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Pregroups

A pregroup consists of a set P together with
@ a designated element 1;
® an involution ~! defined on P;
®aset DCPxP;
® a function m: D — P;
such that, writing [xy] to mean (x,y) € D and m(x,y) = [xy]
Identity [1x] = [x1] = x for all x;
Inverses [xx—¢] =1, for all x, e = £1;
Associativity [xy] & [yz] defined then
[[xy]z] defined iff [x[yz]] defined
and then [[xy]z] = [x[yz]];
Uniformity If (w,x) & (x,y) & (y,z) € D then
either (w, [xy]) € D or ([xy],z) € D.
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The Universal Group

The universal group U(P) of a pregroup P is the group
(PIm(x,y) = xy,¥(x,y) € D).

Stallings: “Group Theory and 3-dimensional Manifolds” (1971)
A word p; -+ p, € P* is reduced if (p;, pi+1) ¢ D, for
i=1,...,n—1

Theorem (Stallings)

All reduced words representing an element g € U(P) have the
same length.

Corollary
P embeds in U(P).
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@ Suppose that
e x 1=xonlyifx=1and

e D contains exactly (1, p), (p,1), (p**,pT?), for all p € P,
then U(P) is free of rank (|P| —1)/2.

® Let A and B be groups with AN B = C. Set P= AU B and
D=(AxA)U(B x B). Then U(P) = Axc B.
©® HNN extensions.

O The fundamental group of a graph of groups is the universal
group of a pregroup (Rimlinger, Hoare).
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A rewriting relation over a set X: — C X x X.
e —: the reflexive and transitive closure of =—;

e <> its symmetric, reflexive, and transitive closure.

The relation = C X x X is called:

e confluent, if y <= x = z implies y = w <= z for some
w;

e terminating, if every infinite chain
* * * *
X0:>X1:>'..XI_1:>X,:>'..

becomes stationary;

e convergent, if it is confluent and terminating.
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Rewriting system over a monoid

A rewriting system over a monoid M is a relation S C M x M.

It defines the rewriting relation :S> CMx M by
x=2Y, if x=plq, y=prq forsome (¢,r) €S.
The relation %g M x M is a congruence;

write M/S for the quotient monoid.

If S C '* x " is a finite convergent string rewriting system (i.e ?

is a ....) then then the monoid M/S has decidable word problem.
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Definition

A rewriting system S C '™ x ['* is called pre-perfect, if:
i.) S is confluent.

i.) If¢ — reS, then |[¢| > |r|.

ii.) If £ — r € S with |¢| = |r|, then r — £ € S, too.

e A convergent length-reducing system is pre-perfect,

e If a confluent system satisfies |¢| > |r| for all ¢ — r € S, then
we can add symmetric rules in order to make it pre-perfect.

e Includes non-terminating and infinite systems.

e Leads to a (PSPACE-)decision algorithm for the word problem
(for finite systems).
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A rewriting system for U(P)
Define S C P* x P* by

1 — ¢ (= the empty word)
ab — [ab] if (a,b)e D
ab «— J[ac][c™tb] if (a,c), (c71,b)ED

Proposition (Diekert, AD, Miasnikov, '08)
e P*/S defines U(P).

e The system S is strongly confluent and therefore pre-perfect.
e Stallings’ normal form theorem for U(P) follows easily.

e Normal forms for free products with amalgamation and
HNN-extensions also follow from specialisations of the
rewriting system to these cases.
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Given G and an isomorphism 6 : H — K, where H and K are
subgroups of G, let t be a symbol not in G and let X and Y be
right transversals for H and K in G.
Set

P=GUGtYUGt X

and
D=GxGUGXGtYUG x Gt IXUGtY x GUGt ' x GUSAUSE,
where

Sa={(ht"lc,gtd)|g,h € G,c € X,d € Y, cg € A} and
Sg = {(gtd, ht"'c)|lg,h € G,d € Y,c € X,dh € B}.

Then P is a pregroup and U(P) = H.



Computability

Rabin’s definition:
amap i : G — N with i(G) recursive is an indexing.



Computability

Rabin’s definition:
amap i : G — N with i(G) recursive is an indexing.

G is computable if G has an indexing such that the map
m:NxN-—-N

(i(g),i(h)) — i(gh)

is recursive.



Computability

Rabin’s definition:
amap i : G — N with i(G) recursive is an indexing.

G is computable if G has an indexing such that the map
m:NxN-—-N

(i(g),i(h)) — i(gh)

is recursive.

Rabin '67: A finitely generated group has solvable word problem
iff it is computable.
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Computable Pregroup

A pregroup P is computable if P has an indexing / such that
e i x i(D) is recursive and;
e i xixi(M)is recursive,

where
M = {(a, b, c)|(a, b) € D and ¢ = [ab]}.

Proposition (Diekert, AD, Miasnikov)
If P is a computable pregroup then

@ the word problem in U(P) is solvable, relative to the
generating set P and

® U(P) is a computable group.
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If u=wvy---v,then v=v;---v,vi---vj_1 is a cyclic permutation
of u over U(P).
Lemma (D,D,M)

Let u be a cyclically reduced element of P* and let v be a cyclic
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Theorem (D,D,M)
Let u and v be cyclically reduced elements of P* such that u is
conjugate to v in U(P). Then, we have:

@® v and v have the same length.

® Ifud¢ P,ie,n>2, then we can transform u into v by a
sequence of cyclic permutations.
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