63 64 65 66

Is there more than one solution?
We can describe the problem algebraically. &gt andc and stand for the value of apple,
acake and a loaf obread, respectively. Than= 15« andb = 11a.

1
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Now suppose that at bottle of French wine is wosthapples and a bottle of English wine is
worth 24 apples. A lecturer has a crate of french wine and some appidgtze professor now
wants6 apples, but only has a crate of English wine. Can a fair trastigan be made so that the

prof ends up witls apples?

We can describe the problem algebraically again. fLabde stand for the values dfrench
andEnglish wine, respectively.
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12 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 39 30
31 32 33 34 35
36 37 38 39 40

The crucial feature of these problems are that we are ordyasted in solutions which are natural
numbers (defined in Section A.6). Solutions would be very ¢éasind if we allowed ourselves
to use rational numbers or real numbers (see Section A.6).
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On the other hand integer solutions are no easier to find thaural number solutions (integers
are also defined in Section A.6).

This chapter looks into some of the properties of natural lmens and integers that, among
other things, prove useful in solving problems such as thebag ones above. We'll look at a
a step by step recipe which would give us a number, dike the second problem above, which
can be used to simplify the problem and in fact determineghgner not there is a solution. We
shall investigate, in some detail, how and why this works.

1.1 The Euclidean Algorithm

To solve the equatiofi + 30y = 24« | first divided throughout by. | chose6 because it is
the biggest positive number that dividesabf 24, 6 and30. This is easy, because the numbers
here are small, but let's make the process we go throughwtie§otlear, and then try it for some
bigger numbers. For simplicity suppose | want the biggestte number that divides bott
and30. | make two lists.

Positive divisorsoR4 : 1,2,3,4,6,8, 12,24
Positive divisorso80 : 1,2, 3,5, 6, 10, 15, 30

Now | pick the largest number which appears on both of the,listhich is6, and this is my
answer. Now for bigger numbers.

Example 1.1. Find the biggest number which divides bath28 and2600.
Positive divisors of
2028 : 1,2,3,4,6,12,13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028
2600 : 1,2,4,5,8,10, 13,20, 25, 26, 40, 50, 52, 65,100, 104, 130, 200, 260,
325,520, 650, 1300, 2600
By examining these lists we see that the biggest numberidiyiabth2028 and2600 is 52.

The last example involved alot of calculation and requiretbufactorise botR028 and2600.
Without some systematic method it would be very easy to leavesome divisor of eithez028
or 2600. The following is a method which in many cases involves meds work and is easier
to validate.

The algorithm

The biggest natural number which divides both natural nusibandb is called thegreatest
common divisor of ¢ andb. Given natural numberg andb we wish to find their greatest
common divisor. The recipe works as follows.
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EA1. Input the pair(b, a), with0 < a < b.

EA2. Write b = aq + r, whereq andr are integers witl) < r < a.
EA3. If » = 0 thenoutput ged(a, b) = a andstop.

EA4. Replace the ordered padir, a) with (a,r). Repeat from (2).
Before going into why this algorithm works we look at somerapées.

Example 1.2. Find the greatest common divisdrof 12 and63. Find z,y € 7Z such that
122 + 63y = d.
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As shown in the above example we can use the Euclidean Atgonitot only to find the
greatest common divisat of two natural numbers and b but also to expresg as sum of
multiples ofa andb. This can be useful in solving equations as we’ll see latdot¢ thatr and
y are not always natural numbers: they may be negative.)

Example 1.3. Find the greatest common diviséof 2600 and2028. Find integers: andy such
thatd = 2600x + 2028y.

First we findged (2028, 2600). The input to the Euclidean Algorithm {2600, 2028). We write
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out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 - 1 + 572 (1.1)
(2028,572) 2028 = 572 - 3 + 312 (1.2)
(572,312) 572 = 312 1 + 260 (1.3)
(312,260) 312 = 260 - 1 + 52 (1.4)
(260,52) 260 = 52 -5 + 0. (1.5)

This givesged (2600, 2028) = 52, as we found in Example 1.1.

To find the integers;, y we work back from (1.4) to (1.1).

52 =312 — 260 - 1 from (1.4)
=312 — (572 —312-1) = 312-2 — 572 from (1.3)
— (2028 —572-3) -2 — 572 = 2028 -2 — 572 - 7 from (1.2)
= 2028 -2 — (2600 — 2028 - 1) - 7 = 2028 - 9 — 2600 - 7 from (1.1)

Thus52 = 2600 - (—7) + 2028 - 9 so we may take = —7 andy = 9.

Example 1.4. Find the greatest common divisdrof 2028 and626. Findz,y € Z such that
2028z — 626y = d.

First we findged (2028, 626). The input to the Euclidean Algorithm {8028, 626). We write out
the results of Step EA2 as the algorithm runs:

(2028,626) 2028 = 626 - 3 + 150 (1.6)
(626,150) 626 = 150 - 4 + 26 (1.7)
(150,26) 150 = 26 - 5 + 20 (1.8)

(26,20) 26 =120-1+6 (1.9)
(20,6) 20 =6-3+2 (1.10)
(6,2) 6=2-3+0. (1.11)

This givesged (2028, 626) = 2.

To find the integers, y we work back from (1.10) to (1.6) to find an expressionZor

2=20-1-6-3 from (1.10)
=20-1-3-(26-1—-20-1)=20-4—26-3 from (1.9)
= (150-1—26-5)-4—26-3=150-4 — 26 - 23 from (1.8)
=150 -4 — (626 — 150 - 4) - 23 = 150 - 96 — 626 - 23 from (1.7)
= (2028 — 626 - 3) - 96 — 626 - 23 = 2028 - 96 — 626 - 311 from (1.6)

Thus2 = 2028 - 96 — 626 - 311 so we may take: = 96 andy = 311.
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1.2 Divisibility in the integers

From the evidence of the examples above it appears that tiel&an Algorithm really does
return the greatest common divisor of two natural numbeédslike to understand why this is
so. We shall consider integer arithmetic and hopefully wilkallow us to see exactly how the
algorithm performs and why it works. We shall take for graiitee basic properties of arithmetic
with numbers. By arithmetic is meant addition and multiglion. For example we consider it
a basic law that + y = y + x, wherex andy are natural numbers, integers or real numbers
Among other properties that hold for numbers; and: are that

Otz ==
l-x=x
x(y+2) =xy+ 2z
(—2)(=y) = zy
if x> 0andy < 0thenzy < 0.

We've already used the terminology tlividesd” for integersa andb but let’s be absolutely
clear of what we mean by this.

Definition 1.5. Let a andb be integers. If there exists an integesuch that = ¢ga then we say
thata divides? b, which we write asi|b.

A definitionestablishes once and for all the meaning of a word. From nowlamever
we say “divides” we mean what it says above, nothing mordyingtless.

Other ways of saying|b are that: is afactor of b, a is adivisor of b or b is amultiple of a.
We writea 1 b to denote & does not divideé”.

Example 1.6. From the definition we can easily check tbéat8 becausd8 = 6 - 3. In the same
way we see that divides24, 12,6,0 and—6. It's also fairly obvious that {1 16 and—15 1 25,
although explaining exactly why may take a little thought.

In the next few examples we’ll use Definition 1.5 as a starpiomt and from it prove some
very simple facts, just to get used to the terminology foegar arithmetic.

Example 1.7. We shall prove that|(6n + 6), for all integersn.

The real numbers are defined in Section A.6
2Bold face is used for definitions. Some authors use italicstr@ blackboard underlining is used instead.
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In Example 1.7 we have proved something is timeall integers. To prove this it isot
enough to find an example of some integdor which the statementis true. On the other
hand if you are asked to prove that thergstintegersr andy such thaR600x + 2028y =

52 then it would be enough to find an example: say —7 andy = 9, as in Example 1.3.

Example 1.8. Prove thatt|[(2n + 1)? — 1], for all integersa.

What we need to settle the question of explaining why, fongXa6 1 13 is something like:
if we form the fractionl3/6 it's equal to2 + 1/6 which is not an integer. Alternatively, to verify
that32 1 121 we could try to dividel21 by 31 and we'd find a non—zero remainder. In fact we
can expres$21 as
121 =32 x 3 + 25.
(In this expressiors is called thequotientand 25 the remainder) This is the content of the
Theorem we come to next.
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Before stating the Theorem we need to recall some notation.

Definition 1.9. The modulus or absolute valueof a real number: is denotedx| and is given

by the formula
2] = T, ifz>0
= —x, ifz<0.

The definition above is what is known aslefinition by cases

All integers are real numbers so it makes perfect sensek@tdhe modulus of an integer. For
example

| — 6] =6=16],
102 = |102| = | — 102| and
0[=0=-0=]-0]

Theorem 1.10(The Division Algorithm). Leta andb be integers withu # 0. Then there exist
unique integerg andr such that) = ag + r and0 < r < |a|.

We could prove this: but it is intuitively obvious, rather ndane and up to now we just
accepted it as an obvious fact: so we’ll continue to accefarinow. If you're unhappy with
this, more detail of why and how it should be proved can be domrany book on elementary
number theory; and later on we’ll prove a similar statemera setting where it's not obviously
true. Instead let’s take stock.

(1) The condition that. # 0 is necessary. It's the same as saying that we can’t havednact
like 3/0.

(2) There are two parts to the conclusion of the Theorem tl¥Fitssays that; andr do exist,
with the properties described. Secondly it says thandr» areunique In terms of the
example above this means that if we hawendr with 0 < r < 32 such thati21 = 32¢ + r
theng must be 3 andr must be 25. This is not surprising: we’'d be dismayedilif1/32 had
some value other thad+ 25/32.

(3) One way if assessing whether the Theorem is worth statingpt is to see how it might
work in other settings. Suppose for example we were to wotk vational numbers instead
of integers. Ifb anda are rational withz > 0 then | can pick any | like, in the given range
0 < r < |a|, and obtairb = aq + r by settingg = (b — r)/a. Thusq andr are not unique
and the Division Algorithm does not hold. More dramaticuiad of the Division Algorithm
is exhibited in some other situations. For example in th@kpblynomials in two variables
x andy with integer coefficients it’'s easy to find polynomiglsandg for which there is no
way of writing f = g - ¢ + r with r in any meaningful way “less thary.

Here are some examples of the Division Algorithm in action.
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Example 1.11.Every integem can be written as = 2¢ + r, with 0 < r < 2. If r = 0 we say
n isevenand ifr = 1 we sayn is odd.

Here we've used the Division Algorithm (Theorem 1.10) totpian of integers into odd and
even.

Example 1.12.
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Example 1.13.Show that|n? — n, for all integersn.
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Example 1.14.Show that ifn is an integer then?® has the formik, 4k + 1 or 4k + 3, for some
ke Z.
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1.3 Properties of division

Example 1.15.Consider the equality12 = 20 - 5 + 12.

Lemma 1.16. Let s, t andu be integers, which are not all zero, such that
s =tq + u.

Thenged(s,t) = ged(t, u).

A lemmais a lesser result: one which is not important enough to bergikie grand title
of theorem. Lemmas are often small steps made on the wayablissing a theorem.

Proof. Strategy: show that any integer that divides bot#nd¢ must also divide:. Then show
that any integer that divides botland« must also divides. Having done this it’s clear that the
set of common divisors of andt is exactly the same as the set of common divisorsaidu
and their greatest common divisors are thus equal.
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Example 1.17.We can write337 = 11 - 30 4 7, SO

The lemma above is the key to the Euclidean Algorithm. Wel slehprovethat the Euclidean
algorithm works, being content to see that it must do on s@inky general examples. (Although
a proof using what we have done could be constructed.) Bgfurey any further we record some
very basic consequences of the definition of division; asraria.

Lemma 1.18.

1. n|n, for all integersn.

2. nl0, for all integersn.

3. If m andn are integers such that:jn andn > 0 thenm < n.
4

. If m andn are positive integers such that|n thenged(m, n) = m.

Proof.
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The proof of the third part of the Lemma above is knowmpasf by contradictionThis
always works as follows.

Step(1) Start with some statement to be proved.In the Lemma this is that: < n,
given thatm|n andn > 0.

Step(2) Assume the negation of what is to be provedn the proof of our lemma this is
thatm > n.

Step(3) Derive some consequences of the assumptioie obtainn = mgq, with ¢ > 1.

Step(4) Show that something we've derived is false We show that» > m, which
together withrm > n makesn > n, which can never hold.

Step(5) Conclude that the result holds. It cannot happen that: > n because this
forcesn > n, which is impossible. The conclusionns < n.
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1.4 Why the Euclidean Algorithm works

Example 1.19.Consider the Equations (1.6)—(1.11) on page 8.
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Stringing all these facts together we have
2 = ged(6,2) = ged(20,6) = ged(26,20) = ged(150, 26) = ged (626, 150) = ged (2028, 626),

that isged(2028,626) = 2. This is what the Euclidean Algorithm told us. Lemma 1.16 and
Equations (1.6)—(1.11) show why the algorithm comes up thighcorrect answer.

Example 1.20.Consider the Equations (1.1)—(1.5) on page 8. As in the elaailve we have

ged(2600, 2028) = ged (2028, 572), using Equation (1.1)
ged (2028, 572) = ged (572, 312), using Equation (1.2)
ged(572,312) = ged (312, 260), using Equation (1.3)
ged(312,260) = ged(260, 52), using Equation (1.4)

From Equation (1.5) we see thi2|260 and so we havecd (260, 52) = 52. Therefore

52 = ged (260, 52) = ged (312, 260) =
ged(572,312) = ged (2028, 572) = ged (2600, 2028),

that isged (2600, 2028) = 52. Again we've seen why the answer given by the Euclidean Algo-
rithm was the correct one.

In addition to finding the greatest common divisor of two geaesa andb we can work back
through the output of the Euclidean algorithm, as we did iafgles 1.2, 1.3 and 1.4, to find
integerse andy such thatux + by = ged(a, b). This gives us the following Theorem.
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Theorem 1.21.Leta andb be integers, not both zero, and lét= ged(a, b). Then there exist
integersu andv such thatd = au + bv.

Note that we restricted the input of the Euclidean algoritbrpairs of positive integers, so
we might worry that ifa or b is non-positive then the Theorem does not work. Howeveed'sy
to see thagcd(a, b) = ged(—a, b) = ged(—a, —b) = ged(a, —b) and from this it follows that the
Theorem holds in all cases.

1.5 An application

We began this Chapter by looking at the problem of distrdoutf toffees. This problem was
resolved by solving the equati@dx — 6 = 30y. Equations of this form, where the coefficients
are integers and only’s andy’s occur (nothing liker?, 23, zy or zy? occurs) and for which we
seek integer solutions, are calllear Diophantine equations Here we look at some linear
Diophantine equations.

Example 1.22.Find integerse andy such tha2600x + 2028y = 104.

In Example 1.3 we ran the Euclidean Algorithm and fowgad (2600, 2028) = 52. Once we'd
done so we were able to use the equations generated to figeiateandy such that

2600 - (—7) + 2028 - 9 = 52, (1.12)

Example 1.23.Find integersc andy such that-72 = 12378z — 3054y.
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First we run the Euclidean Algorithm to fingd (12378, 3054).
(12378,3054) 12378 = 3054 - 4 + 162 (1.13)
(3054,162) 3054 =162 - 18 + 138 (1.14)
(162,138) 162 = 138 -1 + 24 (1.15)
(138,24) 138 =24 -5+ 18 (1.16)
(24,18) 24=18-1+6 (1.17)
(18,6) 18=3-6+0. (1.18)
This givesged (12378, 3054) = 6.
Next we work back from (1.17) to (1.13) to find integersy such that = 12378u + 3054v.
6=24—-18-1 from (1.17)
=924 — (138 —24-5) =24 -6 — 138 from (1.16)
= (162 —138)-6 — 138 =162-6 — 138 -7 from (1.15)
=162-6 — (3054 — 162-18) - 7=162- 132 — 3054 - 7 from (1.14)
= (12738 — 3054 - 4) - 132 — 3054 - 7 = 12378 - 132 — 3054 - 535 from (1.13)
Thus
6 = 12378 - 132 + 3054 - (—535) (1.19)

so we may take: = 132 andv = —535.



MAS1202/MAS2202 Notes 25

The method above of finding integer solutions can be extetml&dd all such solutions to
equations of this kind. Here we establish conditions whietedmine whether or not there exists
a solution. Later on we’ll see how to describe all solutions.

Lemma 1.24.Leta, b andc be integersd, b not both zero). The equation

ar +by =c (2.20)

has integer solutions, y if and only ifged(a, b)|c.
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The phrase “if and only if” in this Lemma is an important pairtloe conclusion. To say
“the equation has solutiorisand only ifged(a, b)|¢” means two things:

1. if the equation has solutions theed(a, b)|c and
2. if ged(a, b)|c then the equation has solutions.

The second statement is tbenverseof the first. (More generally, the converse of “If A
is true then B is true” is “If B is true then A is true”.)

To prove the lemma we must prove both statements becaugmisible for the converse
of a true statement to be false. This is apparent in evenjtlayHFor example it would
be quite reasonable to say that the statement “If | am a freg thcan swim” is true.
The converse is “If | can swim then | am a frog”, and this is coomhy regarded as false.
More precise mathematical examples are not hard to find.

Proof.
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O

There are several different ways of saying things like ‘ithen ...” and “... if and only
if ..."”. The symbol=- is read “implies”. All the entries on a given line of the faliing
table mean the same thing: entries on different lines do matmthe same thing.

if Athen B A=1B Bif A

if B then A A<B AifB

Aifand only if B A& B Aiff B

Example 1.25. Are there integers andy such thak600x + 2028y = 130?

Example 1.26.For whichc does the equatior2z + 49y = ¢ have a solution?

We conclude this chapter with some remarks about Lemma Eif4 pair of integers and
b and letd = ged(a, b). The lemma tells us that the equatien+ by = ¢ has a solution if and
only if d|c. Now this means that

1. there is a solution if = ¢ and
2. thereis no solution i < ¢ < d.

We can therefore conclude thats the smallest positive integer that can be written in thenfo
ax + by, with z, y € Z.
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Now let’s suppose that once we've fixadandb we find there exist integers andv such
thatau + bv = 1. For example this happens if we set= 25132 andb = 15079, for then

3a — 5b = 1. What can we say abogtd(a, b) in this case? We’'ll take up these threads again in
the next chapter.

1.6 Objectives
After covering this chapter of the course you should be able t
() use terms such d3efinition, Lemmaandproofwith confidence;
(i) read and understand simple proofs;
(ii) remember Definition 1.5 of dividesb, for integers: andb;
(iv) apply this definition to prove simple divisibility prepties;
(v) state the Division Algorithm and be able to use it to destmate properties of integers;
(vi) remember the definition of greatest common divisor aj integers;
(vii) apply this definition to prove results;
(viii) apply the Euclidean algorithm and explain why it werk

(ix) find solutions to equations of the kind given in Sectio.1

1.7 Exercises

1.1 For each of the following pairs b of integers findzcd(a, b) and integerg ands such that
ged(a, b) = ra + sb.

@) a = 13,b = 1000; (C) a = 1147,b = 851;
(b) a = 306,b = 657; (d) a = 5213,b = 2867.

1.2 Prove the following using only the definition of divisigDefinition 1.5). In each case
indicate where in your proof you have used the definition.

(a) 13169, 13]1859 and143|1859. (b) 5/(5n*+25n+T75n), for all integersn.

1.3 Use the Division Algorithm to show that,sifis an integer then

(a) n? is either of the fornB8k or 3k + 1;
(b) n? is either of the formik or 4k + 1;
(c) n*is of the form eithebk or 5k + 1.

1.4 Show that|n® — n, for all integersn.
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1.5 Use the Division Algorithm to prove that for any integeone of the integers, a + 2,
a + 4 is divisible by 3. Indicate where and how you use the Division Algorithm in you

proof.

1.6 Use the Division Algorithm to prove that for any integeone of the integers, a + 2,
a+ 4, a+ 6 ora+ 8is divisible by5. Indicate where and how you use the Division

Algorithm in your proof.

1.7 Use only the definition of division, Definition 1.5, to pethe following facts. Daot
mention the Division Algorithm, Theorem 1.10. Letb andc be integers.

(a) Prove that it:|a then—c|a andc|(—a).
(b) Prove that ifz|b andb|c thenalc.

1.8 Leta andb be integers.

(a) Prove thagced(a,b) = ged(—a, b) = ged(—a, —b).
(b) If @ > 0 show thaiged(a,0) = a. What isged(a, 0) if a < 0?

1.9 Determine integer solutionsy to the following equations.
(@) 56z + 72y = 40; (c) 221z + 35y = 11.
(b) 242 + 138y = 18;

1.10 Which of the following equations have integer solui®igJustify your answers but do not
find the solutions.)

(@) blx — Ty = 88; (d) 33z + 27y = 88;
(b) 33z + 44y = 88;
(c) 11z — 66y = 0; (e) 33z + 44y = 1.

1.11 Prove each statement below using only the definitionuididn (and basic laws of arith-
metic). Point out where in your proof you use the definitiordision. Leta,b, ¢, d be
integers. The following hold.

(@) ala®.

(b) If a|bthena|bc andac|bc.

(c) If alb andc|d thenac|bd.

(d) If 0|a thena = 0.

(e) a|l if and only if @ = +1. [Hint: Consider cases > 0 anda < 0 separately. If
a > 0 use the previous part of the questiona & 0 apply the result for. > 0 to —a.
Cana = 07]

(f) If a|b andb|a thenb = +a.

1.12 Use the Division Algorithm and Question 1.11 to prow for an arbitrary integer
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(@) 2la(a+ 1); (©) 3la(2a® + 7);
(b) 3la(a + 1)(a +2); (d) if a is odd therB2|(a2 + 3)(a® + 7).

In each case indicate where the Division Algorithm and tssafl Question 1.11 are used
and how.

1.13 Show that there is no pair of natural numbergsuch thatr? — 2y = 0. Use this to show
that there is no rational numbeisuch that? = 2.

1.14 Show that there is no pair of natural numberg such that:?> — 5y = 0. Use this to show
that there is no rational numbeisuch that? = 5.

1.15 Show that there do not exist integery such thats?> — 4y = 3. [Hint: first prove that
there are no such numbers witleven, then that there no such wittodd.]



Chapter 2

Coprime Pairs of Numbers

The professor has been awarded a pay increase and decidesoto & party. He wants French
wine for this party. Unfortunately in this department the/pgin bottles of English wine. Lec-
turers in Classics are paid in French wine and apples; so tteggssor wishes to trade English
wine for apples and French wine. The prof still wants to eatagiples, as it happens. Can the
professor buy sufficient wine to make a really memorableyPart

32
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o by+1=4x
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In this section we’ll develop enough of the theory of integerenable us to write down a formula
which tells us exactly which values afandy are solutions to equations of this type for which
we seek integer solutions (linear Diophantine equations).

2.1 Greatest common divisors again

First we establish a few more properties of the greatest comdivisor. Recall that whenever
we ran the Euclidean Algorithm, on natural numbeendb, we obtained not onlygcd(a, b) but
also integers andv such that

ged(a, b) = au + bv,
and from this fact we obtained Theorem 1.21. We’ll now givealiarnative proof of this Theo-
rem.

Second proof of Theorem 1.21
Suppose that we have positive integerandb. (The cases where or b are non-positive
follow easily from this case, and are left to the reader.)sbof depends on analysis of the set

S={ak+bl €Z:ak+bl>0andk,l cZ}.
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This is clearly a set of positive integers. We shall provettteorem by showing that it's
smallest element igcd(a, b). First of all we need to show that it does have a smallest efenite
is a fundamental property of numbers that every non-emptyfsmsitive integers has a smallest
element. Then, a§ contains only positive integers it must have a smallest eteéranless it’s
empty. It's easy to seé is non-empty as it contains, for examplet b. ThereforeS has a
smallest elemeng, say. The fact that € S means

s = ak + bl, for somek,[ € Z. (2.1)
Now, using the Division Algorithm, we can write

a = sq+r, where) <r < s.
Substituting fors using (2.1) this becomes

a=(ak+bl)g+r
= a(kq) + b(lq) +r,

SO
r=a(l — kq) + b(—lq), with0 < r < s.

If » # 0 then we have € S andr < s, a contradiction. Therefore= 0 anda = sq. That is,
sla. Similarly s|b.
Now suppose thatja andc|b. Thena = cu andb = cv, for someu, v € Z. Substitution in
(2.1) gives
s = c(uk) + c(vl) = c(uk + vl).

Thereforer|s and from Lemma 1.18.3 we hawve< s. This completes the proof that= ged(a, b)
and we've already foun#l, [ such thats = ak + bl, so Theorem 1.21 follows.

2.2 Coprimes and Euclid’s Lemma

Pairs of integers that have greatest common divisbave particularly nice properties and
it's useful to have a name for them.

Definition 2.1. If a andb are integers witlged(a, b) = 1 then we say thai andb arecoprime.

Example 2.2.1t is easy to see thatand35 are coprime, for example. Now from Theorem 1.21
it follows that there are integetsandv such thatu + 35v = 1. For instance we may set= 6
andv = —1. (There are other possibilities: see the exercises.)

On the other hand suppose that for some integeasid b we happen to know that, say,
5a — 2b = 1. Does this mean thagd(a, b) = 1?

Corollary 2.3. Integersa andb are coprime if and only if there exist integarsandv such that
au +bv = 1.
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A corollary is something which follows easily from a previously provantf

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that i andb are coprime then there exist integarandv such thatiu + bv = 1.
If « andb are coprime then it follows directly from Theorem 1.21 thatlsu andv exist.

Step(2) Prove that if there exist integersaind v such thatau + bv = 1 thenged(a,b) = 1.
Assume that there are integeraindv such thatwu + bv = 1. Letd = ged(a, b).
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Thusd = 1, soa andb are coprime, as required.

Corollary 2.3 allows us to prove a result known as Euclid'snnea.

Lemma 2.4(Euclid’s Lemma) Leta, b andc be integers wittged(a, b) = 1. If a|be thenalc.

Proof.
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2.3 Application to solving equations

Recall that a linear Diophantine equation is an equatiorhefformaz + by = ¢, where
a,b andc are integers. We've already seen (Lemma 1.24) that a linegHantine equation has
integer solutionz andy if and only if ged(a, b)|c. We can now use Euclid’s lemma to find all
solutions to such equations.

Theorem 2.5.Leta, b, c be integers and lef = ged(a, b). The equation
ar + by = ¢ (2.2)

has an integer solution if and onlydfc. If d|c then equatior{2.2) has infinitely many solutions
and if r = ug, y = vy is one solution them = w4, y = v is a solution if and only if

and
v = vy — (a/d)t,
for somet € Z.

Proof.
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O

Example 2.6.1n Example 1.22 we saw thgtd (2600, 2028) = 52 and that the equatidz600z +
2028y = 104 has a solutiomr = —14,y = 18. As2600/52 = 50 and2028/52 = 39 the solutions
to this equation are

r=—14+4 39,y = 18 — 50t, fort € Z.

For each integerwe have a solution, some of which are shown below.

e [y |
2] 92| 118
1| 53| 68
0 [-14|18
1|25 |32
2 [64 | -82

Example 2.7.Find all integer solutions to the equati6Br + 12y = 18. List all solutions with
x> —12andy > 6.

From Example 1.2 we havecd(63,12) = 3 and as3|18 the equation has solutions. In
Example 1.2 we also found thét - 1 + 12 - (—5) = 3.
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Example 2.8. Find the general form for integer solutions to the equat@Bv8x + 3054y = 42.
Find all solutions, y with = > 0 andy > —2000. Find all solutions withz: > 0 andy > 0.

In Example 1.23 we found thatd (12378, 3054) = 6 and since&|42 this equation has solu-
tions. In the given example we also four@B78 - 132 + 3054 - (—535) = 6. Multiplying through
by 7 gives12378 - 132 - 7+ 3054 - (—535) - 7 = 42. This gives a particular solution

xr=132-7=924 andy = (—535) - 7 = —3745.
For the general form of the solution, in this case we haué = 12378/6 = 2063 andb/d =
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3054/6 = 509. The general form of the solution is therefore
x = 924 4 509t andy = —3745 — 2063t,

fort € Z.
(We can check this is correct: with= 1 we verify that12378 - 1433 + 3054(—5808) = 42.)

For solutions withe > 0 we require924 + 509t > 0, that ist > —924/509. Ast is an integer
we therefore require > —1.

We have solutions witly > —2000 if and only if —3745 — 2063t > —2000 if and only if
3745 + 2063t < 2000 if and only if t < —1745/2063 if and only ift < —1.

Therefore there is a unique solution with> 0 andy < —2000, which we obtain by setting
t = —1, namely
x =415,y = —1682.

We have solutions witly > 0 if and only if 3745 + 2063t < 0 if and only if t < —3745/2000 if
and only ift < —2. Thus to obtain a solution with, y > 0 we need bothh > —1 andt < —2.
There are no suchso there are no solutions withy > 0.

2.4 Objectives
After covering this chapter of the course you should be able t
() recall Theorem 1.21 and understand its proof;
(i) define a coprime pair of integers;
(ii) recall Corollary 2.3 and Euclid’s Lemma and understadheir proofs;

(iv) find the general form of the solution of a linear Diophaetequation in two variables.
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2.5 Exercises

2.1 Leta, b andc be integers such thata andc|b. Show thatc|(au + bv), for all integersu
andov.

2.2 Leta,b andc be integers such thatd(a, b) = 1 anda|c andb|c. Prove thatb|c. [Hint:
Use Theorem 1.21 and multiply o]

2.3 Leta andb be integers, not both zero.

(@) Show that ift > 0 andged (a,b) = d thenged (ka,kb) = kd. [Hint: Use an
appropriate result to expregasd = ax + by. Multiply both sides byk.]

(b) Prove that itz andb be integers witlged(a, b) = d then

a b

[Hint: Use the previous part of the question.]

2.4 Using the solutions to Question 1.9, determine the géri@erm of the integer solutions
x, y to the following equations.
(@) 56z + 72y = 40;
(b) 221x + 35y = 11;
(c) 24z + 138y = 18.

2.5 Find the general form of integer solutions to the equalBx + 152y = 32. Find all
solutions withx > 0 andy < 0. Also find all solutions with: > 0 andy > —300.

2.6 Find the general form of integer solutions to the equatibr + 66y = —30. Find all
solutions withz > 1 andy > 35. Also find all solutions withr < 15 andy < 35.



Chapter 3

Proof by Induction

3.1 Induction

A professor decides to reward his students by buying thenkslin the bar after lectures.
Drinks are bought for those who answer questions corre@thg questions get harder throughout
the lecture so the number of drinks per question increaserict answer to the 1st question
merits one drink. The 2nd getsthe 3rd gets, the 4th get§ and so on. The prof needs a tray
to carry all these drinks and discovers that a square traylvgags the perfect shape to carry all
the drinks. Why's that then?

Listing the number of drinks bought we get the following &bl

No. of questions answered  No. of drinks bought  Size of trgyired

1 1 1x1
2 1+3=4 2x2
3 1+3+5=9 3% 3
4 1+3+5+7=16 4 x4
5 1+3+5+7+9=25 D X d.

What we have observed is that sum of the firgtositive odd numbers is?, at least forn =
1,2, 3,4 and5. Does this hold for all positive integers greater thaend can we find out without
buying all these drinks? To answer this question we can degimding the difference between:

the sum of the first positive odd numbers: +3 + - - -+ (2n — 1)
and
the sum of the first + 1 positive odd numberst +3+---+ (2n — 1) + (2n + 1)

which is clearly2n + 1.
Now find the difference betweert and(n + 1)

n+1)?—n*=m*+2n+1)—n*=2n+1

45
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again. Thus the difference between tlth and(n + 1)th sums of odd integers is the same as the
difference between? and(n + 1)
This means thaif the firstn positive odd numbers sum td: that is

1+3+--+2n—1)=n? (3.1)
then the firstn + 1 sum to(n + 1)? (because both sides of (3.1) are increaseghby 1): that is
1+34+-+@2n—1)+2n+1) = (n+1)% (3.2)

Therefore if (3.1) holds then (3.2) holds as well. We knowt {{3al) holds forn = 5 so (3.2)
holds forn = 5 as well. This implies though that (3.1) holds for= 6; so (3.2) holds for. = 6.
In turn this means (3.1) holds far= 7; so (3.2) holds for = 7 ... and so on. Continuing like
this we can see that (3.1) holds for all positive integers

What we have used in this argument is the following simplepprty of sets of positive
numbers: so simple that we take it for a law of nature (whicksdoot require proof).

The Principle of proof by induction

Suppose thaP(1), P(2), P(3), ..., P(n), ... are all statements: one for each positive integer
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The Principle of Induction goes as follows. Given a sequence of statemé&its assume we
know

(1) thatP(1) is true and

(2) thatif P(k) is true thenP(k + 1) is true, fork > 1.
Then it follows thatP(n) is true for alln € N.
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A property, like the Principle of Induction, which we do noy to prove because we

believe it is a law of nature is called axiom

Example 3.1. Suppose that we wish to prove

1 + 1 + 1 +...+;:1_;
I1x2 2x3 3x4 n(n+1) n+1’
for all n € N. Here P(n) is the statement
1 + 1 + 1 +...+;:1_;
I1x2 2x3 3x4 n(n+1) n+1

and we wish to prove that(1), P(2), P(3), ... are true.
Proof by induction takes the following form.
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3.2 Change of basis

We don’t need to start an induction proof with the case- 1. We can modify (1) and (2)
on page 47 in an obvious way so that we can start with any otttegér. That is we use the
following alternative statement of the Principle of Indoat

Lets € Z. Assume thatP(n) is a statement, for alb > s. Assume further that it can be

shown that

(1) P(s)istrue and

(2) if P(k)istruethenP(k + 1) is true, fork > s.
ThenP(n) is true for alln > s.

Example 3.2(Bernoulli’s Inequality) Prove that

(I1+2)">14nz, foralln € Z,n >0, and forallz € R,z > —1.
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Example 3.3. Show tha” > »?, for all n > 10.
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Note that2? = 512 < 729 = 93, so the result does not hold when= 9. In fact, for any positive
integert and sufficiently large: we have2™ > n'. In our prooft = 3 and we show exactly what
“sufficiently large” means in this case.

3.3 Objectives

After covering this chapter of the course you should be able t

() understand the principle of proof by induction;
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(ii) carry out proof by induction, both starting with the @égfer1 and starting with an integer
other thant;

(i) remember the definition of the Fibonacci numbers (afi@ng the problem class exercises).
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3.4 Exercises

3.1 Ainfinite sequence, =, x3, ... of integers is defined by the rules = 2 andzx, ., =
x, + 2n, for alln > 1. Show by induction that,, = n(n + 1), foralln € N.

3.2 Prove that! > 2" for all n € N with n > 4.
3.3 Prove by induction that:
1
(1+2)">1+nx+ §n(n —1)2?,

foralln € Nandx € R,z > 0.

3.4 Prove by induction that:

3

k(k+1) = %n(n +1)(n+2)
k=1

foralln € N.
3.5 (a) Letay,...,a, andb be integers such that andb are coprime, for ali. Letc =
ay - - - a,,. Prove by induction thdat andc are coprime.
(b) Letay,...,a, be integers such that anda; are coprime wheneveér# j. Show by
induction that ifa;|b, fori = 1,... n, thena; ---a,|b. (Use the result of question
2.2)
3.6 A geometric progressiors a sequence of the form

a,ar, CLT2, CL’T’B, .

wherea, r € R andr # 1. What is the sum of the firgt terms of this geometric progres-
sion?

3.7 Sum the geometric progression with= 1 andr = z (# 1) and so find an expression for
2™ — 1. Write out explicit formulae for? — 1, 2° — 1 and2* — 1. Now sum the geometric
progression witlu = 1, r = —x (z # —1) andn = 2m + 1, for somem € N. Hence find
an expression far?™*! + 1. Write out explicit formulae for:® + 1, 2° + 1 and2” + 1.

3.8 Use proof by induction to show that each of the followiddhfor all n > 1.

(@) 8]5%" + 7; [Hint: 52*+D 47 = 52(5%% +7) + (7 — 5% - 7)]
(b) 15)2% — 1;

(c) 5‘3371—}—1 + ot

(d) 214" + 52—,

(e) 242 - 7" +3-5" — 5.
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3.9 Geography made simpl&Vhat is wrong with the following “proof by induction” of the
fact that all British towns have the same name. Prove, bydtidi, that any collection
of n towns have the same name. This is true whes= 1. Assume the truth of the
statement for any collection df towns, wheret > 1. Now take a collection of + 1
towns. Excludel town from the collection to leave a collection btowns, which by the
inductive hypothesis, all have the same name. Now také: thel towns and exclude a
different one. The remainingtowns all have the same name and this time include the one
that was left out before. Therefore &l 1 towns have the same name and the statement
holds for alln > 1.

There must be something wrong here but what is it? If it's nohiediately obvious try
thinking about the following situation. Suppose that yoeigiven a bag ofi > 2 smarties
and that it turns out that whicheveof the smarties you choose they have the same colour.
It seems pretty clear that they're all the same colour. Are sore? What makes this
different from the geography example above?

3.10 The Fibonacci numbers are the elements of the sequenge fs, ... generated by the
rules

fi=1
fa=1
fn+1 = fn + fnflu forn > 2.

Thus the first few Fibonacci numbers are

1,1,2,3,5,8,13,21, 34, 55,89, 144, 233, 377,610, . ..

If we take every third Fibonacci number we obtain a new segei@h numbers,

fs: Je: fo; frz, - -

with values
2.8, 34,144,610, 2584, 10946, 46368, 196418, . . .

Prove, by induction thafs,, is even, for alln > 1.
3.11 Prove that everyth Fibonacci number is divisible by, that is5| fs,,, for alln > 1.

3.12 In Maple type the command
with(combinat, fibonacci);
Now Maple will return thenth Fibonacci number in response to the command
fibonacci(n);
We can write a loop to generate and print Fibonacci numbers:
for i from 1 to 20 do
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print("f",i,"=",fibonacci(i));
od;

The output can be restricted to evéith Fibonacci number and then divided &y

for i from 1 to 20 do
print("f",6 *1,"="fibonacci(6 *i), "and ", fibonacci(6 *1)/4);
od,

What does this suggest? Can you prove it? Try to some othebensnho see if you can
detectnth Fibonacci numbers which they divide.



Chapter 4

Prime Numbers

A central concept of number theory is that of the prime numkleich is introduced in this
chapter. These numbers form the basic building blocks owhath the integers are formed and
into which they can be decomposed. It may seem surprisimgttieg, in spite of several hundred
years effort and many thousands of pages of mathematiss;@mnmonly accepted that most of
the theory of prime numbers is yet to be discovered. If yougbmtUlam Spiral” for example
you’ll see examples of behaviour of prime numbers that, aafa know, we have as yet no idea
how to explain.

Here we shall make a start: we shall establish the Fundahiémarem of Arithmetic, which
shows that every integer factors uniquely as a product ofiggj and we shall see that there are
infinitely many primes.

4.1 Definition of Prime and Composite Numbers

It follows from the definition of division that every integeris divisible by+1 and by+n.
Amongst the positive integers a special case is the integdrich has only one positive divisor,
namely 1. All other positive integers have at least 2 positive divisors, 1 andand may have
more.

Definition 4.1. A positive integemp > 1 is called gprime if the only positive divisors op arel
andp. An integer greater thahwhich is not prime is calledomposite

For example, 5,7, 11, 13,17 and19 are prime whilst the first few composite integers are:

4 which is divisible by 2

6  which is divisible by 2 and 3

8  whichis divisible by 2and 4

9  whichis divisible by 3

10 whichis divisible by 2 and 5.
A fundamental property of prime numbers is the following.

Theorem 4.2(The prime divisor property)If p is a prime andv|ab thenp|a or p|b.

61
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Example 4.3.1f 3|bc then eitheB|b or 3|c. The same goes fa@9: if 29|bc then29|b or 29|c. This
does not hold for all integers. For instar@e4 and24 = 8- 3, s06|8 - 3 but6 t 8 and6 1 3. Once
we've discussed prime factorisation it will be easy to seg this property doesn't hold for any
composite integers.

The Theorem above can easily be extended to products of mame integers. For example,
if 3|abc then, from the Theorem eith8fab or 3|c. If 3|ab then, from the Theorem agaiBja or
3|b. Therefore, if3|abc then3|a or 3|b or 3|c.

Corollary 4.4. If pis prime andp|a; - - - a,, thenp|a;, for somei.
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4.2 Prime Factorisation

We now come to the main result of this chapter: the Fundarh&htorem of Arithmetic. It
may seem that this theorem does not say anything very mud¢tabwhat it does say is obvious.
However there are number systems in which the theorem dddsith see Section 4.3 below
and the exercises. During the nineteenth century there atbeenpts to prove Fermat’s last
theorem using so called “algebraic” number systems. Itpestghe attention of mathematicians
for some time that these proofs were incorrect preciselgbse of the failure of the Fundamental
Theorem of Arithmetic in the algebraic number systems corext

An expression of an integer as a product of primes is calledpaime factorisation of n.
For examplel2 and25 have prime factorisation® = 2 - 2 - 3 and25 = 5 - 5, respectively. We
aim to show that every positive integer greater than one t@sree factorisation and that this
prime factorisation is unique, up to the order in which thiengrfactors occur. For instance

- N o
o 1 Ot

.5.92.7
.7.92.5
.92.92.5
are all prime factorisations df40 but are regarded as the same because the numhiés, 6fs
and7’s is the same in each.

Example 4.5. By definition primes cannot have any factorisation othenttiee obvious one:
e.g.7 cannot be written as a product of primes other than by writiag ... well ...7. If it could
be then it wouldn’t be prime!

By listing all possible factorisations it's easy to see thiatall integers have unique prime
factorisation.

In the proof of the next theorem we’ll show that this is truedd integersn > 1.

Theorem 4.6(The Fundamental Theorem of Arithmetid&very integerm > 1 is a product of
one or more primes. This product is unique apart from the onde&vhich the primes occur.
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Proof. Step(1) Prove that every > 1 has a prime factorisation.
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Step(2) Prove that prime factorisations are unique.
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4.3 Rational numbers and E-numbers

Before continuing we shall pause to see that this theoretty id need proving: that it is
not a universal truth that holds in all situations. To begithwonsider the rational numbegs
We can factoR as

2=4-(1/2)=8-(1/4)=---=2"-(1/2" ) =... =

and in general a8q - (1/q), for any non-zero element € Q. Therefore there is no hope of
anything like Theorem 4.6 holding iQ.
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To see how the uniqueness part of the Theorem might fail, edem we can factorise ele-
ments into products of primes, we could use arithmetic wilypomials, but instead we’ll use
an example based on integer arithmetic. Eedenote the set of all even integers:

E={..,-2,-1,01,2,...}.

If we add two elements af’ we obtain another element 6% if 2n and2m are arbitrary elements
of F then

2m+2n=2(m+n) € E.

(The same is true of subtraction.) If we multiply togetheotelements off the result is an
element of~:

2m - 2n = 2(2mn) € E.

We can therefore regaifd as a number system, tBenumber systemvith operations of addition
and multiplication.
We shall can also define division.

Definition 4.7. If « andb are elements o’ then we say that E-dividesb if b = aq, whereq is
an element o, Write a|gb if a E-dividesb.

With this definition2| ;8 because = 2-4 and4 € E. However2 does not E-dividé because
6 =2-3and3 ¢ E. Similarly 2| g4 but2 {5 10. Also4|z24 as24 =4 -6 and6 € E.

Now we can define E-prime numbers (but here we don’t have toyadroutl which is not
an E-number).

Definition 4.8. A positive E-number. is called arE-primeif the only positive E-divisor ot is
itself.

Thus2 is E-prime 4 is not, but6 is E-prime. The first few E-primes are
2.6,10, 14, 18,22, 26, 30.
The numberd, 8 and12 have E-prime factorisations
4=2-2, 8=2-2-2and12=2-6.

In fact Theorem 4.6 can be adapted to show that every E-nuh@sean E-prime factorisation.
However60 has two prime factorisations

60 = 2 - 30 and60 = 6 - 10.

Therefore thainiquenespart of Theorem 4.6 does not extend to E-numbers.
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4.4 Collected prime factorisation

It is often convenient to write the prime factorisation ofiateger with all like primes col-
lected together, in ascending order, and with exponentiition. For example we could write
the prime factorisations df40 and2200 as

140 = 2%.5. 7 and
2200 = 23 .52 .11.

We call this thecollected prime factorisation of an integer or say that we've writtem in
standard form. From the Fundamental Theorem of Arithmetic it follows thatlected prime
factorisations are unique. We record this fact in the folfaycorollary.

Corollary 4.9. Letn > 1 be an integer. Then may be written uniquely as
n=pi-py,
wherek > 1, p; < --- < pg, p; IS prime anda; > 1.

4.5 The square root of2

If n is a positive integer and has collected prime factorisatiog p¢' ---p%* thenn? =
p g p Y2 Py,
(pi* - pe®) (Pl - - - pi*) so has collected prime factorisation

What this shows is that an integer is of the formn?, for some integen, if and only if every
prime in the prime factorisation of. has even exponent. i.e.

We can use this fact to prove the following result, as a carglbf the Fundamental Theorem of
Arithmetic. Recall that a rational number is one which camwiogten as a fraction and that we
denote the set of all rational numbers@y

Corollary 4.10. There is no rational numbersuch that-? = 2. Thatisv/2 ¢ Q.
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The same argument applies if we repl@cky any other prime number so there are lots of
numbers which are not rational. A real number which is nobret is calledrrational . It turns
out that there are also infinitely many irrational numbeushsasr ande, which are not roots of
primes.
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4.6 Primality testing

One way to see whether or not an integer- 1 is prime is to test it for divisibility by all
prime numberg such thatl < p < n. If none of these primes divide then the Fundamental
Theorem of Arithmetic implies that is prime. This is very time consuming but does allow us
to build up a list of primes. The process can be speeded upisanrily by using the observation
that if n is composite then it has a prime divisor< /n. This is the content of the following
lemma.

Lemma 4.11. An integern. > 1 is composite if and only if it has a prime divisprsuch that

p < /n.

Proof.

Example 4.12.To find all primes in the rangéto \/45:
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2,3,5,7,11,13,17,19, 23,29, 31,37, 41, 43.

This is now a complete list of primes betweemnd45. This method of constructing lists of
primes is known as th8ieve of Eratostheneh fact it is still too inefficient to use in practice to
determine if a large number is prime.

4.7 A Theorem of Euclid

The following theorem appears in Book IX of tedementsa mathematical textbook written
by Euclid: a Greek mathematician who lived around 300 bc.

Theorem 4.13.There are infinitely many primes.

Proof. The proof is by contradiction.
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4.8 Objectives

After covering this chapter of the course you should be able t
(i) define prime and composite numbers;
(ii) recall the prime divisor property, Theorem 4.2, and erstiand its proof;
(ii) recall the Fundamental Theorem of Arithmetic, Theoréd.6, and understand its proof;

(iv) recognise and write down the prime factorisation arahdard form or collected prime
factorisation of an integer;

(v) use the sieve of Eratosthenes;

(vi) recall the statement of Theorem 4.13 and understararatsf.
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4.9 Exercises

4.1 Write down the collected prime factorisatiord@®5, 17460, 1234 and36000. Hence find
ged (4725, 17460).

4.2 Write down the collected prime factorisationcot= 252, b = 1470 andc = 525. Hence
find ged(a, b), ged(a, ¢) andged(b, ¢) and list all divisors oR52.

4.3 (a) Suppose that,, ..., n, are integers and that, = 3¢; + r;, with »;, = 0 or 1, for
1=1,...,t. Show thath, - - - n, has the forn8q + r, withr = 0 or 1.

(b) Show that an integer of the forBm + 2 has a prime factor of the same form.

4.4 (a) Show that, i” — 1 is a prime them must also be a prime.Hint: " — 1 =
(a—1)(a"' +---+1).] Primes of this form are called Mersenne primes. Show that
211 — 1is not a prime.

(b) Show that, if2” + 1 is a prime them: must be a power of. [Hint: a® +1 =
(a+1)(a* — a® + a® — a* + 1).] Primes of this form are called Fermat primes.

4.5 Letp, ¢; andg, be prime and suppose that; ¢,. Show, without using the Fundamental
Theorem of Arithmetic, thgt = ¢; or p = ¢s.

4.6 This question continues investigation of E-numbers.

(a) Describe all positive E-primes by giving the form of theollected prime factorisa-
tion. (That is their collected prime factorisations as edats ofZ not of E.)

(b) Prove that every positive E-number has a factorisatsom product of E-primes. (It's
possible to mimic the proof of Theorem 4.6 but it may be quickeuse the theorem
and the previous part of this question.)

(c) Is60 the smallest positive E-number wighdistinct E-prime factorisations? Find the
format of numbers which have a unige E-prime factorisatimhthose which do not.
What is the smallest number with two E-prime factorisations

(d) Find an E-number witB E-prime factorisations, then an E-number witlk-prime
factorisations. Find the smallest such numbers.



Chapter 5

Finite Arithmetic

In this chapter we introduce some new number systems ang tsteid arithmetic. These number
systems are based on the ideaohgruencen the integers. Congruence arithmetic was devel-
oped by one of the greatest of all mathematicians, Carl kRdedauss, in the 19th Century. It
is an important and useful part of mathematics which has rapplications both theoretical and
practical. We'll look at one application at the end of the Giea there are many more. We begin
with some curiosities which can be understood once we'veldged the theory.

5.1 Casting Out Nines

This is a method of testing integers for divisibility BylIn fact it outputs the unique remainder
obtained (by the Division Algorithm) on expressing a pesiinteger adq + r, with 0 < r < 9.
The procedure is the following.

Procedure 5.1(Casting Out Nines)Given a non—negative integer(written in basel0) repeat
the following steps (in any order) until a number less thasmobtained.

1 Cross out any digits that summr a multiple of9.

2 Add the remaining digits.

75
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The result is the remainder of division ofby 9.

Example 5.2. Cast out Nines from15763401.

The casting out nines procedure can be used to check thésrefnumerical calculations.

Example 5.3. Check the computation

215763401 x 51422218 = 11095032642643428.
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Such examples do nguaranteehe results of calculations. All that can be said is that if we
cast out nines and get different answers then we've madetakais

The Telephone Number Trick
1 Write down your telephone number.
2 Write down your telephone number with digits reversed.
3 Subtract the smaller of these two numbers from the larger.

4 By casting out nines from the result decide whether or netdtvisible by9.
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5.2 The “Odd & Even” Number System
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5.3 Red, white and blue arithmetic
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5.4 Congruence

In the Red, White and Blue number system we collected togethetegers which left re-
maindel0, 1, or2 after attempting division bg, and called them white, red or blue, respectively.
We saw that that andb are the same colour if and only3fb — a. Generalising this fron3 to
an arbitrary integen leads us to the definition of congruence.

Definition 5.4. Let n be a positive integer and letb € Z. If n|b — a then we say that is
congruentto b modulo n, and write

a=0b (mod n).

For instancel7 = 5 (mod 12) and216 = 6 (mod 7). As in the case: = 3 above,a = b
(mod n) if and only if « andb both leave the same remainder after attempting division.by
fact, if

a=mnqg-+randb=np-+r, where0 <r <n (5.1)
then
b—a=n(p—aq),
son|b — a: thatisa = b (mod n).

On the other hand if we know that= b (mod n) thenn|b — a sob — a = np, for somep.

In this case ifa = ng + r, with 0 < r < n, thenb = np + a = n(p + ¢) + r and (5.1) holds.

Example 5.5. Congruence modul® gives rise to the Odd and Even number system.
Example 5.6. Congruence modul® gives rise to the Red, White and Blue number system.

Example 5.7. Suppose: = 10. Then0 = 10 (mod 10), 10 = 101090 (mod 10), 11 = 121
(mod 10) and 27 = 253427 (mod 10). Every positive integer is congruent to its last digit
(written to basd 0). In particular integers congruentall end in the digi). These are exactly
the integers divisible byo.

Congruence is not the same as equality but it does share Saime roperties of equality.
If we have any integers, b andc andn is a positive integer then

1. a =a (mod n),
2. ifa=0b (mod n) thenb = a (mod n) and
3. ifa=b (mod n)andb = ¢ (mod n) thena = ¢ (mod n).

These are all properties of equality. Let’s check them fargraence. The first one is easy since
n|0 = a — a, for all integers:. We'll check the last one here and leave the second as anigxerc
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5.5 Modular arithmetic

Arithmetic with congruences is calledodulararithmetic. We've already seen a couple of
examples: Odd & Even arithmetic and Red, White and Blue ratiic. The idea is to add and
multiply integers in the usual way but to regard two numbearthe same if they are congruent.
There is a possible problem with this. Suppose we work motildhat isn = 10. Now take
two integers which are congruent modulg say23 and3. We are to regard these as the same.
This means that if we do something to one, say @dtien we should get the same answer as if
we add6 to the other. Here “the same answer” means the same answetoriodLet’s see:

23+ 6=29and3 +6 =9.

This is alright becaus29 = 9 (mod 10) and so we regard9 and9 as the same. Does this
always work? The purpose of the next Lemma is to reassureatg ttoes.

Lemma 5.8. Letn be a positive integer. Suppose tlhab, © andv are integers such that
a=u (mod n)

and
b=v (modn).

Then
() —a=—u (modn);
(i) a+b=u+v (modn)and
(i) ab=uwv (mod n).

Proof. We prove parts (i) and (iii) here, leaving part (ii) as an eis.
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O

Lemma 5.9. Every integer is congruent modutoto one and only one of the integers in the list
0,1,....,n—1.

Proof. This follows from the division algorithm becauseiit Z then we can write = nq + r,
with 0 < r < n. Thenn|a — r sSoa = r (mod n) andr is in the given list. Ifa = r (mod n)
anda = s (mod n) then, from the above, = s with 0 < r < n and0 < s < n. Assuming that
r > sthenn|r — sandn > r > r — s, contradicting Lemma 1.18.3. Thuss congruent to only
one integer in the list. O

Example 5.10.In Modular arithmetic we can always avoid computation watge numbers. For
example working modula0 we have

7459898790352045324 = 4 (mod 10)

and
9874558754423 = 3 (mod 10).

Therefore
7459898790352045324 - 9874558754423 =4 -3 =12 =2 (mod 10).
Similarly, working modulor we have
4543362 =5 (mod 7).

Therefore
4543362 =5° =25=4 (mod 7)

and
4543362% = 4543362 - 4543362 =5-4=20=6 (mod 7).
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5.6 Divisibility Tests
Divisibility by 9
When we write a number like0195 to basel(0 we are expressing the number

2x 108 +0x10°+1x10°+9x 10" +5

in shorthand (there’s &in the 100’s column etc.).

Applying this argument in general we write
AmQm—1 -+ - A1040

for the number
A X 10™ 4 @ppg X 10™ oo 4 aq X 10 + a.

As10* =1 (mod 9), fork =1,...,m, we have
A Cp—1 * 100 = Ay + Q1 + -+ + a1 + a9 (mod 9). (5.2)

Now consider Casting out Nines, Procedure 5.1. Suppose st@uaanines from an integer
m. In Step 1 we cross out any digits which sum to a multipl®.offhe sum of these digits is
congruent to zero moduldso, from (5.2), the result is an integer congruentitonodulo9. In
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Step 2 we add the digits and again, from (5.2), the result isteger congruent to. modulo9.
Thus the casting out nines procedure results at every stageinteger congruent t@ modulo
9. The procedure ends with a numbesuch that) < r < 9 andr = m (mod 9). Therefore
9/m — r, from which it follows thatm = 9¢ + r, for someq € Z and0 < r < 9. That is, the
output from Casting out Nines is the unique remainder guaeghby the division algorithm, on
attempting division by.

The following lemma follows from (5.2).
Lemma 5.11. An integer is divisible by if and only if the sum of its digits is divisible By

Example 5.12.Are either 0f215763401 or 215743401 divisible by 9?

Divisibility by 4
Now 10> = 0 (mod 4). Thus, for example,
1932526 = (19325 x 100) + 26 = 26 (mod 4)

and

93975656489084357745565568 738675 =
(939756564890843577455655687386 x 100) + 75 =75 (mod 4).

More generally, ifa,, - - - a1ag is an integer written to basé) then
A+ -+ a100 = (A - - - ag X 100) 4+ ajag = ajap  (mod 4).
Therefore
Ay - rarag =0 (mod 4) ifandonlyif ajap0=0 (mod 4).

That is
A|apy, - - arag < 4layag.
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Example 5.13.Does4 divide 937475900345 or 803450037327

5.7 Inverses in modular arithmetic

If we work in the rational number® we can find a multiplicative inverse for any non-zero
element. For example the inverseldf/201 is 201/11. The same is true iR where the inverse
of x # 0is 1/x. In general ifz is a number ang has the property thaty = 1 then we say that
x hasinversey. Most elements o. don't have inverses if. For example has no inverse. In
fact 41 are the only elements @ which have inverses. What about arithmetic modulo

Example 5.14.Try to find the inverse o2 modulo6.
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Example 5.15.Do either3 or 7 have inverses modul)?

Example 5.16.Which numbers have inverses modai
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Lemma 5.17. An integera has an inverse moduleif and only ifged(a, n) = 1.

Proof.
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O

What happens if we do arithmetic modulo a prime numifein this case, for every integer
a either

1 ptainwhich caseged(a,p) =1 or
2 pla in which caser = 0 (mod p).

Thus every integer which is not congruent to zero modultas an inverse. This means that
arithmetic modulg resembles arithmetic i@ more closely that arithmetic iA.
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Example 5.18. Write out the multiplication table for arithmetic modufowith the integers
0,1,2,3 and4. Hence find the inverse of every integer which is not congrt@rzero mod-
ulo 5.

5.8 Solving Congruences

Example 5.19.Find all integerse such that
6x =4 (mod 8). (5.3)

We call such equatiorsongruencesand this is an example oflamear congruence. Note that if
x = a is a solution ands = b thenx = b is also a solution: so if there’s one solution there are
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infinitely many. Every integer is congruent to one of
0,1,...,n— 1 modulon

so we seek solutions to congruences in this range. Once we #rm@solutions in this range
then, given the preceeding remark, we know all solutionse @athod of solving the congruence
above is to use part of the multiplication table (see Exarbflé:

From the table we see that the only solutionszare 2 andz = 6. Notice
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From this example we see that

cancellation does not always work when solving congruences

The method of the example certainly works but it requires@leffort. A more efficient method
is to use the results of Section 2.3. Suppose we wish to findienk to the congruence

ar =b (mod n). (5.4)

By definition of congruence is a solution to (5.4) if and only if|(az — b): that is if and only

if ax — b = ny, for some integey. Rearranging the last equatianjs a solution if and only

if ax —ny = b, for somey € Z. This is an equation of the form solved in Section 2.3 and we
know from Theorem 2.5 that it has a solution if and onlgdfl(a, n)|b. If ged(a,n)|b then, as

in Section 2.3, we can use the Euclidean algorithm to find aiqodair solution to the equation.
Also, writing ged(a, n) = d, if d|b andz = u, y = v is a solution then the list of solutions to this
equation consists of all the pairs

r=u— (n/d)t
and

Yy=v— (a’/d)ta
for ¢t € Z. Therefore,

the congruencez = b (mod n) has solutions if and only i = gcd(a,n). Moreover, if this
congruence has a particular solutier= u then the list of solutions consists of the integers of
the form

u— (n/d)t,

wheret runs through the integef

Applying this to congruence (5.3) of Example 5.19,
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In the general case (of congruence (5.4)) the only remabegtion is which of the solutions
we have found are congruent?
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We summarise our findings in a Theorem.

Theorem 5.20.Leta, b andn be integers witm > 0 and letd = ged(a, n). Then the congruence

axr = b (mod n) has a solution if and only ifi|b. If d|b then there are exactly pairwise
incongruent solutions.

Example 5.21.Find all solutions to the congruence

2r =3 (mod 6).

Example 5.22.Find all solutions to the congruenée = 9 (mod 15).

Example 5.23.Compare the solutions to the congruences

2r =4 (mod 6)andz =2 (mod 6).
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5.9 Random numbers: an application

A sequence of numbers in which each new term is selected émdiemtly of the previous
term is called a sequence @ndom numbers. Such sequences can be obtained mechanically;
by rolling a dice, spinning a roulette wheel, or running tbedry. However if the sequence is
to be used in a scientific experiment then it is often desrablbe able to repeat the experi-
ment. This means producing a sequence wicks random but which can be reconstructed
when we wish to verify our experimental results. Such segegmrannot be truly random and
are calledoseudo-random Pseudo-random numbers are often generated by computtridut
means that we need to find good algorithms to produce them.aifthend science of pseudo-
random number generation is highly developed and very stphied: look at the web page
Random number generators — The pLab Project Home Page dtrhttdom.mat.sbg.ac.at/.

Here we present a pseudo-random number generator, firsiggdfpy D.H. Lehmer in 1949,
that is easy to understand and for many purposes does a googrejob. To generate a sequence
of pseudo-random integeds, a1, as, . . . perform the following process.

1 Fix a positive number and two integers» andc, with 2 < m < n and0 < ¢ < n.
2 Choose a start valug), such that) < ay < n.

3 Generate elements of the sequence successively usiny el

agi1 = mai + ¢ (mod n), whered < a1 < n.

If a large value ofz is chosen the sequence appears random, at least to start with
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Example 5.24.With n = 800, m = 71, ¢ = 57, anda, = 2 the first ten elements of the sequence

are
2,199, 586, 63, 530, 87, 634, 271, 98, 615.

Now alteringa, to 551 the sequence produced is
551, 778,95,402,599, 186, 463, 130,487, 234.
Keeping everything fixed except= 8000 we obtain
551, 7178, 5695, 4402, 599, 2586, 7663, 130, 1287, 3434.
With n = 40, m = 22, ¢ = 20 anday = 13 we obtain
13,26, 32, 4, 28,36, 12, 4, 28, 36, 12.
Of course such sequences are not random (by definition) ahdvesa formula for the terms.

Theorem 5.25.Thekth term of the sequence generated by the process above is

c(m” —1)

) med

ap = (mkao -+

with0 < a; < n.
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Analysis of “how random” a pseudo-random sequence is irgapplying statistical tests to
the sequence. For instance the frequency of occurence atiaypar integers in the sequence
can be tested; as can the frequency of occurence of pairsegers.

5.10 Objectives

After covering this chapter of the course you should be able t
() recall the definition of congruence;
(i) recall the statement of Lemma 5.8 and understand itefpro
(iif) do arithmetic modulaz;
(iv) understand how various divisibility tests work and lidesto apply them;
(v) decide whether or not an integer has an inverse mogaiulo

(vi) generate a sequence of pseudo-random numbers.
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5.11 Exercises

5.1 Perform the following calculations in arithmetic modul for n = 2, 10 and9. In each
case give your answer as an integer in the rantgen — 1.
@1+2;, 0B)2-3; (©)4-3+5); (M)6-7, (€)(6+5)-(5+T7).

5.2 Perform the following calculations in arithmetic modul for n = 2, 10 and9. In each
case give your answer as an integer in the rantgen — 1.
@1+1;, O)O-1; (€)3-(4+5); (d)2-5, (€)(4+5)-(6+7).

5.3 Construct tables for addition and multiplication maddl Which integers if any have
inverses moduld?

5.4 Complete the following tables which give the rules fadiidn and multiplication modulo
10

WN R
AW NN

U A ww

o 01 D

~N o Ul o

0 ~N oo

© 0 |~

O © |
O ©olo
WN R Ok
0o ANOIN
N ©OOOwOolw
oON OO N
U1 o Ul o|lul
N O OO

A NON

o W O

© © olw©

©CO~NOOUNWNROtT
©CoO~NOUDMWNER OO
cleReReReReReReReX=Il=)

O©oO~NOOUIA, WNEO| .

Which integers have inverse modul@?

5.5 Construct tables, similar to those in Question 5.4, dioliteon and multiplication in modulo
9. Which integers have inverse modul@

5.6 Letn be a natural number and letb € Z. Use the definition of congruence to show that
if
a=b (modn) then b=a (modn).
5.7 Find all solutions of the following congruences moduknd modulcs.

(@ 3z =T, () x+3=3x+11; (e) —z+2=3;
(b) 42 +6 = 3; d)bx+1=x-—2; () -4z —3=-3x+2.

5.8 Find all solutions of the following congruences.
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(@) 3x =5 (mod 11); (d) 182z + 21 = 112 (mod 1001);
(b) 102 +9=9 (mod 15); (e) 42x 4+ 100 = 53 (mod 105);
(c) 18x = 18 (mod 27); () —63x =0 (mod 99).

5.9 We say that is asquare roowof b in arithmetic modulo if
a®>=b (mod n).

Show thaB3 is a square root of—1) in arithmetic modulal 0. Find all of the square roots
of (—1) in arithmetic moduld 0: that is find all solutions of the congruence

7= —1 (mod 10).

5.10 Show that = 7 is a solution of the quadratic equatioh — 5z + 6 = 0 (mod 10). Find
all the solutions of this quadratic equation modilo

5.11 Find all solutions to the following simultaneous carggrces modul6 and11.

Tr+10 = 2 20 +3y = 8
@ 5,49 = 47 ®) spray = g
4o +15y = 3 dr+3y = 7
(©) 3r+2y = 5’ (d) Tr+2y = 1°

5.12 Letn = a,,a,,_1 - - - a1ao be an integer written in badé.

(a) Shown is divisible by8 if and only if asa; ag is divisible by8.

(b) Devise a similar test for divisibility bg*, for k& > 1.

(c) Show that: is divisible by5 if and only if a, divisible by 5.

(d) Devise a test for divisibility by*, for & > 1.

(e) Testl3451, 800832, 23422345, 234221375 and2987090 for divisibility by 8 and125.

() What can you say about the last 3 digits of a number thaivisitle by both8 and
125?

5.13 Use induction o# to prove Theorem 5.25.



Chapter 6

In Course Assessment Exercises

Show all working. Marks are given for clearly reasoned explaations of answers, not for
the answers themselves. Unless you are explicitly asked rtot you may use all results from
the notes, but you should say what you are using and make cle&ow it is used.

6.1 Division and Greatest Common Division

6.1.1 (a) Show tha|(n® — n), for all integersa.
(b) Show that ifa andb are odd integers thert + ? is even, but not divisible by.

6.1.2 (a) Find the greatest common divison 55 and&82.
(b) Find integers: andy such that

1155z + 882y = ged (1155, 882).

(c) Find integers: andv such that

1155w + 882v = —42.

(d) Find the general form of solutions to the equation

11552 + 882y = —42. (6.1)

(e) Find all integer solutions, v to equation (6.1) such that

i. uw <40 andv < 40;
ii. uw < 40andv > 100;
iii. u < 40 andv < —40.

6.1.3 Which of the following equations have integer solugi® (Justify your answers but do not
find the solutions.)

105
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(@) 1155z + 882y = 7T, (d) 1155z + 882y = 0.
(b) 1155z + 882y = 1;
(c) 1155z + 882y = —21; (e) 1155z 4 882y = —42.

6.1.4 Leta andb > 0 be integers. Show that there exist integeedv such that: +v = a and
ged(u,v) = b, if and only if b|a.

6.1.5 Leta, m andn be positive integers.

(a) Show that? is even if and only if is even. Now show that?” is even if and only if
a is even. Explain how this argument can be repeated to shomiualéy that

a*" is even if and only ifa is even, for anyn > 1. (If you know how to do so you
could use induction.)

(b) Show that ifm > n thena®" + 1 dividesa®" — 1.
(c) Show that ifm # n then

1, ifaiseven

2m 2m o
ged(a™ +1La “)—{2, if o is odd

6.2 Coprime Numbers
6.2.1 Leta,b be coprime integers such thatn andb|m, for some integen. Prove, using
Euclid’s lemma, thatib|m.

6.2.2 Prove that ifcd(a, m) = ged(b, m) = 1 thenged(ab, m) = 1.

6.3 Proof by Induction
6.3.1 Prove by induction that

” r(r)y=(mn+1)!-1

r=1

for all integersn > 1.

6.3.2 Prove by induction that:

. 1
;k(k’+1)...(k¢+a): (a+2)n(n+1)(n+2)...(n+a+1)

foralln € Nand alla € N.

6.3.3 Prove that everith Fibonacci number is divisible b3 that is3| f,,,, for all n > 1.
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6.4 Prime Numbers

6.4.1 Some primes, likeé and5, are congruent t@ modulo3. Others like3 and7 are not
congruent t&2 modulo 3. In this question you will show that there are infinitely many
primesp such thap = 2 (mod 3) using an argument by contradiction as follows. Suppose
there are only finitely many such primes and let themppe. ., p,,. Define

N =3p;---p,— 1.

(@) Show thatV = 2 (mod 3).
(b) Show that ifg is a prime factor ofV theng # p;, fori =1,... n.
(c) Show thatV has at least one prime factpsuch thap = 2 (mod 3).

(d) Combine the above to complete the proof.

6.4.2 Inthis question arithmetic in a restricted subsét,aimilar to arithmetic with E-numbers,
is investigated. LeD = {4a + 1 |a € Z} and call the elements of D th2-numbers The
first few positive D-numbers are

1,5,9,13,17,21, 25,29, 33, 37,41, 45,49, 53, 57.

Put another way, the D-numbers are the integers which amgrgent tol modulo4. Use
of arithmetic modulal makes answers to some of the the following questions verglsim
(but is not mandatory).

(&) Show that if two D-numbers are multiplied together theutels a D-number. Give an
example to show that the same is not true when two D-numberadtted together.

(b) If a« andb are D-numbers we say thaD-dividesb if b = ac, wherec is a D-number.
Show thats D-divides25 and45. Show thatl D-divides every D-number.

(c) Now show that it: andb are D-numbers such thai (in the usual sense of Definition
1.5) thena D-dividesb. Give an example to show that there are integeendm,
which are not both D-numbers but are such thatis a D-number.

(d) If a is a positive D-number greater tharand the only positive D-divisors af are
1 anda , then we say that is D-prime. List the first10 D-primes and the first two
positive D-numbersx 1) which are D-composite (i.e. not D-prime).

(e) All (ordinary) odd primes are either of the fodm+1 or4m-+3: that is are congruent
to 1 or 3 modulo4. Show that a D-number is D-prime if and only if it is prime {@n
or its prime factorisation ipq wherep andq are congruent t8 mod4 (and may be

equal).

() Find a D-number which has two distinct D-prime factotisas.
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6.5 Finite Arithmetic

6.5.1 Letn be a natural number and letb € Z. Use the definition of congruence, Lemma 5.8
and induction to show thatif = b (mod n) then

a* =b* (modn), forallintegersk > 0.

6.5.2 Letby, by, ny andny be integers witlged(nq, n2) = 1. Consider the congruences

r=0b (mod ng) ()
r=by (mod ny) (i)

(a) Explain why the congruenegxr = 1 (mod ns) has a solution.

(b) Letz = y; be a solution to the congruenegz = 1 (mod ny) andx = y, be a
solution ton,z =1 (mod ny). Show that

x = bingys + baniys

is a solution to both congruences (i) and (ii).
(c) Show thatifr = s andz = t are solutions to both (i) and (ii) then= ¢ (mod nns).
(d) Find integers); andy, such thatldy; = 1 (mod 15) and15y, = 1 (mod 14).

(e) Use the answer to the previous parts of the question toafnthtegers such that
x = s is a solution to both the following congruences simultarsipu

r=2 (mod 14)
r=5 (mod 15).

Show all your working.



Appendix A
Set Theory

In this Chapter we shall establish and/or revise some ofdélsehdeas and notation that we need
in this and other courses. Much of the material will be faanitind you should use the section
as reference when you need it. In lectures | shall refer toi@ecof this Chapter as and when
they're needed and only go through parts of the Chapter tedeas familiar or cause difficulty.
Most of the Chapter is about Sets but we start by discussimg $erminology.

A.1 Definitions, Lemmas and so on

In mathematics and statistics we sometimes need words togracise, unambiguous, tech-
nical meanings. To give a word such a meaning we make whalléslGdefinitionof the word.
The definition acts like a dictionary definition and the wongisan precisely what the definition
says and nothing else. For example in Section A.6 we definedheintegerto mean the set of
whole numbers. From this point on, as far as this course goesyord “integer” has this mean-
ing and means absolutely nothing else, at all, ever. Somdsnoay have the same meaning in
everyday life as in their definition, but others may not. Thedvinteger”, as far as I'm aware,
has no meaning other than the one above. On the other handimtioa 1.5 the word “divides”
is given a meaning which may differ from the common usage.ifksiance we might like to say
that if we divide5 by 2 we get22, which seems perfectly sensible. However in the sense given
Definition 1.5 we find tha2 doesnot divide 5. We use our definition for the meaning of “divide”
so as far as we are concerriedoesn’t divides.

Definitions record the basic terms and describe the fundahstuctures which we work
with. Reasoning from the definitions we attempt to undexbtsunch things as numbers, se-
guences, functions etc. The conclusions we draw are reg@noé may be referenced later. Im-
portant conclusions are call&theoremsLess important results may be calleemmas (Some
authors usé@ropositionas a label for a result of medium importanc€grollary is a term used
to mean “result which follows more or less obviously from eypous theorem”. Conclusions are
set out as statements of fact in the Theorems, Lemmas, @oeslletc.. The reasoning leading
to a conclusion is usually set out ap@offollowing the statement.

Examplegover not only illustrative calculations and standard teghes of problem solution
but sometimes also results so minor that we don’t wish toitlighem with a label like Lemma
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or Theorem. (See for instance Example 1.8 in Section 1.2.)

Once a Lemma, Theorem or Corollary has been establishednhhg ke of reasoning it can
be referred to in subsequent arguments. By recording oultsess we go we allow ourselves to
build up gradually to surprising or well-hidden conclusioff we prove the right Theorems on
the way we will be able to quote them in appropriate placesakenour arguments look concise
and elegant.

A.2 Sets

In widespread and in common everyday use there are numeids ¥or collections: when

we refer to such things as a
family, flock, team or pack
we are, in each case, referring to several
people, sheep, players or wolves

as one single entity. This idea of regarding a collectiornofds as a single object is fundamental
to mathematics and statistics where the single entity isllysa set. It may seem somewhat
surprising then that we can’'t make a short, easily undedstom unambiguous description of
exactly what a set is. Luckily it doesn't usually matter and gan be content with the the
following. A setis a collection of objects together with some method of (ingple) identifying
which objects belong to the collection and which do not. Sd@tsbe studied further in the
module MAS131, “Introduction to Probability and Statistic (There are some more unusual
words for sets at www.ojohaven.com/collectives/).

A.3 Membership

If S'is a set and is an object which belongs t® then we say that is anelementof S or a
memberof S. The symbok is used as an abbreviation for “is a member of”xse S reads
is an element of”. Similarly, the symbok is used as an abbreviation for “is not a member of”,
soy ¢ S reads % is not an element o$”.

One way of describing a set is to enclose a list of its membvecsiily braces, separated by
commas. Thus the set with elemenig, 3, 4, 5 can be denoted by

{1,2,3,4,5}.

Judicious use of. . allows us to use this notation when the list of elements of#tdas infinite.
For example the set of positive whole numb&rsan be written as

N=1{1,2,3,...}
and the set of all whole numbeFsas

Z={..,-3,-2,-1,01,23,..}.

A.4 Subsets

A set S is asubsetof a setT' if every element ofS' is also an element ¢f. For example
{a, b} is a subset of the sdu, b, c}. The symbolcC is used as an abbreviation for “is a subset
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of”. Thus
{1,2,3,..}c{...,—3,-2,-1,0,1,2,3,.. .}.

The symbolZ is used as an abbreviation for “is a not a subset of”. Thus
{..,-3,-2,-1,0,1,2,3,.. .} ¢ {1,2,3,...}.
Note that every set is a subset of itself, that'is .S, for all setsS so, for example,
{a,b,c} C{a,b,c}.
We also use the symbal as an abbreviation for “contains the subset”. For example
{78,69,45,32} D {78,451,
{78,69,45,32} D {78,32,69,45}

and
{78,69,45,32} D {78,45}.

The symbols has the obvious meaning, that is
{78,69} 2 {78,32,69,45}
and
{78,69,45,32} 2 {78,31,64,49}.
A.5 The empty set

The set with no elements is called thmpty setdenoted). It follows from the definitions
we have already made that the empty b&t a subset of5, for all setsS. To see this observe
that, given our definition of subset, we need to test whethanbevery element df belongs to
S, whereS is a set (in fact we need to do this for all sés However there are no elementdjin
so no element dj fails the test. Henc is a subset of (no matter what set we choose).

A.6  Some sets of numbers

We have standard names for some sets of numbers.

(1) The positive whole numbers are called tegural numbers and the sef{1,2,3,...} of
natural numbers is denotéd

(2) The elements of the sét.. — 3, -2, —1,0,1,2,3,...} of all whole numbers, positive, neg-
ative and zero are called tirdegersand the set of integers is denotéd

(3) A number which can be expressed as a fractian wherep andq are integers and # 0 is
called arational number and the set of all rational numbers is den@ed

(4) A number which has a decimal expansion is callega number and the set of all real
numbers is denoted.

Note thatN C Z € Q C R. HoweverZ ¢ N, Q ¢ Z andR ¢ Q. (Do you know why?)
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A.7 Specification of new sets from old

Using the symbol " to denote “with the property that” or “such that” we can uselg braces
to specify subsets. For example consider thé\set all positive whole numbers. Then

{n € N:niseven}
is read as “the set of elementf N such that: is even”. That is
{2,4,6,8,...}.

The new description is more precise as it removes the négésisthe “. . .”, which are possibly
ambiguous. Further examples of this notation are:

{neN:n>9}=1{10,11,12,...},
and
{neN:n>1landn < 16} = {11,12,13,14,15}.
Sometimes[" is used instead of:" as in
{n € N|nisamultiple ofl0} = {10, 20, 30, ...},

{n € N|nis amultiple of10 and of3} = {30, 60, 90, .. .},
{n € N|nis amultiple of3 andn + 1 is a multiple of7} = {6,27,48,...}.

A.8 Unions, intersections, complements and differences

The union of two setsS andT', denotedS U T' is the set consisting of all those elements
which either belong t&' or belong tol'. For example

{A,B,CYU{X,Y,Z} ={A,B,C,X,Y, 7}

and
{A,B,C,Y,ZYU{A,X.Y,Z} ={A, B,C,X.Y, Z}.

The intersection of two setsS and T, denotedS N 7' is the set consisting of only those
elements which belong to bothand7'. For example

{A,B,C,L,M}N{L,M,X,Y,Z} = {L, M}

and
{A,B,C}n{X,Y,Z} =0.

If S'is a subset of a séf then thecomplementof S in £, denotedS’, is the set consisting
of those elements af which do not belong t&. ThatisS’ = {x € £ : = ¢ S}. For example if
E ={a,b,c,d,e, f} andS = {a,b,c} thenS’ = {d, e, f}.

Thedifference of two setsS and7 (in that order), denoted\ 7', is the set of elements of
which do not belong t@". For example itS = {A, B,C, D, E,F}andT = {D,E, F,G,H, 1}
thenS\T = {A, B, C}.
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A.9 Objectives

The material in this chapter is mainly for reference but yleowsd become familiar with it as
the course goes on. Once you have covered this chapter yalddteable to:

() understand the use of terms such as Definition, LemmaprEne,...
(i) read and use the symbois {.. .}, C, ¢, D, 5 and);
(i) know which sets of number, Z, Q andR refer to;
(iv) understand notation of the forfm € Z : n > 10};

(v) know what unions, intersections, complements and wffees of sets are and understand
the meaningoX UY, X NY, X\Y andX’, whereX andY are sets.

A.10 Exercises

You can use these questions to test your set theory. Theggnaitar questions on the com-
puter, some of which are assesed. If you can’t do them youdhead the Chapter or use the
“Reveal” function on the computer assesments.

A.1 List the elements of the following sets:
(@) {neN : 10 <n®+n < 42};
(b) {reR : 22+ 6x+9=0};
() {n € N : nandn + 2 are prime withn < 30};

A.2 List the elements of the following sets:

@ {neN : 2<n®<75}; (c) {n € N : nis a2 digit prime};
) {zeR : 22 +3zx+2=0};

A.3 TRUE or FALSE

(@ 6¢{reN: xz=3n+1, forsomen € N},
b)y2e{reR : 2?2 =4};
(c) 2€e{zeR : 22 =4andz > 0};
(d) 7¢ {r€Q : 2? > 7andz® < 343}.
A.4 TRUE or FALSE:
@ 0cNCN
(b) {reR:x2=3n+1,wheren e N} C {x € Z: 2z > 3}

© {x€Z:x>3} C{reR:2=3n+ 1,wheren € N}
(d) {x eN:ziseven} C {z € R: z?is ever}
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Appendix B

Glossary of notation

{a,b,c}
c

{z € S : x has property”}

the set with elements, b, ¢

is a member of

is not a member of

the empty set

X is a subset o’

X is not a subset of
Y is a subset oX

Y is a not a subset of

such that

the set of natural numbers

the set of integers

the set of rational numbers

the set of real numbers

the set of elements of the sg&twhich have property’
the union ofX andY

the intersection oX andY

the difference ofX andY

the complement oK (in a given setr)

there exists
for all

A implies B (or if AthenB)

B implies A (or if AthenB)

Aifand only if B (or A iff B)

a dividesb (or a is a factor ofb, or a is a divisor ofb)

a does not dividé

the modulus (or absolute value) .of

greatest common divisor afandb

highest common factor af andb (ged(a, b) = hcf(a, b))

a[l+...+aln

a IS congruent td modulon
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. (a) Find the greatest common divisor of 1400 and 37730.
(b) Find integers x and y such that

1400z + 37730y = ged (1400, 37730).

(c) Which of the following equations have integer solutions? In each case either find
integer solutions u and v or explain (briefly) why no solution exists.

(i) 1400u + 37730v = 210;
(ii) 1400u + 377300 = 102.
(d) Find the general solution for those equations in part (c¢) above which have a solution.

(e) Find all solutions with > —1000 and y > 0.
[25 marks]

. (a) Let a,b, c and d be integers such that a|b and c|d. Prove that ac|bd.

(b) Show that
5n?|(5n* + 3)% — 9,

for all n € Z.
[5 marks]

. Let a,b and ¢ be non-zero integers such that ged(a,b) = ged(a,c¢) = 1. Show that
ged(a, be) = 1.
[5 marks]

. (a) Show that n? has the form 5k, 5k + 1 or 5k + 4, with k € Z, for all integers n.
(b) Show, using the first part of the question, that if 5/n? then 5[n.

[15 marks]

. Prove by induction that:

g 1
k(k+1)= gn(n +1)(n+2),
k=1

for all n € N.
[10 marks]

. Write out the odd integers from 3 to 100 and then use the sieve of Eratosthenes to

reduce this list to a list of primes between 3 and 100.
[5 marks]
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7. (a) Complete the table below for multiplication modulo 8 using only the integers

0,1,2,...,7.
01 2 3 456 7
00000000
01 2 3 456 7
0 2 4
0

N OOk Wi~ O X

(b) Which integers have inverses modulo 87
(c) Compute 13% (mod 8).

(d) State how many incongruent solutions there are to the following congruences. Jus-
tify your answers. Then find all solutions.

(i) 10z =6 (mod 18);
(ii) 102 =9 (mod 18).

[20 marks]

8. (a) Let a,b and ¢ be integers such that a|b and a|c. Show that a|b — c.

(b) Let n be a positive integer and let S = n! 4 1. Show that if p is a prime divisor of
S then p > n.

(c) Use the first part of the question to show that there are infinitely many primes.
[Hint: If there are finitely many primes then set n in the previous part of the
question equal to the largest prime.]

[15 marks]

THE END
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Semester 1: Mock Exam
This is the same as the MAS1202 exam except that there is an additional ninth question
and also the marks for the first eight questions are different. The marks are: Q1 22; Q2 4;
Q3 4; Q4 12; Q5 8; Q6 4; Q7 18; Q8 12; Q9 16. The extra question is the following.

9. (a) Let a and b be coprime integers and assume that a|c and b|c, for some integer c.
Show that ablc.

(b) Let m and n be non-zero integers and let d = ged(m,n). Assume m = ud and
n = vd, where u,v € Z.
(i) Show that u and v are coprime.

(ii) Let k = mn/d. Show that k = wvd. Show that if m|w and n|w, for some
integer w, then k|w. [Hint. Show that « and v both divide w/d and use part
(a).]

(iii) Suppose that r, s are integers such that r = s (mod m) and r = s (mod n).
Show that r = s (mod k).
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37730 = 1400 - 26 + 1330
1400 = 1330 -1+ 70
1330 = 70 - 19.

ged (37730, 1400) = 70.

(b)
70 = 1400 — 1330
= 1400 — (37730 — 1400 - 26)
= 37730 - (—1) + 1400 - 27.
r=27y=-—1

(¢) (i) 70]|210 so there are solutions. 210 = 70 - 3 so u = 81, v = —3 is a solution.
(ii) 701 102 so there are no solutions.

(d) The general solution to (i) has the form z = u+(37730/70)t and y = v—(1400/70)t,
with v = 81 and v = —3. That is z = 81 4+ 539¢ and y = —3 — 20¢.

(e) We consider only equation (i). For x > —1000 we require 81 4+ 539t > —1000 that
is 539t > —1081, so t > —1081/539. Thus x > —1000 if ¢ > —2. For y > 0 we
require —3 — 20t > 0 that is —20t > 3 so t < —3/20. Thus z > 0 if t < —1.
Therefore we restrict ¢ so that —2 < ¢ < 1 and obtain solutions x = —458,y = 17
and x = —997,y = 37.

2. (a) alb so b = ap, for some p € Z. ¢|d so d = cq, for some ¢ € Z. Therefore
bd = apcq = ac(pq) which implies ac|bd.
(b)
(5n? +3)2 -9 = (50?2 +6-5n>+9—9
= 5n*(5n* + 6).
Therefore 5n?|(5n? + 3)? — 9, for all n € Z.

3. If ged(a, b) = ged(a, ¢) = 1 then there exist integers u, v and x,y such that au+bv =1
and ax 4+ cy = 1. Then
(au + bv)(ax + cy) = 1,

SO
au(azx + cy) + abvzr + bexy = 1

and we have ak+bcl = 1, with k = u(ax+cy)+bvz and | = zy. Therefore ged(a, be) = 1,
as required.
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4. (a) From the Division Algorithm it follows that n = 5g+r, with 0 < r < 4. Therefore
n® = (5q +r)* = 25¢° + 10qr + r* = 5K + 12,

for some r, K € Z with 0 < r < 4.

If r=0or 1 then n? = 5K or 5K + 1, respectively.

If r = 2 then n? = 5K + 4.

If r=3then n? =5K +9=5(K+1) +4.

If r =4 then n? =5K + 16 = 5(K + 3) + 1.

Thus n? has the form 5k, 5k + 1 or 5k + 4, for some k € Z, as required.

(b) If 5|n? then n? has the form 5k, for some k € Z. From the above, if n = 5q + r,
with 7 # 0 then n? = 5k + s, with s = 1 or 4. Hence n = 5q + r with r = 0, that
is 5|n.

5. P(n) is

n

> k(k+1) = %n(n +1)(n+2).

=1

k
Basis: The left hand side of P(1) is
1
D k(k+1)=1x(1+1)=2
k=1
The right hand side of P(1) is

%(1+1)(1+2) _

Therefore P(1) holds.
Inductive hypothesis: Assume P(m) holds for some m > 1.

Inductive step: Then
S k(k+1) = S k(k+ 1)+ (m+1D)(m+1+1)
= sm(m+1)(m+2)+ (m+1)(m+2), using P(m),
= 2(m+1)(m+2)(m+3)
= slm+1(m+ 10+ D([m+1]+2),
which is P(m + 1). Therefore P(n) is true for all n > 1.

6. item The odd numbers from 3 to 100 are
3,5, 7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51,

AJD September 23, 2009



MAS1202 Mock Exam Solutions 122

53, b, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99.
Crossing out multiples of 3 reduces the list to

3,5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71,
73, 77,79, 83, 85, 89, 91, 95, 97.

Crossing out multiples of 5 leaves

3,5, 7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83,
89, 91, 97.

Finally, crossing out multiples of 7 we have a complete list of primes less than 100:
2,3,5, 7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

7. (a)
x(0 1 2 3 4 5 6 7
0/0 00 OO0 OO O
170 1 2 3 4 5 6 7
210 2 4 6 0 2 4 6
310 3 6 1 4 7 25
410 4 0 4 0 4 0 4
510 5 2 7 4 1 6 3
60 6 4 2 0 6 4 2
710 7 6 5 4 3 21

(b) 1,3,5 and 7.

(c) 13 =5 (mod 8) so 132 = 25 = 1 (mod 8). Therefore 13*2 = (13?)! = 11
(mod 8). Finally 13# =13 x 132 =5x 1 =5 (mod 8).

(d) We have ged(10,18) = 2 and 2|6 but 2 1 9, so (i) has solutions and (ii) does not.
There are 2 pairwise incongruent solutions to (i) (using Theorem 5.23). By trial

and error we can see that x = 6 is a solution to (i). Solutions differ by 18/2 =9 so
x = 15 is the second solution.

Il
—_

8. (a) As alb and a|c we have b = au and ¢ = av, for some u,v € Z. Therefore b — ¢ =
au — av = a(u — v) and so a|b — c.

(b) Suppose p is a prime divisor of S. If p < n then pn! (asn! =1---(p — 1)p(p +
1)---n). Therefore, from (a) p|S —n! = 1. From Lemma 1.18 it follows that
p < 1, which is a contradiction since all primes are greater than 1. Hence all prime
divisors p of .S satisfy p > n.

(¢) Suppose there are finitely many primes and let ¢ be the largest. Then let S = ¢!+1.
As S > 1 it must have a prime divisor p, say. From part (b) we have p > ¢, but
this is a contradiction since ¢ is the largest prime. Therefore there are infinitely
many primes.
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9. (a) As a and b divide ¢ we have ¢ = ax = by, for some integers = and y. Therefore a|by
and as a and b are coprime Euclid’s lemma implies that a|y. Therefore y = az, for
some integer z, and we have ¢ = abz: that is ab|c.

(b) (i) There are integers p and ¢ such that mp+ng = d and substituting for m, n with
ud an vd, respectively, gives udp+vdq = d. Cancelling d we have up+vq = 1,
so ged(u, v) = 1, as required.

(ii)) k& = mn/d = (udvd)/d = uvd. As m|w and n|w we have w = mg = nh, for
some h,g € Z, so w = udg = vdh. Therefore w/d = ug = vh and so both u
and v divide w/d. From part (a) we see that uv divides w/d, so w/d = uvf,
for some f € Z. Multiplying through by d we obtain w = wvdf = kf, so k|w.

(iii) If r = s (mod m) and r = s (mod n) then m|s — r and n|s — r, so k|s —r,
from part (b)(ii). Therefore r = s (mod k).
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