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Chapter 1

Division and Greatest Common Divisors

Move forward to a time after the collapse of the banking system when we have returned to
bartering. In the university1 loaf of bread can be exchanged for 11 apples and a chocolate cake
can be exchanged for15 apples. A professor has baked baked a dozen loaves and a student turns
out to have several cakes and hundreds of apples. The professor wants just one apple, so would
like to exchange some loaves for one apple and some cakes. Canthis be done, and if so how?

Circle the number of apples required to obtain a whole

number of cakes in the table below.

1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63 64 65 66

So the professor can give the student3 cakes in ex-
change for1 apple and4 loaves, and everyone will be

happy.

Is there more than one solution?
We can describe the problem algebraically. Leta, b andc and stand for the value of anapple,

acake and a loaf ofbread, respectively. Thenc = 15a andb = 11a.

1
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We found (non-negative) whole numbersx andy so that

a + bx = cy, that is

a + (11a)x = (15a)y

and so after is cancelled

1 + 11x = 15y.

Now suppose that at bottle of French wine is worth30 apples and a bottle of English wine is
worth 24 apples. A lecturer has a crate of french wine and some apples and the professor now
wants6 apples, but only has a crate of English wine. Can a fair transaction be made so that the
prof ends up with6 apples?

We can describe the problem algebraically again. Letf ande stand for the values ofFrench
andEnglish wine, respectively.

Thenf = 30a ande = 24a and we wish to findx and
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y such that6a + fy = ex; that is6a + (30a)y = (24a)x

and after cancellinga again we have

6 + 30y = 24x.

We could try to solve this equation as it stands but it

would be easier to first cancel a6 from both sides, leav-

ing

1 + 5y = 4x.

A solution to this equation is a solution to the original,

and vice-versa: for any numbersx andy:

1+5y = 4x ⇒ 6× (1+5y) = 6 ⇒ 4x ⇒ 6+30y = 24x
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and

6+30y = 24x ⇒ 6×(1+5y) = 6 ⇒ 4x ⇒ 1+5y = 4x.

Again let us use a table. this time we want the number

of 5’s plus1 to be equal to a whole number of4’s.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 39 30
31 32 33 34 35
36 37 38 39 40

Circle the numbers of apples that represent whole num-

bers of4’s. We see a solution:16 apples are worth both

four 4’s and1 plus three5’s. That is:x = 4, y = 5.
The professor can give the lecturer4 bottles of English

wine in exchange for6 apples and3 bottles of French

wine.

Other visible solution:x = 9, y = 7.

The crucial feature of these problems are that we are only interested in solutions which are natural
numbers (defined in Section A.6). Solutions would be very easy to find if we allowed ourselves
to use rational numbers or real numbers (see Section A.6).
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For example if we setx = 1 in the first problem then we

can takey = 12/15.

On the other hand integer solutions are no easier to find than natural number solutions (integers
are also defined in Section A.6).

This chapter looks into some of the properties of natural numbers and integers that, among
other things, prove useful in solving problems such as the bartering ones above. We’ll look at a
a step by step recipe which would give us a number, like6 in the second problem above, which
can be used to simplify the problem and in fact determines whether or not there is a solution. We
shall investigate, in some detail, how and why this works.

1.1 The Euclidean Algorithm

To solve the equation6 + 30y = 24x I first divided throughout by6. I chose6 because it is
the biggest positive number that divides all3 of 24, 6 and30. This is easy, because the numbers
here are small, but let’s make the process we go through absolutely clear, and then try it for some
bigger numbers. For simplicity suppose I want the biggest positive number that divides both24
and30. I make two lists.

Positive divisors of24 : 1, 2, 3, 4, 6, 8, 12, 24
Positive divisors of30 : 1, 2, 3, 5, 6, 10, 15, 30

Now I pick the largest number which appears on both of the lists, which is6, and this is my
answer. Now for bigger numbers.

Example 1.1.Find the biggest number which divides both2028 and2600.
Positive divisors of

2028 : 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156, 169, 338, 507, 676, 1014, 2028
2600 : 1, 2, 4, 5, 8, 10, 13, 20, 25, 26, 40, 50, 52, 65,100, 104, 130, 200, 260,

325,520, 650, 1300, 2600

By examining these lists we see that the biggest number dividing both2028 and2600 is 52.

The last example involved alot of calculation and required us to factorise both2028 and2600.
Without some systematic method it would be very easy to leaveout some divisor of either2028
or 2600. The following is a method which in many cases involves much less work and is easier
to validate.

The algorithm

The biggest natural number which divides both natural numbersa andb is called thegreatest
common divisor of a and b. Given natural numbersa and b we wish to find their greatest
common divisor. The recipe works as follows.
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EA1. Input the pair(b, a), with 0 < a < b.

EA2. Write b = aq + r, whereq andr are integers with0 ≤ r < a.

EA3. If r = 0 thenoutput gcd(a, b) = a andstop.

EA4. Replace the ordered pair(b, a) with (a, r). Repeat from (2).

Before going into why this algorithm works we look at some examples.

Example 1.2. Find the greatest common divisord of 12 and 63. Find x, y ∈ Z such that
12x + 63y = d.

First we findgcd(12, 63). The input to the Euclidean

Algorithm is (63, 12). We write out the results of Step

EA2 as the algorithm runs:

(63,12) 63 =5 · 12 + 3

(12,3) 12 =4 · 3 + 0.

The first zero remainder occurs when the pair(b, a) is

(12, 3) so at this point Step EA3 outputsgcd(63, 12) = 3
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and stops. (Notice that this is the last non–zero remain-

der occurring in the results of Step EA2.

To find the integersx, y we work backwards through the

results of Step EA2 starting with the first one that has a

non–zero remainder (there’s only one):

3 = 1 · 63− 5 · 12

Therefore we have a solution forx, y with x = −5, y =
1.

As shown in the above example we can use the Euclidean Algorithm not only to find the
greatest common divisord of two natural numbersa and b but also to expressd as sum of
multiples ofa andb. This can be useful in solving equations as we’ll see later. (Note thatx and
y are not always natural numbers: they may be negative.)

Example 1.3.Find the greatest common divisord of 2600 and2028. Find integersx andy such
thatd = 2600x + 2028y.

First we findgcd(2028, 2600). The input to the Euclidean Algorithm is(2600, 2028). We write
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out the results of Step EA2 as the algorithm runs:

(2600,2028) 2600 = 2028 · 1 + 572 (1.1)

(2028,572) 2028 = 572 · 3 + 312 (1.2)

(572,312) 572 = 312 · 1 + 260 (1.3)

(312,260) 312 = 260 · 1 + 52 (1.4)

(260,52) 260 = 52 · 5 + 0. (1.5)

This givesgcd(2600, 2028) = 52, as we found in Example 1.1.

To find the integersx, y we work back from (1.4) to (1.1).

52 = 312− 260 · 1 from (1.4)

= 312− (572− 312 · 1) = 312 · 2− 572 from (1.3)

= (2028− 572 · 3) · 2− 572 = 2028 · 2− 572 · 7 from (1.2)

= 2028 · 2− (2600− 2028 · 1) · 7 = 2028 · 9− 2600 · 7 from (1.1).

Thus52 = 2600 · (−7) + 2028 · 9 so we may takex = −7 andy = 9.

Example 1.4. Find the greatest common divisord of 2028 and626. Find x, y ∈ Z such that
2028x− 626y = d.

First we findgcd(2028, 626). The input to the Euclidean Algorithm is(2028, 626). We write out
the results of Step EA2 as the algorithm runs:

(2028,626) 2028 = 626 · 3 + 150 (1.6)

(626,150) 626 = 150 · 4 + 26 (1.7)

(150,26) 150 = 26 · 5 + 20 (1.8)

(26,20) 26 = 20 · 1 + 6 (1.9)

(20,6) 20 = 6 · 3 + 2 (1.10)

(6,2) 6 = 2 · 3 + 0. (1.11)

This givesgcd(2028, 626) = 2.

To find the integersx, y we work back from (1.10) to (1.6) to find an expression for2.

2 = 20 · 1− 6 · 3 from (1.10)

= 20 · 1− 3 · (26 · 1− 20 · 1) = 20 · 4− 26 · 3 from (1.9)

= (150 · 1− 26 · 5) · 4− 26 · 3 = 150 · 4− 26 · 23 from (1.8)

= 150 · 4− (626− 150 · 4) · 23 = 150 · 96− 626 · 23 from (1.7)

= (2028− 626 · 3) · 96− 626 · 23 = 2028 · 96− 626 · 311 from (1.6).

Thus2 = 2028 · 96− 626 · 311 so we may takex = 96 andy = 311.
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1.2 Divisibility in the integers

From the evidence of the examples above it appears that the Euclidean Algorithm really does
return the greatest common divisor of two natural numbers. I’d like to understand why this is
so. We shall consider integer arithmetic and hopefully thiswill allow us to see exactly how the
algorithm performs and why it works. We shall take for granted the basic properties of arithmetic
with numbers. By arithmetic is meant addition and multiplication. For example we consider it
a basic law thatx + y = y + x, wherex andy are natural numbers, integers or real numbers1.
Among other properties that hold for numbersx, y andz are that

0 + x = x

1 · x = x

x(y + z) = xy + xz

(−x)(−y) = xy

if x > 0 andy < 0 thenxy < 0.

We’ve already used the terminology “a dividesb” for integersa andb but let’s be absolutely
clear of what we mean by this.

Definition 1.5. Let a andb be integers. If there exists an integerq such thatb = qa then we say
thata divides 2 b, which we write asa|b.

A definitionestablishes once and for all the meaning of a word. From now onwhenever
we say “divides” we mean what it says above, nothing more, nothing less.

Other ways of sayinga|b are thata is afactor of b, a is adivisor of b or b is amultiple of a.
We writea ∤ b to denote “a does not divideb”.

Example 1.6.From the definition we can easily check that6|18 because18 = 6 · 3. In the same
way we see that6 divides24, 12, 6, 0 and−6. It’s also fairly obvious that7 ∤ 16 and−15 ∤ 25,
although explaining exactly why may take a little thought.

In the next few examples we’ll use Definition 1.5 as a startingpoint and from it prove some
very simple facts, just to get used to the terminology for integer arithmetic.

Example 1.7.We shall prove that6|(6n + 6), for all integersn.

If n is an integer then6n+6 = 6(n+1). From Definition
1The real numbers are defined in Section A.6
2Bold face is used for definitions. Some authors use italics. On the blackboard underlining is used instead.
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1.5, with b = 6n + 6, a = 6 andq = n + 1, it follows
that6|(6n + 6).

In Example 1.7 we have proved something is truefor all integers. To prove this it isnot
enough to find an example of some integern for which the statement is true. On the other
hand if you are asked to prove that thereexistintegersx andy such that2600x+2028y =
52 then it would be enough to find an example: sayx = −7 andy = 9, as in Example 1.3.

Example 1.8.Prove that4|[(2n + 1)2 − 1], for all integersn.

We have

(2n+1)2−1 = (4n2+4n+1)−1 = 4n2+4n = 4(n2+n).

From Definition 1.5, withb = (2n + 1)2 − 1, a = 4 and

q = n2+n, it follows that4|[(2n+1)2−1], for all n ∈ Z.

(The meaning of∈ is given is Section A.3.)

What we need to settle the question of explaining why, for example6 ∤ 13 is something like:
if we form the fraction13/6 it’s equal to2 + 1/6 which is not an integer. Alternatively, to verify
that32 ∤ 121 we could try to divide121 by 31 and we’d find a non–zero remainder. In fact we
can express121 as

121 = 32× 3 + 25.

(In this expression3 is called thequotientand25 the remainder.) This is the content of the
Theorem we come to next.
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Before stating the Theorem we need to recall some notation.

Definition 1.9. Themodulus or absolute valueof a real numberx is denoted|x| and is given
by the formula

|x| =
{

x, if x ≥ 0
−x, if x < 0.

The definition above is what is known as adefinition by cases.

All integers are real numbers so it makes perfect sense to talk of the modulus of an integer. For
example

| − 6| = 6 = |6|,
102 = |102| = | − 102| and

|0| = 0 = −0 = | − 0|.

Theorem 1.10(The Division Algorithm). Leta andb be integers witha 6= 0. Then there exist
unique integersq andr such thatb = aq + r and0 ≤ r < |a|.

We could prove this: but it is intuitively obvious, rather mundane and up to now we just
accepted it as an obvious fact: so we’ll continue to accept itfor now. If you’re unhappy with
this, more detail of why and how it should be proved can be found in any book on elementary
number theory; and later on we’ll prove a similar statement in a setting where it’s not obviously
true. Instead let’s take stock.

(1) The condition thata 6= 0 is necessary. It’s the same as saying that we can’t have fractions
like 3/0.

(2) There are two parts to the conclusion of the Theorem. Firstly it says thatq andr do exist,
with the properties described. Secondly it says thatq and r are unique. In terms of the
example above this means that if we haveq andr with 0 ≤ r < 32 such that121 = 32q + r
thenq must be3 andr must be25. This is not surprising: we’d be dismayed if121/32 had
some value other than3 + 25/32.

(3) One way if assessing whether the Theorem is worth statingor not is to see how it might
work in other settings. Suppose for example we were to work with rational numbers instead
of integers. Ifb anda are rational witha > 0 then I can pick anyr I like, in the given range
0 ≤ r < |a|, and obtainb = aq + r by settingq = (b − r)/a. Thusq andr are not unique
and the Division Algorithm does not hold. More dramatic failure of the Division Algorithm
is exhibited in some other situations. For example in the setof polynomials in two variables
x andy with integer coefficients it’s easy to find polynomialsf andg for which there is no
way of writingf = g · q + r with r in any meaningful way “less than”g.

Here are some examples of the Division Algorithm in action.
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Example 1.11.Every integern can be written asn = 2q + r, with 0 ≤ r < 2. If r = 0 we say
n is evenand if r = 1 we sayn is odd.

The uniqueness part of the Theorem guarantees that there

can be no integer that is both even and odd! The even

integers are precisely those that are divisible by2, since
they’re of the formn = 2q. As5 is odd it is not divisible

by 2.

Here we’ve used the Division Algorithm (Theorem 1.10) to partition of integers into odd and
even.

Example 1.12.

From the Division Algorithm, every integern can be

written asn = 3q + r, wherer = 0, 1 or 2. No inte-
ger which is of the formn = 3q + 0 can be written as

n = 3q1 + 1 or n = 3q2 + 2, because of the unique-

ness part of the Division Algorithm. The integers that

are divisible by3 are precisely those of the form3q + 0.

As 317 = 3 · 105 + 2 we see that3 ∤ 317. Again the
Division Algorithm is used as a step in the argument.

This is similar to the previous example but here we have

partitioned the integers into three: those that leave re-

mainder0, those that leave remainder1 and those that
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leave remainder2, on applying the Division Algorithm

with a = 3.

Example 1.13.Show that3|n3 − n, for all integersn.

From the Division Algorithm, every integern can be

written asn = 3q + r, wherer = 0, 1 or 2. Then

n3 − n = (3q + r)3 − (3q + r)

= 33q3 + 3 · 32q2r + 3 · 3qr2 + r3 − 3q − r

= 3(32q3 + 32q2r + 3qr2 − q) + r3 − r

= 3M + r3 − r, for someM ∈ Z,

whereM is dependent onn.

r = 0: n3 − n = 3M , so3|n3 − n, in this case.

r = 1: n3 − n = 3M + 13 − 1 = 3M , so3|n3 − n, in

this case.
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r = 2: n3 − n = 3M + 23 − 2
= 3M + 6
= 3(M + 2), so again3|n3 − n.

This covers all possible values ofr so all integersn, so

3|n3 − n, for all n ∈ Z.

Example 1.14.Show that ifn is an integer thenn3 has the form4k, 4k + 1 or 4k + 3, for some
k ∈ Z.

From the Division Algorithm, every integern can be

written asn = 4q + r, wherer = 0, 1, 2 or 3. Then

n3 = (4q + r)3 = (4q)3 + 3(4q)2r + 3(4q)r2 + r3

= 4(42q3 + 3 · 4q2r + 3qr2) + r3 = 4M + r3, for

whereM is dependent onn.

r = 0: n3 = 4M .

r = 1: n3 = 4M + 1 = 3M .

r = 2: n3 = 4M + 23 = 4M + 8 = 4(M + 2)
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r = 3: n3 = 4M + 33 = 4M + 27 = 4(M + 6) + 3.

This covers all possible values ofr so all integersn, so

n3 has the required form for alln ∈ Z.

This means there is no integern such thatn2 = 4q + 2.

Also, if m, n ∈ Z satisfyn3 = 4m + 1, thenn = 4q + 1,
for someq ∈ Z.

1.3 Properties of division

Example 1.15.Consider the equality112 = 20 · 5 + 12.

It is not hard to see, by listing divisors, thatgcd(112, 20) =
4. It is even easier to see thatgcd(20, 12) = 4. Is it a co-

incidence that the answer is4 both times?

Lemma 1.16.Let s, t andu be integers, which are not all zero, such that

s = tq + u.

Thengcd(s, t) = gcd(t, u).

A lemmais a lesser result: one which is not important enough to be given the grand title
of theorem. Lemmas are often small steps made on the way to establishing a theorem.

Proof. Strategy: show that any integer that divides boths andt must also divideu. Then show
that any integer that divides botht andu must also divides. Having done this it’s clear that the
set of common divisors ofs andt is exactly the same as the set of common divisors oft andu
and their greatest common divisors are thus equal.
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Step(1) First we show that the positive divisors ofs and

t also divideu. To say thatc is a divisor ofs

and t is to sayc|s and c|t. That is, there are

integersx andy such thats = cx andt = cy.

By assumptionu = s− tq, so we have

u = cx− cyq = c(x− yq).

This shows thatc|u. Conclusion: common di-

visors ofs andt are also common divisors oft

andu.

Step(2) Now suppose thatc′ is a common divisor ofu
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andt. Then there are integersw andz such that

u = c′w andt = c′z. As s = tq +u, with q ∈ Z,

we see that

s = c′zq + c′w = c′(zq + w),

which shows thatc′|s. Conclusion: common di-

visors oft andu are also common divisors ofs

andt.

Step(3) Now suppose thatd = gcd(s, t). Thend|s and

d|t, by definition. Therefore, from Step (1)d is

a divisor ofu andt. Thusd ≤ gcd(u, t) = d′,

say. Similarlyd′ ≤ d, sod = d′, as required.
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Example 1.17.We can write337 = 11 · 30 + 7, so

Thereforegcd(337, 11) = gcd(11, 7) = 1. We’ve used

Lemma 1.16 to avoid considering the divisors of the

large number337. Instead we only have divisors of7
to cope with.

The lemma above is the key to the Euclidean Algorithm. We shall notprovethat the Euclidean
algorithm works, being content to see that it must do on some fairly general examples. (Although
a proof using what we have done could be constructed.) Beforegoing any further we record some
very basic consequences of the definition of division; as a lemma.

Lemma 1.18.

1. n|n, for all integersn.

2. n|0, for all integersn.

3. If m andn are integers such thatm|n andn > 0 thenm ≤ n.

4. If m andn are positive integers such thatm|n thengcd(m, n) = m.

Proof.

The definition of division is thata|b if b = aq, for some

q ∈ Z

1. n = n · 1, so setb = n, a = n and q = 1in the

definition and the result follows.
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2. 0 = n · 0 so setb = 0, a = n and q = 0 in the

definition.

3. Let’s assume thatm|n andn > 0. Now what happens

if also m > n? Firstlym|n implies thatn = mq, for

someq. Next, m > 0 becausem > n, so q > 0

(because+×− = −). Now q > 0 andq ∈ Z means

q ≥ 1. Putting all this together we haven = mq, with

q ≥ 1, son = mq ≥ m > n: that isn > n. This is

rubbish: so what’s wrong? We’re investigating what

happens ifm > n and it turns out this gives nonsense.

We conclude thatm ≤ n, which is what we want to

prove.
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4. If m, n > 0 andm|n then, asm|m as well, we have

that m is a common divisor ofm andn. Is m the

greatest of these common divisors? Ifc is any com-

mon divisor orm, n then c|m andm > 0 implies,

using part 3, thatc ≤ m. Thereforem is the greatest

common divisor ofm andn.

The proof of the third part of the Lemma above is known asproof by contradiction. This
always works as follows.

Step(1) Start with some statement to be proved.In the Lemma this is thatm ≤ n,
given thatm|n andn > 0.

Step(2) Assume the negation of what is to be proved.In the proof of our lemma this is
thatm > n.

Step(3) Derive some consequences of the assumption.We obtainn = mq, with q ≥ 1.

Step(4) Show that something we’ve derived is false.We show thatn ≥ m, which
together withm > n makesn > n, which can never hold.

Step(5) Conclude that the result holds. It cannot happen thatm > n because this
forcesn > n, which is impossible. The conclusion ism ≤ n.
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1.4 Why the Euclidean Algorithm works

Example 1.19.Consider the Equations (1.6)–(1.11) on page 8.

From Equation (1.6) we see, with the help of Lemma

1.16, that

gcd(2028, 626) = gcd(626, 150).

Next, from Equation (1.7) we have

gcd(626, 150) = gcd(150, 26).

Continuing this way, using the subsequent equations we
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have

gcd(150, 26) = gcd(26, 20), using Equation (1.8)

gcd(26, 20) = gcd(20, 6), using Equation (1.9)

gcd(20, 6) = gcd(6, 2), using Equation (1.10).

Finally, using Equation (1.11),2|6 and sogcd(6, 2) = 2.

Stringing all these facts together we have

2 = gcd(6, 2) = gcd(20, 6) = gcd(26, 20) = gcd(150, 26) = gcd(626, 150) = gcd(2028, 626),

that isgcd(2028, 626) = 2. This is what the Euclidean Algorithm told us. Lemma 1.16 and
Equations (1.6)–(1.11) show why the algorithm comes up withthe correct answer.

Example 1.20.Consider the Equations (1.1)–(1.5) on page 8. As in the example above we have

gcd(2600, 2028) = gcd(2028, 572), using Equation (1.1)

gcd(2028, 572) = gcd(572, 312), using Equation (1.2)

gcd(572, 312) = gcd(312, 260), using Equation (1.3)

gcd(312, 260) = gcd(260, 52), using Equation (1.4).

From Equation (1.5) we see that52|260 and so we havegcd(260, 52) = 52. Therefore

52 = gcd(260, 52) = gcd(312, 260) =
gcd(572, 312) = gcd(2028, 572) = gcd(2600, 2028),

that isgcd(2600, 2028) = 52. Again we’ve seen why the answer given by the Euclidean Algo-
rithm was the correct one.

In addition to finding the greatest common divisor of two integersa andb we can work back
through the output of the Euclidean algorithm, as we did in Examples 1.2, 1.3 and 1.4, to find
integersx andy such thatax + by = gcd(a, b). This gives us the following Theorem.
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Theorem 1.21.Let a and b be integers, not both zero, and letd = gcd(a, b). Then there exist
integersu andv such thatd = au + bv.

Note that we restricted the input of the Euclidean algorithmto pairs of positive integers, so
we might worry that ifa or b is non-positive then the Theorem does not work. However it’seasy
to see thatgcd(a, b) = gcd(−a, b) = gcd(−a,−b) = gcd(a,−b) and from this it follows that the
Theorem holds in all cases.

1.5 An application

We began this Chapter by looking at the problem of distribution of toffees. This problem was
resolved by solving the equation24x− 6 = 30y. Equations of this form, where the coefficients
are integers and onlyx’s andy’s occur (nothing likex2, x3, xy or xy2 occurs) and for which we
seek integer solutions, are calledlinear Diophantine equations. Here we look at some linear
Diophantine equations.

Example 1.22.Find integersx andy such that2600x + 2028y = 104.

In Example 1.3 we ran the Euclidean Algorithm and foundgcd(2600, 2028) = 52. Once we’d
done so we were able to use the equations generated to find integersx andy such that

2600 · (−7) + 2028 · 9 = 52. (1.12)

If we multiply equation (1.12) by2 we obtain

2600 · (−14) + 2028 · 18 = 104.

Therefore we have a solutionx = −14 andy = 104.

Example 1.23.Find integersx andy such that−72 = 12378x− 3054y.
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First we run the Euclidean Algorithm to findgcd(12378, 3054).

(12378,3054) 12378 = 3054 · 4 + 162 (1.13)

(3054,162) 3054 = 162 · 18 + 138 (1.14)

(162,138) 162 = 138 · 1 + 24 (1.15)

(138,24) 138 = 24 · 5 + 18 (1.16)

(24,18) 24 = 18 · 1 + 6 (1.17)

(18,6) 18 = 3 · 6 + 0. (1.18)

This givesgcd(12378, 3054) = 6.

Next we work back from (1.17) to (1.13) to find integersu, v such that6 = 12378u + 3054v.

6 = 24− 18 · 1 from (1.17)

= 24− (138− 24 · 5) = 24 · 6− 138 from (1.16)

= (162− 138) · 6− 138 = 162 · 6− 138 · 7 from (1.15)

= 162 · 6− (3054− 162 · 18) · 7 = 162 · 132− 3054 · 7 from (1.14)

= (12738− 3054 · 4) · 132− 3054 · 7 = 12378 · 132− 3054 · 535 from (1.13).

Thus

6 = 12378 · 132 + 3054 · (−535) (1.19)

so we may takeu = 132 andv = −535.

Multiplying through equation (1.19) by−12 gives

−72 = 12378 · 1584 + 3054 · (−6420)
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and this gives

−72 = 12378 · 1584− 3054 · 6420

so we have a solutionx = 1584 andy = 6420.

The method above of finding integer solutions can be extendedto find all such solutions to
equations of this kind. Here we establish conditions which determine whether or not there exists
a solution. Later on we’ll see how to describe all solutions.

Lemma 1.24.Leta, b andc be integers (a, b not both zero). The equation

ax + by = c (1.20)

has integer solutionsx, y if and only ifgcd(a, b)|c.
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The phrase “if and only if” in this Lemma is an important part of the conclusion. To say
“the equation has solutionsif and only ifgcd(a, b)|c” means two things:

1. if the equation has solutions thengcd(a, b)|c and

2. if gcd(a, b)|c then the equation has solutions.

The second statement is theconverseof the first. (More generally, the converse of “If A
is true then B is true” is “If B is true then A is true”.)
To prove the lemma we must prove both statements because it ispossible for the converse
of a true statement to be false. This is apparent in everyday life. For example it would
be quite reasonable to say that the statement “If I am a frog then I can swim” is true.
The converse is “If I can swim then I am a frog”, and this is commonly regarded as false.
More precise mathematical examples are not hard to find.

For example the statement “Ifx is positive thenx2

is positive” is true. The converse is “Ifx2 is positive

thenx is positive” is false, as it is easy to see, for

example takex = −1.

Proof.

1. Prove that if the equation has solutions thengcd(a, b)|c.

Suppose that equation (1.20) has a solution: that is
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there are integersx, y such thatax + by = c. As d|a

andd|b there are integersp andq such thata = dp

and b = dq. Thereforec = ax + by = (dp)x +

(dq)y = d(px + qy); sod|c, as claimed.

2. Prove that ifgcd(a, b)|c then the equation has solu-

tions.

This is the situation of Example 1.23 on page 23.

Let gcd(a, b) = d. Suppose thatd|c. Then there

existsq ∈ Z such thatc = dq. From Theorem 1.21

there exist integersu andv such thatd = au + bv.

Thereforea(uq) + b(vq) = (au + bv)q = dq = c.

That is the equation has integer solutionx = uq and
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y = vq.

There are several different ways of saying things like “if ... then ...” and “... if and only
if ...”. The symbol⇒ is read “implies”. All the entries on a given line of the following
table mean the same thing: entries on different lines do not mean the same thing.

if A then B A ⇒ B B if A

if B then A A ⇐ B A if B

A if and only if B A ⇔ B A iff B

Example 1.25.Are there integersx andy such that2600x + 2028y = 130?

No. Becausegcd(2600, 2028) = 52 and52 ∤ 130.

Example 1.26.For whichc does the equation72x + 49y = c have a solution?

gcd(72, 49) = 1 so the equation72x + 49y = c has a
solution for every choice ofc.

We conclude this chapter with some remarks about Lemma 1.24.Fix a pair of integersa and
b and letd = gcd(a, b). The lemma tells us that the equationax + by = c has a solution if and
only if d|c. Now this means that

1. there is a solution ifd = c and

2. there is no solution if0 < c < d.

We can therefore conclude thatd is the smallest positive integer that can be written in the form
ax + by, with x, y ∈ Z.
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Now let’s suppose that once we’ve fixeda andb we find there exist integersu andv such
that au + bv = 1. For example this happens if we seta = 25132 and b = 15079, for then
3a− 5b = 1. What can we say aboutgcd(a, b) in this case? We’ll take up these threads again in
the next chapter.

1.6 Objectives

After covering this chapter of the course you should be able to:

(i) use terms such asDefinition, Lemmaandproofwith confidence;

(ii) read and understand simple proofs;

(iii) remember Definition 1.5 ofa dividesb, for integersa andb;

(iv) apply this definition to prove simple divisibility properties;

(v) state the Division Algorithm and be able to use it to demonstrate properties of integers;

(vi) remember the definition of greatest common divisor of two integers;

(vii) apply this definition to prove results;

(viii) apply the Euclidean algorithm and explain why it works;

(ix) find solutions to equations of the kind given in Section 1.5.

1.7 Exercises

1.1 For each of the following pairsa, b of integers findgcd(a, b) and integersr ands such that
gcd(a, b) = ra + sb.

(a) a = 13, b = 1000;

(b) a = 306, b = 657;

(c) a = 1147, b = 851;

(d) a = 5213, b = 2867.

1.2 Prove the following using only the definition of division(Definition 1.5). In each case
indicate where in your proof you have used the definition.

(a) 13|169, 13|1859 and143|1859. (b) 5|(5n2 +25n+75n), for all integersn.

1.3 Use the Division Algorithm to show that, ifn is an integer then

(a) n2 is either of the form3k or 3k + 1;

(b) n2 is either of the form4k or 4k + 1;

(c) n4 is of the form either5k or 5k + 1.

1.4 Show that5|n5 − n, for all integersn.
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1.5 Use the Division Algorithm to prove that for any integera one of the integersa, a + 2,
a + 4 is divisible by3. Indicate where and how you use the Division Algorithm in your
proof.

1.6 Use the Division Algorithm to prove that for any integera one of the integersa, a + 2,
a + 4, a + 6 or a + 8 is divisible by5. Indicate where and how you use the Division
Algorithm in your proof.

1.7 Use only the definition of division, Definition 1.5, to prove the following facts. Donot
mention the Division Algorithm, Theorem 1.10. Leta, b andc be integers.

(a) Prove that ifc|a then−c|a andc|(−a).
(b) Prove that ifa|b andb|c thena|c.

1.8 Leta andb be integers.

(a) Prove thatgcd(a, b) = gcd(−a, b) = gcd(−a,−b).
(b) If a > 0 show thatgcd(a, 0) = a. What isgcd(a, 0) if a < 0?

1.9 Determine integer solutionsx, y to the following equations.

(a) 56x + 72y = 40;

(b) 24x + 138y = 18;

(c) 221x + 35y = 11.

1.10 Which of the following equations have integer solutions? (Justify your answers but do not
find the solutions.)

(a) 51x− 7y = 88;

(b) 33x + 44y = 88;

(c) 11x− 66y = 0;

(d) 33x + 27y = 88;

(e) 33x + 44y = 1.

1.11 Prove each statement below using only the definition of division (and basic laws of arith-
metic). Point out where in your proof you use the definition ofdivision. Leta, b, c, d be
integers. The following hold.

(a) a|a2.

(b) If a|b thena|bc andac|bc.
(c) If a|b andc|d thenac|bd.

(d) If 0|a thena = 0.

(e) a|1 if and only if a = ±1. [Hint : Consider casesa > 0 anda < 0 separately. If
a > 0 use the previous part of the question. Ifa < 0 apply the result fora > 0 to−a.
Cana = 0?]

(f) If a|b andb|a thenb = ±a.

1.12 Use the Division Algorithm and Question 1.11 to prove that for an arbitrary integera



MAS1202/MAS2202 Notes 31

(a) 2|a(a + 1);
(b) 3|a(a + 1)(a + 2);

(c) 3|a(2a2 + 7);
(d) if a is odd then32|(a2 + 3)(a2 + 7).

In each case indicate where the Division Algorithm and results of Question 1.11 are used
and how.

1.13 Show that there is no pair of natural numbersx, y such thatx2−2y2 = 0. Use this to show
that there is no rational numberr such thatr2 = 2.

1.14 Show that there is no pair of natural numbersx, y such thatx2−5y2 = 0. Use this to show
that there is no rational numberr such thatr2 = 5.

1.15 Show that there do not exist integersx, y such thatx2 − 4y = 3. [Hint: first prove that
there are no such numbers withx even, then that there no such withx odd.]



Chapter 2

Coprime Pairs of Numbers

The professor has been awarded a pay increase and decides to throw a party. He wants French
wine for this party. Unfortunately in this department the pay is in bottles of English wine. Lec-
turers in Classics are paid in French wine and apples; so the professor wishes to trade English
wine for apples and French wine. The prof still wants to eat six apples, as it happens. Can the
professor buy sufficient wine to make a really memorable party?

Recall from Section 1 that the professor can exchange

4 bottles of English wine for6 apples and3 bottles of

French wine. We can see from the table in that section

that he could also exchange8 bottles of English wine

for 6 apples and6 bottles of French wine.

32
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Algebraically we seek whole number solutions to the

equation5y + 1 = 4x; to which we already have two

solutions, namelyx = 4, y = 3, andx = 9, y = 7.

We can see that if we increasex by 5 theny increases

by 4. Increasex by n less than5 and y increases by

4n/5, which is not an integer. One way to see what is

going on is to plotx againsty.



MAS1202/MAS2202 Notes 34

−1 0 1 2 3 4 5 6 7 8 9 10 11

8

7

6

5

4

3

2

1

0

−1

A B

C

D

x

y

4

5y + 1 = 4x
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In this section we’ll develop enough of the theory of integers to enable us to write down a formula
which tells us exactly which values ofx andy are solutions to equations of this type for which
we seek integer solutions (linear Diophantine equations).

2.1 Greatest common divisors again

First we establish a few more properties of the greatest common divisor. Recall that whenever
we ran the Euclidean Algorithm, on natural numbersa andb, we obtained not onlygcd(a, b) but
also integersu andv such that

gcd(a, b) = au + bv,

and from this fact we obtained Theorem 1.21. We’ll now give analternative proof of this Theo-
rem.

Second proof of Theorem 1.21
Suppose that we have positive integersa andb. (The cases wherea or b are non-positive

follow easily from this case, and are left to the reader.) This proof depends on analysis of the set

S = {ak + bl ∈ Z : ak + bl > 0 andk, l ∈ Z}.
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This is clearly a set of positive integers. We shall prove thetheorem by showing that it’s
smallest element isgcd(a, b). First of all we need to show that it does have a smallest element. It
is a fundamental property of numbers that every non-empty set of positive integers has a smallest
element. Then, asS contains only positive integers it must have a smallest element unless it’s
empty. It’s easy to seeS is non-empty as it contains, for examplea + b. ThereforeS has a
smallest element,s say. The fact thats ∈ S means

s = ak + bl, for somek, l ∈ Z. (2.1)

Now, using the Division Algorithm, we can write

a = sq + r, where0 ≤ r < s.

Substituting fors using (2.1) this becomes

a = (ak + bl)q + r

= a(kq) + b(lq) + r,

so
r = a(1− kq) + b(−lq), with 0 ≤ r < s.

If r 6= 0 then we haver ∈ S andr < s, a contradiction. Thereforer = 0 anda = sq. That is,
s|a. Similarly s|b.

Now suppose thatc|a andc|b. Thena = cu andb = cv, for someu, v ∈ Z. Substitution in
(2.1) gives

s = c(uk) + c(vl) = c(uk + vl).

Thereforec|s and from Lemma 1.18.3 we havec ≤ s. This completes the proof thats = gcd(a, b)
and we’ve already foundk, l such thats = ak + bl, so Theorem 1.21 follows.

2.2 Coprimes and Euclid’s Lemma

Pairs of integers that have greatest common divisor1 have particularly nice properties and
it’s useful to have a name for them.

Definition 2.1. If a andb are integers withgcd(a, b) = 1 then we say thata andb arecoprime.

Example 2.2. It is easy to see that6 and35 are coprime, for example. Now from Theorem 1.21
it follows that there are integersu andv such that6u + 35v = 1. For instance we may setu = 6
andv = −1. (There are other possibilities: see the exercises.)

On the other hand suppose that for some integersa and b we happen to know that, say,
5a− 2b = 1. Does this mean thatgcd(a, b) = 1?

Corollary 2.3. Integersa andb are coprime if and only if there exist integersu andv such that
au + bv = 1.
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A corollary is something which follows easily from a previously proven fact.

Proof. This is an if and only if proof so has two halves.

Step(1) Prove that ifa andb are coprime then there exist integersu andv such thatau + bv = 1.
If a andb are coprime then it follows directly from Theorem 1.21 that suchu andv exist.

Step(2) Prove that if there exist integersu andv such thatau + bv = 1 thengcd(a, b) = 1.
Assume that there are integersu andv such thatau + bv = 1. Let d = gcd(a, b).

Thend|a andd|b sod|(au + bv). To see this note

that d|a implies thata = dp andd|b implies that

b = dq, for somep, q ∈ Z. Thus

au + bv = dpu + dqv = d(pu + qv)

and thus

d|au + bv
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as claimed. However

au + bv = 1

sod|1. As 1 > 0 it follows, from Lemma 1.18.3,

that d ≤ 1. As d ∈ Z and0 < d ≤ 1 we have
d = 1.

Thusd = 1, soa andb are coprime, as required.

Corollary 2.3 allows us to prove a result known as Euclid’s Lemma.

Lemma 2.4(Euclid’s Lemma). Leta, b andc be integers withgcd(a, b) = 1. If a|bc thena|c.

Proof.

gcd(a, b) = 1 implies that there existu andv such that

au + bv = 1. (*)

a|bc impliesbc = aq, for someq ∈ Z.
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(*) ×c gives

c = auc + bvc = auc + (bc)v

= auc + aqv

= a(uc + qv),

anduc + qv ∈ Z soa|c.

2.3 Application to solving equations

Recall that a linear Diophantine equation is an equation of the formax + by = c, where
a, b andc are integers. We’ve already seen (Lemma 1.24) that a linear Diophantine equation has
integer solutionx andy if and only if gcd(a, b)|c. We can now use Euclid’s lemma to find all
solutions to such equations.

Theorem 2.5.Leta, b, c be integers and letd = gcd(a, b). The equation

ax + by = c (2.2)

has an integer solution if and only ifd|c. If d|c then equation(2.2)has infinitely many solutions
and ifx = u0, y = v0 is one solution thenx = u1, y = v1 is a solution if and only if

u1 = u0 + (b/d)t

and
v1 = v0 − (a/d)t,

for somet ∈ Z.

Proof.

The first part of the theorem follows from Lemma 1.24.
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We may suppose then thatd|c and thatx = u0, y = v0 is

a solution to (2.2). Letu1, v1 be as given above. Then

au1 + bv1 = a(u0 + (b/d)t) + b(v0 − (a/d)t)

= au0 + bv0 + (ab/d)t− (ba/d)t

= au0 + bv0

= c,

sox = u1, y = v1 is a solution, for allt ∈ Z.

Conversely, suppose thatx = u2, y = v2 is a solution.

Thenau0 + bv0 = c = au2 + bv2 sob(v0− v2) = a(u2−
u0). Let a = dp andb = dq. Nowar + bs = d, for some

integersr ands, sodpr + dqs = d, and cancellingd we
havepr+qs = 1. Thusgcd(p, q) = 1. Moreover we have

dp(u2−u0) = dq(v0−v2) and sop(u2−u0) = q(v0−v2)
andp = a/d, q = b/d. This meansp|q(v0− v2), so from

Euclid’s Lemma,p|(v0−v2). Thereforev0−v2 = pt, for
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some integert, and sov2 = v0− pt = v0− (a/d)t. Now

p(u2 − u0) = pqt sou2 − u0 = qt andu2 = u0 + qt =
u0 + (b/d)t, for somet ∈ Z.

Example 2.6.In Example 1.22 we saw thatgcd(2600, 2028) = 52 and that the equation2600x+
2028y = 104 has a solutionx = −14, y = 18. As2600/52 = 50 and2028/52 = 39 the solutions
to this equation are

x = −14 + 39t, y = 18− 50t, for t ∈ Z.

For each integert we have a solution, some of which are shown below.

t x y

-2 -92 118
-1 -53 68
0 -14 18
1 25 -32
2 64 -82

Example 2.7.Find all integer solutions to the equation63x + 12y = 18. List all solutions with
x > −12 andy > 6.

From Example 1.2 we havegcd(63, 12) = 3 and as3|18 the equation has solutions. In
Example 1.2 we also found that63 · 1 + 12 · (−5) = 3.

As 18 = 3 · 6 we multiply both sides of this equation by

6 to obtain a particular solution:

18 = 6(63 · 1 + 12 · (−5)) = 63 · 6 + 12 · (−30)
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so our solution is

x = 6, y = −30.

In this case we havea/d = 63/3 = 21 andb/d = 12/3 =

4, so the general solution is

x = 6 + 4t, y = −30− 21t.

We want solutions withx > −12. From the above we

havex > −12 if and only if 6 + 4t > −12 if and only if

4t > −18 if and only if t > −18/4 = −9/2. As t must

be an integert > −9/2 if and only if t ≥ −4. Thus we

restrict to solutions witht ≥ −4.

We also require solutions to havey > 6 and this
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happens if and only if−30 − 21t > 6 if and only if

−21t > 36 if and only if t < −36/21 = −12/7 if and

only if t ≤ −2, ast ∈ Z.

Hence for solutions withx > −12 and y > 6 we

require−4 ≤ t ≤ −2: that ist = −4,−3 or −2. This

gives

t = −2, x = −2, y = 12

t = −3, x = −6, y = 33

t = −4, x = −10, y = 54

Example 2.8.Find the general form for integer solutions to the equation12378x + 3054y = 42.
Find all solutionsx, y with x > 0 andy > −2000. Find all solutions withx > 0 andy > 0.

In Example 1.23 we found thatgcd(12378, 3054) = 6 and since6|42 this equation has solu-
tions. In the given example we also found12378 · 132 + 3054 · (−535) = 6. Multiplying through
by 7 gives12378 · 132 · 7 + 3054 · (−535) · 7 = 42. This gives a particular solution

x = 132 · 7 = 924 andy = (−535) · 7 = −3745.

For the general form of the solution, in this case we havea/d = 12378/6 = 2063 andb/d =
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3054/6 = 509. The general form of the solution is therefore

x = 924 + 509t andy = −3745− 2063t,

for t ∈ Z.

(We can check this is correct: witht = 1 we verify that12378 · 1433 + 3054(−5808) = 42.)

For solutions withx > 0 we require924 + 509t > 0, that ist > −924/509. As t is an integer
we therefore requiret ≥ −1.

We have solutions withy > −2000 if and only if −3745 − 2063t > −2000 if and only if
3745 + 2063t < 2000 if and only if t < −1745/2063 if and only if t ≤ −1.

Therefore there is a unique solution withx > 0 andy < −2000, which we obtain by setting
t = −1, namely

x = 415, y = −1682.

We have solutions withy > 0 if and only if 3745 + 2063t < 0 if and only if t < −3745/2000 if
and only ift ≤ −2. Thus to obtain a solution withx, y > 0 we need botht ≥ −1 andt ≤ −2.
There are no sucht so there are no solutions withx, y > 0.

2.4 Objectives

After covering this chapter of the course you should be able to:

(i) recall Theorem 1.21 and understand its proof;

(ii) define a coprime pair of integers;

(iii) recall Corollary 2.3 and Euclid’s Lemma and understand their proofs;

(iv) find the general form of the solution of a linear Diophantine equation in two variables.
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2.5 Exercises

2.1 Leta, b andc be integers such thatc|a andc|b. Show thatc|(au + bv), for all integersu
andv.

2.2 Leta, b andc be integers such thatgcd(a, b) = 1 anda|c andb|c. Prove thatab|c. [Hint:
Use Theorem 1.21 and multiply byc.]

2.3 Leta andb be integers, not both zero.

(a) Show that ifk > 0 and gcd (a, b) = d then gcd (ka, kb) = kd. [Hint: Use an
appropriate result to expressd asd = ax + by. Multiply both sides byk.]

(b) Prove that ifa andb be integers withgcd(a, b) = d then

gcd
(

a

d
,
b

d

)
= 1.

[Hint: Use the previous part of the question.]

2.4 Using the solutions to Question 1.9, determine the general form of the integer solutions
x, y to the following equations.

(a) 56x + 72y = 40;

(b) 221x + 35y = 11;

(c) 24x + 138y = 18.

2.5 Find the general form of integer solutions to the equation 348x + 152y = 32. Find all
solutions withx > 0 andy < 0. Also find all solutions withx > 0 andy > −300.

2.6 Find the general form of integer solutions to the equation 84x + 66y = −30. Find all
solutions withx > 1 andy > 35. Also find all solutions withx < 15 andy < 35.



Chapter 3

Proof by Induction

3.1 Induction

A professor decides to reward his students by buying them drinks in the bar after lectures.
Drinks are bought for those who answer questions correctly.The questions get harder throughout
the lecture so the number of drinks per question increases. Acorrect answer to the 1st question
merits one drink. The 2nd gets3, the 3rd gets5, the 4th gets7 and so on. The prof needs a tray
to carry all these drinks and discovers that a square tray is always the perfect shape to carry all
the drinks. Why’s that then?

Listing the number of drinks bought we get the following table.

No. of questions answered No. of drinks bought Size of tray required
1 1 1× 1
2 1 + 3 = 4 2× 2
3 1 + 3 + 5 = 9 3× 3
4 1 + 3 + 5 + 7 = 16 4× 4
5 1 + 3 + 5 + 7 + 9 = 25 5× 5.

What we have observed is that sum of the firstn positive odd numbers isn2, at least forn =
1, 2, 3, 4 and5. Does this hold for all positive integers greater thann and can we find out without
buying all these drinks? To answer this question we can beginby finding the difference between:

the sum of the firstn positive odd numbers:1 + 3 + · · ·+ (2n− 1)

and

the sum of the firstn + 1 positive odd numbers:1 + 3 + · · ·+ (2n− 1) + (2n + 1)

which is clearly2n + 1.
Now find the difference betweenn2 and(n + 1)2:

(n + 1)2 − n2 = (n2 + 2n + 1)− n2 = 2n + 1

45
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again. Thus the difference between thenth and(n + 1)th sums of odd integers is the same as the
difference betweenn2 and(n + 1)2.

This means thatif the firstn positive odd numbers sum ton2: that is

1 + 3 + · · ·+ (2n− 1) = n2 (3.1)

then the firstn + 1 sum to(n + 1)2 (because both sides of (3.1) are increased by2n + 1): that is

1 + 3 + · · ·+ (2n− 1) + (2n + 1) = (n + 1)2. (3.2)

Therefore if (3.1) holds then (3.2) holds as well. We know that (3.1) holds forn = 5 so (3.2)
holds forn = 5 as well. This implies though that (3.1) holds forn = 6; so (3.2) holds forn = 6.
In turn this means (3.1) holds forn = 7; so (3.2) holds forn = 7 ... and so on. Continuing like
this we can see that (3.1) holds for all positive integersn.

What we have used in this argument is the following simple property of sets of positive
numbers: so simple that we take it for a law of nature (which does not require proof).

The Principle of proof by induction

Suppose thatP (1), P (2), P (3), ...,P (n), ... are all statements: one for each positive integer
n.

For exampleP (n) might be

“the sum of the firstn odd positive integers equals

n2”.

To sayP (n) is true, means that the nth statement holds.

In the example above all the statements turned out to be

true. However ifP (n) were the statement
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“the sum of the firstn positive integers is even”

thenP (n) would be true for somen and false for others.

ThePrinciple of Induction goes as follows. Given a sequence of statementsP (n) assume we
know

(1) thatP (1) is true and

(2) that ifP (k) is true thenP (k + 1) is true, fork ≥ 1.

Then it follows thatP (n) is true for alln ∈ N.

In our example aboveP (1) was true, as it was the state-

ment

“the sum of the first1 odd positive integer is12”

which is an odd statement but it is true.

We then showed that if (3.1) holds then (3.2) holds,
that is: ifP (n) holds thenP (n+1) holds. The principle

of induction was used to deduce thatP (n) holds for all

n.
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A property, like the Principle of Induction, which we do not try to prove because we
believe it is a law of nature is called anaxiom.

Example 3.1.Suppose that we wish to prove

1
1× 2 + 1

2× 3 + 1
3× 4 + · · ·+ 1

n(n + 1) = 1− 1
n + 1 ,

for all n ∈ N. HereP (n) is the statement

1
1× 2 + 1

2× 3 + 1
3× 4 + · · ·+ 1

n(n + 1) = 1− 1
n + 1

and we wish to prove thatP (1), P (2), P (3), . . . are true.
Proof by induction takes the following form.

Step 1.The basis of inductionShow thatP (1) is true.

P (1) is obtained by replacingn by 1 throughout

P (n), soP (1) is

1
1× 2 = 1− 1

2

soP (1) is true, as required.
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Step 2.The inductive hypothesis (IH)Assume thatP (k)

is true, for somek ≥ 1. P (k) is obtained by re-

placingn by k in P (n) so we are assuming that

it is true that

1
1× 2+ 1

2× 3+ 1
3× 4+· · ·+ 1

k(k + 1) = 1− 1
k + 1.

Step 3.The inductive stepUse the inductive hypothe-

sis to show thatP (k + 1) is true. In this case

P (k + 1) is the statement that

1
1× 2+ 1

2× 3+ 1
3× 4+· · ·+ 1

(k + 1)(k + 2) = 1− 1
k + 1,

and we want to show that this really is true. In

this example we’ll start with the left-hand side
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of P (k + 1) and by applying the inductive step,

show that it does equal the right-hand side. Start-

ing with the left-hand side ofP (k + 1) we have

1
1× 2 + 1

2× 3 + 1
3× 4 + · · · + 1

(k + 1)(k + 2)

=
(

1
1× 2 + 1

2× 3 + 1
3× 4 + · · · + 1

k(k + 1)

)
+ 1

(k + 1)(k + 2)

=
(

1− 1
k + 1

)
+ 1

(k + 1)(k + 2),

by applying the inductive hypothesis,

= 1 + 1− (k + 2)
(k + 1)(k + 2)

= 1− k + 1
(k + 1)(k + 2) = 1− 1

k + 2,
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which is the right-hand side ofP (k + 1). There-

foreP (k + 1) holds.

Step 4.ConclusionWe’ve shown that (1) and (2) above

hold so, by the principle of proof by induction,

P (n) is true for alln ∈ N.

3.2 Change of basis

We don’t need to start an induction proof with the casen = 1. We can modify (1) and (2)
on page 47 in an obvious way so that we can start with any other integer. That is we use the
following alternative statement of the Principle of Induction.

Let s ∈ Z. Assume thatP (n) is a statement, for alln ≥ s. Assume further that it can be
shown that

(1′) P (s) is true and

(2′) if P (k) is true thenP (k + 1) is true, fork ≥ s.

ThenP (n) is true for alln ≥ s.

Example 3.2(Bernoulli’s Inequality). Prove that

(1 + x)n ≥ 1 + nx, for all n ∈ Z, n ≥ 0, and for allx ∈ R, x > −1.

Here there are 2 variables: but we leavex alone and
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prove the result by induction onn. We want to show

that if x > −1 then

(1 + x)0 ≥ 1 + 0 · x

(1 + x) ≥ 1 + x (shouldn’t be too hard)

(1 + x)2 ≥ 1 + 2x

(1 + x)3 ≥ 1 + 3x

...

We have one statementP (n) for eachn ≥ 0, namely

“ (1 + x)n ≥ 1 + nx, for all x ∈ R, x > −1.”

The induction starts atn = 0 instead ofn = 1.

Basis. Whenn = 0 we verify P (0) which says1 = 1,
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as above, so is clearly true.

IH. AssumeP (k) is true, for somek ≥ 0.Then the as-

sumption is that for somek ≥ 0:

(1 + x)k ≥ 1 + kx, for all x > −1.

Inductive step. Now we wish to prove that ifx > −1

then(1 + x)k+1 ≥ (1 + kx). Starting with the left hand

side of this expression we have

(1 + x)k+1 = (1 + x)k(1 + x) and1 + x > 0, asx > −1.

From the inductive hypothesis we have

(1 + x)k ≥ 1 + kx

and since1 + x > 0 we can multiply both sides of the
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latter by1 + x to obtain

(1 + x)k(1 + x) ≥ (1 + kx)(1 + x)

= 1 + (k + 1)x + kx2.

As k ≥ 0 andx2 ≥ 0 we havekx2 ≥ 0 so

(1+x)k+1 = (1+x)k(1+x) ≥ 1+(k+1)x+kx2 ≥ 1+(k+1)x

which is what we wanted to show.

Example 3.3.Show that2n > n3, for all n ≥ 10.

Basis: P (10) is the statement that210 > 103. As 210 =

1024 and103 = 1000 this is true.

Inductive Hypothesis: AssumeP (k) holds for some
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k ≥ 10. That is2k > k3.

Inductive Step: The left-hand side ofP (k + 1) is

2k+1 = 2 · 2k > 2k3, using IH.

The right-hand side ofP (k + 1) is

(k + 1)3 = k3 + 3k2 + 3k + 1.

In what follows we’ll use the fact thatk ≥ 10 so that
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7k ≥ 70 and7k2 ≥ 70k. Now

2k3 = k3 + k3 ≥ k3 + 10k2, ask ≥ 10,

= k3 + 3k2 + 7k2

≥ k3 + 3k2 + 70k, ask ≥ 10,

= k3 + 3k2 + 3k + 67k

> k3 + 3k2 + 3k + 1, ask ≥ 10.

HenceP (k + 1) holds.

Conclusion: Therefore, by induction,P (n) holds for

all n ≥ 10.

Note that29 = 512 < 729 = 93, so the result does not hold whenn = 9. In fact, for any positive
integert and sufficiently largen we have2n > nt. In our prooft = 3 and we show exactly what
“sufficiently large” means in this case.

3.3 Objectives

After covering this chapter of the course you should be able to:

(i) understand the principle of proof by induction;
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(ii) carry out proof by induction, both starting with the integer1 and starting with an integer
other than1;

(iii) remember the definition of the Fibonacci numbers (after doing the problem class exercises).
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3.4 Exercises

3.1 A infinite sequencex1, x2, x3, . . . of integers is defined by the rulesx1 = 2 andxn+1 =
xn + 2n, for all n ≥ 1. Show by induction thatxn = n(n + 1), for all n ∈ N.

3.2 Prove thatn! > 2n for all n ∈ N with n ≥ 4.

3.3 Prove by induction that:

(1 + x)n ≥ 1 + nx + 1
2n(n− 1)x2,

for all n ∈ N andx ∈ R, x ≥ 0.

3.4 Prove by induction that:

n∑
k=1

k(k + 1) = 1
3n(n + 1)(n + 2)

for all n ∈ N.

3.5 (a) Leta1, . . . , am andb be integers such thatai andb are coprime, for alli. Let c =
a1 · · ·am. Prove by induction thatb andc are coprime.

(b) Let a1, . . . , an be integers such thatai andaj are coprime wheneveri 6= j. Show by
induction that ifai|b, for i = 1, . . . , n, thena1 · · ·an|b. (Use the result of question
2.2.)

3.6 A geometric progressionis a sequence of the form

a, ar, ar2, ar3, . . .

wherea, r ∈ R andr 6= 1. What is the sum of the firstn terms of this geometric progres-
sion?

3.7 Sum the geometric progression witha = 1 andr = x (6= 1) and so find an expression for
xn − 1. Write out explicit formulae forx2 − 1, x3 − 1 andx4 − 1. Now sum the geometric
progression witha = 1, r = −x (x 6= −1) andn = 2m + 1, for somem ∈ N. Hence find
an expression forx2m+1 + 1. Write out explicit formulae forx3 + 1, x5 + 1 andx7 + 1.

3.8 Use proof by induction to show that each of the following hold, for all n ≥ 1.

(a) 8|52n + 7; [Hint: 52(k+1) + 7 = 52(52k + 7) + (7− 52 · 7)]
(b) 15|24n − 1;

(c) 5|33n+1 + 2n+1;

(d) 21|4n+1 + 52n−1;

(e) 24|2 · 7n + 3 · 5n − 5.



MAS1202/MAS2202 Notes 59

3.9 Geography made simple.What is wrong with the following “proof by induction” of the
fact that all British towns have the same name. Prove, by induction, that any collection
of n towns have the same name. This is true whenn = 1. Assume the truth of the
statement for any collection ofk towns, wherek ≥ 1. Now take a collection ofk + 1
towns. Exclude1 town from the collection to leave a collection ofk towns, which by the
inductive hypothesis, all have the same name. Now take thek + 1 towns and exclude a
different one. The remainingk towns all have the same name and this time include the one
that was left out before. Therefore allk + 1 towns have the same name and the statement
holds for alln ≥ 1.

There must be something wrong here but what is it? If it’s not immediately obvious try
thinking about the following situation. Suppose that you are given a bag ofn ≥ 2 smarties
and that it turns out that whichever2 of the smarties you choose they have the same colour.
It seems pretty clear that they’re all the same colour. Are you sure? What makes this
different from the geography example above?

3.10 The Fibonacci numbers are the elements of the sequencef1, f2, f3, . . . generated by the
rules

f1 = 1
f2 = 1

fn+1 = fn + fn−1, for n ≥ 2.

Thus the first few Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

If we take every third Fibonacci number we obtain a new sequence of numbers,

f3, f6, f9, f12, . . .

with values
2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, . . .

Prove, by induction thatf3n is even, for alln ≥ 1.

3.11 Prove that every5th Fibonacci number is divisible by5, that is5|f5n, for all n ≥ 1.

3.12 In Maple type the command

with(combinat, fibonacci);

Now Maple will return thenth Fibonacci number in response to the command

fibonacci(n);

We can write a loop to generate and print Fibonacci numbers:

for i from 1 to 20 do
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print("f",i,"=",fibonacci(i));
od;

The output can be restricted to every6th Fibonacci number and then divided by4:

for i from 1 to 20 do
print("f",6 * i,"=",fibonacci(6 * i), "and ", fibonacci(6 * i)/4);
od;

What does this suggest? Can you prove it? Try to some other numbers to see if you can
detectnth Fibonacci numbers which they divide.



Chapter 4

Prime Numbers

A central concept of number theory is that of the prime numberwhich is introduced in this
chapter. These numbers form the basic building blocks out ofwhich the integers are formed and
into which they can be decomposed. It may seem surprising then that, in spite of several hundred
years effort and many thousands of pages of mathematics, it is commonly accepted that most of
the theory of prime numbers is yet to be discovered. If you Google “Ulam Spiral” for example
you’ll see examples of behaviour of prime numbers that, as far as I know, we have as yet no idea
how to explain.

Here we shall make a start: we shall establish the Fundamental Theorem of Arithmetic, which
shows that every integer factors uniquely as a product of primes, and we shall see that there are
infinitely many primes.

4.1 Definition of Prime and Composite Numbers

It follows from the definition of division that every integern is divisible by±1 and by±n.
Amongst the positive integers a special case is the integer1 which has only one positive divisor,
namely 1. All other positive integersn have at least 2 positive divisors, 1 andn, and may have
more.

Definition 4.1. A positive integerp > 1 is called aprime if the only positive divisors ofp are1
andp. An integer greater than1 which is not prime is calledcomposite.

For example2, 5, 7, 11, 13, 17 and19 are prime whilst the first few composite integers are:

4 which is divisible by 2
6 which is divisible by 2 and 3
8 which is divisible by 2 and 4
9 which is divisible by 3
10 which is divisible by 2 and 5.

A fundamental property of prime numbers is the following.

Theorem 4.2(The prime divisor property). If p is a prime andp|ab thenp|a or p|b.

61
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Proof. If p|a then we have nothing to prove. Ifp ∤ a

then the common divisors ofa andp are±1 (since the

only divisors ofp are±1 and±p). Hencegcd(a, p) = 1.

From Lemma 2.4 (Euclid’s Lemma) it follows thatp|b,

as required.

Example 4.3. If 3|bc then either3|b or 3|c. The same goes for29: if 29|bc then29|b or 29|c. This
does not hold for all integers. For instance6|24 and24 = 8 · 3, so6|8 · 3 but6 ∤ 8 and6 ∤ 3. Once
we’ve discussed prime factorisation it will be easy to see why this property doesn’t hold for any
composite integers.

The Theorem above can easily be extended to products of more than2 integers. For example,
if 3|abc then, from the Theorem either3|ab or 3|c. If 3|ab then, from the Theorem again,3|a or
3|b. Therefore, if3|abc then3|a or 3|b or 3|c.

Corollary 4.4. If p is prime andp|a1 · · ·an thenp|ai, for somei.
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Proof. The proof is by induction onn, starting withn =

2.

Basis:P (2) follows from Theorem 4.2.

Inductive Hypothesis: If n ≥ 2 andp|a1 · · · an then

p|ai, for somei.

Inductive Step: Suppose thatp|a1 · · · an+1. Let

a = a1 · · · an andb = an+1.

Thenp|ab so, from Theorem 4.2,p|a or p|b. If p|a the

inductive hypothesis implies thatp|ai, for somei with

1 ≤ i ≤ n. If p|b thenp|an+1. Hencep|ai, for somei, as

required.
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4.2 Prime Factorisation

We now come to the main result of this chapter: the Fundamental Theorem of Arithmetic. It
may seem that this theorem does not say anything very much or that what it does say is obvious.
However there are number systems in which the theorem does not hold: see Section 4.3 below
and the exercises. During the nineteenth century there wereattempts to prove Fermat’s last
theorem using so called “algebraic” number systems. It escaped the attention of mathematicians
for some time that these proofs were incorrect precisely because of the failure of the Fundamental
Theorem of Arithmetic in the algebraic number systems concerned.

An expression of an integern as a product of primes is called aprime factorisation of n.
For example12 and25 have prime factorisations12 = 2 · 2 · 3 and25 = 5 · 5, respectively. We
aim to show that every positive integer greater than one has aprime factorisation and that this
prime factorisation is unique, up to the order in which the prime factors occur. For instance

2 · 5 · 2 · 7,

2 · 7 · 2 · 5,

7 · 2 · 2 · 5

are all prime factorisations of140 but are regarded as the same because the number of2’s, 5’s
and7’s is the same in each.

Example 4.5. By definition primes cannot have any factorisation other than the obvious one:
e.g.7 cannot be written as a product of primes other than by writingit as ... well ...7. If it could
be then it wouldn’t be prime!

By listing all possible factorisations it’s easy to see thatsmall integers have unique prime
factorisation.

e.g.6
Positive divisors of6 are1, 2, 3, and6 so it’s easy to see

that the only way to write6 as a product of primes is as
6 = 2× 3.

You can do the same with 1296 if you want.

In the proof of the next theorem we’ll show that this is true for all integersn > 1.

Theorem 4.6(The Fundamental Theorem of Arithmetic). Every integern > 1 is a product of
one or more primes. This product is unique apart from the order in which the primes occur.
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Proof. Step(1) Prove that everyn > 1 has a prime factorisation.

This will be a proof by contradiction.

Assume there is a positive numberm > 1 which

has no prime factor. Letk be the smallest such

number. i.e.k > 1, k has no prime factor and if

1 < l < k thenl has a prime factor.

Thenk cannot be prime (by definition) sok > 1

impliesk is composite. That isk = ab with a, b >

0, a 6= 1 anda 6= k.

As a|k we havea ≤ k (Lemma 1.18.3) soa 6= k

impliesa < k and so we have1 < a < k. Similarly
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1 < b < k. In this case it must be thata andb have

prime factorisations:

a = p1 · · · pr andb = q1 · · · qs,

wherepi andqi are primes. Hence

k = ab == p1 · · · pr · q1 · · · qs.

However this is a prime factorisation ofk, a con-
tradiction. Thus no suchk exists.

Step(2) Prove that prime factorisations are unique.

Again use proof by contradiction.

Herek is chosen to be the smallest positive integer
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with 2 distinct prime factorisations:

k = p1 · · · pr = q1 · · · qs.

Thenp1|qj, for somej (Theorem 4.2), sop1 = qj.

Let k′ = p2 · · · pr = k/p1. Then

k′ = q1 · · · qj−1qj+1 · · · qs,

so1 ≤ k′ < k andk′ has2 different prime factori-
sations. (Why?) Butk was supposed to be the least

positive integer with this property sok′ < k gives

a contradiction. Hence no suchk exists.

4.3 Rational numbers and E-numbers

Before continuing we shall pause to see that this theorem really did need proving: that it is
not a universal truth that holds in all situations. To begin with consider the rational numbersQ.
We can factor2 as

2 = 4 · (1/2) = 8 · (1/4) = · · · = 2n · (1/2n−1) = · · · =

and in general as2q · (1/q), for any non-zero elementq ∈ Q. Therefore there is no hope of
anything like Theorem 4.6 holding inQ.
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To see how the uniqueness part of the Theorem might fail, evenwhen we can factorise ele-
ments into products of primes, we could use arithmetic with polynomials, but instead we’ll use
an example based on integer arithmetic. LetE denote the set of all even integers:

E = {. . . ,−2,−1, 0, 1, 2, . . .}.

If we add two elements ofE we obtain another element ofE: if 2n and2m are arbitrary elements
of E then

2m + 2n = 2(m + n) ∈ E.

(The same is true of subtraction.) If we multiply together two elements ofE the result is an
element ofE:

2m · 2n = 2(2mn) ∈ E.

We can therefore regardE as a number system, theE-number system, with operations of addition
and multiplication.

We shall can also define division.

Definition 4.7. If a andb are elements ofE then we say thata E-dividesb if b = aq, whereq is
an element ofE. Write a|Eb if a E-dividesb.

With this definition2|E8 because4 = 2·4 and4 ∈ E. However2 does not E-divide6 because
6 = 2 · 3 and3 /∈ E. Similarly 2|E4 but2 ∤E 10. Also 4|E24 as24 = 4 · 6 and6 ∈ E.

Now we can define E-prime numbers (but here we don’t have to worry about1 which is not
an E-number).

Definition 4.8. A positive E-numbern is called anE-primeif the only positive E-divisor ofn is
itself.

Thus2 is E-prime,4 is not, but6 is E-prime. The first few E-primes are

2, 6, 10, 14, 18, 22, 26, 30.

The numbers4, 8 and12 have E-prime factorisations

4 = 2 · 2, 8 = 2 · 2 · 2 and 12 = 2 · 6.

In fact Theorem 4.6 can be adapted to show that every E-numberhas an E-prime factorisation.
However60 has two prime factorisations

60 = 2 · 30 and60 = 6 · 10.

Therefore theuniquenesspart of Theorem 4.6 does not extend to E-numbers.
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4.4 Collected prime factorisation

It is often convenient to write the prime factorisation of aninteger with all like primes col-
lected together, in ascending order, and with exponential notation. For example we could write
the prime factorisations of140 and2200 as

140 = 22 · 5 · 7 and

2200 = 23 · 52 · 11.

We call this thecollected prime factorisation of an integern or say that we’ve writtenn in
standard form. From the Fundamental Theorem of Arithmetic it follows thatcollected prime
factorisations are unique. We record this fact in the following corollary.

Corollary 4.9. Letn > 1 be an integer. Thenn may be written uniquely as

n = pa1
1 · · · pak

k ,

wherek ≥ 1, p1 < · · · < pk, pi is prime andai ≥ 1.

4.5 The square root of2

If n is a positive integer and has collected prime factorisationn = pα1
1 · · · pαk

k thenn2 =
(pα1

1 · · ·pαk
k )(pα1

1 · · · pαk
k ) so has collected prime factorisation

n2 = p2a1
1 · · · p2αk

k . Every prime occurs here with even

exponent. Conversely, ifm is a positive integer with

prime factorisationm = q2β1
1 · · · q2βl

l thenm = u2, where

u = qβ1
1 · · · qβl

l .

What this shows is that an integerm is of the formn2, for some integern, if and only if every
prime in the prime factorisation ofm has even exponent. i.e.

m = q2β1
1 · · · q2βl

l , for some prime numbersq1, . . . , ql.
We can use this fact to prove the following result, as a corollary of the Fundamental Theorem of
Arithmetic. Recall that a rational number is one which can bewritten as a fraction and that we
denote the set of all rational numbers byQ.

Corollary 4.10. There is no rational numberr such thatr2 = 2. That is
√

2 /∈ Q.



MAS1202/MAS2202 Notes 70

Proof. Suppose that there is a rational numberr such

thatr2 = 2. As r ∈ Q we haver = u/v, whereu, v ∈ Z

andv 6= 0. We have(u/v)2 = u2/v2 = 2, so

u2 = 2v2.

*

The exponent of2 in bothu2 andv2 is even, by the fact

above. However, this makes the exponent of2 on the

rhs of * odd and on the lhs even, which is impossible.

Therefore no suchr exists.

The same argument applies if we replace2 by any other prime number so there are lots of
numbers which are not rational. A real number which is not rational is calledirrational . It turns
out that there are also infinitely many irrational numbers, such asπ ande, which are not roots of
primes.
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4.6 Primality testing

One way to see whether or not an integern > 1 is prime is to test it for divisibility by all
prime numbersp such that1 < p < n. If none of these primes dividen then the Fundamental
Theorem of Arithmetic implies thatn is prime. This is very time consuming but does allow us
to build up a list of primes. The process can be speeded up significantly by using the observation
that if n is composite then it has a prime divisorp ≤ √

n. This is the content of the following
lemma.

Lemma 4.11. An integern > 1 is composite if and only if it has a prime divisorp such that
p <

√
n.

Proof.

If n has such a prime divisor then it is composite. Con-

versely, suppose thatn is composite. Then there exists

a, b with 1 < a ≤ b < n such thatn = ab. If a >
√

n

thenab > a2 > n, a contradiction. Hencea ≤ √
n.

Now a > 1 soa has a prime divisorp andp ≤ a ≤ √
n,

as required.

Example 4.12.To find all primes in the range1 to
√

45:

note that the only primes less than
√

45 are2, 3 and5.

Therefore, if1 < n ≤ 45 thenn is prime if and only if
it is not divisible by2, 3 or 5. List the integers2, ..., 45.

First cross out all multiples of2, except2 itself, leav-

ing odd integers2, 3, 5, 7, 9, ..., 43, 45. Now cross out

from this list all multiples of3, except3 itself, leaving
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2, 3, 5, 7, 11, 13, 17, 19, 23, 25, ..., 43, 45. Now cross out

from this list all multiples of5, except5 itself, leaving

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43.

This is now a complete list of primes between1 and45. This method of constructing lists of
primes is known as theSieve of Eratosthenes. In fact it is still too inefficient to use in practice to
determine if a large number is prime.

4.7 A Theorem of Euclid

The following theorem appears in Book IX of theElements, a mathematical textbook written
by Euclid: a Greek mathematician who lived around 300 bc.

Theorem 4.13.There are infinitely many primes.

Proof. The proof is by contradiction.

Assume the Theorem is false.Suppose that there only

finitely many primes and let them bep1, . . . , pn.

See where this takes us.Define

N = p1 · · · pn + 1.
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ThenN − p1 · · · pn = 1 sogcd(N, p1 · · · pn) = 1. (*)

Derive a contradiction. Now N > 1 soN has a prime

divisor: that ispi|N , for somei. Also pi|p1 · · · pn so

gcd(N, p1 · · · pn) ≥ pi > 1, contrary to (*).

Conclusion. It follows that there are infinitely many primes.

4.8 Objectives

After covering this chapter of the course you should be able to:

(i) define prime and composite numbers;

(ii) recall the prime divisor property, Theorem 4.2, and understand its proof;

(iii) recall the Fundamental Theorem of Arithmetic, Theorem 4.6, and understand its proof;

(iv) recognise and write down the prime factorisation and standard form or collected prime
factorisation of an integer;

(v) use the sieve of Eratosthenes;

(vi) recall the statement of Theorem 4.13 and understand itsproof.
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4.9 Exercises

4.1 Write down the collected prime factorisation of4725, 17460, 1234 and36000. Hence find
gcd(4725, 17460).

4.2 Write down the collected prime factorisation ofa = 252, b = 1470 andc = 525. Hence
find gcd(a, b), gcd(a, c) andgcd(b, c) and list all divisors of252.

4.3 (a) Suppose thatn1, . . . , nt are integers and thatni = 3qi + ri, with ri = 0 or 1, for
i = 1, . . . , t. Show thatn1 · · ·nt has the form3q + r, with r = 0 or 1.

(b) Show that an integer of the form3n + 2 has a prime factor of the same form.

4.4 (a) Show that, if2n − 1 is a prime thenn must also be a prime. [Hint: an − 1 =
(a− 1)(an−1 + · · ·+ 1).] Primes of this form are called Mersenne primes. Show that
211 − 1 is not a prime.

(b) Show that, if2n + 1 is a prime thenn must be a power of2. [Hint: a5 + 1 =
(a + 1)(a4 − a3 + a2 − a1 + 1).] Primes of this form are called Fermat primes.

4.5 Letp, q1 andq2 be prime and suppose thatp|q1q2. Show, without using the Fundamental
Theorem of Arithmetic, thatp = q1 or p = q2.

4.6 This question continues investigation of E-numbers.

(a) Describe all positive E-primes by giving the form of their collected prime factorisa-
tion. (That is their collected prime factorisations as elements ofZ not of E.)

(b) Prove that every positive E-number has a factorisation as a product of E-primes. (It’s
possible to mimic the proof of Theorem 4.6 but it may be quicker to use the theorem
and the previous part of this question.)

(c) Is 60 the smallest positive E-number with2 distinct E-prime factorisations? Find the
format of numbers which have a uniqe E-prime factorisation and those which do not.
What is the smallest number with two E-prime factorisations?

(d) Find an E-number with3 E-prime factorisations, then an E-number with4 E-prime
factorisations. Find the smallest such numbers.



Chapter 5

Finite Arithmetic

In this chapter we introduce some new number systems and study their arithmetic. These number
systems are based on the idea ofcongruencein the integers. Congruence arithmetic was devel-
oped by one of the greatest of all mathematicians, Carl Friedrich Gauss, in the 19th Century. It
is an important and useful part of mathematics which has manyapplications both theoretical and
practical. We’ll look at one application at the end of the Chapter: there are many more. We begin
with some curiosities which can be understood once we’ve developed the theory.

5.1 Casting Out Nines

This is a method of testing integers for divisibility by9. In fact it outputs the unique remainder
obtained (by the Division Algorithm) on expressing a positive integer as9q + r, with 0 ≤ r < 9.
The procedure is the following.

Procedure 5.1(Casting Out Nines). Given a non–negative integern (written in base10) repeat
the following steps (in any order) until a number less than9 is obtained.

1 Cross out any digits that sum to9 or a multiple of9.

e.g. ifn = 51422218 cross out5 + 4 to leave122218.

Now cross out1 + 8 to leave1222.

2 Add the remaining digits.

1 + 2 + 2 + 2 = 7.

75
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The result is the remainder of division ofn by 9.

Conclusion:51422218 leaves remainder7 on division by

9.

Example 5.2.Cast out Nines from215763401.

Cross out2 + 7 and5 + 4 and6 + 3 to leave101. Add

1+0+1 = 2. The remainder when215763401 is divided
by 9 is equal2.

The casting out nines procedure can be used to check the results of numerical calculations.

Example 5.3.Check the computation

215763401× 51422218 = 11095032642643428.

Casting out nines from both numbers on the left hand

side we’re left with2× 7 = 14. Casting out nines from

this answer gives5. This means the remainder when

215763401× 51422218 is divided by9 is 5.
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Casting out nines from11095032642643428 we cross

out0, 9, 6+3 twice,5+4, 8+1 to leave122442. Summing

the digits of this number gives1 + 2 + 2 + 4 + 4 + 2 = 15

and summing again gives6. Then the remainder when

11095032642643428 is divided by9 is 6.

The computation cannot be correct!

In fact the correct answer is11095032642643418, which

can now be seen to leave remainder5.

Such examples do notguaranteethe results of calculations. All that can be said is that if we
cast out nines and get different answers then we’ve made a mistake.

The Telephone Number Trick

1 Write down your telephone number.

2 Write down your telephone number with digits reversed.

3 Subtract the smaller of these two numbers from the larger.

4 By casting out nines from the result decide whether or not itis divisible by9.
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0191 222 8737

7378 222 1910

difference:

7186 999 3173

Cast out nines: cross out9 three times then1 + 8, 6 + 3
to leave7173. Add digits7 + 1 + 7 + 3 = 18. Add digits

1 + 8 = 9. Cross out9 to leave0.
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5.2 The “Odd & Even” Number System

E + E = E

E + O = O

O + E = O

O + O = E.

This is addition using remainder on division by2 as the

answer.

E corresponds to2q + 0.

O corresponds to2q + 1.
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If we use0 instead ofE and1 instead ofO we get

tables for this arithmetic.

+ 0 1

0 0 1

1 1 0

and

× 0 1

0 0 0

1 0 1

In this system we regard all even numbers as being the
same and we regard all odd numbers as being the same.

We can tell if two numbers are of the same type (both

even or both odd) by subtraction: sinceE−E = E and

O − O = E but E − O = O andO − E = O. That is
integersm andn have sameparity if and only if m− n

is even.
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5.3 Red, white and blue arithmetic

Similar to “Odd and Even” but with3 instead of2.

Numbers of form3q + 0 arewhite

Numbers of form3q + 1 arered

Numbers of form3q + 2 areblue

e.g. Red+ Blue is White because a number of form

3q + 1 added to a number of form3q + 2 is a number of

form 3q.

In general(3q + r) + (3q′ + r′) = 3p + (r + r′), which

is red, white or blue depending on the value ofr + r′.

Similarly (3q + r)(3q′ + r′) = 3p + (rr′), which is red,

white or blue depending on the value ofrr′.
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Instead or White, Red and Blue we use labels0, 1 and

2, respectively. Tables for multiplication and addition:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

and

× 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

Notice that ifa andb have the same “colour” thena =

3q + r andb = 3p + r, for somep, q, andr = 0, 1 or 2.

In this caseb− a = 3(p− q): that is3|b− a. The same

is true in the even and odd system. Ifa andb are both

even or both odd then2|b− a.

Note that conversely if3|b − a anda has “colour”r

thena = 3q + r, andb − a = 3v, for someq, v, so that
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b = 3v + a = 3(v + q) + r andb has colourr.

What we’ve found is that two numbers are the same
in the w,r,b system if and only if their difference is di-

visible by3.
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5.4 Congruence

In the Red, White and Blue number system we collected together all integers which left re-
mainder0, 1, or 2 after attempting division by3, and called them white, red or blue, respectively.
We saw that thata andb are the same colour if and only if3|b − a. Generalising this from3 to
an arbitrary integern leads us to the definition of congruence.

Definition 5.4. Let n be a positive integer and leta, b ∈ Z. If n|b − a then we say thata is
congruent to b modulo n, and write

a ≡ b (mod n).

For instance17 ≡ 5 (mod 12) and216 ≡ 6 (mod 7). As in the casen = 3 above,a ≡ b
(mod n) if and only if a andb both leave the same remainder after attempting division byn. In
fact, if

a = nq + r andb = np + r, where0 ≤ r < n (5.1)

then
b− a = n(p− q),

son|b− a: that isa ≡ b (mod n).
On the other hand if we know thata ≡ b (mod n) thenn|b − a sob − a = np, for somep.

In this case ifa = nq + r, with 0 ≤ r < n, thenb = np + a = n(p + q) + r and (5.1) holds.

Example 5.5.Congruence modulo2 gives rise to the Odd and Even number system.

Example 5.6.Congruence modulo3 gives rise to the Red, White and Blue number system.

Example 5.7. Supposen = 10. Then0 ≡ 10 (mod 10), 10 ≡ 101090 (mod 10), 11 ≡ 121
(mod 10) and 27 ≡ 253427 (mod 10). Every positive integer is congruent to its last digit
(written to base10). In particular integers congruent to0 all end in the digit0. These are exactly
the integers divisible by10.

Congruence is not the same as equality but it does share some of the properties of equality.
If we have any integersa, b andc andn is a positive integer then

1. a ≡ a (mod n),

2. if a ≡ b (mod n) thenb ≡ a (mod n) and

3. if a ≡ b (mod n) andb ≡ c (mod n) thena ≡ c (mod n).

These are all properties of equality. Let’s check them for congruence. The first one is easy since
n|0 = a− a, for all integersa. We’ll check the last one here and leave the second as an exercise.

Supposea ≡ b andb ≡ c (mod 3). Thenn|b − a and
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n|c−b son|(b−a)+(c−b) and it follows thatn|(c−a).
(If b−a = nu andc−b = nv thenc−a = c−b+b−a =
nv + nu = n(u + v).)

5.5 Modular arithmetic

Arithmetic with congruences is calledmodulararithmetic. We’ve already seen a couple of
examples: Odd & Even arithmetic and Red, White and Blue arithmetic. The idea is to add and
multiply integers in the usual way but to regard two numbers as the same if they are congruent.
There is a possible problem with this. Suppose we work modulo10, that isn = 10. Now take
two integers which are congruent modulo10, say23 and3. We are to regard these as the same.
This means that if we do something to one, say add6, then we should get the same answer as if
we add6 to the other. Here “the same answer” means the same answer modulo 10. Let’s see:

23 + 6 = 29 and3 + 6 = 9.

This is alright because29 ≡ 9 (mod 10) and so we regard29 and9 as the same. Does this
always work? The purpose of the next Lemma is to reassure us that it does.

Lemma 5.8. Letn be a positive integer. Suppose thata, b, u andv are integers such that

a ≡ u (mod n)

and
b ≡ v (mod n).

Then

(i) −a ≡ −u (mod n);

(ii) a + b ≡ u + v (mod n) and

(iii) ab ≡ uv (mod n).

Proof. We prove parts (i) and (iii) here, leaving part (ii) as an exercise.
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(i) If a ≡ u (mod n) thenu− a = nk, k ∈ Z, which

implies that

−u− (−a) = −(u− a) = n(−k)

so

−a ≡ −u (mod n).

(ii) As beforea ≡ u (mod n) sou − a = nk, k ∈ Z.

Thus, for allt ∈ Z, ut − at = n(kt) and soat ≡

ut (mod n), for all t ∈ Z. In particularab ≡ ub

(mod n). (*)

Similarly if b ≡ v (mod n) thensb ≡ sv (mod n),

for all s ∈ Z. In particularub ≡ uv (mod n). (**)
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With t = b in (*) and s = u in (**) we haveab ≡

ub (mod n) andub ≡ uv (mod n). From item 3

on page 84ab ≡ uv (mod n).

Lemma 5.9. Every integer is congruent modulon to one and only one of the integers in the list
0, 1, . . . , n− 1.

Proof. This follows from the division algorithm because ifa ∈ Z then we can writea = nq + r,
with 0 ≤ r < n. Thenn|a − r soa ≡ r (mod n) andr is in the given list. Ifa ≡ r (mod n)
anda ≡ s (mod n) then, from the above,r ≡ s with 0 ≤ r < n and0 ≤ s < n. Assuming that
r > s thenn|r− s andn > r ≥ r− s, contradicting Lemma 1.18.3. Thusa is congruent to only
one integer in the list.

Example 5.10.In Modular arithmetic we can always avoid computation with large numbers. For
example working modulo10 we have

7459898790352045324≡ 4 (mod 10)

and

9874558754423 ≡ 3 (mod 10).

Therefore

7459898790352045324 · 9874558754423 ≡ 4 · 3 = 12 ≡ 2 (mod 10).

Similarly, working modulo7 we have

4543362 ≡ 5 (mod 7).

Therefore

45433622 ≡ 52 ≡ 25 ≡ 4 (mod 7)

and

45433623 = 4543362 · 45433622 ≡ 5 · 4 ≡ 20 ≡ 6 (mod 7).
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5.6 Divisibility Tests

Divisibility by 9

When we write a number like20195 to base10 we are expressing the number

2× 104 + 0× 103 + 1× 102 + 9× 101 + 5

in shorthand (there’s a1 in the100’s column etc.).

10 ≡ 1 (mod 9) soa1×10 ≡ a1 (mod 9), for all a1 ∈ Z.

102 ≡ 1× 1 ≡ 1 (mod 9) soa2× 102 ≡ a2 (mod 9), for
all a2 ∈ Z.

103 ≡ 1 (mod 9) so a3 × 103 ≡ a3 (mod 9), for all

a3 ∈ Z.

.

.

.

10r ≡ 1 (mod 9) so ar × 10r ≡ ar (mod 9), for all

ar ∈ Z.
Applying this argument in general we write

amam−1 · · ·a1a0

for the number
am × 10m + am−1 × 10m−1 + · · ·+ a1 × 10 + a0.

As 10k ≡ 1 (mod 9), for k = 1, . . . , m, we have

amam−1 · · ·a1a0 ≡ am + am−1 + · · ·+ a1 + a0 (mod 9). (5.2)

Now consider Casting out Nines, Procedure 5.1. Suppose we cast out nines from an integer
m. In Step 1 we cross out any digits which sum to a multiple of9. The sum of these digits is
congruent to zero modulo9 so, from (5.2), the result is an integer congruent tom modulo9. In
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Step 2 we add the digits and again, from (5.2), the result is aninteger congruent tom modulo9.
Thus the casting out nines procedure results at every stage in an integer congruent tom modulo
9. The procedure ends with a numberr such that0 ≤ r < 9 andr ≡ m (mod 9). Therefore
9|m − r, from which it follows thatm = 9q + r, for someq ∈ Z and0 ≤ r < 9. That is, the
output from Casting out Nines is the unique remainder guaranteed by the division algorithm, on
attempting division by9.

The following lemma follows from (5.2).

Lemma 5.11.An integer is divisible by9 if and only if the sum of its digits is divisible by9.

Example 5.12.Are either of215763401 or 215743401 divisible by9?

We cast out nines from215763401 in Example 5.2 above
and found that division by9 left remainder2 (so9 does

not divide215763401). The digits of215743401 sum to

2 less so215743401 must be divisible by9.

Divisibility by 4

Now 102 ≡ 0 (mod 4). Thus, for example,

1932526 = (19325× 100) + 26 ≡ 26 (mod 4)

and

93975656489084357745565568738675 =
(939756564890843577455655687386× 100) + 75 ≡ 75 (mod 4).

More generally, ifam · · ·a1a0 is an integer written to base10 then

am · · ·a1a0 = (am · · ·a2 × 100) + a1a0 ≡ a1a0 (mod 4).

Therefore

am · · ·a1a0 ≡ 0 (mod 4) if and only if a1a0 ≡ 0 (mod 4).

That is
4|am · · ·a1a0 ⇔ 4|a1a0.



MAS1202/MAS2202 Notes 90

Example 5.13.Does4 divide937475900345 or 80345003732?

No in the first case as4 ∤ 45. Yes in the 2nd as4|32.

5.7 Inverses in modular arithmetic

If we work in the rational numbersQ we can find a multiplicative inverse for any non-zero
element. For example the inverse of11/201 is 201/11. The same is true inR where the inverse
of x 6= 0 is 1/x. In general ifx is a number andy has the property thatxy = 1 then we say that
x hasinversey. Most elements ofZ don’t have inverses inZ. For example2 has no inverse. In
fact±1 are the only elements ofZ which have inverses. What about arithmetic modulon.

Example 5.14.Try to find the inverse of2 modulo6.

x 0 1 2 3 4 5

2x 0 2 4 0 2 4

There is nox such that2x ≡ 1 (mod 6), so 2 has no

inverse modulo6.
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Example 5.15.Do either3 or 7 have inverses modulo10?

3 · 7 = 21 ≡ 1 (mod 10). Therefore3 has inverse7, and

vice-versa, modulo10. The table is

x 0 1 2 3 4 5 6 7 8 9

3x 0 3 6 9 2 5 8 1 4 7

Thus3 has a unique inverse.

Example 5.16.Which numbers have inverses modulo8?

The multiplication table modulo8 is as follows. A num-

ber a has an inverse if and only if there is a numberb

such thatab ≡ 1 (mod 8), if and only if there is a1 in

the row labelled8.
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× 0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 2 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

We see that1 has inverse1, 3 has inverse3, 5 has inverse

5 and7 has inverse7.

Lemma 5.17.An integera has an inverse modulon if and only ifgcd(a, n) = 1.

Proof.

The proof has two halves since the statement is “if and
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only if”. First part. Prove that ifa has an inverse mod-

ulo n thengcd(a, n) = 1.

Suppose thata has an inverse, call itb. Thenab ≡ 1

(mod n), son|(ab− 1) which impliesab− 1 = kn, for

some integerk. Thenab− kn = 1 and sogcd(a, n) = 1

using Corollary 2.3.

Second part. Prove that ifgcd(a, n) = 1 thena has an

inverse modulon. Supposegcd(a, n) = 1. Then there

existb, k ∈ Z such thatab + kn = 1, which implies that
−kn = ab − 1, and son|(ab − 1). Thereforeab ≡ 1
(mod n) and sob is an inverse ofa.

What happens if we do arithmetic modulo a prime numberp? In this case, for every integer
a either

1 p ∤ a in which casegcd(a, p) = 1 or

2 p|a in which casea ≡ 0 (mod p).

Thus every integer which is not congruent to zero modulop has an inverse. This means that
arithmetic modulop resembles arithmetic inQ more closely that arithmetic inZ.
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Example 5.18. Write out the multiplication table for arithmetic modulo5 with the integers
0, 1, 2, 3 and4. Hence find the inverse of every integer which is not congruent to zero mod-
ulo 5.

× 0 1 2 3 4

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

As predicted, every integer except0 has an inverse, as

there is a1 in every row of the table except the one la-

belled0.

5.8 Solving Congruences

Example 5.19.Find all integersx such that

6x ≡ 4 (mod 8). (5.3)

We call such equationscongruencesand this is an example of alinear congruence. Note that if
x = a is a solution anda ≡ b thenx = b is also a solution: so if there’s one solution there are
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infinitely many. Every integer is congruent to one of

0, 1, . . . , n− 1 modulon

so we seek solutions to congruences in this range. Once we know the solutions in this range
then, given the preceeding remark, we know all solutions. One method of solving the congruence
above is to use part of the multiplication table (see Example5.16:

x 0 1 2 3 4 5 6 7

6x (mod 8) 0 6 4 2 0 6 4 2

From the table we see that the only solutions arex = 2 andx = 6. Notice

6x ≡ 4 (mod 8)

has solutionsx ≡ 2 andx ≡ 6. Cancelling2 from both
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sides of the congruence we obtain the congruence

3x ≡ 2 (mod 8)

which has unique solutionx ≡ 6 (mod 8).

From this example we see that

cancellation does not always work when solving congruences.

The method of the example certainly works but it requires alot of effort. A more efficient method
is to use the results of Section 2.3. Suppose we wish to find solutions to the congruence

ax ≡ b (mod n). (5.4)

By definition of congruencex is a solution to (5.4) if and only ifn|(ax − b): that is if and only
if ax − b = ny, for some integery. Rearranging the last equation,x is a solution if and only
if ax − ny = b, for somey ∈ Z. This is an equation of the form solved in Section 2.3 and we
know from Theorem 2.5 that it has a solution if and only ifgcd(a, n)|b. If gcd(a, n)|b then, as
in Section 2.3, we can use the Euclidean algorithm to find a particular solution to the equation.
Also, writing gcd(a, n) = d, if d|b andx = u, y = v is a solution then the list of solutions to this
equation consists of all the pairs

x = u− (n/d)t

and

y = v − (a/d)t,

for t ∈ Z. Therefore,

the congruenceax ≡ b (mod n) has solutions if and only ifd = gcd(a, n). Moreover, if this
congruence has a particular solutionx = u then the list of solutions consists of the integers of
the form

u− (n/d)t,

wheret runs through the integersZ.

Applying this to congruence (5.3) of Example 5.19,



MAS1202/MAS2202 Notes 97

we havegcd(6, 8) = 2 and 2|4 so there are solutions

to 6x ≡ 4 (mod 8). It’s easy to see thatx = 2 is a

solution and so the other solutions are of the formx =
2− (8/4)t = 2− 4t, for t ∈ Z. The only one of these in
the range0, . . . , 7 is x = 6 (whent = −1). This gives

us the complete list of solutions as before.

In the general case (of congruence (5.4)) the only remainingquestion is which of the solutions
we have found are congruent?

Let us consider what happens if two of our solutions

x = u − (n/d)t andx = u− (n/d)s are congruent, for
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some integerss andt. Then

u− (n/d)t ≡ u− (n/d)s (mod n)

⇔ − (n/d)t ≡ −(n/d)s (mod n)

⇔ (n/d)(s− t) ≡ 0 (mod n)

⇔ n|(n/d)(s− t)

⇔ (n/d)(s− t) = kn, for somek ∈ Z

⇔ (s− t) = dk, for somek ∈ Z

⇔ s ≡ t (mod d).

Thusu − (n/d)t ≡ u − (n/d)s (mod n) if and only

if s ≡ t (mod d). This means that there are exactlyd

solutions corresponding tod choices oft: namelyt =
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0, . . . , d− 1 (see p. 85): that is

u, u− (n/d), u− 2(n/d), . . . , u− (d− 1)(n/d)

no two of which are congruent to each other. Moreover

these solutions differ by multiples ofn/d.
We summarise our findings in a Theorem.

Theorem 5.20.Leta, b andn be integers withn > 0 and letd = gcd(a, n). Then the congruence
ax ≡ b (mod n) has a solution if and only ifd|b. If d|b then there are exactlyd pairwise
incongruent solutions.

Example 5.21.Find all solutions to the congruence

2x ≡ 3 (mod 6).

There are no solutions becausegcd(2, 6) ∤ 3.

Example 5.22.Find all solutions to the congruence6x ≡ 9 (mod 15).

gcd(6, 15) = 3 and3|15 so there are3 solutions.x = 4
is a solution and solutions all differ from one another

by multiples of5 = 15/3. Therefore solutions arex =
4, 9, 14.

Example 5.23.Compare the solutions to the congruences

2x ≡ 4 (mod 6) andx ≡ 2 (mod 6).



MAS1202/MAS2202 Notes 100

The first congruence has solutionsx = 2, 5. The second

has only one solutionx = 2. Cancellation of2 from

both sides of the former congruence results in a new

congruence with a different set of solutions: it’s not a
sensible thing to do if you want to find all solutions.2
does not have an inverse modulo6. Cancellation really

involves multiplication by the inverse so is not always

useful when solving congruences.

5.9 Random numbers: an application

A sequence of numbers in which each new term is selected independently of the previous
term is called a sequence ofrandom numbers. Such sequences can be obtained mechanically;
by rolling a dice, spinning a roulette wheel, or running the lottery. However if the sequence is
to be used in a scientific experiment then it is often desirable to be able to repeat the experi-
ment. This means producing a sequence whichlooks random but which can be reconstructed
when we wish to verify our experimental results. Such sequences cannot be truly random and
are calledpseudo-random. Pseudo-random numbers are often generated by computer butthis
means that we need to find good algorithms to produce them. Theart and science of pseudo-
random number generation is highly developed and very sophisticated: look at the web page
Random number generators – The pLab Project Home Page at http://random.mat.sbg.ac.at/.

Here we present a pseudo-random number generator, first proposed by D.H. Lehmer in 1949,
that is easy to understand and for many purposes does a good enough job. To generate a sequence
of pseudo-random integersa0, a1, a2, . . . perform the following process.

1 Fix a positive numbern and two integersm andc, with 2 ≤ m < n and0 ≤ c < n.

2 Choose a start valuea0, such that0 ≤ a0 ≤ n.

3 Generate elements of the sequence successively using the formula

ak+1 = mak + c (mod n), where0 ≤ ak+1 < n.

If a large value ofn is chosen the sequence appears random, at least to start with.
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Example 5.24.With n = 800, m = 71, c = 57, anda0 = 2 the first ten elements of the sequence
are

2, 199, 586, 63, 530, 87, 634, 271, 98, 615.

Now alteringa0 to 551 the sequence produced is

551, 778, 95, 402, 599, 186, 463, 130, 487, 234.

Keeping everything fixed exceptn = 8000 we obtain

551, 7178, 5695, 4402, 599, 2586, 7663, 130, 1287, 3434.

With n = 40, m = 22, c = 20 anda0 = 13 we obtain

13, 26, 32, 4, 28, 36, 12, 4, 28, 36, 12.

Of course such sequences are not random (by definition) and wehave a formula for the terms.

Theorem 5.25.Thekth term of the sequence generated by the process above is

ak =
(

mka0 + c(mk − 1)
(m− 1)

)
(mod n),

with 0 ≤ ak < n.

Also note that there are at mostn values for the terms

of the sequence, which must all lie between0 andn− 1.

Therefore, after at mostn terms have been generated

there are two terms which are the same. Since thek +
1 term depends only on thek term this means that the
sequence repeats itself from this point on: ifas = at,

with s > t, thenas+1 = at+1, as+2 = at+2, and so on.

The sequence then looks far from random. Theperiod
of the sequence is the smallest integerd such that, for
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somes, t, we haveas = as+d. The period is at mostn;

but some choices ofc,m andn result in periods shorter

thann. In fact it can be shown that the period isn if and

only if gcd(c, n) = 1, m ≡ 1 (mod p), for all primesp
dividing n, andm ≡ 1 (mod 4) if 4|n.

Analysis of “how random” a pseudo-random sequence is involves applying statistical tests to
the sequence. For instance the frequency of occurence of a particular integers in the sequence
can be tested; as can the frequency of occurence of pairs of integers.

5.10 Objectives

After covering this chapter of the course you should be able to:

(i) recall the definition of congruence;

(ii) recall the statement of Lemma 5.8 and understand its proof;

(iii) do arithmetic modulon;

(iv) understand how various divisibility tests work and be able to apply them;

(v) decide whether or not an integer has an inverse modulon;

(vi) generate a sequence of pseudo-random numbers.
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5.11 Exercises

5.1 Perform the following calculations in arithmetic modulo n for n = 2, 10 and9. In each
case give your answer as an integer in the range0 to n− 1.
(a)1 + 2; (b) 2 · 3; (c) 4 · (3 + 5); (d) 6 · 7; (e) (6 + 5) · (5 + 7).

5.2 Perform the following calculations in arithmetic modulo n for n = 2, 10 and9. In each
case give your answer as an integer in the range0 to n− 1.
(a)1 + 1; (b) 0 · 1; (c) 3 · (4 + 5); (d) 2 · 5; (e) (4 + 5) · (6 + 7).

5.3 Construct tables for addition and multiplication modulo 4. Which integers if any have
inverses modulo4?

5.4 Complete the following tables which give the rules for addition and multiplication modulo
10

+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3
4 4
5 5
6 6
7 7
8 8
9 9

· 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5
4 0 8 2 6
5 0 5
6 0
7 0
8 0
9 0

Which integers have inverse modulo10?

5.5 Construct tables, similar to those in Question 5.4, for addition and multiplication in modulo
9. Which integers have inverse modulo9?

5.6 Letn be a natural number and leta, b ∈ Z. Use the definition of congruence to show that
if

a ≡ b (mod n) then b ≡ a (mod n).

5.7 Find all solutions of the following congruences modulo5 and modulo8.

(a) 3x ≡ 7;

(b) 4x + 6 ≡ 3;

(c) x + 3 ≡ 3x + 11;

(d) 6x + 1 ≡ x− 2;

(e) −x + 2 ≡ 3;

(f) −4x− 3 ≡ −3x + 2.

5.8 Find all solutions of the following congruences.
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(a) 3x ≡ 5 (mod 11);
(b) 10x + 9 ≡ 9 (mod 15);
(c) 18x ≡ 18 (mod 27);

(d) 182x + 21 ≡ 112 (mod 1001);
(e) 42x + 100 ≡ 53 (mod 105);
(f) −63x ≡ 0 (mod 99).

5.9 We say thata is asquare rootof b in arithmetic modulon if

a2 ≡ b (mod n).

Show that3 is a square root of(−1) in arithmetic modulo10. Find all of the square roots
of (−1) in arithmetic modulo10: that is find all solutions of the congruence

x2 ≡ −1 (mod 10).

5.10 Show thatx = 7 is a solution of the quadratic equationx2 − 5x + 6 ≡ 0 (mod 10). Find
all the solutions of this quadratic equation modulo10.

5.11 Find all solutions to the following simultaneous congruences modulo6 and11.

(a)
7x + 10 ≡ 2
3x + 9 ≡ 4 ; (b)

2x + 3y ≡ 8
5x + 4y ≡ 8 ;

(c)
4x + 15y ≡ 3
3x + 2y ≡ 5 ; (d)

5x + 3y ≡ 7
7x + 2y ≡ 1 .

5.12 Letn = amam−1 · · ·a1a0 be an integer written in base10.

(a) Shown is divisible by8 if and only if a2a1a0 is divisible by8.

(b) Devise a similar test for divisibility by2k, for k ≥ 1.

(c) Show thatn is divisible by5 if and only if a0 divisible by5.

(d) Devise a test for divisibility by5k, for k ≥ 1.

(e) Test13451, 800832, 23422345, 234221375 and2987090 for divisibility by 8 and125.

(f) What can you say about the last 3 digits of a number that is divisible by both8 and
125?

5.13 Use induction onk to prove Theorem 5.25.



Chapter 6

In Course Assessment Exercises

Show all working. Marks are given for clearly reasoned explanations of answers, not for
the answers themselves. Unless you are explicitly asked notto, you may use all results from
the notes, but you should say what you are using and make clearhow it is used.

6.1 Division and Greatest Common Division

6.1.1 (a) Show that6|(n3 − n), for all integersn.

(b) Show that ifa andb are odd integers thena2 + b2 is even, but not divisible by4.

6.1.2 (a) Find the greatest common divisor of1155 and882.

(b) Find integersx andy such that

1155x + 882y = gcd(1155, 882).

(c) Find integersu andv such that

1155u + 882v = −42.

(d) Find the general form of solutions to the equation

1155x + 882y = −42. (6.1)

(e) Find all integer solutionsu, v to equation (6.1) such that

i. u < 40 andv < 40;

ii. u < 40 andv > 100;

iii. u < 40 andv < −40.

6.1.3 Which of the following equations have integer solutions? (Justify your answers but do not
find the solutions.)

105
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(a) 1155x + 882y = 77;

(b) 1155x + 882y = 1;

(c) 1155x + 882y = −21;

(d) 1155x + 882y = 0.

(e) 1155x + 882y = −42.

6.1.4 Leta andb > 0 be integers. Show that there exist integersu andv such thatu + v = a and
gcd(u, v) = b, if and only if b|a.

6.1.5 Leta, m andn be positive integers.

(a) Show thata2 is even if and only ifa is even. Now show thata22
is even if and only if

a is even. Explain how this argument can be repeated to show eventually that

a2m
is even if and only ifa is even, for anym ≥ 1. (If you know how to do so you

could use induction.)

(b) Show that ifm > n thena2n + 1 dividesa2m − 1.

(c) Show that ifm 6= n then

gcd(a2n + 1, a2m + 1) =
{

1, if a is even
2, if a is odd.

6.2 Coprime Numbers

6.2.1 Leta, b be coprime integers such thata|m and b|m, for some integerm. Prove, using
Euclid’s lemma, thatab|m.

6.2.2 Prove that ifgcd(a, m) = gcd(b, m) = 1 thengcd(ab, m) = 1.

6.3 Proof by Induction

6.3.1 Prove by induction that
n∑

r=1
r(r!) = (n + 1)!− 1

for all integersn ≥ 1.

6.3.2 Prove by induction that:

n∑
k=1

k(k + 1) . . . (k + a) = 1
(a + 2)n(n + 1)(n + 2) . . . (n + a + 1)

for all n ∈ N and alla ∈ N.

6.3.3 Prove that every4th Fibonacci number is divisible by3, that is3|f4n, for all n ≥ 1.
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6.4 Prime Numbers

6.4.1 Some primes, like2 and 5, are congruent to2 modulo3. Others like3 and 7 are not
congruent to2 modulo3. In this question you will show that there are infinitely many
primesp such thatp ≡ 2 (mod 3) using an argument by contradiction as follows. Suppose
there are only finitely many such primes and let them bep1, . . . , pn. Define

N = 3p1 · · · pn − 1.

(a) Show thatN ≡ 2 (mod 3).

(b) Show that ifq is a prime factor ofN thenq 6= pi, for i = 1, . . . , n.

(c) Show thatN has at least one prime factorp such thatp ≡ 2 (mod 3).

(d) Combine the above to complete the proof.

6.4.2 In this question arithmetic in a restricted subset ofZ, similar to arithmetic with E-numbers,
is investigated. LetD = {4a + 1 | a ∈ Z} and call the elements of D theD-numbers. The
first few positive D-numbers are

1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57.

Put another way, the D-numbers are the integers which are congruent to1 modulo4. Use
of arithmetic modulo4 makes answers to some of the the following questions very simple
(but is not mandatory).

(a) Show that if two D-numbers are multiplied together the result is a D-number. Give an
example to show that the same is not true when two D-numbers are added together.

(b) If a andb are D-numbers we say thata D-dividesb if b = ac, wherec is a D-number.
Show that5 D-divides25 and45. Show that1 D-divides every D-number.

(c) Now show that ifa andb are D-numbers such thata|b (in the usual sense of Definition
1.5) thena D-dividesb. Give an example to show that there are integersn andm,
which are not both D-numbers but are such thatmn is a D-number.

(d) If a is a positive D-number greater than1 and the only positive D-divisors ofa are
1 anda , then we say thata is D-prime. List the first10 D-primes and the first two
positive D-numbers (> 1) which are D-composite (i.e. not D-prime).

(e) All (ordinary) odd primes are either of the form4m+1 or4m+3: that is are congruent
to 1 or 3 modulo4. Show that a D-number is D-prime if and only if it is prime (inZ)
or its prime factorisation ispq wherep andq are congruent to3 mod4 (and may be
equal).

(f) Find a D-number which has two distinct D-prime factorisations.
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6.5 Finite Arithmetic

6.5.1 Letn be a natural number and leta, b ∈ Z. Use the definition of congruence, Lemma 5.8
and induction to show that ifa ≡ b (mod n) then

ak ≡ bk (mod n), for all integersk ≥ 0.

6.5.2 Letb1, b2, n1 andn2 be integers withgcd(n1, n2) = 1. Consider the congruences

x ≡ b1 (mod n1) (i)

x ≡ b2 (mod n2) (ii)

(a) Explain why the congruencen1x ≡ 1 (mod n2) has a solution.

(b) Let x = y1 be a solution to the congruencen1x ≡ 1 (mod n2) andx = y2 be a
solution ton2x ≡ 1 (mod n1). Show that

x = b1n2y2 + b2n1y1

is a solution to both congruences (i) and (ii).

(c) Show that ifx = s andx = t are solutions to both (i) and (ii) thens ≡ t (mod n1n2).
(d) Find integersy1 andy2 such that14y1 ≡ 1 (mod 15) and15y2 ≡ 1 (mod 14).
(e) Use the answer to the previous parts of the question to findan integers such that

x = s is a solution to both the following congruences simultaneously.

x ≡ 2 (mod 14)
x ≡ 5 (mod 15).

Show all your working.



Appendix A

Set Theory

In this Chapter we shall establish and/or revise some of the basic ideas and notation that we need
in this and other courses. Much of the material will be familiar and you should use the section
as reference when you need it. In lectures I shall refer to Sections of this Chapter as and when
they’re needed and only go through parts of the Chapter that are less familiar or cause difficulty.
Most of the Chapter is about Sets but we start by discussing some terminology.

A.1 Definitions, Lemmas and so on

In mathematics and statistics we sometimes need words to have precise, unambiguous, tech-
nical meanings. To give a word such a meaning we make what is called adefinitionof the word.
The definition acts like a dictionary definition and the wordsmean precisely what the definition
says and nothing else. For example in Section A.6 we define theword integerto mean the set of
whole numbers. From this point on, as far as this course goes,the word “integer” has this mean-
ing and means absolutely nothing else, at all, ever. Some words may have the same meaning in
everyday life as in their definition, but others may not. The word “integer”, as far as I’m aware,
has no meaning other than the one above. On the other hand in Definition 1.5 the word “divides”
is given a meaning which may differ from the common usage. Forinstance we might like to say
that if we divide5 by 2 we get21

2 , which seems perfectly sensible. However in the sense givenin
Definition 1.5 we find that2 doesnot divide5. We use our definition for the meaning of “divide”
so as far as we are concerned2 doesn’t divide5.

Definitions record the basic terms and describe the fundamental structures which we work
with. Reasoning from the definitions we attempt to understand such things as numbers, se-
quences, functions etc. The conclusions we draw are recorded and may be referenced later. Im-
portant conclusions are calledTheorems. Less important results may be calledLemmas. (Some
authors usePropositionas a label for a result of medium importance.)Corollary is a term used
to mean “result which follows more or less obviously from a previous theorem”. Conclusions are
set out as statements of fact in the Theorems, Lemmas, Corollaries etc.. The reasoning leading
to a conclusion is usually set out as aproof following the statement.

Examplescover not only illustrative calculations and standard techniques of problem solution
but sometimes also results so minor that we don’t wish to dignify them with a label like Lemma

109
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or Theorem. (See for instance Example 1.8 in Section 1.2.)
Once a Lemma, Theorem or Corollary has been established by some line of reasoning it can

be referred to in subsequent arguments. By recording our results as we go we allow ourselves to
build up gradually to surprising or well–hidden conclusions. If we prove the right Theorems on
the way we will be able to quote them in appropriate places to make our arguments look concise
and elegant.

A.2 Sets

In widespread and in common everyday use there are numerous words for collections: when
we refer to such things as a

family, flock, team or pack
we are, in each case, referring to several

people, sheep, players or wolves
as one single entity. This idea of regarding a collection of things as a single object is fundamental
to mathematics and statistics where the single entity is usually a set. It may seem somewhat
surprising then that we can’t make a short, easily understood and unambiguous description of
exactly what a set is. Luckily it doesn’t usually matter and we can be content with the the
following. A setis a collection of objects together with some method of (in principle) identifying
which objects belong to the collection and which do not. Setswill be studied further in the
module MAS131, “Introduction to Probability and Statistics”. (There are some more unusual
words for sets at www.ojohaven.com/collectives/).

A.3 Membership

If S is a set andx is an object which belongs toS then we say thatx is anelementof S or a
memberof S. The symbol∈ is used as an abbreviation for “is a member of”, sox ∈ S reads “x
is an element ofS”. Similarly, the symbol/∈ is used as an abbreviation for “is not a member of”,
soy /∈ S reads “y is not an element ofS”.

One way of describing a set is to enclose a list of its members in curly braces, separated by
commas. Thus the set with elements1, 2, 3, 4, 5 can be denoted by

{1, 2, 3, 4, 5}.
Judicious use of. . . allows us to use this notation when the list of elements of theset is infinite.
For example the set of positive whole numbersN can be written as

N = {1, 2, 3, . . .}
and the set of all whole numbersZ as

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

A.4 Subsets

A setS is a subsetof a setT if every element ofS is also an element ofT . For example
{a, b} is a subset of the set{a, b, c}. The symbol⊂ is used as an abbreviation for “is a subset
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of”. Thus
{1, 2, 3, . . .} ⊂ {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The symbol6⊂ is used as an abbreviation for “is a not a subset of”. Thus

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} 6⊂ {1, 2, 3, . . .}.
Note that every set is a subset of itself, that isS ⊂ S, for all setsS so, for example,

{a, b, c} ⊂ {a, b, c}.
We also use the symbol⊃ as an abbreviation for “contains the subset”. For example

{78, 69, 45, 32} ⊃ {78, 45},
{78, 69, 45, 32} ⊃ {78, 32, 69, 45}

and
{78, 69, 45, 32} ⊃ {78, 45}.

The symbol6⊃ has the obvious meaning, that is

{78, 69} 6⊃ {78, 32, 69, 45}
and

{78, 69, 45, 32} 6⊃ {78, 31, 64, 49}.

A.5 The empty set

The set with no elements is called theempty setdenoted∅. It follows from the definitions
we have already made that the empty set∅ is a subset ofS, for all setsS. To see this observe
that, given our definition of subset, we need to test whether or not every element of∅ belongs to
S, whereS is a set (in fact we need to do this for all setsS). However there are no elements in∅
so no element of∅ fails the test. Hence∅ is a subset ofS (no matter what setS we choose).

A.6 Some sets of numbers

We have standard names for some sets of numbers.

(1) The positive whole numbers are called thenatural numbers and the set{1, 2, 3, . . .} of
natural numbers is denotedN.

(2) The elements of the set{. . .− 3,−2,−1, 0, 1, 2, 3, . . .} of all whole numbers, positive, neg-
ative and zero are called theintegersand the set of integers is denotedZ.

(3) A number which can be expressed as a fractionp/q, wherep andq are integers andq 6= 0 is
called arational number and the set of all rational numbers is denotedQ.

(4) A number which has a decimal expansion is called areal number and the set of all real
numbers is denotedR.

Note thatN ⊂ Z ⊂ Q ⊂ R. HoweverZ 6⊂ N, Q 6⊂ Z andR 6⊂ Q. (Do you know why?)
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A.7 Specification of new sets from old

Using the symbol “:” to denote “with the property that” or “such that” we can use curly braces
to specify subsets. For example consider the setN of all positive whole numbers. Then

{n ∈ N : n is even}
is read as “the set of elementsn of N such thatn is even”. That is

{2, 4, 6, 8, . . .}.
The new description is more precise as it removes the necessity for the “. . .”, which are possibly
ambiguous. Further examples of this notation are:

{n ∈ N : n > 9} = {10, 11, 12, . . .},
and

{n ∈ N : n ≥ 11 andn < 16} = {11, 12, 13, 14, 15}.
Sometimes “|” is used instead of “:” as in

{n ∈ N |n is a multiple of10} = {10, 20, 30, . . .},
{n ∈ N |n is a multiple of10 and of3} = {30, 60, 90, . . .},

{n ∈ N |n is a multiple of3 andn + 1 is a multiple of7} = {6, 27, 48, . . .}.

A.8 Unions, intersections, complements and differences

The union of two setsS andT , denotedS ∪ T is the set consisting of all those elements
which either belong toS or belong toT . For example

{A, B, C} ∪ {X, Y, Z} = {A, B, C, X, Y, Z}
and

{A, B, C, Y, Z} ∪ {A, X, Y, Z} = {A, B, C, X, Y, Z}.
The intersection of two setsS andT , denotedS ∩ T is the set consisting of only those

elements which belong to bothS andT . For example

{A, B, C, L, M} ∩ {L, M, X, Y, Z} = {L, M}
and

{A, B, C} ∩ {X, Y, Z} = ∅.
If S is a subset of a setE then thecomplementof S in E, denotedS ′, is the set consisting

of those elements ofE which do not belong toS. That isS ′ = {x ∈ E : x /∈ S}. For example if
E = {a, b, c, d, e, f} andS = {a, b, c} thenS ′ = {d, e, f}.

Thedifference of two setsS andT (in that order), denotedS\T , is the set of elements ofS
which do not belong toT . For example ifS = {A, B, C, D, E, F} andT = {D, E, F, G, H, I}
thenS\T = {A, B, C}.
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A.9 Objectives

The material in this chapter is mainly for reference but you should become familiar with it as
the course goes on. Once you have covered this chapter you should be able to:

(i) understand the use of terms such as Definition, Lemma, Theorem,...

(ii) read and use the symbols∈, {. . .},⊂, 6⊂, ⊃, 6⊃ and∅;
(iii) know which sets of numbersN, Z, Q andR refer to;

(iv) understand notation of the form{n ∈ Z : n > 10};
(v) know what unions, intersections, complements and differences of sets are and understand

the meaning ofX ∪ Y , X ∩ Y , X\Y andX ′, whereX andY are sets.

A.10 Exercises

You can use these questions to test your set theory. There aresimilar questions on the com-
puter, some of which are assesed. If you can’t do them you should read the Chapter or use the
“Reveal” function on the computer assesments.

A.1 List the elements of the following sets:

(a) {n ∈ N : 10 < n2 + n < 42};
(b) {x ∈ R : x2 + 6x + 9 = 0};
(c) {n ∈ N : n andn + 2 are prime withn < 30};

A.2 List the elements of the following sets:

(a) {n ∈ N : 2 < n2 < 75};
(b) {x ∈ R : x2 + 3x + 2 = 0};

(c) {n ∈ N : n is a 2 digit prime};

A.3 TRUE or FALSE

(a) 6 6∈ {x ∈ N : x = 3n + 1, for somen ∈ N};
(b) 2 ∈ {x ∈ R : x2 = 4};
(c) −2 ∈ {x ∈ R : x2 = 4 andx > 0};
(d) 7 /∈ {x ∈ Q : x2 ≥ 7 andx3 < 343}.

A.4 TRUE or FALSE:

(a) ∅ ⊂ N ⊂ N
(b) {x ∈ R : x = 3n + 1, wheren ∈ N} ⊂ {x ∈ Z : x > 3}
(c) {x ∈ Z : x > 3} ⊂ {x ∈ R : x = 3n + 1, wheren ∈ N}
(d) {x ∈ N : x is even} ⊂ {x ∈ R : x2 is even}



114



MAS1202/MAS2202 Notes 115

Appendix B

Glossary of notation

{a, b, c} the set with elementsa, b, c
∈ is a member of
/∈ is not a member of
∅ the empty set
X ⊂ Y X is a subset ofY
X 6⊂ Y X is not a subset ofY
X ⊃ Y Y is a subset ofX
X 6⊃ Y Y is a not a subset ofX
: or | such that
N the set of natural numbers
Z the set of integers
Q the set of rational numbers
R the set of real numbers
{x ∈ S : x has propertyP} the set of elements of the setS which have propertyP
X ∪ Y the union ofX andY
X ∩ Y the intersection ofX andY
X\Y the difference ofX andY
X ′ the complement ofX (in a given setE)
∃ there exists
∀ for all
A ⇒ B A impliesB (or if A thenB)
A ⇐ B B impliesA (or if A thenB)
A ⇔ B A if and only if B (or A iff B)
a|b a dividesb (or a is a factor ofb, or a is a divisor ofb)
a ∤ b a does not divideb
|x| the modulus (or absolute value) ofx
gcd(a, b) greatest common divisor ofa andb
hcf(a, b) highest common factor ofa andb (gcd(a, b) = hcf(a, b))

n∑
j=1

aj a1 + · · ·+ an

a ≡ b (mod n) a is congruent tob modulon
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1. (a) Find the greatest common divisor of 1400 and 37730.
(b) Find integers x and y such that

1400x + 37730y = gcd(1400, 37730).

(c) Which of the following equations have integer solutions? In each case either find
integer solutions u and v or explain (briefly) why no solution exists.
(i) 1400u + 37730v = 210;
(ii) 1400u + 37730v = 102.

(d) Find the general solution for those equations in part (c) above which have a solution.
(e) Find all solutions with x > −1000 and y > 0.

[25 marks]

2. (a) Let a, b, c and d be integers such that a|b and c|d. Prove that ac|bd.
(b) Show that

5n2|(5n2 + 3)2 − 9,

for all n ∈ Z.

[5 marks]

3. Let a, b and c be non-zero integers such that gcd(a, b) = gcd(a, c) = 1. Show that
gcd(a, bc) = 1.

[5 marks]

4. (a) Show that n2 has the form 5k, 5k + 1 or 5k + 4, with k ∈ Z, for all integers n.
(b) Show, using the first part of the question, that if 5|n2 then 5|n.

[15 marks]

5. Prove by induction that:
n∑

k=1

k(k + 1) = 1
3n(n + 1)(n + 2),

for all n ∈ N.
[10 marks]

6. Write out the odd integers from 3 to 100 and then use the sieve of Eratosthenes to
reduce this list to a list of primes between 3 and 100.

[5 marks]
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7. (a) Complete the table below for multiplication modulo 8 using only the integers
0, 1, 2, . . . , 7.

× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4
3 0
4
5
6
7

(b) Which integers have inverses modulo 8?
(c) Compute 1323 (mod 8).
(d) State how many incongruent solutions there are to the following congruences. Jus-

tify your answers. Then find all solutions.
(i) 10x ≡ 6 (mod 18);
(ii) 10x ≡ 9 (mod 18).

[20 marks]

8. (a) Let a, b and c be integers such that a|b and a|c. Show that a|b− c.
(b) Let n be a positive integer and let S = n! + 1. Show that if p is a prime divisor of

S then p > n.
(c) Use the first part of the question to show that there are infinitely many primes.

[Hint: If there are finitely many primes then set n in the previous part of the
question equal to the largest prime.]

[15 marks]

THE END
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Semester 1: Mock Exam
This is the same as the MAS1202 exam except that there is an additional ninth question

and also the marks for the first eight questions are different. The marks are: Q1 22; Q2 4;
Q3 4; Q4 12; Q5 8; Q6 4; Q7 18; Q8 12; Q9 16. The extra question is the following.

9. (a) Let a and b be coprime integers and assume that a|c and b|c, for some integer c.
Show that ab|c.

(b) Let m and n be non-zero integers and let d = gcd(m, n). Assume m = ud and
n = vd, where u, v ∈ Z.

(i) Show that u and v are coprime.
(ii) Let k = mn/d. Show that k = uvd. Show that if m|w and n|w, for some

integer w, then k|w. [Hint. Show that u and v both divide w/d and use part
(a).]

(iii) Suppose that r, s are integers such that r ≡ s (mod m) and r ≡ s (mod n).
Show that r ≡ s (mod k).
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1. (a)

37730 = 1400 · 26 + 1330
1400 = 1330 · 1 + 70
1330 = 70 · 19.

gcd(37730, 1400) = 70.
(b)

70 = 1400− 1330
= 1400− (37730− 1400 · 26)
= 37730 · (−1) + 1400 · 27.

x = 27, y = −1.
(c) (i) 70|210 so there are solutions. 210 = 70 · 3 so u = 81, v = −3 is a solution.

(ii) 70 ∤ 102 so there are no solutions.
(d) The general solution to (i) has the form x = u+(37730/70)t and y = v−(1400/70)t,

with u = 81 and v = −3. That is x = 81 + 539t and y = −3 − 20t.
(e) We consider only equation (i). For x > −1000 we require 81 + 539t > −1000 that

is 539t > −1081, so t > −1081/539. Thus x > −1000 if t ≥ −2. For y > 0 we
require −3 − 20t > 0 that is −20t > 3 so t < −3/20. Thus x > 0 if t ≤ −1.
Therefore we restrict t so that −2 ≤ t ≤ 1 and obtain solutions x = −458, y = 17
and x = −997, y = 37.

2. (a) a|b so b = ap, for some p ∈ Z. c|d so d = cq, for some q ∈ Z. Therefore
bd = apcq = ac(pq) which implies ac|bd.

(b)

(5n2 + 3)2 − 9 = (5n2)2 + 6 · 5n2 + 9− 9
= 5n2(5n2 + 6).

Therefore 5n2|(5n2 + 3)2 − 9, for all n ∈ Z.

3. If gcd(a, b) = gcd(a, c) = 1 then there exist integers u, v and x, y such that au + bv = 1
and ax + cy = 1. Then

(au + bv)(ax + cy) = 1,

so
au(ax + cy) + abvx + bcxy = 1

and we have ak+bcl = 1, with k = u(ax+cy)+bvx and l = xy. Therefore gcd(a, bc) = 1,
as required.
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4. (a) From the Division Algorithm it follows that n = 5q + r, with 0 ≤ r < 4. Therefore

n2 = (5q + r)2 = 25q2 + 10qr + r2 = 5K + r2,

for some r, K ∈ Z with 0 ≤ r < 4.
If r = 0 or 1 then n2 = 5K or 5K + 1, respectively.
If r = 2 then n2 = 5K + 4.

If r = 3 then n2 = 5K + 9 = 5(K + 1) + 4.

If r = 4 then n2 = 5K + 16 = 5(K + 3) + 1.

Thus n2 has the form 5k, 5k + 1 or 5k + 4, for some k ∈ Z, as required.
(b) If 5|n2 then n2 has the form 5k, for some k ∈ Z. From the above, if n = 5q + r,

with r 6= 0 then n2 = 5k + s, with s = 1 or 4. Hence n = 5q + r with r = 0, that
is 5|n.

5. P (n) is
n∑

k=1

k(k + 1) = 1
3n(n + 1)(n + 2).

Basis: The left hand side of P (1) is

1∑
k=1

k(k + 1) = 1× (1 + 1) = 2.

The right hand side of P (1) is

1
3(1 + 1)(1 + 2) = 2.

Therefore P (1) holds.

Inductive hypothesis: Assume P (m) holds for some m ≥ 1.

Inductive step: Then∑m+1
k=1 k(k + 1) =

∑m
k=1 k(k + 1) + (m + 1)(m + 1 + 1)

= 1
3m(m + 1)(m + 2) + (m + 1)(m + 2), using P (m),

= 1
3(m + 1)(m + 2)(m + 3)

= 1
3 [m + 1]([m + 1] + 1)([m + 1] + 2),

which is P (m + 1). Therefore P (n) is true for all n ≥ 1.

6. item The odd numbers from 3 to 100 are
3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51,
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53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99.
Crossing out multiples of 3 reduces the list to
3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71,
73, 77, 79, 83, 85, 89, 91, 95, 97.
Crossing out multiples of 5 leaves
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83,
89, 91, 97.
Finally, crossing out multiples of 7 we have a complete list of primes less than 100:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

7. (a)

× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

(b) 1, 3, 5 and 7.
(c) 13 ≡ 5 (mod 8) so 132 ≡ 25 ≡ 1 (mod 8). Therefore 1322 ≡ (132)11 ≡ 111 ≡ 1

(mod 8). Finally 1323 ≡ 13× 1322 ≡ 5× 1 ≡ 5 (mod 8).
(d) We have gcd(10, 18) = 2 and 2|6 but 2 ∤ 9, so (i) has solutions and (ii) does not.

There are 2 pairwise incongruent solutions to (i) (using Theorem 5.23). By trial
and error we can see that x = 6 is a solution to (i). Solutions differ by 18/2 = 9 so
x = 15 is the second solution.

8. (a) As a|b and a|c we have b = au and c = av, for some u, v ∈ Z. Therefore b − c =
au− av = a(u− v) and so a|b− c.

(b) Suppose p is a prime divisor of S. If p ≤ n then p|n! (as n! = 1 · · · (p − 1)p(p +
1) · · ·n). Therefore, from (a) p|S − n! = 1. From Lemma 1.18 it follows that
p ≤ 1, which is a contradiction since all primes are greater than 1. Hence all prime
divisors p of S satisfy p > n.

(c) Suppose there are finitely many primes and let q be the largest. Then let S = q!+1.
As S > 1 it must have a prime divisor p, say. From part (b) we have p > q, but
this is a contradiction since q is the largest prime. Therefore there are infinitely
many primes.
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9. (a) As a and b divide c we have c = ax = by, for some integers x and y. Therefore a|by
and as a and b are coprime Euclid’s lemma implies that a|y. Therefore y = az, for
some integer z, and we have c = abz: that is ab|c.

(b) (i) There are integers p and q such that mp+nq = d and substituting for m, n with
ud an vd, respectively, gives udp+vdq = d. Cancelling d we have up+vq = 1,
so gcd(u, v) = 1, as required.

(ii) k = mn/d = (udvd)/d = uvd. As m|w and n|w we have w = mg = nh, for
some h, g ∈ Z, so w = udg = vdh. Therefore w/d = ug = vh and so both u
and v divide w/d. From part (a) we see that uv divides w/d, so w/d = uvf ,
for some f ∈ Z. Multiplying through by d we obtain w = uvdf = kf , so k|w.

(iii) If r ≡ s (mod m) and r ≡ s (mod n) then m|s − r and n|s − r, so k|s − r,
from part (b)(ii). Therefore r ≡ s (mod k).

123


