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In this talk I am going to discuss some re-

cent developments in the area of algorithmic

problems for fully residually free groups. These

groups play a crucial role in the modern theory

of equations in groups.

Plan:

1. Three approaches to fully residually free

groups.

2. Coordinate groups of irreducible systems of

equations.

3. Free constructible groups.

4. Presentations via infinite words.

5. Elimination process versus JSJ.

6. Applications.



Fully Residually Free Groups

Different names:

Fully residually free groups =

freely discriminated groups =

ω-residually free groups

The same definition:

Let F = F (A) be a free group with basis A.

A group G is fully residually free if for any fi-

nite subset K ⊆ G of non-trivial elements there

exists a homomorphism φ : G → F such that

gφ 6= 1 for each g ∈ K.

F = class of finitely generated fully residually

free groups.



Examples

Example 1: F ×F 6∈ F (residually free, but not

fully).

Example 2: Surface groups

[x1, y1] . . . [xn, yn] = 1

x2
1 . . . x2

n (n ≥ 4)

are in F.



Elementary Properties:

• torsion-free

• commutative transitive (commutativity is

transitive on non-trivial elements)

• CSA (maximal abelian subgroups are mal-

normal Ag ∩A = 1 for g 6∈ A)

• every 2-generated subgroup is free



Three ways to look at groups in F:

1. Coordinate groups of irreducible systems of

equations over free groups.

Tools: Algebraic geometry over groups, Makanin-

Razborov’s techniques.

2. Fundamental groups of graphs of groups of

a very particular type.

Tools: Bass-Serre theory, JSJ decompositions.

3. Groups of infinite words over abelian or-

dered groups Zn.

Tools: cancellation techniques, Nielsen method,

Stallings’ foldings to study their finitely gener-

ated subgroups.



Other interesting characterizations:

For a finitely generated (non-abelian) G the

following conditions are equivalent:

• G ∈ F;

• Th∀(G) = Th∀(F ) (Remeslennikov);

• G is a limit group (Sela);

• G is a limit of free groups in a compact

space of marked groups (Champetier and

Guirardel).



1. Fully residually free groups as the co-
ordinate groups of irreducible system of
equations

Coordinate groups:

A set of variables X = {x1, . . . , xn}

A finite system of equations over F :

S(X, A) = 1

in variables from X and constants from F .

The algebraic set defined by S:

VF (S) = {U ∈ Fn | S(U, A) = 1}

VF (S) is uniquely defined by the radical:

R(S) = {T ∈ F (A∪X) | ∀U(S(U) = 1 → T (U) = 1)}

The coordinate group of S = 1:

FR(S) = F (A ∪X)/R(S)



A k-tuple of words

P = (P1(X), . . . , Pk(X))

determines a word mapping or morphism

P : Fn → Fm.

Two algebraic sets Y and Z are said to be

isomorphic Y ∼ Z if there exist morphisms

φ : Y −→ Z, θ : Z −→ Y

such that θφ = 1Y , φθ = 1Z.

(1999) Baumslag, Myasnikov, Remeslennikov:

1) VF (S1) ∼ VF (S2) ⇐⇒ FR(S1)
'F FR(S2)

2) Every f.g. residually free group is a coordi-

nate group of some system S = 1 over F .



Irreducible components:

Zariski topology on Fm:

algebraic sets = closed subsets

R. Bryant (1977), V.Guba (1986): F is equa-

tionally Noetherian, i.e., every system S(X, A) =

1 is equivalent over F to a finite subsystem.

Corollary:

1. Zariski topology is Noetherian;

2. Every closed set is a finite union of irre-

ducible components.

Theorem [BMR]:

1) V (S) is irreducible ⇐⇒ FR(S) ∈ F

2) G ∈ F ⇐⇒ G ' FR(S) for an irreducible V (S)



Main Tool:

From the group theoretic view-point the elimi-

nation process (variation of Makanin-Razborov’s

method) tells something about the coordinate

groups of the systems involved.

This allows one to translate pure combinato-

rial and algorithmic results obtained in the pro-

cess into statements about fully residually free

groups.



First applications:

Theorem [Kharlampovich, Myasnikov]: There

is an algorithm which for a given finite system

of equations S(X) = 1 over F finds its irre-

ducible components.

It is known that groups in F are finitely pre-

sented [KM (1998), Sela (2001) ].

Theorem [KM]: For every finite irreducible sys-

tem of equations S = 1 one can effectively find

the radical R(S) by specifying a finite set of

generators of R(S) as a normal subgroup.

This gives an ”effective” Nullstellensatz.

Description of radicals (generalized Nulsstel-

lensatz) is one of the major problems in com-

mutative algebra.



2. Fully residually free groups as fundamental

groups of graphs of groups.

Lyndon: introduced free exponential groups

FZ[t] over polynomials Z[t] (to describe solu-

tion sets of one-variable equations).

He showed also: FZ[t] is discriminated by F .

Myasnikov and Remeslennikov: FZ[t] can be

obtained as union of an infinite chain of exten-

sions of centralizers:

F = G0 < G1 < . . . < ∪∞i=0Gi = FZ[t]

where

Gi+1 = 〈Gi, ti | [CGi
(ui), ti] = 1〉.

Bass-Serre Theory implies:



Finitely generated subgroups of FZ[t] are fun-

damental groups of very particular graphs of

groups (essential splittings, etc.).

Theorem [KM]: Given an irreducible system

S = 1 (a group G ∈ F) one can effectively

embed FR(S) (the group G) into FZ[t]. Namely,

one can find n and an embedding G → Gn.



Theorem [KM]: There is an algorithm which

for a given group G ∈ F and a finitely gener-

ated subgroup H ≤ G (given by a finite gener-

ating set Y ), finds a finite presentation for H

in the generators Y .

Idea of the proof:

Let G = 〈X | S〉 be a finite presentation of G.

Then G = FR(S) is irreducible.

Effectively embed FR(S) into FZ[t].

Use ”effective version” of Bass-Serre theory to

find the induced presentation of the subgroup.

”Effective version” of B-S theory requires algo-

rithmic solution of various problems for finitely

generated subgroups.



3. Fully residually free groups via infinite

words

Lyndon: introduced abstract length functions
on groups L : G → A with values in an ordered
abelian group A to axiomatize Nielsen cancel-
lation argument.

He showed: if a length function L : G → Z is
free ( x 6= 1 =⇒ l(x2) > l(x)) then G is em-
beddable into a free group and the embedding
preserves the length.

Main idea:

1. Generalize this to arbitrary free length func-
tions l : G → Λ presenting elements of G by
infinite words over Λ.

2. Present groups G ∈ F by infinite words over
Zn and prove results as in free groups (as for
finite words).



Infinite words over Z[t]:

Myasnikov, Remeslennikov, Serbin:

A ( infinite) word over Z[t] is a function of the

type

w : [1, αw] → A±1,

where

[1, αw] = {g ∈ Z[t] | 1 ≤ g ≤ αw}

is a closed interval in Z[t] (in lex order).

|w| = αw is the length of w.

w is reduced if ∀f ∈ [1, αw]:

w(f) 6= w(f + 1)

(no subwords aa−1 or a−1a in w).



R(Z[t], A) - the set of all reduced infinite words

with partial multiplication.

Multiplication = concatenation + reduction (if

possible !).

Product uv is defined if the maximal common

initial segment of u−1 and v is closed.



MRS:

L : w → |w|

is a free Lyndon’s length function on R(Z[t], A)

with values in Z[t].

If G is a finitely generated subgroup of R(Z[t], A)

then

L|G : G → Zn

Chiswell:

l : G → Λ is free Lyndon’s length function ⇐⇒
G acts freely on a Λ-tree.



Theorem [Myasnikov, Remeslennikov, Serbin].

One can effectively embed FZ[t] into R(Z[t], A).

Corollary. FZ[t] acts freely on a Z[t]− tree.

Corollary [KM and MRS]. Every group G ∈ F
acts freely on a Zn-tree.



Hint on how to embed FZ[t] into R(Z[t], A)

H.Bass: extension of a centralizer

G = 〈F, t | [u, t] = 1〉
acts freely on a Z× Z-tree.

Idea of a proof:

May assume u is cyclically reduced.

Define φ : G → R(Z× Z, A):

fφ = f, tφ = u∞ = u ◦ u ◦ . . . ◦ u

Then

(tu)φ = u∞ ◦ u = u ◦ u∞ = (ut)φ

So φ is a homomorphism. Easy to check φ is
injective.

More generally (Bass):

G = 〈F, t | ut = v〉
with |u| = |v|. Here ut = tv, so put t = u∞v∞.



Once a presentation of elements of FZ[t] by

infinite words is established, a host of problems

about FZ[t] can be solved precisely in the same

way as in the standard free group F .

1. The Word Problem is decidable in groups

from F.

Compute the reduced form of a word!

[Original proof is due to Makanin]

2. The Conjugacy Problem is decidable in

groups from F.

The cyclic reduced words of conjugated ele-

ments are equal!

[Original proof is due to Bumagin]



3. The Membership Problem is decidable in

groups from F

Stallings’ folding procedure!

For a given

H = 〈h1, . . . , hm〉 ≤ FZ[t]

construct effectively a finite labelled graph ΓH

which accepts precisely elements of H (given

by their canonical forms in FZ[t].

4. The Intersection Problem is decidable in

groups from F:

Let G ∈ F and H and K finitely generated

subgroups of G given by finite generating sets.

Then H ∩K is finitely generated, and one can

effectively find a finite set of generators of H∩
K.



5. The Intersection of Conjugates Problem is

decidable in groups from F:

Let H, K ≤f.g. G ∈ F. Then one can effectively

find a finite family J (H, K) of non-trivial f.g.

subgroups of G, such that for any non-trivial

intersection Hg ∩ K there exists J ∈ J (H, K)

and f ∈ K such that

Hg ∩K = Jf ,

moreover J and f can be found effectively.



Elimination process

Elimination Process (EP) is a symbolic rewrit-

ing process of a certain type that transforms

formal systems of equations in groups or semi-

groups.

Makanin (1982): Initial version of (EP).

Makanin’s (EP) gives a decision algorithm to

verify consistency of a given system (decidabil-

ity of Diophantine problem over free groups).

Estimates on the length of the minimal solu-

tion (if it exists).

Razborov (1987): developed (EP) much fur-

ther.

Razborov’s (EP) produces all solutions of a

given system in F .



KM (1998): refined Razborov’s (EP).

Description of solutions in terms of non-degenerate

triangular quasi-quadratic (NTQ) systems.

Triangular quasi-quadratic (TQ) system has

the following form

S1(X1, X2, . . . , Xn, A) = 1,

S2(X2, . . . , Xn, A) = 1,

. . .

Sn(Xn, A) = 1

where Si is either quadratic in variables Xi, or

corresponds to an extension of a centralizer,

or to an abelian extension.



Our (EP) starts on an arbitrary system

S(X, A) = 1

and results in finitely many TQ systems

U1(Y ) = 1, . . . , Um(Y ) = 1

such that

VF (S) = P1(V (U1)) ∪ . . . ∪ Pm((Um))

for some word mappings P1, . . . , Pm.

This (EP) can be viewed as a non-commutative

analog of the classical elimination process in

algebraic geometry.



Extension Theorem

Moreover, TQ systems

U1 = 1, . . . , Um = 1

are ”non-degenerate” ( NTQ)

⇐⇒

Si(Xi, . . . , Xn, A) = 1 has a solution over the

coordinate group FR(Si+1,...,Sn)

⇐⇒

going ”from the bottom to the top” every so-

lution of the subsystem Sn = 1, . . . Si = 1 can

be extended to a solution of the next equation

Si−1 = 1.

This corresponds to the extension theorems in

the classical theory of elimination for polyno-

mials.



Fundamental properties of various (EP)

This (EP) is not unique, every time it can be
easily adjusted to some particular needs.

However, there exist fundamental common fea-
tures that unify all recent variations of (EP):

1) only three precisely defined infinite branches
(subprocesses) can occur in the process:

linear case (Cases 7-10),

quadratic case (Cases 11-12),

general JSJ case (Cases 13-15) which includes
periodic structures and abelian vertex groups
(Case 2).

2) Groups of automorphisms of the coordi-
nate groups are used in encoding the infinite
branches of the process.



Makanin’s process and Rip’s machines

Makanin’s process: there are no infinite branches

corresponding to the periodic structures, no

linear case, no coordinate groups, no groups

of automorphisms.

But there are: elementary and entire transfor-

mations, complexity.

These were used to prove the classification

theorem for f.g. acting freely on R-trees and

to describe stable actions on R-trees, via so-

called Rip’s machine [Rips, Gaboriau, Levitt,

Paulin, Bestvina, Feighn].

Later, these results played a key part in the

proof of existence of JSJ decompositions of

finitely presented groups with a single end [Sela,

Rips].



Elimination process and JSJ

Motto: JSJ is an algebraic counterpart of (EP).

Infinite branches of an elimination process ⇐⇒
splittings of the coordinate group of the sys-

tems:

linear case ⇐⇒ thin (or Levitt) type

the quadratic case ⇐⇒ surface type (or interval

exchange),

periodic structures ⇐⇒ toral (or axial) type.

Moreover, the automorphism associated with

infinite branches of the process are precisely

the canonical automorphism of the JSJ decom-

position associated with the splittings.



Effectiveness of Grushko’s decompositions

A free decomposition

G = G1 ∗ . . . ∗Gk ∗ Fr

is a Grushko’s decomposition of G if G1, . . . , Gk

are freely indecomposable non-cyclic groups and

Fr is a free group of rank r. Grushko’s decom-

position are essentially unique.

Theorem [KM] There is an algorithm which

for every G ∈ F finds its Grushko’s decompo-

sition (by giving finite generating sets of the

factors).



Effectiveness of JSJ decompositions

Theorem [KM] There exists an algorithm to

obtain a cyclic [abelian] JSJ decomposition of

a freely indecomposable group G ∈ F. The al-

gorithm constructs a presentation of this group

as the fundamental group of a JSJ graph of

groups.



Hint of the proof

G ∈ F given as FR(S) .

Solutions of S(X, A) = 1 in F ⇐⇒ homomor-

phisms φ : G → F .

Composition of φ with σ ∈ Aut(G) =⇒ a new

solution of S(X, A) = 1 in F .

Different canonical automorphisms associated

with a JSJ decomposition of G ⇐⇒ solutions

of the system S(X, A) = 1 of a particular type.

One can recognize these solutions in (EP) as

infinite branches.

Infinite branches ⇐⇒ splittings of G.

Bass-Serre Theory + length functions tech-

niques =⇒ JSJ decompositions of G.


