From pregroups to groups

Andrew Duncan

December 15th, 2008

Outline

(1) Pregroups

(2) Decision problems

Pregroups

A pregroup consists of a set P together with
(1) a designated element 1;
(2) an involution ${ }^{-1}$ defined on P;
(3) a set $D \subset P \times P$
(4) a function $m: D \rightarrow P$;
such that, writing $[x y]$ to mean $(x, y) \in D$ and $m(x, y)=[x y]$
Identity $[1 x]=[x 1]=x$ for all x;
Inverses $\left[x^{\varepsilon} x^{-\varepsilon}\right]=1$, for all $x, \varepsilon= \pm 1$;
Associativity $[x y] \&[y z]$ defined then
$[[x y] z]$ defined iff $[x[y z]]$ defined
and then $[[x y] z]=[x[y z]]$;
Uniformity If $(w, x) \&(x, y) \&(y, z) \in D$ then either $(w,[x y]) \in D$ or $([x y], z) \in D$.

Pregroups

A pregroup consists of a set P together with
(1) a designated element 1;
(2) an involution ${ }^{-1}$ defined on P;
(3) a set $D \subseteq P \times P$;
(4) a function $m: D \rightarrow P$
such that, writing $[x y]$ to mean $(x, y) \in D$ and $m(x, y)=[x y]$
Identity $[1 x]=[x 1]=x$ for all x;
Inverses $\left[x^{\varepsilon} x^{-\varepsilon}\right]=1$, for all $x, \varepsilon= \pm 1$.
Associativity $[x y]$ \& $[y z]$ defined then
[[xy]z] defined iff $[x[y z]]$ defined
and then $[[x y] z]=[x[y z]]$;
Uniformity If $(w, x) \&(x, y) \&(y, z) \in D$ then either $(w,[x y]) \in D$ or $([x y], z) \in D$

Pregroups

A pregroup consists of a set P together with
(1) a designated element 1;
(2) an involution ${ }^{-1}$ defined on P;
(4) a function $m: D \rightarrow P$;
such that, writing $[x y]$ to mean $(x, y) \in D$ and $m(x, y)=[x y]$ Identity $[1 x]=[x 1]=x$ for all x;
Inverses $\left[x^{\varepsilon} x^{-\varepsilon}\right]=1$, for all $x, \varepsilon= \pm 1$;
Associativity $[x y] \&[y z]$ defined then $[[x y] z]$ defined iff $[x[y z]]$ defined and then $[[x y] z]=[x[y z]]$;
Uniformity If $(w, x) \&(x, y) \&(y, z) \in D$ then either $(w,[x y]) \in D$ or $([x y], z) \in D$.

Pregroups

A pregroup consists of a set P together with
(1) a designated element 1;
(2) an involution ${ }^{-1}$ defined on P;
(3) a set $D \subseteq P \times P$;
(4) a function $m: D \rightarrow P$;
such that, writing $[x y]$ to mean $(x, y) \in D$ and $m(x, y)=[x y]$

$$
\begin{aligned}
& \text { Identity }[1 x]=[x 1]=x \text { for all } x \text {; } \\
& \text { Inverses }\left[x^{-x} x^{-\varepsilon}\right]=1 \text {, for all } x, \varepsilon= \pm 1 \text {; }
\end{aligned}
$$

Associativity $[x y] \&[y z]$ defined then [[xy]z] defined iff $[x[y z]]$ defined and then $[[x y] z]=[x[y z]]$.
Uniformity If $(w, x) \&(x, y) \&(y, z) \in D$ then either $(w,[x y]) \in D$ or $([x y], z) \in D$.

Pregroups

A pregroup consists of a set P together with
(1) a designated element 1;
(2) an involution ${ }^{-1}$ defined on P;
(3) a set $D \subseteq P \times P$;
(4) a function $m: D \rightarrow P$;
such that, writing $[x y]$ to mean $(x, y) \in D$ and $m(x, y)=[x y]$

$$
\begin{aligned}
& \text { Identity }[1 x]=[x 1]=x \text { for all } x \text {; } \\
& \text { Inverses }\left[x^{\varepsilon} x^{-\varepsilon}\right]=1 \text {, for all } x, \varepsilon= \pm 1 \text {; }
\end{aligned}
$$

Associativity $[x y] \&[y z]$ defined then [[xy]z] defined iff $[x[y z]]$ defined and then $[[x y] z]=[x[y z]]$.
Uniformity If $(w, x) \&(x, y) \&(y, z) \in D$ then either $(w,[x y]) \in D$ or $([x y], z) \in D$.

Pregroups

A pregroup consists of a set P together with
(1) a designated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a set $D \subseteq P \times P$;
(4) a function $m: D \rightarrow P$;
such that, writing $[x y]$ to mean $(x, y) \in D$ and $m(x, y)=[x y]$

Pregroups

A pregroup consists of a set P together with
(1) a designated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a set $D \subseteq P \times P$;
(4) a function $m: D \rightarrow P$;
such that, writing $[x y]$ to mean $(x, y) \in D$ and $m(x, y)=[x y]$ Identity $[1 x]=[x 1]=x$ for all x;

Pregroups

A pregroup consists of a set P together with
(1) a designated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a set $D \subseteq P \times P$;
(4) a function $m: D \rightarrow P$;
such that, writing $[x y]$ to mean $(x, y) \in D$ and $m(x, y)=[x y]$ Identity $[1 x]=[x 1]=x$ for all x; Inverses $\left[x^{\varepsilon} x^{-\varepsilon}\right]=1$, for all $x, \varepsilon= \pm 1$;

Pregroups

A pregroup consists of a set P together with
(1) a designated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a set $D \subseteq P \times P$;
(4) a function $m: D \rightarrow P$;
such that, writing $[x y]$ to mean $(x, y) \in D$ and $m(x, y)=[x y]$ Identity $[1 x]=[x 1]=x$ for all x; Inverses $\left[x^{\varepsilon} x^{-\varepsilon}\right]=1$, for all $x, \varepsilon= \pm 1$;
Associativity $[x y] \&[y z]$ defined then
$[[x y] z]$ defined iff $[x[y z]]$ defined and then $[[x y] z]=[x[y z]]$;
Uniformity If $(w, x) \&(x, y) \&(y, z) \in D$ then
either $(w,[x y]) \in D$ or $([x y], z) \in D$.

Pregroups

A pregroup consists of a set P together with
(1) a designated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a set $D \subseteq P \times P$;
(4) a function $m: D \rightarrow P$;
such that, writing $[x y]$ to mean $(x, y) \in D$ and $m(x, y)=[x y]$
Identity $[1 x]=[x 1]=x$ for all x;
Inverses $\left[x^{\varepsilon} x^{-\varepsilon}\right]=1$, for all $x, \varepsilon= \pm 1$;
Associativity $[x y] \&[y z]$ defined then
[[xy]z] defined iff $[x[y z]]$ defined and then $[[x y] z]=[x[y z]]$;
Uniformity If $(w, x) \&(x, y) \&(y, z) \in D$ then either $(w,[x y]) \in D$ or $([x y], z) \in D$.

The Universal Group

The universal group $U(P)$ of a pregroup P is the group

$$
\langle P \mid m(x, y)=x y, \forall(x, y) \in D\rangle
$$

Stallings: "Group Theory and 3-dimensional Manifolds" (1971)
A word $p_{1} \cdots p_{n} \in P^{*}$ is reduced if $\left(p_{i}, p_{i+1}\right) \notin D$, for
$i=1, \ldots, n-1$.

Theorem (Stallings)
All reduced words representing an element $g \in U(P)$ have the same length.

Corollary
P embeds in $U(P)$.

The Universal Group

The universal group $U(P)$ of a pregroup P is the group

$$
\langle P \mid m(x, y)=x y, \forall(x, y) \in D\rangle
$$

Stallings: "Group Theory and 3-dimensional Manifolds" (1971) A word $p_{1} \cdots p_{n} \in P^{*}$ is reduced if $\left(p_{i}, p_{i+1}\right) \notin D$, for $i=1, \ldots, n-1$.

Theorem (Stallings)
All reduced words representing an element $g \in U(P)$ have the same length.

Corollary
P embeds in $U(P)$.

The Universal Group

The universal group $U(P)$ of a pregroup P is the group

$$
\langle P \mid m(x, y)=x y, \forall(x, y) \in D\rangle
$$

Stallings: "Group Theory and 3-dimensional Manifolds" (1971) A word $p_{1} \cdots p_{n} \in P^{*}$ is reduced if $\left(p_{i}, p_{i+1}\right) \notin D$, for $i=1, \ldots, n-1$.

Theorem (Stallings)
All reduced words representing an element $g \in U(P)$ have the same length.
P embeds in $U(P)$.

The Universal Group

The universal group $U(P)$ of a pregroup P is the group

$$
\langle P \mid m(x, y)=x y, \forall(x, y) \in D\rangle
$$

Stallings: "Group Theory and 3-dimensional Manifolds" (1971) A word $p_{1} \cdots p_{n} \in P^{*}$ is reduced if $\left(p_{i}, p_{i+1}\right) \notin D$, for $i=1, \ldots, n-1$.

Theorem (Stallings)
All reduced words representing an element $g \in U(P)$ have the same length.

Corollary
P embeds in $U(P)$.

Examples

(1) Suppose that

- $x^{-1}=x$ only if $x=1$ and
- D contains exactly $(1, p),(p, 1),\left(p^{ \pm 1}, p^{\mp 1}\right)$, for all $p \in P$,
then $U(P)$ is free of rank $(|P|-1) / 2$.
(2) Let A and B be groups with $A \cap B=C$. Set $P=A \cup B$ and $D=(A \times A) \cup(B \times B)$. Then $U(P) \cong A * C B$.
(3) HNN extensions.
(4) The fundamental group of a graph of groups is the universal group of a pregroup (Rimlinger, Hoare).

Examples

(1) Suppose that

- $x^{-1}=x$ only if $x=1$ and
- D contains exactly $(1, p),(p, 1),\left(p^{ \pm 1}, p^{\mp 1}\right)$, for all $p \in P$, then $U(P)$ is free of rank $(|P|-1) / 2$.
(2) Let A and B be groups with $A \cap B=C$. Set $P=A \cup B$ and $D=(A \times A) \cup(B \times B)$. Then $U(P) \cong A *_{C} B$.
(3) HNN extensions.
(4) The fundamental group of a graph of groups is the universal group of a pregroup (Rimlinger, Hoare).

Examples

(1) Suppose that

- $x^{-1}=x$ only if $x=1$ and
- D contains exactly $(1, p),(p, 1),\left(p^{ \pm 1}, p^{\mp 1}\right)$, for all $p \in P$, then $U(P)$ is free of rank $(|P|-1) / 2$.
(2) Let A and B be groups with $A \cap B=C$. Set $P=A \cup B$ and $D=(A \times A) \cup(B \times B)$. Then $U(P) \cong A *_{C} B$.
(3) HNN extensions.
(4) The fundamental group of a graph of groups is the universal group of a pregroup (Rimlinger, Hoare).

Examples

(1) Suppose that

- $x^{-1}=x$ only if $x=1$ and
- D contains exactly $(1, p),(p, 1),\left(p^{ \pm 1}, p^{\mp 1}\right)$, for all $p \in P$, then $U(P)$ is free of rank $(|P|-1) / 2$.
2 Let A and B be groups with $A \cap B=C$. Set $P=A \cup B$ and $D=(A \times A) \cup(B \times B)$. Then $U(P) \cong A * c B$.
(3) HNN extensions.
(4) The fundamental group of a graph of groups is the universal group of a pregroup (Rimlinger, Hoare).

Examples

(1) Suppose that

- $x^{-1}=x$ only if $x=1$ and
- D contains exactly $(1, p),(p, 1),\left(p^{ \pm 1}, p^{\mp 1}\right)$, for all $p \in P$, then $U(P)$ is free of rank $(|P|-1) / 2$.
(2) Let A and B be groups with $A \cap B=C$. Set $P=A \cup B$ and $D=(A \times A) \cup(B \times B)$. Then $U(P) \cong A *_{c} B$.
(3) HNN extensions.
(4) The fundamental group of a graph of groups is the universal group of a pregroup (Rimlinger, Hoare).

Examples

(1) Suppose that

- $x^{-1}=x$ only if $x=1$ and
- D contains exactly $(1, p),(p, 1),\left(p^{ \pm 1}, p^{\mp 1}\right)$, for all $p \in P$, then $U(P)$ is free of rank $(|P|-1) / 2$.
(2) Let A and B be groups with $A \cap B=C$. Set $P=A \cup B$ and $D=(A \times A) \cup(B \times B)$. Then $U(P) \cong A * C B$.
(3) HNN extensions.
(4) The fundamental group of a graph of groups is the universal group of a pregroup (Rimlinger, Hoare).

Rewriting Systems

A rewriting relation over a set $X: \Longrightarrow \subseteq X \times X$.

- $\stackrel{\text { * }}{\Longrightarrow}$: the reflexive and transitive closure of \Longrightarrow;
- $\stackrel{*}{\Longleftrightarrow}$: its symmetric, reflexive, and transitive closure.

The relation $\longrightarrow \subseteq X \times X$ is called:

- confluent, if $y \stackrel{*}{\rightleftarrows} x \stackrel{*}{\Longrightarrow} z$ implies $y \stackrel{*}{\Longrightarrow} w \stackrel{*}{\rightleftarrows} z$ for some w;
- terminating, if every infinite chain

becomes stationary;
- convergent, if it is confluent and terminating.

Rewriting Systems

A rewriting relation over a set $X: \Longrightarrow \subseteq \times X$.

- $\xlongequal{*}$: the reflexive and transitive closure of \Longrightarrow;
- $\stackrel{*}{\longleftrightarrow}$: its symmetric, reflexive, and transitive closure.

The relation $\Longrightarrow \subseteq X \times X$ is called:

- confluent, if $y \stackrel{*}{*}_{\leftarrow} \stackrel{*}{\rightleftarrows} z$ implies $y \stackrel{*}{\Longrightarrow} w{ }^{*}$ zor some w;
- terminating, if every infinite chain

becomes stationary;
- convergent, if it is confluent and terminating.

Rewriting Systems

A rewriting relation over a set $X: \Longrightarrow \subseteq X \times X$.

- $\xlongequal{*}$: the reflexive and transitive closure of \Longrightarrow;
- $\stackrel{*}{\Longleftrightarrow}$: its symmetric, reflexive, and transitive closure.

The relation $\Longrightarrow \subseteq X \times X$ is called:

- confluent, if $y \stackrel{*}{\Longleftarrow} x \stackrel{*}{\not} z$ implies $y \stackrel{*}{\rightleftharpoons} w \stackrel{*}{\rightleftharpoons} z$ for some w;
- terminating, if every infinite chain
becomes stationary;
- convergent, if it is confluent and terminating.

Rewriting Systems

A rewriting relation over a set $X: \Longrightarrow \subseteq X \times X$.

- $\xlongequal{*}$: the reflexive and transitive closure of \Longrightarrow;
- $\stackrel{*}{\Longleftrightarrow}$: its symmetric, reflexive, and transitive closure.

The relation $\Longrightarrow \subseteq X \times X$ is called:

- confluent, if $y \stackrel{*}{\rightleftarrows} x \stackrel{*}{\Longrightarrow} z$ implies $y \stackrel{*}{\Longrightarrow} w \stackrel{*}{\rightleftharpoons} z$ for some w;
- terminating, if every infinite chain
becomes stationary;
- convergent, if it is confluent and terminating.

Rewriting Systems

A rewriting relation over a set $X: \Longrightarrow \subseteq X \times X$.

- $\xlongequal{*}$: the reflexive and transitive closure of \Longrightarrow;
- $\stackrel{*}{\Longleftrightarrow}$: its symmetric, reflexive, and transitive closure.

The relation $\Longrightarrow \subseteq X \times X$ is called:

- confluent, if $y \stackrel{*}{\rightleftharpoons} x \stackrel{*}{\Longrightarrow} z$ implies $y \stackrel{*}{\Longrightarrow} w \stackrel{*}{\rightleftharpoons} z$ for some w;
- terminating, if every infinite chain

$$
x_{0} \xlongequal{*} x_{1} \stackrel{*}{\Longrightarrow} \cdots x_{i-1} \stackrel{*}{\Longrightarrow} x_{i} \stackrel{*}{\Longrightarrow} \cdots
$$

becomes stationary;

- convergent, if it is confluent and terminating.

Rewriting Systems

A rewriting relation over a set $X: \Longrightarrow \subseteq X \times X$.

- $\xlongequal{*}$: the reflexive and transitive closure of \Longrightarrow;
- $\stackrel{*}{\Longleftrightarrow}$: its symmetric, reflexive, and transitive closure.

The relation $\Longrightarrow \subseteq X \times X$ is called:

- confluent, if $y \stackrel{*}{\rightleftharpoons} x \stackrel{*}{\Longrightarrow} z$ implies $y \stackrel{*}{\Longrightarrow} w \stackrel{*}{\rightleftharpoons} z$ for some w;
- terminating, if every infinite chain

$$
x_{0} \xlongequal{*} x_{1} \stackrel{*}{\Longrightarrow} \cdots x_{i-1} \stackrel{*}{\Longrightarrow} x_{i} \stackrel{*}{\Longrightarrow} \cdots
$$

becomes stationary;

- convergent, if it is confluent and terminating.

Rewriting system over a monoid

A rewriting system over a monoid M is a relation $S \subseteq M \times M$.
It defines the rewriting relation $\underset{s}{\longrightarrow} \subseteq M \times M$ by

$$
x \Longrightarrow y, \text { if } x=p \ell q, y=p r q \text { for some }(\ell, r) \in S
$$

The relation $\underset{\text { S }}{\stackrel{*}{\leftrightarrows}} \subseteq M \times M$ is a congruence;
write M / S for the quotient monoid.
If $S \subseteq \Gamma^{*} \times \Gamma^{*}$ is a finite convergent string rewriting system (i.e $\underset{s}{\Longrightarrow}$
is a) then then the monoid M / S has decidable word problem.

Rewriting system over a monoid

A rewriting system over a monoid M is a relation $S \subseteq M \times M$.
It defines the rewriting relation $\underset{s}{\longrightarrow} \subseteq M \times M$ by

$$
x \Longrightarrow y, \text { if } x=p \ell q, y=p r q \text { for some }(\ell, r) \in S \text {. }
$$

The relation $\underset{S}{\stackrel{*}{\leftrightarrows}} \subseteq M \times M$ is a congruence;
write M / S for the quotient monoid.
If $S \subseteq \Gamma^{*} \times \Gamma^{*}$ is a finite convergent string rewriting system (i.e $\underset{S}{\Longrightarrow}$
is a) then then the moid M / S has decidable word problem.

Rewriting system over a monoid

A rewriting system over a monoid M is a relation $S \subseteq M \times M$.
It defines the rewriting relation $\underset{s}{\longrightarrow} \subseteq M \times M$ by

$$
x \Longrightarrow y, \text { if } x=p \ell q, y=p r q \text { for some }(\ell, r) \in S
$$

The relation $\underset{\text { S }}{\stackrel{*}{\Longrightarrow}} \subseteq M \times M$ is a congruence;
write M / S for the quotient monoid.
If $S \subseteq \Gamma^{*} \times \Gamma^{*}$ is a finite convergent string rewriting system (i.e $\underset{S}{\Longrightarrow}$
is a) then then the moid M / S has decidable word problem.

Rewriting system over a monoid

A rewriting system over a monoid M is a relation $S \subseteq M \times M$.
It defines the rewriting relation $\underset{s}{\longrightarrow} \subseteq M \times M$ by

$$
x \Longrightarrow y, \text { if } x=p \ell q, y=p r q \text { for some }(\ell, r) \in S \text {. }
$$

The relation $\underset{S}{\stackrel{*}{\Longrightarrow}} \subseteq M \times M$ is a congruence;
write M / S for the quotient monoid.
If $S \subseteq \Gamma^{*} \times \Gamma^{*}$ is a finite convergent string rewriting system (i.e $\underset{S}{\longrightarrow}$
is a) then then the moid M / S has decidable word problem.

Rewriting system over a monoid

A rewriting system over a monoid M is a relation $S \subseteq M \times M$.
It defines the rewriting relation $\underset{S}{\longrightarrow} \subseteq M \times M$ by

$$
x \Longrightarrow y, \text { if } x=p \ell q, y=p r q \text { for some }(\ell, r) \in S .
$$

The relation $\underset{\text { s }}{\stackrel{*}{\Longrightarrow}} \subseteq M \times M$ is a congruence;
write M / S for the quotient monoid.
If $S \subseteq \Gamma^{*} \times \Gamma^{*}$ is a finite convergent string rewriting system (i.e \Longrightarrow is a) then then the monoid M / S has decidable word problem.

Pre-perfect rewriting systems

Definition
A rewriting system $S \subseteq \Gamma^{*} \times \Gamma^{*}$ is called pre-perfect, if:
i.) S is confluent.
ii.) If $\ell \longrightarrow r \in S$, then $|\ell| \geq|r|$.
iii.) If $\ell \longrightarrow r \in S$ with $|\ell|=|r|$, then $r \longrightarrow \ell \in S$, too.

- A convergent length-reducing system is pre-perfect,
- If a confluent system satisfies $|\ell|>|r|$ for all $\ell \longrightarrow r \in S$, then we can add symmetric rules in order to make it pre-perfect.
- Includes non-terminating and infinite systems.
- Leads to a (PSPACE-)decision algorithm for the word problem (for finite systems).

Pre-perfect rewriting systems

Definition
A rewriting system $S \subseteq \Gamma^{*} \times \Gamma^{*}$ is called pre-perfect, if:
i.) S is confluent.
ii.) If $\ell \longrightarrow r \in S$, then $|\ell| \geq|r|$.
iii.) If $\ell \longrightarrow r \in S$ with $|\ell|=|r|$, then $r \longrightarrow \ell \in S$, too.

- A convergent length-reducing system is pre-perfect,
- If a confluent system satisfies $|\ell| \geq|r|$ for all $\ell \longrightarrow r \in S$, then we can add symmetric rules in order to make it pre-perfect.
- Includes non-terminating and infinite systems.
- Leads to a (PSPACE-)decision algorithm for the word problem (for finite systems)

Pre-perfect rewriting systems

Definition

A rewriting system $S \subseteq \Gamma^{*} \times \Gamma^{*}$ is called pre-perfect, if:
i.) S is confluent.
ii.) If $\ell \longrightarrow r \in S$, then $|\ell| \geq|r|$.
iii.) If $\ell \longrightarrow r \in S$ with $|\ell|=|r|$, then $r \longrightarrow \ell \in S$, too.

- A convergent length-reducing system is pre-perfect,
- If a confluent system satisfies $|\ell| \geq|r|$ for all $\ell \longrightarrow r \in S$, then we can add symmetric rules in order to make it pre-perfect.
- Includes non-terminating and infinite systems.
- Leads to a (PSPACE-)decision algorithm for the word problem (for finite systems).

Pre-perfect rewriting systems

Definition

A rewriting system $S \subseteq \Gamma^{*} \times \Gamma^{*}$ is called pre-perfect, if:
i.) S is confluent.
ii.) If $\ell \longrightarrow r \in S$, then $|\ell| \geq|r|$.
iii.) If $\ell \longrightarrow r \in S$ with $|\ell|=|r|$, then $r \longrightarrow \ell \in S$, too.

- A convergent length-reducing system is pre-perfect,
- If a confluent system satisfies $|\ell| \geq|r|$ for all $\ell \longrightarrow r \in S$, then we can add symmetric rules in order to make it pre-perfect.
- Includes non-terminating and infinite systems.
- Leads to a (PSPACE-)decision algorithm for the word problem (for finite systems).

Pre-perfect rewriting systems

Definition

A rewriting system $S \subseteq \Gamma^{*} \times \Gamma^{*}$ is called pre-perfect, if:
i.) S is confluent.
ii.) If $\ell \longrightarrow r \in S$, then $|\ell| \geq|r|$.
iii.) If $\ell \longrightarrow r \in S$ with $|\ell|=|r|$, then $r \longrightarrow \ell \in S$, too.

- A convergent length-reducing system is pre-perfect,
- If a confluent system satisfies $|\ell| \geq|r|$ for all $\ell \longrightarrow r \in S$, then we can add symmetric rules in order to make it pre-perfect.
- Includes non-terminating and infinite systems.
- Leads to a (PSPACE-)decision algorithm for the word problem (for finite systems).

A rewriting system for $U(P)$

Define $S \subseteq P^{*} \times P^{*}$ by

$$
\begin{array}{rll}
1 & \longrightarrow \varepsilon & (=\text { the empty word }) \\
a b & \longrightarrow[a b] & \text { if }(a, b) \in D \\
a b & \longleftrightarrow[a c]\left[c^{-1} b\right] & \text { if }(a, c),\left(c^{-1}, b\right) \in D
\end{array}
$$

Proposition (Diekert, AD, Miasnikov, '08)

- P^{*} / S defines U(P)
- The system S is strongly confluent and therefore pre-perfect.
- Stallings' normal form theorem for $U(P)$ follows easily.
- Normal forms for free products with amalgamation and HNN-extensions also follow from specialisations of the rewriting system to these cases.

A rewriting system for $U(P)$

Define $S \subseteq P^{*} \times P^{*}$ by

$$
\left.\begin{array}{rll}
1 & \longrightarrow \varepsilon & (=\text { the empty word }) \\
a b & \longrightarrow & {[a b]}
\end{array} \begin{array}{ll}
\text { if }(a, b) \in D \\
a b & \longleftrightarrow[a c]\left[c^{-1} b\right]
\end{array}\right) \text { if }(a, c),\left(c^{-1}, b\right) \in D
$$

Proposition (Diekert, AD, Miasnikov, '08)

- P^{*} / S defines $U(P)$.
- The system S is strongly confluent and therefore pre-perfect.
- Stallings' normal form theorem for $U(P)$ follows easily.
- Normal forms for free products with amalgamation and HNN -extensions also follow from specialisations of the rewriting system to these cases.

A rewriting system for $U(P)$

Define $S \subseteq P^{*} \times P^{*}$ by

1	$\longrightarrow \varepsilon$	$(=$ the empty word $)$
$a b$	$\longrightarrow[a b]$	if $(a, b) \in D$
$a b$	$\longleftrightarrow[a c]\left[c^{-1} b\right]$	if $(a, c),\left(c^{-1}, b\right) \in D$

Proposition (Diekert, AD, Miasnikov, '08)

- P^{*} / S defines $U(P)$.
- The system S is strongly confluent and therefore pre-perfect.
- Stallings' normal form theorem for $U(P)$ follows easily.
- Normal forms for free products with amalgamation and HNN-extensions also follow from specialisations of the rewriting system to these cases.

A rewriting system for $U(P)$

Define $S \subseteq P^{*} \times P^{*}$ by

1	$\longrightarrow \varepsilon$	(= the empty word)
$a b$	$\longrightarrow[a b]$	if $(a, b) \in D$
$a b$	$\longleftrightarrow[a c]\left[c^{-1} b\right]$	if $(a, c),\left(c^{-1}, b\right) \in D$

Proposition (Diekert, AD, Miasnikov, '08)

- P^{*} / S defines $U(P)$.
- The system S is strongly confluent and therefore pre-perfect.
- Stallings' normal form theorem for $U(P)$ follows easily.
- Normal forms for free products with amalgamation and HNN-extensions also follow from specialisations of the rewriting system to these cases.

A rewriting system for $U(P)$

Define $S \subseteq P^{*} \times P^{*}$ by

1	$\longrightarrow \varepsilon$	$(=$ the empty word $)$
$a b$	$\longrightarrow[a b]$	if $(a, b) \in D$
$a b$	$\longleftrightarrow[a c]\left[c^{-1} b\right]$	if $(a, c),\left(c^{-1}, b\right) \in D$

Proposition (Diekert, AD, Miasnikov, '08)

- P^{*} / S defines $U(P)$.
- The system S is strongly confluent and therefore pre-perfect.
- Stallings' normal form theorem for $U(P)$ follows easily.
- Normal forms for free products with amalgamation and HNN-extensions also follow from specialisations of the rewriting system to these cases.

Given G and an isomorphism $\theta: H \rightarrow K$, where H and K are subgroups of G, let t be a symbol not in G and let X and Y be right transversals for H and K in G.
Set
and
$D=G \times G \cup G \times G t Y \cup G \times G t^{-1} X \cup G t Y \times G \cup G t^{-1} \times G \cup S_{A} \cup S_{B}$,
where

$$
\begin{aligned}
& S_{A}=\left\{\left(h t^{-1} c, g t d\right) \mid g, h \in G, c \in X, d \in Y, c g \in A\right\} \text { and } \\
& S_{B}=\left\{\left(g t d, h t^{-1} c\right) \mid g, h \in G, d \in Y, c \in X, d h \in B\right\} .
\end{aligned}
$$

Then P is a pregroup and $U(P)=H$.

Given G and an isomorphism $\theta: H \rightarrow K$, where H and K are subgroups of G, let t be a symbol not in G and let X and Y be right transversals for H and K in G.
Set

$$
P=G \cup G t Y \cup G t^{-1} X
$$

and
$D=G \times G \cup G \times G t Y \cup G \times G t^{-1} X \cup G t Y \times G \cup G t^{-1} \times G \cup S_{A} \cup S_{B}$,
where

$$
\begin{aligned}
& S_{A}=\left\{\left(h t^{-1} c, g t d\right) \mid g, h \in G, c \in X, d \in Y, c g \in A\right\} \text { and } \\
& S_{B}=\left\{\left(g t d, h t^{-1} c\right) \mid g, h \in G, d \in Y, c \in X, d h \in B\right\} .
\end{aligned}
$$

Then P is a pregroup and $U(P)=H$.

Given G and an isomorphism $\theta: H \rightarrow K$, where H and K are subgroups of G, let t be a symbol not in G and let X and Y be right transversals for H and K in G.
Set

$$
P=G \cup G t Y \cup G t^{-1} X
$$

and
$D=G \times G \cup G \times G t Y \cup G \times G t^{-1} X \cup G t Y \times G \cup G t^{-1} \times G \cup S_{A} \cup S_{B}$,
where

$$
\begin{aligned}
& S_{A}=\left\{\left(h t^{-1} c, g t d\right) \mid g, h \in G, c \in X, d \in Y, c g \in A\right\} \text { and } \\
& S_{B}=\left\{\left(g t d, h t^{-1} c\right) \mid g, h \in G, d \in Y, c \in X, d h \in B\right\} .
\end{aligned}
$$

Then P is a pregroup and $U(P)=H$.

Given G and an isomorphism $\theta: H \rightarrow K$, where H and K are subgroups of G, let t be a symbol not in G and let X and Y be right transversals for H and K in G.
Set

$$
P=G \cup G t Y \cup G t^{-1} X
$$

and
$D=G \times G \cup G \times G t Y \cup G \times G t^{-1} X \cup G t Y \times G \cup G t^{-1} \times G \cup S_{A} \cup S_{B}$,
where

$$
\begin{aligned}
& S_{A}=\left\{\left(h t^{-1} c, g t d\right) \mid g, h \in G, c \in X, d \in Y, c g \in A\right\} \text { and } \\
& S_{B}=\left\{\left(g t d, h t^{-1} c\right) \mid g, h \in G, d \in Y, c \in X, d h \in B\right\} .
\end{aligned}
$$

Then P is a pregroup and $U(P)=H$.

Computability

Rabin's definition:
a map $i: G \rightarrow \mathbb{N}$ with $i(G)$ recursive is an indexing.
G is computable if G has an indexing such that the map $m: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

$$
(i(g), i(h)) \mapsto i(g h)
$$

is recursive.

Rabin '67: A finitely generated group has solvable word problem
 iff it is computable.

Computability

Rabin's definition:
a map $i: G \rightarrow \mathbb{N}$ with $i(G)$ recursive is an indexing.
G is computable if G has an indexing such that the map $m: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

$$
(i(g), i(h)) \mapsto i(g h)
$$

is recursive.
Rabin '67: A finitely generated group has solvable word problem
iff it is computable.

Computability

Rabin's definition:
a map $i: G \rightarrow \mathbb{N}$ with $i(G)$ recursive is an indexing.
G is computable if G has an indexing such that the map $m: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

$$
(i(g), i(h)) \mapsto i(g h)
$$

is recursive.
Rabin '67: A finitely generated group has solvable word problem iff it is computable.

Computable Pregroup

A pregroup P is computable if P has an indexing i such that

- $i \times i(D)$ is recursive and;
- $i \times i \times i(M)$ is recursive,
where

$$
M=\{(a, b, c) \mid(a, b) \in D \text { and } c=[a b]\} .
$$

Proposition (Diekert, AD, Miasnikov)
If P is a computable pregroup then
(1) the word problem in $U(P)$ is solvable, relative to the generating set P and
(2) $U(P)$ is a computable group.

Computable Pregroup

A pregroup P is computable if P has an indexing i such that

- $i \times i(D)$ is recursive and;
- $i \times i \times i(M)$ is recursive,
where

$$
M=\{(a, b, c) \mid(a, b) \in D \text { and } c=[a b]\}
$$

Proposition (Diekert, AD, Miasnikov)
If P is a computable pregroup then
(1) the word problem in $U(P)$ is solvable, relative to the generating set P and
(2) $U(P)$ is a computable group.

Computable Pregroup

A pregroup P is computable if P has an indexing i such that

- $i \times i(D)$ is recursive and;
- $i \times i \times i(M)$ is recursive,
where

$$
M=\{(a, b, c) \mid(a, b) \in D \text { and } c=[a b]\} .
$$

Proposition (Diekert, AD, Miasnikov)
If P is a computable pregroup then
(1) the word problem in $U(P)$ is solvable, relative to the generating set P and
(2) $U(P)$ is a computable group.

Computable Pregroup

A pregroup P is computable if P has an indexing i such that

- $i \times i(D)$ is recursive and;
- $i \times i \times i(M)$ is recursive,
where

$$
M=\{(a, b, c) \mid(a, b) \in D \text { and } c=[a b]\} .
$$

Proposition (Diekert, AD, Miasnikov)
If P is a computable pregroup then
(1) the word problem in $U(P)$ is solvable, relative to the generating set P and
(2) $U(P)$ is a computable group.

Computable Pregroup

A pregroup P is computable if P has an indexing i such that

- $i \times i(D)$ is recursive and;
- $i \times i \times i(M)$ is recursive,
where

$$
M=\{(a, b, c) \mid(a, b) \in D \text { and } c=[a b]\} .
$$

Proposition (Diekert, AD, Miasnikov)
If P is a computable pregroup then
(1) the word problem in $U(P)$ is solvable, relative to the generating set P and
(2) $U(P)$ is a computable group.

Conjugacy

Let $u=u_{1} \cdots u_{n} \in P^{*}$ cyclically reduced of length n (reduced and $\left.\left(u_{n}, u_{1}\right) \notin D\right)$.

If $u=v_{1} \cdots v_{n}$ then $v=v_{i} \cdots v_{n} v_{1} \cdots v_{i-1}$ is a cyclic permutation
of u over $U(P)$.
Lemma ($\mathrm{D}, \mathrm{D}, \mathrm{M}$)
Let u be a cyclically reduced element of P^{*} and let v be a cyclic permutation of u. Then v is cyclically reduced. In particular, u and v have the same length.

Theorem (D,D,M)
Let u and v be cyclically reduced elements of P^{*} such that u is conjugate to v in $U(P)$. Then, we have:
(1) u and v have the same length.

If $u \notin P$, i.e., $n \geq 2$, then we can transform u into v by a sequence of cyclic permutations.

Conjugacy

Let $u=u_{1} \cdots u_{n} \in P^{*}$ cyclically reduced of length n (reduced and $\left.\left(u_{n}, u_{1}\right) \notin D\right)$.

If $u=v_{1} \cdots v_{n}$ then $v=v_{i} \cdots v_{n} v_{1} \cdots v_{i-1}$ is a cyclic permutation of u over $U(P)$.
Lemma ($\mathrm{D}, \mathrm{D}, \mathrm{M}$)
Let u be a cyclically reduced element of P^{*} and let v be a cyclic permutation of u. Then v is cyclically reduced. In particular, u and v have the same length.

Theorem (D, D, M)
Let u and v be cyclically reduced elements of P^{*} such that u is conjugate to v in $U(P)$. Then, we have:
(1) u and v have the same length.
(2) If $u \notin P$ i.e, $n \geq 2$, then we can transform u into v by a sequence of cyclic permutations.

Conjugacy

Let $u=u_{1} \cdots u_{n} \in P^{*}$ cyclically reduced of length n (reduced and $\left.\left(u_{n}, u_{1}\right) \notin D\right)$.

If $u=v_{1} \cdots v_{n}$ then $v=v_{i} \cdots v_{n} v_{1} \cdots v_{i-1}$ is a cyclic permutation of u over $U(P)$.
Lemma ($\mathrm{D}, \mathrm{D}, \mathrm{M}$)
Let u be a cyclically reduced element of P^{*} and let v be a cyclic permutation of u. Then v is cyclically reduced. In particular, u and v have the same length.

Theorem ($\mathrm{D}, \mathrm{D}, \mathrm{M}$)
Let u and v be cyclically reduced elements of P^{*} such that u is conjugate to v in $U(P)$. Then, we have:
(1) u and v have the same length.
(2) If $u \notin P$, i.e., $n \geq 2$, then we can transform u into v by a

Conjugacy

Let $u=u_{1} \cdots u_{n} \in P^{*}$ cyclically reduced of length n (reduced and $\left.\left(u_{n}, u_{1}\right) \notin D\right)$.

If $u=v_{1} \cdots v_{n}$ then $v=v_{i} \cdots v_{n} v_{1} \cdots v_{i-1}$ is a cyclic permutation of u over $U(P)$.
Lemma ($\mathrm{D}, \mathrm{D}, \mathrm{M}$)
Let u be a cyclically reduced element of P^{*} and let v be a cyclic permutation of u. Then v is cyclically reduced. In particular, u and v have the same length.

Theorem (D,D,M)
Let u and v be cyclically reduced elements of P^{*} such that u is conjugate to v in $U(P)$. Then, we have:
(1) u and v have the same length.

Conjugacy

Let $u=u_{1} \cdots u_{n} \in P^{*}$ cyclically reduced of length n (reduced and $\left.\left(u_{n}, u_{1}\right) \notin D\right)$.

If $u=v_{1} \cdots v_{n}$ then $v=v_{i} \cdots v_{n} v_{1} \cdots v_{i-1}$ is a cyclic permutation of u over $U(P)$.
Lemma ($\mathrm{D}, \mathrm{D}, \mathrm{M}$)
Let u be a cyclically reduced element of P^{*} and let v be a cyclic permutation of u. Then v is cyclically reduced. In particular, u and v have the same length.

Theorem (D,D,M)

Let u and v be cyclically reduced elements of P^{*} such that u is conjugate to v in $U(P)$. Then, we have:
(1) u and v have the same length.
(2) If $u \notin P$, i.e., $n \geq 2$, then we can transform u into v by a sequence of cyclic permutations.

