
From pregroups to groups

Andrew Duncan

December 15th, 2008

Outline

1 Pregroups

2 Decision problems

Pregroups

A pregroup consists of a set P together with

1 a designated element 1;

2 an involution −1 defined on P ;

3 a set D ⊆ P × P ;

4 a function m : D → P ;

such that, writing [xy] to mean (x , y) ∈ D and m(x , y) = [xy]

Identity [1x] = [x1] = x for all x ;

Inverses [xεx−ε] = 1, for all x , ε = ±1;

Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x [yz]] defined
and then [[xy]z] = [x [yz]];

Uniformity If (w , x) & (x , y) & (y , z) ∈ D then
either (w , [xy]) ∈ D or ([xy], z) ∈ D.

Pregroups

A pregroup consists of a set P together with

1 a designated element 1;

2 an involution −1 defined on P ;

3 a set D ⊆ P × P ;

4 a function m : D → P ;

such that, writing [xy] to mean (x , y) ∈ D and m(x , y) = [xy]

Identity [1x] = [x1] = x for all x ;

Inverses [xεx−ε] = 1, for all x , ε = ±1;

Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x [yz]] defined
and then [[xy]z] = [x [yz]];

Uniformity If (w , x) & (x , y) & (y , z) ∈ D then
either (w , [xy]) ∈ D or ([xy], z) ∈ D.

Pregroups

A pregroup consists of a set P together with

1 a designated element 1;

2 an involution −1 defined on P ;

3 a set D ⊆ P × P ;

4 a function m : D → P ;

such that, writing [xy] to mean (x , y) ∈ D and m(x , y) = [xy]

Identity [1x] = [x1] = x for all x ;

Inverses [xεx−ε] = 1, for all x , ε = ±1;

Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x [yz]] defined
and then [[xy]z] = [x [yz]];

Uniformity If (w , x) & (x , y) & (y , z) ∈ D then
either (w , [xy]) ∈ D or ([xy], z) ∈ D.

Pregroups

A pregroup consists of a set P together with

1 a designated element 1;

2 an involution −1 defined on P ;

3 a set D ⊆ P × P ;

4 a function m : D → P ;

such that, writing [xy] to mean (x , y) ∈ D and m(x , y) = [xy]

Identity [1x] = [x1] = x for all x ;

Inverses [xεx−ε] = 1, for all x , ε = ±1;

Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x [yz]] defined
and then [[xy]z] = [x [yz]];

Uniformity If (w , x) & (x , y) & (y , z) ∈ D then
either (w , [xy]) ∈ D or ([xy], z) ∈ D.

Pregroups

A pregroup consists of a set P together with

1 a designated element 1;

2 an involution −1 defined on P ;

3 a set D ⊆ P × P ;

4 a function m : D → P ;

such that, writing [xy] to mean (x , y) ∈ D and m(x , y) = [xy]

Identity [1x] = [x1] = x for all x ;

Inverses [xεx−ε] = 1, for all x , ε = ±1;

Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x [yz]] defined
and then [[xy]z] = [x [yz]];

Uniformity If (w , x) & (x , y) & (y , z) ∈ D then
either (w , [xy]) ∈ D or ([xy], z) ∈ D.

Pregroups

A pregroup consists of a set P together with

1 a designated element 1;

2 an involution −1 defined on P ;

3 a set D ⊆ P × P ;

4 a function m : D → P ;

such that, writing [xy] to mean (x , y) ∈ D and m(x , y) = [xy]

Identity [1x] = [x1] = x for all x ;

Inverses [xεx−ε] = 1, for all x , ε = ±1;

Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x [yz]] defined
and then [[xy]z] = [x [yz]];

Uniformity If (w , x) & (x , y) & (y , z) ∈ D then
either (w , [xy]) ∈ D or ([xy], z) ∈ D.

Pregroups

A pregroup consists of a set P together with

1 a designated element 1;

2 an involution −1 defined on P ;

3 a set D ⊆ P × P ;

4 a function m : D → P ;

such that, writing [xy] to mean (x , y) ∈ D and m(x , y) = [xy]

Identity [1x] = [x1] = x for all x ;

Inverses [xεx−ε] = 1, for all x , ε = ±1;

Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x [yz]] defined
and then [[xy]z] = [x [yz]];

Uniformity If (w , x) & (x , y) & (y , z) ∈ D then
either (w , [xy]) ∈ D or ([xy], z) ∈ D.

Pregroups

A pregroup consists of a set P together with

1 a designated element 1;

2 an involution −1 defined on P ;

3 a set D ⊆ P × P ;

4 a function m : D → P ;

such that, writing [xy] to mean (x , y) ∈ D and m(x , y) = [xy]

Identity [1x] = [x1] = x for all x ;

Inverses [xεx−ε] = 1, for all x , ε = ±1;

Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x [yz]] defined
and then [[xy]z] = [x [yz]];

Uniformity If (w , x) & (x , y) & (y , z) ∈ D then
either (w , [xy]) ∈ D or ([xy], z) ∈ D.

Pregroups

A pregroup consists of a set P together with

1 a designated element 1;

2 an involution −1 defined on P ;

3 a set D ⊆ P × P ;

4 a function m : D → P ;

such that, writing [xy] to mean (x , y) ∈ D and m(x , y) = [xy]

Identity [1x] = [x1] = x for all x ;

Inverses [xεx−ε] = 1, for all x , ε = ±1;

Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x [yz]] defined
and then [[xy]z] = [x [yz]];

Uniformity If (w , x) & (x , y) & (y , z) ∈ D then
either (w , [xy]) ∈ D or ([xy], z) ∈ D.

Pregroups

A pregroup consists of a set P together with

1 a designated element 1;

2 an involution −1 defined on P ;

3 a set D ⊆ P × P ;

4 a function m : D → P ;

such that, writing [xy] to mean (x , y) ∈ D and m(x , y) = [xy]

Identity [1x] = [x1] = x for all x ;

Inverses [xεx−ε] = 1, for all x , ε = ±1;

Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x [yz]] defined
and then [[xy]z] = [x [yz]];

Uniformity If (w , x) & (x , y) & (y , z) ∈ D then
either (w , [xy]) ∈ D or ([xy], z) ∈ D.

The Universal Group

The universal group U(P) of a pregroup P is the group

〈P |m(x , y) = xy ,∀(x , y) ∈ D〉.

Stallings: “Group Theory and 3-dimensional Manifolds” (1971)
A word p1 · · · pn ∈ P∗ is reduced if (pi , pi+1) /∈ D, for
i = 1, . . . , n − 1.

Theorem (Stallings)

All reduced words representing an element g ∈ U(P) have the

same length.

Corollary

P embeds in U(P).

The Universal Group

The universal group U(P) of a pregroup P is the group

〈P |m(x , y) = xy ,∀(x , y) ∈ D〉.

Stallings: “Group Theory and 3-dimensional Manifolds” (1971)
A word p1 · · · pn ∈ P∗ is reduced if (pi , pi+1) /∈ D, for
i = 1, . . . , n − 1.

Theorem (Stallings)

All reduced words representing an element g ∈ U(P) have the

same length.

Corollary

P embeds in U(P).

The Universal Group

The universal group U(P) of a pregroup P is the group

〈P |m(x , y) = xy ,∀(x , y) ∈ D〉.

Stallings: “Group Theory and 3-dimensional Manifolds” (1971)
A word p1 · · · pn ∈ P∗ is reduced if (pi , pi+1) /∈ D, for
i = 1, . . . , n − 1.

Theorem (Stallings)

All reduced words representing an element g ∈ U(P) have the

same length.

Corollary

P embeds in U(P).

The Universal Group

The universal group U(P) of a pregroup P is the group

〈P |m(x , y) = xy ,∀(x , y) ∈ D〉.

Stallings: “Group Theory and 3-dimensional Manifolds” (1971)
A word p1 · · · pn ∈ P∗ is reduced if (pi , pi+1) /∈ D, for
i = 1, . . . , n − 1.

Theorem (Stallings)

All reduced words representing an element g ∈ U(P) have the

same length.

Corollary

P embeds in U(P).

Examples

1 Suppose that
• x−1 = x only if x = 1 and
• D contains exactly (1, p), (p, 1), (p±1, p∓1), for all p ∈ P ,

then U(P) is free of rank (|P | − 1)/2.

2 Let A and B be groups with A ∩ B = C . Set P = A ∪ B and
D = (A× A) ∪ (B × B). Then U(P) ∼= A ∗C B .

3 HNN extensions.

4 The fundamental group of a graph of groups is the universal
group of a pregroup (Rimlinger, Hoare).

Examples

1 Suppose that
• x−1 = x only if x = 1 and
• D contains exactly (1, p), (p, 1), (p±1, p∓1), for all p ∈ P ,

then U(P) is free of rank (|P | − 1)/2.

2 Let A and B be groups with A ∩ B = C . Set P = A ∪ B and
D = (A× A) ∪ (B × B). Then U(P) ∼= A ∗C B .

3 HNN extensions.

4 The fundamental group of a graph of groups is the universal
group of a pregroup (Rimlinger, Hoare).

Examples

1 Suppose that
• x−1 = x only if x = 1 and
• D contains exactly (1, p), (p, 1), (p±1, p∓1), for all p ∈ P ,

then U(P) is free of rank (|P | − 1)/2.

2 Let A and B be groups with A ∩ B = C . Set P = A ∪ B and
D = (A× A) ∪ (B × B). Then U(P) ∼= A ∗C B .

3 HNN extensions.

4 The fundamental group of a graph of groups is the universal
group of a pregroup (Rimlinger, Hoare).

Examples

1 Suppose that
• x−1 = x only if x = 1 and
• D contains exactly (1, p), (p, 1), (p±1, p∓1), for all p ∈ P ,

then U(P) is free of rank (|P | − 1)/2.

2 Let A and B be groups with A ∩ B = C . Set P = A ∪ B and
D = (A× A) ∪ (B × B). Then U(P) ∼= A ∗C B .

3 HNN extensions.

4 The fundamental group of a graph of groups is the universal
group of a pregroup (Rimlinger, Hoare).

Examples

1 Suppose that
• x−1 = x only if x = 1 and
• D contains exactly (1, p), (p, 1), (p±1, p∓1), for all p ∈ P ,

then U(P) is free of rank (|P | − 1)/2.

2 Let A and B be groups with A ∩ B = C . Set P = A ∪ B and
D = (A× A) ∪ (B × B). Then U(P) ∼= A ∗C B .

3 HNN extensions.

4 The fundamental group of a graph of groups is the universal
group of a pregroup (Rimlinger, Hoare).

Examples

1 Suppose that
• x−1 = x only if x = 1 and
• D contains exactly (1, p), (p, 1), (p±1, p∓1), for all p ∈ P ,

then U(P) is free of rank (|P | − 1)/2.

2 Let A and B be groups with A ∩ B = C . Set P = A ∪ B and
D = (A× A) ∪ (B × B). Then U(P) ∼= A ∗C B .

3 HNN extensions.

4 The fundamental group of a graph of groups is the universal
group of a pregroup (Rimlinger, Hoare).

Rewriting Systems

A rewriting relation over a set X : =⇒ ⊆ X × X .

•
∗

=⇒: the reflexive and transitive closure of =⇒;

•
∗

⇐⇒: its symmetric, reflexive, and transitive closure.

The relation =⇒ ⊆ X × X is called:

• confluent, if y
∗

⇐= x
∗

=⇒ z implies y
∗

=⇒ w
∗

⇐= z for some
w ;

• terminating, if every infinite chain

x0

∗

=⇒ x1

∗

=⇒ · · · xi−1

∗

=⇒ xi

∗

=⇒ · · ·

becomes stationary;

• convergent, if it is confluent and terminating.

Rewriting Systems

A rewriting relation over a set X : =⇒ ⊆ X × X .

•
∗

=⇒: the reflexive and transitive closure of =⇒;

•
∗

⇐⇒: its symmetric, reflexive, and transitive closure.

The relation =⇒ ⊆ X × X is called:

• confluent, if y
∗

⇐= x
∗

=⇒ z implies y
∗

=⇒ w
∗

⇐= z for some
w ;

• terminating, if every infinite chain

x0

∗

=⇒ x1

∗

=⇒ · · · xi−1

∗

=⇒ xi

∗

=⇒ · · ·

becomes stationary;

• convergent, if it is confluent and terminating.

Rewriting Systems

A rewriting relation over a set X : =⇒ ⊆ X × X .

•
∗

=⇒: the reflexive and transitive closure of =⇒;

•
∗

⇐⇒: its symmetric, reflexive, and transitive closure.

The relation =⇒ ⊆ X × X is called:

• confluent, if y
∗

⇐= x
∗

=⇒ z implies y
∗

=⇒ w
∗

⇐= z for some
w ;

• terminating, if every infinite chain

x0

∗

=⇒ x1

∗

=⇒ · · · xi−1

∗

=⇒ xi

∗

=⇒ · · ·

becomes stationary;

• convergent, if it is confluent and terminating.

Rewriting Systems

A rewriting relation over a set X : =⇒ ⊆ X × X .

•
∗

=⇒: the reflexive and transitive closure of =⇒;

•
∗

⇐⇒: its symmetric, reflexive, and transitive closure.

The relation =⇒ ⊆ X × X is called:

• confluent, if y
∗

⇐= x
∗

=⇒ z implies y
∗

=⇒ w
∗

⇐= z for some
w ;

• terminating, if every infinite chain

x0

∗

=⇒ x1

∗

=⇒ · · · xi−1

∗

=⇒ xi

∗

=⇒ · · ·

becomes stationary;

• convergent, if it is confluent and terminating.

Rewriting Systems

A rewriting relation over a set X : =⇒ ⊆ X × X .

•
∗

=⇒: the reflexive and transitive closure of =⇒;

•
∗

⇐⇒: its symmetric, reflexive, and transitive closure.

The relation =⇒ ⊆ X × X is called:

• confluent, if y
∗

⇐= x
∗

=⇒ z implies y
∗

=⇒ w
∗

⇐= z for some
w ;

• terminating, if every infinite chain

x0

∗

=⇒ x1

∗

=⇒ · · · xi−1

∗

=⇒ xi

∗

=⇒ · · ·

becomes stationary;

• convergent, if it is confluent and terminating.

Rewriting Systems

A rewriting relation over a set X : =⇒ ⊆ X × X .

•
∗

=⇒: the reflexive and transitive closure of =⇒;

•
∗

⇐⇒: its symmetric, reflexive, and transitive closure.

The relation =⇒ ⊆ X × X is called:

• confluent, if y
∗

⇐= x
∗

=⇒ z implies y
∗

=⇒ w
∗

⇐= z for some
w ;

• terminating, if every infinite chain

x0

∗

=⇒ x1

∗

=⇒ · · · xi−1

∗

=⇒ xi

∗

=⇒ · · ·

becomes stationary;

• convergent, if it is confluent and terminating.

Rewriting system over a monoid

A rewriting system over a monoid M is a relation S ⊆ M ×M.

It defines the rewriting relation =⇒
S
⊆ M ×M by

x=⇒
S

y , if x = pℓq, y = prq for some (ℓ, r) ∈ S .

The relation
∗

⇐⇒
S

⊆ M ×M is a congruence;

write M/S for the quotient monoid.

If S ⊆ Γ∗×Γ∗ is a finite convergent string rewriting system (i.e =⇒
S

is a) then then the monoid M/S has decidable word problem.

Rewriting system over a monoid

A rewriting system over a monoid M is a relation S ⊆ M ×M.

It defines the rewriting relation =⇒
S
⊆ M ×M by

x=⇒
S

y , if x = pℓq, y = prq for some (ℓ, r) ∈ S .

The relation
∗

⇐⇒
S

⊆ M ×M is a congruence;

write M/S for the quotient monoid.

If S ⊆ Γ∗×Γ∗ is a finite convergent string rewriting system (i.e =⇒
S

is a) then then the monoid M/S has decidable word problem.

Rewriting system over a monoid

A rewriting system over a monoid M is a relation S ⊆ M ×M.

It defines the rewriting relation =⇒
S
⊆ M ×M by

x=⇒
S

y , if x = pℓq, y = prq for some (ℓ, r) ∈ S .

The relation
∗

⇐⇒
S

⊆ M ×M is a congruence;

write M/S for the quotient monoid.

If S ⊆ Γ∗×Γ∗ is a finite convergent string rewriting system (i.e =⇒
S

is a) then then the monoid M/S has decidable word problem.

Rewriting system over a monoid

A rewriting system over a monoid M is a relation S ⊆ M ×M.

It defines the rewriting relation =⇒
S
⊆ M ×M by

x=⇒
S

y , if x = pℓq, y = prq for some (ℓ, r) ∈ S .

The relation
∗

⇐⇒
S

⊆ M ×M is a congruence;

write M/S for the quotient monoid.

If S ⊆ Γ∗×Γ∗ is a finite convergent string rewriting system (i.e =⇒
S

is a) then then the monoid M/S has decidable word problem.

Rewriting system over a monoid

A rewriting system over a monoid M is a relation S ⊆ M ×M.

It defines the rewriting relation =⇒
S
⊆ M ×M by

x=⇒
S

y , if x = pℓq, y = prq for some (ℓ, r) ∈ S .

The relation
∗

⇐⇒
S

⊆ M ×M is a congruence;

write M/S for the quotient monoid.

If S ⊆ Γ∗×Γ∗ is a finite convergent string rewriting system (i.e =⇒
S

is a) then then the monoid M/S has decidable word problem.

Pre-perfect rewriting systems

Definition
A rewriting system S ⊆ Γ∗ × Γ∗ is called pre-perfect, if:

i.) S is confluent.

ii.) If ℓ −→ r ∈ S , then |ℓ| ≥ |r |.

iii.) If ℓ −→ r ∈ S with |ℓ| = |r |, then r −→ ℓ ∈ S , too.

• A convergent length-reducing system is pre-perfect,

• If a confluent system satisfies |ℓ| ≥ |r | for all ℓ −→ r ∈ S , then
we can add symmetric rules in order to make it pre-perfect.

• Includes non-terminating and infinite systems.

• Leads to a (PSPACE-)decision algorithm for the word problem
(for finite systems).

Pre-perfect rewriting systems

Definition
A rewriting system S ⊆ Γ∗ × Γ∗ is called pre-perfect, if:

i.) S is confluent.

ii.) If ℓ −→ r ∈ S , then |ℓ| ≥ |r |.

iii.) If ℓ −→ r ∈ S with |ℓ| = |r |, then r −→ ℓ ∈ S , too.

• A convergent length-reducing system is pre-perfect,

• If a confluent system satisfies |ℓ| ≥ |r | for all ℓ −→ r ∈ S , then
we can add symmetric rules in order to make it pre-perfect.

• Includes non-terminating and infinite systems.

• Leads to a (PSPACE-)decision algorithm for the word problem
(for finite systems).

Pre-perfect rewriting systems

Definition
A rewriting system S ⊆ Γ∗ × Γ∗ is called pre-perfect, if:

i.) S is confluent.

ii.) If ℓ −→ r ∈ S , then |ℓ| ≥ |r |.

iii.) If ℓ −→ r ∈ S with |ℓ| = |r |, then r −→ ℓ ∈ S , too.

• A convergent length-reducing system is pre-perfect,

• If a confluent system satisfies |ℓ| ≥ |r | for all ℓ −→ r ∈ S , then
we can add symmetric rules in order to make it pre-perfect.

• Includes non-terminating and infinite systems.

• Leads to a (PSPACE-)decision algorithm for the word problem
(for finite systems).

Pre-perfect rewriting systems

Definition
A rewriting system S ⊆ Γ∗ × Γ∗ is called pre-perfect, if:

i.) S is confluent.

ii.) If ℓ −→ r ∈ S , then |ℓ| ≥ |r |.

iii.) If ℓ −→ r ∈ S with |ℓ| = |r |, then r −→ ℓ ∈ S , too.

• A convergent length-reducing system is pre-perfect,

• If a confluent system satisfies |ℓ| ≥ |r | for all ℓ −→ r ∈ S , then
we can add symmetric rules in order to make it pre-perfect.

• Includes non-terminating and infinite systems.

• Leads to a (PSPACE-)decision algorithm for the word problem
(for finite systems).

Pre-perfect rewriting systems

Definition
A rewriting system S ⊆ Γ∗ × Γ∗ is called pre-perfect, if:

i.) S is confluent.

ii.) If ℓ −→ r ∈ S , then |ℓ| ≥ |r |.

iii.) If ℓ −→ r ∈ S with |ℓ| = |r |, then r −→ ℓ ∈ S , too.

• A convergent length-reducing system is pre-perfect,

• If a confluent system satisfies |ℓ| ≥ |r | for all ℓ −→ r ∈ S , then
we can add symmetric rules in order to make it pre-perfect.

• Includes non-terminating and infinite systems.

• Leads to a (PSPACE-)decision algorithm for the word problem
(for finite systems).

A rewriting system for U(P)

Define S ⊆ P∗ × P∗ by

1 −→ ε (= the empty word)
ab −→ [ab] if (a, b) ∈ D

ab ←→ [ac][c−1b] if (a, c), (c−1, b) ∈ D

Proposition (Diekert, AD, Miasnikov, ’08)

• P∗/S defines U(P).

• The system S is strongly confluent and therefore pre-perfect.

• Stallings’ normal form theorem for U(P) follows easily.

• Normal forms for free products with amalgamation and

HNN-extensions also follow from specialisations of the

rewriting system to these cases.

A rewriting system for U(P)

Define S ⊆ P∗ × P∗ by

1 −→ ε (= the empty word)
ab −→ [ab] if (a, b) ∈ D

ab ←→ [ac][c−1b] if (a, c), (c−1, b) ∈ D

Proposition (Diekert, AD, Miasnikov, ’08)

• P∗/S defines U(P).

• The system S is strongly confluent and therefore pre-perfect.

• Stallings’ normal form theorem for U(P) follows easily.

• Normal forms for free products with amalgamation and

HNN-extensions also follow from specialisations of the

rewriting system to these cases.

A rewriting system for U(P)

Define S ⊆ P∗ × P∗ by

1 −→ ε (= the empty word)
ab −→ [ab] if (a, b) ∈ D

ab ←→ [ac][c−1b] if (a, c), (c−1, b) ∈ D

Proposition (Diekert, AD, Miasnikov, ’08)

• P∗/S defines U(P).

• The system S is strongly confluent and therefore pre-perfect.

• Stallings’ normal form theorem for U(P) follows easily.

• Normal forms for free products with amalgamation and

HNN-extensions also follow from specialisations of the

rewriting system to these cases.

A rewriting system for U(P)

Define S ⊆ P∗ × P∗ by

1 −→ ε (= the empty word)
ab −→ [ab] if (a, b) ∈ D

ab ←→ [ac][c−1b] if (a, c), (c−1, b) ∈ D

Proposition (Diekert, AD, Miasnikov, ’08)

• P∗/S defines U(P).

• The system S is strongly confluent and therefore pre-perfect.

• Stallings’ normal form theorem for U(P) follows easily.

• Normal forms for free products with amalgamation and

HNN-extensions also follow from specialisations of the

rewriting system to these cases.

A rewriting system for U(P)

Define S ⊆ P∗ × P∗ by

1 −→ ε (= the empty word)
ab −→ [ab] if (a, b) ∈ D

ab ←→ [ac][c−1b] if (a, c), (c−1, b) ∈ D

Proposition (Diekert, AD, Miasnikov, ’08)

• P∗/S defines U(P).

• The system S is strongly confluent and therefore pre-perfect.

• Stallings’ normal form theorem for U(P) follows easily.

• Normal forms for free products with amalgamation and

HNN-extensions also follow from specialisations of the

rewriting system to these cases.

Given G and an isomorphism θ : H → K , where H and K are
subgroups of G , let t be a symbol not in G and let X and Y be
right transversals for H and K in G .
Set

P = G ∪ GtY ∪ Gt−1X

and

D = G×G ∪G×GtY ∪G×Gt−1X ∪GtY ×G ∪Gt−1×G ∪SA∪SB ,

where

SA = {(ht−1c , gtd)|g , h ∈ G , c ∈ X , d ∈ Y , cg ∈ A} and

SB = {(gtd , ht−1c)|g , h ∈ G , d ∈ Y , c ∈ X , dh ∈ B}.

Then P is a pregroup and U(P) = H.

Given G and an isomorphism θ : H → K , where H and K are
subgroups of G , let t be a symbol not in G and let X and Y be
right transversals for H and K in G .
Set

P = G ∪ GtY ∪ Gt−1X

and

D = G×G ∪G×GtY ∪G×Gt−1X ∪GtY ×G ∪Gt−1×G ∪SA∪SB ,

where

SA = {(ht−1c , gtd)|g , h ∈ G , c ∈ X , d ∈ Y , cg ∈ A} and

SB = {(gtd , ht−1c)|g , h ∈ G , d ∈ Y , c ∈ X , dh ∈ B}.

Then P is a pregroup and U(P) = H.

Given G and an isomorphism θ : H → K , where H and K are
subgroups of G , let t be a symbol not in G and let X and Y be
right transversals for H and K in G .
Set

P = G ∪ GtY ∪ Gt−1X

and

D = G×G ∪G×GtY ∪G×Gt−1X ∪GtY ×G ∪Gt−1×G ∪SA∪SB ,

where

SA = {(ht−1c , gtd)|g , h ∈ G , c ∈ X , d ∈ Y , cg ∈ A} and

SB = {(gtd , ht−1c)|g , h ∈ G , d ∈ Y , c ∈ X , dh ∈ B}.

Then P is a pregroup and U(P) = H.

Given G and an isomorphism θ : H → K , where H and K are
subgroups of G , let t be a symbol not in G and let X and Y be
right transversals for H and K in G .
Set

P = G ∪ GtY ∪ Gt−1X

and

D = G×G ∪G×GtY ∪G×Gt−1X ∪GtY ×G ∪Gt−1×G ∪SA∪SB ,

where

SA = {(ht−1c , gtd)|g , h ∈ G , c ∈ X , d ∈ Y , cg ∈ A} and

SB = {(gtd , ht−1c)|g , h ∈ G , d ∈ Y , c ∈ X , dh ∈ B}.

Then P is a pregroup and U(P) = H.

Computability

Rabin’s definition:
a map i : G → N with i(G) recursive is an indexing.

G is computable if G has an indexing such that the map
m : N× N→ N

(i(g), i(h)) 7→ i(gh)

is recursive.

Rabin ’67: A finitely generated group has solvable word problem
iff it is computable.

Computability

Rabin’s definition:
a map i : G → N with i(G) recursive is an indexing.

G is computable if G has an indexing such that the map
m : N× N→ N

(i(g), i(h)) 7→ i(gh)

is recursive.

Rabin ’67: A finitely generated group has solvable word problem
iff it is computable.

Computability

Rabin’s definition:
a map i : G → N with i(G) recursive is an indexing.

G is computable if G has an indexing such that the map
m : N× N→ N

(i(g), i(h)) 7→ i(gh)

is recursive.

Rabin ’67: A finitely generated group has solvable word problem
iff it is computable.

Computable Pregroup

A pregroup P is computable if P has an indexing i such that

• i × i(D) is recursive and;

• i × i × i(M) is recursive,

where
M = {(a, b, c)|(a, b) ∈ D and c = [ab]}.

Proposition (Diekert, AD, Miasnikov)

If P is a computable pregroup then

1 the word problem in U(P) is solvable, relative to the

generating set P and

2 U(P) is a computable group.

Computable Pregroup

A pregroup P is computable if P has an indexing i such that

• i × i(D) is recursive and;

• i × i × i(M) is recursive,

where
M = {(a, b, c)|(a, b) ∈ D and c = [ab]}.

Proposition (Diekert, AD, Miasnikov)

If P is a computable pregroup then

1 the word problem in U(P) is solvable, relative to the

generating set P and

2 U(P) is a computable group.

Computable Pregroup

A pregroup P is computable if P has an indexing i such that

• i × i(D) is recursive and;

• i × i × i(M) is recursive,

where
M = {(a, b, c)|(a, b) ∈ D and c = [ab]}.

Proposition (Diekert, AD, Miasnikov)

If P is a computable pregroup then

1 the word problem in U(P) is solvable, relative to the

generating set P and

2 U(P) is a computable group.

Computable Pregroup

A pregroup P is computable if P has an indexing i such that

• i × i(D) is recursive and;

• i × i × i(M) is recursive,

where
M = {(a, b, c)|(a, b) ∈ D and c = [ab]}.

Proposition (Diekert, AD, Miasnikov)

If P is a computable pregroup then

1 the word problem in U(P) is solvable, relative to the

generating set P and

2 U(P) is a computable group.

Computable Pregroup

A pregroup P is computable if P has an indexing i such that

• i × i(D) is recursive and;

• i × i × i(M) is recursive,

where
M = {(a, b, c)|(a, b) ∈ D and c = [ab]}.

Proposition (Diekert, AD, Miasnikov)

If P is a computable pregroup then

1 the word problem in U(P) is solvable, relative to the

generating set P and

2 U(P) is a computable group.

Conjugacy
Let u = u1 · · · un ∈ P∗ cyclically reduced of length n (reduced and
(un, u1) /∈ D).

If u = v1 · · · vn then v = vi · · · vnv1 · · · vi−1 is a cyclic permutation

of u over U(P).

Lemma (D,D,M)

Let u be a cyclically reduced element of P∗ and let v be a cyclic

permutation of u. Then v is cyclically reduced. In particular, u and

v have the same length.

Theorem (D,D,M)

Let u and v be cyclically reduced elements of P∗ such that u is

conjugate to v in U(P). Then, we have:

1 u and v have the same length.
2

If u /∈ P, i.e., n ≥ 2, then we can transform u into v by a

sequence of cyclic permutations.

Conjugacy
Let u = u1 · · · un ∈ P∗ cyclically reduced of length n (reduced and
(un, u1) /∈ D).

If u = v1 · · · vn then v = vi · · · vnv1 · · · vi−1 is a cyclic permutation

of u over U(P).

Lemma (D,D,M)

Let u be a cyclically reduced element of P∗ and let v be a cyclic

permutation of u. Then v is cyclically reduced. In particular, u and

v have the same length.

Theorem (D,D,M)

Let u and v be cyclically reduced elements of P∗ such that u is

conjugate to v in U(P). Then, we have:

1 u and v have the same length.

2 If u /∈ P, i.e., n ≥ 2, then we can transform u into v by a

sequence of cyclic permutations.

Conjugacy
Let u = u1 · · · un ∈ P∗ cyclically reduced of length n (reduced and
(un, u1) /∈ D).

If u = v1 · · · vn then v = vi · · · vnv1 · · · vi−1 is a cyclic permutation

of u over U(P).

Lemma (D,D,M)

Let u be a cyclically reduced element of P∗ and let v be a cyclic

permutation of u. Then v is cyclically reduced. In particular, u and

v have the same length.

Theorem (D,D,M)

Let u and v be cyclically reduced elements of P∗ such that u is

conjugate to v in U(P). Then, we have:

1 u and v have the same length.

2 If u /∈ P, i.e., n ≥ 2, then we can transform u into v by a

sequence of cyclic permutations.

Conjugacy
Let u = u1 · · · un ∈ P∗ cyclically reduced of length n (reduced and
(un, u1) /∈ D).

If u = v1 · · · vn then v = vi · · · vnv1 · · · vi−1 is a cyclic permutation

of u over U(P).

Lemma (D,D,M)

Let u be a cyclically reduced element of P∗ and let v be a cyclic

permutation of u. Then v is cyclically reduced. In particular, u and

v have the same length.

Theorem (D,D,M)

Let u and v be cyclically reduced elements of P∗ such that u is

conjugate to v in U(P). Then, we have:

1 u and v have the same length.

2 If u /∈ P, i.e., n ≥ 2, then we can transform u into v by a

sequence of cyclic permutations.

Conjugacy
Let u = u1 · · · un ∈ P∗ cyclically reduced of length n (reduced and
(un, u1) /∈ D).

If u = v1 · · · vn then v = vi · · · vnv1 · · · vi−1 is a cyclic permutation

of u over U(P).

Lemma (D,D,M)

Let u be a cyclically reduced element of P∗ and let v be a cyclic

permutation of u. Then v is cyclically reduced. In particular, u and

v have the same length.

Theorem (D,D,M)

Let u and v be cyclically reduced elements of P∗ such that u is

conjugate to v in U(P). Then, we have:

1 u and v have the same length.

2 If u /∈ P, i.e., n ≥ 2, then we can transform u into v by a

sequence of cyclic permutations.

	Pregroups
	Decision problems

