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Outline

This is a first talk in a series of three.

The goal of the series is to outline the main ideas of the
elimination theory in groups.

It will provide some basics for the series of talks on:

Equations with rational constrains by V. Diekert,

Tarski’s Problems by O. Kharlampovich

Equations in right angled Artin groups by M. Casal-Ruis and I.
Kazachkov.

and give some examples in support of the series of lectures by V.
Remeslennikov and E. Daniyarova on Universal algebraic geometry.
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Elimination theory in groups

The initial stages of the elimination theory in groups are related to:

Gauss elimination in modules,

Hall collection in nilpotent groups (or standard bases in
polycyclic groups),

Nielsen method

all three are now unified in the modern framework of modern
Grobner basis theory or Knuth-Bendix method.
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Elimination theory in groups

The modern ideas of ET in groups stem from the theory of
equations in free groups and semigroups.

Makanin-Razborov process plays an important part in this theory.
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Elimination theory in groups

In the first lecture I am going to discuss the first level of the
elimination theory in groups.
Its scope can be described as the group-theoretic counterpart of
the basic quantifier-free model theory, or universal algebraic
geometry.

In group theory it appears in the form of:

universal theories of groups,

algebraic geometry over groups,

residual theory or discrimination of groups,

”limits” of groups.
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Algebraic geometry over groups
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Algebraic sets

G - a group generated by A,
F (X ) - free group on X = {x1, x2, . . . xn}.

A system of equations S(X ,A) = 1 in variables X and
coefficients from G (viewed as a subset of G ∗ F (X )).

A solution of S(X ,A) = 1 in G is a tuple (g1, . . . , gn) ∈ Gn such
that S(g1, . . . , gn) = 1 in G .

VG (S), the set of all solutions of S = 1 in G , is called an
algebraic set defined by S .
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Radicals and coordinate groups

The maximal subset R(S) ⊆ G ∗ F (X ) with

VG (R(S)) = VG (S)

is the radical of S = 1 in G .

The quotient group

GR(S) = G [X ]/R(S)

is the coordinate group of S = 1.

Solutions of S(X ) = 1 in G ⇐⇒ G -homomorphisms GR(S) → G .
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Zariski topology

The following conditions are equivalent:

G is equationally Noetherian, i.e., every system S(X ) = 1
over G is equivalent to some finite part of itself.

the Zariski topology (formed by algebraic sets as a sub-basis
of closed sets) over Gn is Noetherian for every n, i.e., every
proper descending chain of closed sets in Gn is finite.

Every chain of proper epimorphisms of coordinate groups over
G is finite.
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Irreducible components

If the Zariski topology is Noetherian then every algebraic set can be
uniquely presented as a finite union of its irreducible components:

V = V1 ∪ . . .Vk .

Recall, that a closed subset V is irreducible if it is not a union of
two proper closed (in the induced topology) subsets.

The following is an immediate corollary of the decomposition of
algebraic sets into their irreducible components.
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Irreducible components

Embedding theorem

Let G be an equationally Noetherian. Then for every system of
equations S(X ) = 1 over G there are finitely many irreducible
systems S1(X ) = 1, . . . ,Sm(X ) = 1 (that determine the irreducible
components of the algebraic set V (S)) such that

GR(S) ↪→ GR(S1) × . . .× GR(Sm)
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Limit groups
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Unification theorems for limits of free groups

Unification Theorems

Let G be a finitely generated group and F ≤ G . Then the
following conditions are equivalent:

1) G is the coordinate group of an irreducible variety over F .

2) G is discriminated by F , i.e. for any finite subset M ⊆ G
there exists an F -homomorphism G → F injective on M.

3) G is universally equivalent to F ;

4) G is a limit of free groups in Gromov-Hausdorff metric.

5) G is a Sela’s limit group.
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Unification theorems for limits of free groups

This result shows that the class of fully residually free groups is
quite special - it appeared (and was independently studied) in
several different areas of group theory.

It turned out that similar results hold for many other groups!
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General Unification Theorems

General Unification Theorem for groups: No coefficients

Let G be an equationally Noetherian group. Then for a finitely
generated group H the following conditions are equivalent:

1 Th∀(G ) ⊆ Th∀(H), i.e., H ∈ Ucl(G );

2 Th∃(G ) ⊇ Th∃(H);

3 H embeds into an ultrapower
∏

G/D of G ;

4 H is discriminated by G ;

5 H is a limit group over G ;

6 H is defined by a complete atomic type in the theory Th∀(G )
in the first-order group language;

7 H is the coordinate algebra of an irreducible non-empty
algebraic set over G defined by a system of coefficient-free
equations.
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General Unification Theorems

Equational Noetherian Property is the key to the unification
theorem.

An analog of the Hilbert Basis Theorem.

There are many Equationally Noetherian groups.

For example, linear groups are equationally Noetherian.

Alexei Miasnikov Elimination Theory I: Unification Theorems and Limits of groups



General Unification Theorems

Equational Noetherian Property is the key to the unification
theorem.

An analog of the Hilbert Basis Theorem.

There are many Equationally Noetherian groups.

For example, linear groups are equationally Noetherian.

Alexei Miasnikov Elimination Theory I: Unification Theorems and Limits of groups



General Unification Theorems

Equational Noetherian Property is the key to the unification
theorem.

An analog of the Hilbert Basis Theorem.

There are many Equationally Noetherian groups.

For example, linear groups are equationally Noetherian.

Alexei Miasnikov Elimination Theory I: Unification Theorems and Limits of groups



General Unification Theorems

Equational Noetherian Property is the key to the unification
theorem.

An analog of the Hilbert Basis Theorem.

There are many Equationally Noetherian groups.

For example, linear groups are equationally Noetherian.

Alexei Miasnikov Elimination Theory I: Unification Theorems and Limits of groups



Lyndon’s completions

Lyndon: introduced free exponential groups FZ[t] over
polynomials Z[t] (to describe solution sets of one-variable
equations).
He showed also: FZ[t] is discriminated by F .

M. and Remeslennikov

FZ [t] can be obtained as union of an infinite chain of extensions of
centralizers:

F = G0 < G1 < . . . < . . . ∪ Gi = FZ [t]

where
Gi+1 = 〈Gi , ti | [CGi

(ui ), ti ] = 1〉.

(extension of the centralizer CGi
(ui )).
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Structure of subgroups of F Z[t]

From Bass-Serre theory

Finitely generated subgroups of FZ [t] are fundamental groups of
very particular graphs of groups.
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The Second Embedding Theorem

The Second Embedding Theorem [Kharlampovich and M. 96]:

Let S = 1 be an irreducible system S = 1 over F . Then:

There is an embedding of FR(S) into a group Gi which is
obtained from F by finitely many extensions of centralizers.
Such an embedding can be found effectively.

There is an embedding of FR(S) into Lyndon’s group FZ[t].
Such an embedding can be found effectively.

This allows one to study the coordinate groups of irreducible
systems of equations (fully residually free groups) via their
splittings into graphs of groups.
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Immediate corollaries

Corollary

Every finitely generated fully residually free group is finitely
presented. There is an algorithm to find a finite presentation.

For every non-abelian finitely generated fully residually free
group one can effectively find its non-trivial splitting (as a free
product, or an amalgamated product, or an HNN extension
over a cyclic subgroup)

Every finitely generated residually free group G can be
effectively presented as a subdirect product of finitely many
fully residually free groups.
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Limits of hyperbolic groups
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Unification Theorem

Theorem [Sela]

Torsion-free hyperbolic groups are equationally Noetherian.

Unification Theorem

Let H be a torsion-free hyperbolic group and G a finitely generated
group with H ≤ G . Then the following conditions are equivalent:

1) G is discriminated by H;

2) G is universally equivalent to H;

3) G is the coordinate group of an irreducible variety over H.

4) G is an H-limit group.
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Lyndon’s Completions

Theorem [BMR]

Let H be a torsion-free hyperbolic group. Then

HZ[t] is a union of extension of centralizers.

HZ[t] is fully residually (discriminated by) H.
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Embeddings

The Embedding Theorem [Kharlampovich, Myasnikov]

Let H be a torsion-free hyperbolic group. Then:

Every finitely generated fully residually H group embeds into
into a group obtained from H by finitely many extensions of
centralizers.

Every finitely generated fully residually H group embeds into
HZ [t].

All the standard corollaries follow.
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Limits of solvable groups
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Rigid groups

Definition

A series of normal subgroups of G

G = G1 > G2 > . . . > Gn > Gn+1 = 1 (1)

is called principal if the factors Gi/Gi+1 are abelian groups which
do not have torsion as Z[G/Gi ]-modules, i = 1, . . . , n.

Definition

Groups with principal series are called rigid.
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Uniqueness of the principal series

Theorem

Every rigid group has only one principal series.

The length of the principal series is equal exactly to the
solvability class of G .

For a rigid group G with a principal series

G = G1 > G2 > . . . > Gn > Gn+1 = 1

the group G/Gi also has a principal series

G/Gi > G2/Gi > . . . > Gi−1/Gi > Gi/Gi = 1.

This allows one to use induction on the length of the principal
series.
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Examples

Proposition

The following hold:

1) Rigid groups are torsion-free solvable groups.

2) Torsion-free abelian groups are rigid.

3) Subgroups of rigid groups are rigid.

4) Direct products of two groups, one of which is non-abelian, is
not rigid.

5) Non-abelian groups with non-trivial center are not rigid.
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Examples

Proposition

The following hold:

1) Free solvable groups are rigid.

2) If A is torsion-free abelian and B is rigid then the wreath
product A o B is rigid.
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Iterated wreath products and rigid groups

Let Am be a free abelian group of rank m.
Put W (m, 0) = Am and define W (m, n) by induction

W (m, n) = Am oW (m, n − 1).

Definition

W (m, n) is an iterated wreath product of n free abelian groups Am.
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Characterization theorem

The following result gives a nice characterization of finitely
generated rigid groups.

Theorem

Let G be an n-rigid m-generated group. Then G embeds into
W (m, n). Conversely, the group W (m, n) is rigid, so every finitely
generated subgroup of W (m, n) is rigid.

Put W = ∪∞n=1W (n, n). Then

f.g. rigid groups = f.g. subgroups of W.
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Noetherian property

Theorem, [Gupta,Romanovskii, 2007]

Free solvable groups are equationally Noetherian;

Groups W (m, n) are equationally Noetherian.

Corollary

Finitely generated rigid groups are equationally Noetherian.
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Coordinate groups of irreducible sets

Theorem

Let A be a rigid group. Then the coordinate groups of irreducible
algebraic sets over A are rigid.

Corollary

Finitely generated groups discriminated by a rigid group are
rigid;

Limits of a finitely generated rigid group are rigid.

Corollary

Limits of a finitely generated free solvable group of class n are rigid
groups of length n.
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Principal dimension

Let G be a rigid group with the principal series

G = G1 > G2 > . . . > Gn > Gn+1 = 1.

Then Gi/Gi+1 is a torsion-free Z[G/Gi ]-module.

Since the group G/Gi is solvable and torsion-free the group ring
Z[G/Gi ] is an Ore domain (P.H.Kropholler, P.A.Linnell and
J.A.Moody),

Hence Z[G/Gi ] embeds into its ring of fractions Ki (G ) which is a
division ring.

Since the Gi/Gi+1 has no Z[G/Gi ]-torsion it embeds into its tensor
completion Vi (G ) = G/Gi

⊗
Z[G/Gi ]

Ki (G ), which is a vector space
over Ki (G ).
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Principal dimension

Put
ri (G ) = dimKi (G), r(G ) = (r1(G ), . . . , rn(G )).

The tuple r(G ) is the principal dimension of G .

Lemma

Let G be an n-rigid group. If G is generated by m elements then
r1(G ) ≤ m and ri (G ) ≤ m − 1 (2 ≤ i ≤ n).
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Epimorphisms of rigid groups

Lemma

Let G and H be n-rigid groups. If ϕ : G → H is a proper
epimorphism then r(G ) > r(H) in the left lexicographical order.
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Finiteness of Zariski dimension

Theorem

Let A be a finitely generated n-rigid group. Then

1) Every strictly decreasing chain of irreducible closed sets in Am

has length at most (m + 1)n.

2) The Zariski dimension of any irreducible algebraic set from Am

does not exceed (m + 1)n. In particular, the Zariski dimension
of Am is finite for every m.
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Limits of nilpotent groups
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Limits of nilpotent groups

Theorem

Let N be a finitely generated torsion-free nilpotent group. Then:

1) Every finitely generated N-limit group is a subgroup of N Z̃,
where Z̃ = ΠZ/D is an ultrapower of the ring Z over a

non-principal ultrafilter D, and N Z̃ is the Hall completion of N
over Z̃.

2) Every finitely generated subgroup of N Z̃ is an N-limit group.

Main Open Problem: Can one replace Z̃ by a ”better ring”, say
by Z[t], or something like this?
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Prime ideals from a different view-point

Note:

If k is algebraically closed then an ideal p of k[X ] is prime if
and only if the k-algebra k[X ]/p is k-discriminated by k
(hence k and k[X ]/p mutually discriminate each other) .

Equivalently, p is prime iff k[X ] and k[X ]/p mutually
discriminate each other (as k-algebras).

Equivalently, p is prime iff k[X ] and k[X ]/p are universally
equivalent (as k-algebras).
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Prime ideals in groups

Definition

We say that a normal subgroup N of a group H is a prime ideal in
H if H and H/N are universally equivalent.

Example: no non-trivial prime ideals in Z+.
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Krull dimension in groups

Krull dimension Kdim(H) of a G -group H is the supremum of all
natural numbers k such that exists a chain

p0 ⊂ p1 ⊂ . . . ⊂ pk

of distinct prime ideals in H.

Example: Kdim(Z) = 1.

Proposition

If G is a free abelian group of rank n then Kdim(G ) = n.

If G is a torsion-free polycyclic group then Kdim(G ) ≤ h(G ),
where h(G ) is the Hirsch number of G .
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Krull versus Zariski

Proposition

Let G be an equationally Noetherian group. If Y is an algebraic
subset of Gn then Zariski dimension of Y is equal to Krull
dimension KdimG (H) of its coordinate group Γ(Y ).

Theorem

Let G be a rigid group (in particular, a limit of a free solvable
group) then Krull dimension of G is finite.
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Krull dimension of free groups

In the case of free or hyperbolic groups much less is known.

If F is a free group then Zariski dimension of F 1 is equal to 2
(Appel, Lorents).

Conjecture

Zariski dimension of F n is finite for every n ∈ N.

Lars Louder announced that this conjecture holds.
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