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Black Box Group
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random, independent, uniformly distributed elements
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given as ⇓

3
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• permutations, ⇓
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given as

• permutations, or

• matrices in GLn(q),
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random, independent, uniformly distributed elements

given as

• permutations, or

• matrices in GLn(q),

• . . .

“Format”: n2 log q
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• We can compare: x = y? ⇓
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• multiply, invert: x · y, x−1 ⇓
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• (sometimes) find orders: |x|

Aim: determine X
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Recognition of black box is highly technical and uses CFSG.

In this talk, I concentrate on a general set-up and relations
to combinatorial group theory
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Generation of random elements,

Leedham-Green et al.: ⇓
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Generation of random elements,

Leedham-Green et al.:

Γk(G) set of generating k-tuples

graph with edges:

(g1, . . . , gi, . . . , gk) −→ (g1, . . . , g
±1
j gi, . . . , gk)

(g1, . . . , gi, . . . , gk) −→ (g1, . . . , gig
±1
j , . . . , gk)

⇓
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Generation of random elements,

Leedham-Green et al.:

Γk(G) set of generating k-tuples

graph with edges:

(g1, . . . , gi, . . . , gk) −→ (g1, . . . , g
±1
j gi, . . . , gk)

(g1, . . . , gi, . . . , gk) −→ (g1, . . . , gig
±1
j , . . . , gk)

Walk randomly over this graph and choose random gi.
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Random walk on Γk(G)

Pak: For k large, the mixing time is polynomial in log |G|.
⇓
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Random walk on Γk(G)

Pak: For k large, the mixing time is polynomial in log |G|.

Mixing time: number t of steps s.t. after t steps

1

2

∑

v∈Γ

∣
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P (get at v)− 1

#Γ
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Lubotzky–Pak:

If AutFk satisfies Kazhdan property (T), then mixing time
of a random walk on a component of Γk(G)

mix 6 C(k) · log2 |G|.

⇓
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Lubotzky–Pak:

If AutFk satisfies Kazhdan property (T), then mixing time
of a random walk on a component of Γk(G)

mix 6 C(k) · log2 |G|.

Conjecture. For k > 4, AutFk has (T). ⇓
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Lubotzky–Pak:

If AutFk satisfies Kazhdan property (T), then mixing time
of a random walk on a component of Γk(G)

mix 6 C(k) · log2 |G|.

Kazhdan property (T)

G a topological group, Q ⊂ G a compact set

K = inf
ρ

inf
v 6=0

max
q∈Q

‖ρ(q)(v)− v‖
‖v‖

> 0

ρ: all unitary representations without fixed
non-zero vectors
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Structural theory of black box groups ⇓
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Structural theory of black box groups

• If X is non-simple, how one can find a normal sub-
group? ⇓
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Structural theory of black box groups

• If X is non-simple, how one can find a normal sub-
group?

X = X′ =⇒ there are involutions t

⇓
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Structural theory of black box groups

• If X is non-simple, how one can find a normal sub-
group?

X = X′ =⇒ there are involutions t

Y CX =⇒ Y ∩ CX(t)C CX(t)

⇓
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Structural theory of black box groups

• If X is non-simple, how one can find a normal sub-
group?

X = X′ =⇒ there are involutions t

Y CX =⇒ Y ∩ CX(t)C CX(t)

• How one can construct a good black box for the normal
closure

〈

yX
1 , . . . , y

X
k

〉

?
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Andrews–Curtis graph for N CG ⇓
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Andrews–Curtis graph for N CG

∆k(G,N) =
{

(h1, . . . , hk) | 〈hG1 , . . . , hGk 〉 = N
}

⇓
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Andrews–Curtis graph for N CG

∆k(G,N) =
{

(h1, . . . , hk) | 〈hG1 , . . . , hGk 〉 = N
}

Edges:

(x1, . . . , xk) −→ (x1, . . . , xixj, . . . , xk), i 6= j

(x1, . . . , xk) −→ (x1, . . . , x
−1
i , . . . , xk)

(x1, . . . , xk) −→ (x1, . . . , x
w
i , . . . , xk), w ∈ G

⇓
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Andrews–Curtis graph for N CG

∆k(G,N) =
{

(h1, . . . , hk) | 〈hG1 , . . . , hGk 〉 = N
}

Edges:

(x1, . . . , xk) −→ (x1, . . . , xixj, . . . , xk), i 6= j

(x1, . . . , xk) −→ (x1, . . . , x
−1
i , . . . , xk)

(x1, . . . , xk) −→ (x1, . . . , x
w
i , . . . , xk), w ∈ G

Conjecture. A random walk on ∆k(G,N) provides a fast
black box for N .

28



The Andrews-Curtis Conjecture (1965):

∆k(Fk, Fk) is connected ⇓
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The Andrews-Curtis Conjecture (1965):

∆k(Fk, Fk) is connected

Myasnikov: ∆k(F
(m)
k , F

(m)
k ) is connected for the free

solvable group F
(m)
k . ⇓
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The Andrews-Curtis Conjecture (1965):

∆k(Fk, Fk) is connected

Myasnikov: ∆k(F
(m)
k , F

(m)
k ) is connected for the free

solvable group F
(m)
k .

Myasnikov & Myasnikov: Some potential
counterexamples (originating in topology) are killed by ap-
plication of genetic algorithms, say, in F = 〈x, y〉,

(x2y−3, xyxy−1x−1y−1) ∼ (x, y)

(example by Akbulut and Kirbi, 1985).
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Finitary AC Conjecture

• Can a counterexample to Andrews-Curtis be found at
the level of finite groups?

Theorem (B, Lubotzky & Myasnikov): In a finite
groupG, the connected components of ∆k(G,G) are those
inherited from G/[G,G]. ⇓
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Finitary AC Conjecture

• Can a counterexample to Andrews-Curtis be found at
the level of finite groups?

Theorem (B, Lubotzky & Myasnikov): In a finite
groupG, the connected components of ∆k(G,G) are those
inherited from G/[G,G].

• No easy way to refute the AC conjecture using finite
groups.
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Let G = 〈S〉 and N CG.

Restricted Andrews–Curtis graph ∆k(G,N):

the same vertices as in ∆k(G,N):
{

(h1, . . . , hk) | 〈hG1 , . . . , hGk 〉 = N
}

.

Two vertices are connected by one of the edges:

(. . . , xi, . . . , xj, . . .) −→ (. . . , xix
±1
j , . . . , ), i 6= j

(. . . , xi, . . . , xj, . . .) −→ (. . . , x±1
j xi, . . .), i 6= j

(. . . , xi, . . .) −→ (. . . , xsi , . . .), s ∈ S

(. . . , xi, . . .) −→ (. . . , x−1
i , . . .).
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Problem. Are ∆k(G,N) expanders? ⇓
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Problem. Are ∆k(G,N) expanders?

• The “YES” answer would explain a good practical per-
formance of the AC algorithm for generation random
elements of normal subgroups. ⇓
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Problem. Are ∆k(G,N) expanders?

• The “YES” answer would explain a good practical per-
formance of the AC algorithm for generation random
elements of normal subgroups.

• Related question: does the group ACk(Fk) gener-
ated by the (reduced) Andrews-Curtis transformations
of the free group Fk has Kazhdan’s Property (T)?
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Groups generated by Nielsen moves

G a finite group.

FGn the free group with n free generators x1, . . . , xn in
the variety generated by G.

NilFree(G) < Aut(FGn) is generated by all Nielsen moves

L±ij : (x1, . . . , xn) 7→ (x1, . . . , xi, . . . , x
±1
i xj, . . . , xn)

R±ij : (x1, . . . , xn) 7→ (x1, . . . , xi, . . . , xjx
±1
i , . . . , xn)

Invk : (x1, . . . , xn) 7→ (x1, . . . , x
−1
k , . . . , xn)

Nil+Free(G) =
〈

L±ij, R
±
ij

〉
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K the intersection of the kernels of all surjective homo-
morphisms FGn −→ G

Spacen(G) = FGn/K.

NilFree(G) −→ Aut(Spacen(G));

GLn(G) image of NilFree(G) in Aut(Spacen(G))

SLn(G) image of Nil+Free(G) in Aut(Spacen(G))

If G = Z/pZ then Spacen(G) ' (Z/pZ)n and

SLn(G) ' SLn(Fp).

Nielsen moves are transvections.
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What can be said about SLn(G)?

• If G is a solvable group, is it true that simple non-
abelian composition factors of SLn(G) are groups SLk(p)
for primes p dividing |G/[G,G]| and appropriate di-
mensions k?
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Non-abelian simple groups G.

Spacen(G) is the direct product of copies of G:

Space2(Alt5) ' Alt19
5

SLn(G) permutes the copies of G in Spacen(G).

A computer-friendly way to find the action (for small G).
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• Gk(G) is the set of all k-tuples of elements of G which
generate G.

• Hk(G) is the factor set of Gk(G) under the action of
Aut(G).

• The Nielsen moves act on Hk(G) and generate a sub-
group of Sym(Hk(G)); we denote it Niek(G).

Conjecture The restriction of Niek(G) to an orbit on Hk

is the full symmetric or alternating group on this orbit.
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Some experimental results (Chris Bates)

Alt5, rank 2

|Alt5| = 60

H = Nie2(Alt5) acts on Ω = H2(Alt5) of cardinality 19.

Two orbits, of size 9 and 10.

The restrictions of H are Alt9 and Sym10.
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Alt5, rank 3

|Alt5| = 60

The group H = Nie3(Alt5) acts on Ω = H3(Alt5) of
cardinality 1668 transitively

and is in fact isomorphic to Alt1668.
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Alt6, rank 2

|Alt6| = 360

H = Nie2(Alt6) acts on Ω = H2(Alt6) of cardinality 53.

Four orbits of size 10, 12, 15 and 16.

The restrictions are Sym10, Sym12, Sym15 and Alt16.
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L3(2), rank 2

|L3(2)| = 168.

H = Nie2(L3(2)) acts on Ω = H2(L3(2)) of cardinality
57.

Four orbits of size 7, 16, 16 and 18.

The restrictions of H are Sym7, Alt16, Alt16 and Sym18.
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SL2(8), rank 2

H = Nie2(L2(8)) acts on Ω = H2(L2(8)) of cardinality
142.

Three orbits of size 18, 54, and 70.

The restrictions of H are Sym18, Sym54 and Sym70.
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If G is simple, any tuple in

Ω = G× · · · ×Gr {(1, . . . , 1)}

generates G as a normal subgroup.

Conjecture

• The Andrews-Curtis moves generate the full symmetric
or alternating group on Ω.
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Root and parabolic subgroups

With every root ρ = εi − εj of the root system

ΦAn−1 = { εi − εj | i, j = 1, . . . , n, i 6= j }

of type An−1 one can associate the root subgroup

Uρ(G) = Uij(G) =
〈

L±i,j, R
±
i,j

〉

Uij(G) ' G ◦G
(central product of two copies of G).

Uij(Z/pZ) ' Z/pZ, in agreement with the standard no-
tation for linear algebraic groups.
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Unitriangular and triangular subgroups

UT+
n (G) = 〈Uij(G) | i < j 〉

=
〈

L±ij, R
±
ij | i < j

〉

T+
n (G) =

〈

L±ij, R
±
ij, Invk | i < j

〉

• What is the intersection of opposite triangular sub-
groups

T+
n (G) ∩ T−n (G)?
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Diagonal subgroup

For g ∈ G,

Dk(g) : (g1, . . . , gn) 7→ (g1, . . . , g
g
k, . . . , gn)

Invk : (g1, . . . , gn) 7→ (g1, . . . , g
−1
k , . . . , gn)

Diagn(G) = 〈Invk, Dk(g) | g ∈ G〉
The Andrews-Curtis group

ACn(G) = 〈NielFreen(G),Diagn(G)〉

acts on ∆n(G,G)
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Weyl group

W = Symn acting by permutation of components in (g1, . . . , gn).

Borel subgroup

B = Bn(G) = 〈UTn(G),Diagn(G)〉

Monomial subgroup

N = 〈Diagn(G),W 〉

(B,N) looks like a formal “non-commutative” analogue
of a BN -pair in ACn(G).
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