Generalized tetrahedron groups and the Tits alternative

Jim Howie and Natasha Kopteva

The Tits alternative

A class C of groups is said to satisfy the **TITS ALTERNATIVE** if every group in C either contains a soluble subgroup of finite index, or a nonabelian free subgroup. The Tits alternative is known to hold for

- linear groups (Tits)
- Coxeter groups (Margulis/Vinberg/Noskov)
- mapping class groups (McCarthy/Ivanov)
- $Out(F_n)$ (Bestvina/Feighn/Handel)
- one-relator groups (Karrass/Solitar)
- 3-manifold groups (Perelman/Button)
- 2-knot groups (Hillman)

Generalized triangle groups

A GENERALIZED TRIANGLE GROUP is

$$\langle x, y | x^{\ell} = y^m = W(x, y)^p = 1 \rangle$$

Example: Triangle group

$$T(\ell, m, p) = \langle x, y | x^{\ell} = y^m = (xy)^p = 1 \rangle$$

Rosenberger Conjecture:

Generalized triangle groups satisfy the Tits alternative.

Known for 'most' generalized triangle groups (Rosenberger, Levin, Fine, Howie, Williams, Benyash-Krivets, ...).

No known counterexamples.

Generalized tetrahedron groups

A GENERALIZED TETRAHEDRON GROUP is

$$\langle x, y, z | x^{\ell} = y^m = z^n = W_1(x, y)^p = W_2(y, z)^q = W_3(z, x)^r = 1 \rangle$$

Example: Tetrahedron group

$$\langle x, y, z | x^{\ell} = y^m = z^n = (x^{-1}y)^p = (y^{-1}z)^q = (z^{-1}x)^r = 1 \rangle$$

Conjecture:

Generalized tetrahedron groups satisfy the Tits alternative.

Triangle of generalized triangle groups

A generalized tetrahedron group is the colimit of a triangle of generalized triangle groups:

Curvature

Gersten-Stallings angle. Let A, B < G. Then $(G; A, B) := \frac{\pi}{m}$ where 2m is the minimal free product length of a nontrivial element in $\text{Ker}(A * B \rightarrow G)$.

A triangle is negatively curved if G-S angle sum is $< \pi$. A triangle is non-spherical if G-S angle sum is $\leq \pi$.

THEOREM 1

- (1) Negatively curved \Rightarrow free subgroups.
- (2) Non-spherical 'sometimes' \Rightarrow free subgroups.

PROOF van Kampen diagrams + curvature.

To classify triangles, we need to calculate G-S angles.

Spelling Theorem

THEOREM 2 In $G = \langle x, y | x^{\ell} = y^m = W(x, y)^p = 1 \rangle$, no nontrivial relation between x and y is shorter than W^p .

COROLLARY If $W = x^{a(1)}y^{b(1)}\cdots x^{a(k)}y^{b(k)}$, then $(G; \langle x \rangle, \langle y \rangle) = \frac{\pi}{kp}$.

Classify the tetrahedron groups into three types:

- Negatively curved (so \exists free subgroups);
- Euclidean (non-spherical but not negatively curved);

Spherical.

7 Euclidean types

E1 $\langle x, y, z | x^{\ell} = y^m = z^n = (x^{\alpha} y^{\beta})^2 = (y^{\gamma} z^{\delta})^3 = (x^{\eta} z^{\theta})^6 = 1 \rangle$ **E2** $\langle x, y, z | x^{\ell} = y^{m} = z^{n} = (x^{\alpha}y^{\beta})^{2} = (y^{\gamma}z^{\delta})^{4} = (x^{\eta}z^{\theta})^{4} = 1 \rangle$ **E3** $\langle x, y, z | x^{\ell} = y^{m} = z^{n} = (x^{\alpha}y^{\beta})^{3} = (y^{\gamma}z^{\delta})^{3} = (x^{\eta}z^{\theta})^{3} = 1 \rangle$ E4 $\langle x, y, z | x^{\ell} = y^m = z^n = (x^{\alpha} y^{\beta})^2 = (y^{\gamma} z^{\delta})^3 =$ $(x^{\eta_1} z^{\theta_1} x^{\eta_2} z^{\theta_2})^3 = 1$ E5 $\langle x, y, z | x^{\ell} = y^m = z^n = (x^{\alpha} y^{\beta})^2 = (y^{\gamma} z^{\delta})^4 =$ $(x^{\eta_1} z^{\theta_1} x^{\eta_2} z^{\theta_2})^2 = 1$ **E6** $\langle x, y, z | x^{\ell} = y^m = z^n = (x^{\alpha}y^{\beta})^2 = (y^{\gamma_1}z^{\delta_1}y^{\gamma_2}z^{\delta_2})^2 =$ $(x^{\eta_1} z^{\theta_1} x^{\eta_2} z^{\theta_2})^2 = 1$ **E7** $\langle x, y, z | x^{\ell} = y^m = z^n = (x^{\alpha} y^{\beta})^2 = (y^{\gamma} z^{\delta})^3 =$ $(x^{\eta_1} z^{\theta_1} x^{\eta_2} z^{\theta_2} x^{\eta_3} z^{\theta_3})^2 = 1\rangle$

Non-spherical results

THEOREM 3 The only generalized tetrahedron group, given by non-spherical triangles, which do not contain free subgroups, are the euclidean wallpaper groups

$$\langle x, y, z | x^2 = y^2 = z^2 = (xy)^p = (yz)^q = (zx)^r = 1 \rangle$$

with

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1.$$

These are all abelian-by-finite.

COROLLARY Generalized tetrahedron groups given by non-spherical triangles satisfy the Tits alternative.

Methods of proof 1 - curvature

EXAMPLE In the negatively curved case, $\{(xyz)^N, (xzy)^N\}$ is a basis for a free subgroup for $N \gg 0$.

PROOF. A reduced van Kampen diagram Δ has negatively curved interior (so positively curved boundary).

A segment of $\partial \Delta$ labelled $(xyz)^N$ or $(xzy)^N$ has curvature $\leq -(\text{constant}) \cdot N$.

Positive curvature at meeting of $(xyz)^N$ and $(xzy)^N$ segments is bounded.

Hence $\not\exists$ reduced van Kampen diagram with boundary label $Word((xyz)^N, (xzy)^N)$ for $N \gg 0$.

Methods of proof 2 - respresentations

 \exists representations $\rho : G \to \mathrm{PSL}_2(\mathbb{C})$ which are *essential* ($\rho(x), \rho(y), \rho(z)$ and the $\rho(W_i)$ all have the correct orders). Most subgroups of $\mathrm{PSL}_2(\mathbb{C})$ contain free subgroups.

 $\rho: \langle x, y | x^{\ell} = y^m = (x^{a(1)}y^{b(1)}\cdots x^{a(k)}y^{b(k)})^p = 1 \rangle \rightarrow \mathrm{PSL}_2(\mathbb{C})$ determined up to conjugacy by a poly τ in $\mathrm{trace}(\rho(x))$, $\mathrm{trace}(\rho(y))$, and $\lambda = \mathrm{trace}(\rho(xy))$, of λ -degree k.

PROOF OF SPELLING THEOREM

If V(x,y) = 1, calculate entries of $\rho(V)$ under tautological representation

$$\rho: G \to \mathrm{PSL}_2\left(\mathbb{C}[\lambda] / \prod_j (\tau(\lambda) - 2\cos(j\pi/p))\right)$$

Finite generalized tetrahedron groups

Ordinary tetrahedron groups are index 2 subgroups of Coxeter groups. Classification of finite Coxeter groups \Rightarrow classification of finite tetrahedron groups.

 $\mbox{TSARANOV}$ - classified finite generalized Coxeter groups \Rightarrow classification of finite generalized tetrahedron groups of the form

$$\langle x, y, z | x^{\ell} = y^m = z^n = (x^{\alpha} y^{\beta})^p = (y^{\gamma} z^{\delta})^q = (z^{\varepsilon} x^{\zeta})^r = 1 \rangle$$

ROSENBERGER & SCHEER - completed classification of finite generalized tetrahedron groups, building on previous work of ROSENBERGER, FINE, LEVIN, ROEHL, EDJVET, THOMAS, STILLE, METAFTSIS, HOWIE, LEVAI, SOUVINGNIER.

3 Spherical types

$$\begin{array}{l} \mathsf{S1} \ \langle x, y, z | x^{\ell} = y^{m} = z^{n} = (x^{\alpha}y^{\beta})^{2} = (y^{\gamma}z^{\delta})^{2} = W_{3}(x,z)^{r} = 1 \rangle \\ \mathsf{S2} \ \langle x, y, z | x^{\ell} = y^{m} = z^{n} = (x^{\alpha}y^{\beta})^{2} = (y^{\gamma}z^{\delta})^{3} = (x^{\eta}z^{\theta})^{r} = 1 \rangle, \\ r = 3, 4, 5 \end{array}$$

$$\begin{array}{l} \mathsf{S3} \ \langle x, y, z | x^{\ell} = y^{m} = z^{n} = (x^{\alpha}y^{\beta})^{2} = (y^{\gamma}z^{\delta})^{3} = (x^{\eta_{1}}z^{\theta_{1}}x^{\eta_{2}}z^{\theta_{2}})^{2} = 1 \rangle \end{array}$$

THEOREM

The Tits alternative also holds for S2 and S3.

Proof Ad-hoc mixture of curvature, representation-theoretic, and other arguments.

Cases S2 & S3

All groups of type S2 or S3 contain free subgroups, except for 8 finite groups (10 presentations, up to equivalence), and the following 5 infinite, virtually soluble groups:

$$\begin{array}{l} \checkmark & \langle x, y, z | x^3 = y^3 = z^2 = (xy)^2 = (yz)^3 = (xz)^3 = 1 \rangle; \\ \checkmark & \langle x, y, z | x^2 = y^2 = z^3 = (xy)^2 = (yz)^3 = (xz)^4 = 1 \rangle; \\ \backsim & \langle x, y, z | x^2 = y^4 = z^2 = (xy)^2 = (yz)^3 = (xz)^4 = 1 \rangle; \\ \backsim & \langle x, y, z | x^2 = y^2 = z^4 = (xy)^2 = (yz)^3 = (xz)^3 = 1 \rangle; \\ \backsim & \langle x, y, z | x^2 = y^2 = z^3 = (xy)^2 = (yz)^3 = (xzxz^2)^2 = 1 \rangle. \end{array}$$

Case S1

$$G = \langle x, y, z | x^{\ell} = y^{m} = z^{n} = (x^{\alpha} y^{\beta})^{2} = (y^{\gamma} z^{\delta})^{2} = W_{3}(x, z)^{r} = 1 \rangle$$

WORK IN PROGRESS

FOR EXAMPLE: Assume $W_3 = x^{e(1)}z^{f(1)} \cdots x^{e(k)}y^{f(k)}$ with $k \ge 2$. Then the Tits alternative holds under any one of the following conditions:

