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Background

The existential theory of equations in free monoids is decidable.
The existential and positive theories of equations in free groups are
decidable. These are celebrated result of Makanin published 1977,
1982 and 1984 . Makanin did not discuss complexity issues, but
later it was shown that his algorithm for free groups is not
primitive recursive.
The best known bound to date is Pspace by an extension of
Plandowski’s techniques for solving word equations.
We deal with also with rational constraints, that is, the solution
has to respect a specification given by a regular word language.



Notations

An involution on a set is a bijection such that x = x .
An involution on a monoid. In addition:

1 = 1, xy = y x .

A factor of a word w ∈ Σ∗ is a word v such that w = w1vw2.
Elements of F (Σ) are represented by the regular (!) set of freely
reduced words over Γ = Σ ∪ Σ.
The involution is extended to Γ∗ by a1 · · · an = an · · · a1.



Rational and recognizable subsets

Let M be a monoid.
All finite subsets of M are rational. If C1,C2 ⊆ M are rational,
then the union C1 ∪ C2, the concatenation C1 · C2, and the
generated submonoid C ∗

1 are rational.
A subset C ⊆ M is recognizable, if and only if there is a
homomorphism h to some finite monoid M ′ such that
C = h−1h(C ).
Kleene’s Theorem states that in finitely generated free monoids
both classes coincide, and we follow the usual convention to call a
rational (or recognizable) subset of a free monoid regular.



Rational subsets in groups

The singleton set {1} is rational in F (Σ), but not recognizable if
Σ 6= ∅. A subset C ⊆ F (Σ) is rational if and only if C = ψ(C ′) for
some regular language C ′ ⊆ Γ∗. In particular, we can use a
non-deterministic finite automata over Γ for specifying rational
group languages over F (Σ).



Benois result

Proposition (Michele Benois)

The family of rational languages over the free group F (Σ) forms
an effective Boolean algebra.



The existential theory of equations with rational

constraints

Let Ω be a set of variables (or unknowns).
Atomic formulae are either L = R , where L,R ∈ (Γ ∪ Ω)∗ or
X ∈ C , where X ∈ Ω and C ⊆ M is rational.
The existential theory of equations with rational constraints in M
is the set of all closed existentially quantified formulae which are
true in M.



The main result

Theorem
The following problem is Pspace–complete.
INPUT: A finite alphabet Σ and a closed existentially quantified
formula with rational constraints in the free group F (Σ).
QUESTION: Is the formula true in F (Σ)?



No negations for the existential theory

Replace every formula W 6= 1 by

∃X : WX = 1 ∧ X 6∈ {1},

where X is a fresh variable, hence we can put ∃X to the front.
X 6∈ {1} ⇐⇒ X ∈ F (Σ) \ {1} is a rational constraint!



Reduction to Free Monoids with Involution

Theorem
The following problem is Pspace–complete.
INPUT: A closed existentially quantified formula with regular
constraints in a free monoid with involution (Γ∗, ).
QUESTION: Is the formula true in (Γ∗, )?



Reduction

Proposition

There is a polynomial time reduction of problem over free groups
to free monoids with involution.

Lemma
Let u, v ,w ∈ Γ∗ be freely reduced words. Then:

uvw = 1 ∈ F (Σ)

if and only if

∃P ,Q,R ∈ Γ∗ :

u = PQ

w = R P

v = QR



Boolean matrices

It is better to work with Boolean matrices instead of finite
automata.
We have a natural involution:

M2n = {

(
A 0
0 B

)

| A,B ∈ B
n×n },

where
(

A 0
0 B

)

=

(
B 0
0 A

)T

=

(
BT 0
0 AT

)

The operator T denotes transposition and B
n×n is the monoid of

Boolean n × n – matrices.



Equation with constraints
An equation E with constraints is a list

E = (Γ, h,Ω, ρ;L = R)

containing the following items:

◮ The alphabet Γ = (Γ, ) with involution.
◮ The morphism h : Γ∗ → M2n which is specified by a mapping

h : Γ → M2n such that h(a) = h(a) for all a ∈ Γ.
◮ The alphabet Ω = (Ω, ) with involution without fixed points.
◮ A mapping ρ : Ω → M2n such that ρ(X ) = ρ(X ) for all

X ∈ Ω.
◮ The word equation L = R where L,R ∈ (Γ ∪ Ω)+.

A solution of E is given by a mapping σ : Ω → Γ∗ such that the
following three conditions are satisfied:

σ(L) = σ(R) ,

σ(X ) = σ(X ) for all X ∈ Ω,
hσ(X ) = ρ(X ) for all X ∈ Ω.



Yet another formulation

Theorem
The following problem is Pspace–complete.
INPUT: An equation with constraints, E = (Γ, h,Ω, ρ;L = R).
QUESTION: Is there a solution σ : Ω → Γ∗?



The New Look

Our input is given by three items: a single word equation L = R
with L,R ∈ (Γ ∪ Ω)+ and two lists: (Xj ∈ Cj , 1 ≤ j ≤ m) and
(Xj 6∈ Cj ,m < j ≤ k). Each regular language Cj ⊆ Γ∗ is specified
by some non-deterministic automaton Aj = (Qj ,Γ, δj , Ij ,Fj) where
Qj is the set of states, δj ⊆ Qj × Γ × Qj is the transition relation,
Ij ⊆ Qj is the subset of initial states, and Fj ⊆ Qj is the subset of
final states, 1 ≤ j ≤ k.



Road-Map

The proof of the result is based on three transformation rules for
equations with constraints.

◮ Each transformation preserves unsolvability; and it can be
applied as long as the computation respects a given
polynomial space bound.

◮ No transformation rule introduces any new variable, but it
may happen that the number of variables decreases.

◮ So, the global strategy is to apply the rules until all variables
have been eliminated.

◮ The final step is a direct evaluation of an equation without
variables.



Why Pspace-hardness?

Proposition

The following problems are Pspace–complete.

INPUT: A matrix B ∈ B
n×n and a homomorphism g : Γ∗ → B

n×n

given as a list of matrices (B1, . . . ,B|Γ|).
QUESTION: Is there some u ∈ Σ∗ such that g(u) = B?

INPUT: A matrix A ∈ M2n and a morphism h : Γ → M2n given as
a list of matrices (A1, . . . ,A|Γ|) with Aai

= Aai
for all ai ∈ Γ.

QUESTION: Is there some w ∈ Γ∗ such that h(w) = A and
w = w?



The Exponent of Periodicity

The exponent of periodicity exp(w) is defined by

exp(w) = sup{α ∈ N | ∃u, v , p ∈ Γ∗, p 6= 1 : w = upαv }.

Proposition

Let E = (Γ, h,Ω, ρ;L = R) be a solvable equation with constraints.
Then there is a solution σ : Ω → Γ∗ such that
exp(σ(L)) ∈ 2O(d+n log n).



Exponential Expressions

Definition

◮ Every word w ∈ Γ∗ is an exponential expression.

◮ Let e, e′ be exponential expressions. Then ee′ is an
exponential expression.

◮ Let e be an exponential expression and k ∈ N. Then (e)k is
an exponential expression.
Its size is ‖(e)k‖ = ‖e‖ + log2(k).

Lemma
Let w be represented by some exponential expression of size p.
Then we can find for any factor u an exponential expression of size
at most p2.



Base Changes

The first transformation rule. Replace words by letters.
Let h : Γ∗ → M2n be a morphism and β : Γ′ → Γ∗ be some
mapping such that β(a) = β(a).
We call the morphism β a base change.
Define:

β∗((Γ
′, hβ,Ω, ρ;L′ = R ′)) = (Γ, h,Ω, ρ;β(L′) = β(R ′)).

The idea is to move from E to E ′.



Lemma
If σ′ is a solution of E ′, then σ = βσ′ is a solution of β∗(E

′).

Proof.
Clearly, σ(X ) = σ(X ) and hσ(X ) = hβσ′(X ) = h′σ′(X ) = ρ(X )
for all X ∈ Ω. Next by definition σ(a) = a for a ∈ Γ and
β(X ) = X for X ∈ Ω. Hence σβ(a) = βσ′(a) for a ∈ Γ′ and
therefore σβ = βσ′ : (Γ′ ∪ Ω)∗ → Γ∗. This means
σβ(L) = βσ′(L) = βσ′(R) = σβ(R) since σ′(L) = σ′(R).



Basechange

Rule 1 If we have E ≡ β∗(E
′) and we are looking for a solution of

E , then it is enough to find a solution for E ′.
Hence, during a non-deterministic search we may replace E by E ′.



Example

Let Γ = {a, b, c , ā, b̄, c̄}. Consider the following equation E :

XX = Y b̄c̄b̄āb̄c̄ b̄YZabcbY

with constraints X ∈ Γ300Γ∗ and Z ∈ b̄c̄ b̄āΓ∗. Let Γ′ = {a, b, ā, b̄}
and define a base change β : Γ′ → Γ∗ by β(a) = abcb and
β(b) = bcb. Then the equation E is of the form β∗(E

′) where E ′

is given by
XX = Y āb̄YZaY .

We may strengthen the constraint to X ∈ Γ′100Γ′∗ and Z ∈ āΓ′∗.
According to Rule 1 it is enough to solve E ′.



Projections

Let Γ ⊆ Γ′. A projection is a morphism π : Γ′∗ → Γ∗ such that
π(a) = a for a ∈ Γ and π(a) = π(a) for all a ∈ Γ′. Define

π∗((Γ, h,Ω, ρ;L = R)) = (Γ′, hπ,Ω, ρ;L = R).

The equation π∗(E ) uses a larger alphabet of constants than E
does, but the word equation L = R is exactly the same. Therefore
π∗(E ) uses constants which do not appear in L = R . These
constants may help to find (short) solutions which satisfy regular
constraints.
Rule 2 Let π be a projection. If we are looking for a solution of E ,
then it is enough to find a solution for π∗(E ). Hence, during a
non-deterministic search we may replace E by π∗(E ).



Example

XX = Y āb̄YZaY , and Γ = {a, b, ā, b̄}.
Constraint: |X | ≥ 100. Let us reintroduce a letter c and put
Γ′ = {a, b, c , ā, b̄, c̄}. We may define a projection π : Γ′ → Γ∗ by
π(c) = b100. The equation E ′ = π∗(E ) looks as above, but the
new constraint is |X | ≥ 100 ∨ X ∈ Γ∗cΓ∗.
Thus, a solution for X might be very short now.



Partial Solutions

A partial solution is a mapping δ : Ω → Γ∗Ω′Γ∗ ∪ Γ∗ such that the
following conditions are satisfied:

1. δ(X ) ∈ Γ∗XΓ∗ for all X ∈ Ω′,

2. δ(X ) ∈ Γ∗ for all X ∈ Ω \ Ω′,

3. δ(X ) = δ(X ) for all X ∈ Ω.

By abuse of language, we write E ′ ≡ δ∗(E ), if there exists some
partial solution δ : Ω → Γ∗Ω′Γ∗ ∪ Γ∗ such that:

1. L′ = δ(L), R ′ = δ(R),

2. ρ(X ) = h(u)ρ′(X )h(v) for δ(X ) = uXv ,

3. ρ(X ) = h(w) for δ(X ) = w ∈ Γ∗.



Lemma
In the notation of above, let E ′ ≡ δ∗(E ) for some partial solution
δ : Ω → Γ∗Ω′Γ∗ ∪ Γ∗. If σ′ is a solution of E ′, then σ = σ′δ is a
solution of E . Moreover, we have σ(L) = σ′(L′) and
σ(R) = σ′(R ′).



Lemma
The following problem can be solved in Pspace.

INPUT: Two equations with constraints E = (Γ, h,Ω, ρ; eL = eR)
and E ′ = (Γ, h,Ω′, ρ′; eL′ = eR′).
QUESTION: Is there some partial solution δ such that δ∗(E ) ≡ E ′?

If δ∗(E ) ≡ E ′ is true, then there are exponential expressions of
polynomial size eu, ev for each X ∈ Ω′ and ew for each X ∈ Ω \ Ω′

such that

δ(X ) = eval(eu)X eval(ev ) for X ∈ Ω′,

δ(X ) = eval(ew ) for X ∈ Ω \ Ω′.



Proof.
For each variable X ∈ Ω′ we guess exponential expressions eu and
ev with eval(eu), eval(ev ) ∈ Γ∗. We define exponential expressions
eX = euXev and we define δ(X ) = eval(eX ). For each X ∈ Ω \ Ω′

we guess an exponential expression eX with eval(eX ) ∈ Γ∗ and we
define δ(X ) = eval(eX ).
Next we verify whether or not δ∗(E ) ≡ E ′. During this test we have
to create an exponential expression fL (and fR , resp.) by replacing
X in eL (and eR , resp.) with the expression eX . This increases the
size in the worst case by a factor of max{||eX || | X ∈ Ω}.
The correctness of the algorithm follows from our assumption that
all X ∈ Ω appear in LRLR. Therefore, if we have δ∗(E ) ≡ E ′, then
every factor of δ(X ) (or of δ(X )) appears necessarily as a factor in
L′R ′ = δ(LR). Hence every factor of δ(X ) has an exponential
expression of polynomial size.



Guessing partial solutions

Rule 3 If δ is a partial solution and if we are looking for a solution
of E , then it is enough to find a solution for δ∗(E ). Hence, during
a non-deterministic search we may replace E by δ∗(E ).



Example

XX = Y āb̄YZaY ,

and Γ = {a, b, c , ā, b̄, c̄}. Constraints: X ∈ Γ∗cΓ∗ and
Z ∈ ā{a, b, ā, b̄}∗.
We may guess the partial solution as follows: δ(X ) = aX ,
δ(Y ) = Y , and δ(Z ) = āb. The new equation δ∗(E ) is

aXXā = Y āb̄Y ābaY .

The remaining constraint is that the solution for X has to use the
letter c .



Example

The process can continue, for example, we can apply Rule 1 again
by defining another base change β(b) = ba to get the equation

aXXā = Y b̄Y ābY

over Γ = {a, b, c , ā, b̄, c̄}. Since the last equation has a solution
(e.g., given by σ(X ) = bcc̄b̄b̄abc and σ(Y ) = abcc̄b̄), the
equation with constraints in the first example has a solution too.



Admissibility

The input is an equation with constraints. In order to fix notations
we call it E0 = (Γ0, h0,Ω0, ρ0;L0 = R0) and we let d = |L0R0|. We
may assume |Ω0| ≤ 2d .

Definition
Let p0 be a polynomial. The notion of admissibility is defined with
respect to p0(‖E0‖) (which is fixed and can be calculated.)

◮ An exponential expression e is admissible, if ‖e‖ ≤ p0(‖E0‖).

◮ A base change β : Γ′ → Γ∗ is admissible, if |Γ′| ≤ p0(‖E0‖)
and for all a ∈ Γ′ there is an admissible exponential expression
for β(a).

◮ An equation with constraints E = (Γ, h,Ω, ρ; eL = eR) is
admissible, if |Γ \ Γ0| ≤ p0(‖E0‖), h(a) = h0(a) for a ∈ Γ0,
and eLeR is admissible.



Search graph

Definition
The search graph of E0 is a directed graph where nodes are
admissible equations with constraints. For two nodes E , E ′ there is
an arc E → E ′, if there are an admissible base change β, a
projection π, and a partial solution δ such that
δ∗(π

∗(E )) ≡ β∗(E
′).

Lemma
Let p0 be a polynomial of degree at least 1. The following problem
is Pspace–complete.
INPUT: Equations with constraints E0, E , and E ′ such that E and
E ′ are admissible with respect to p0(‖E0‖).
QUESTION: Is there an arc E → E ′ in the search graph of E0?



Plandowski’s algorithm

begin

E := E0

while Ω 6= ∅ do

Guess an equation with constraints E ′,
which is admissible with respect to p0(|E0|)
Verify that E → E ′ is an arc in the search graph of E0

E := E ′

endwhile

return “eval(eL) = eval(eR)”
end

The algorithm returns true only if E0 is solvable.
The challenge is to show that we find a fixed polynomial p0 such
that if E0 is solvable, then the search graph contains a path to
some solvable equation without variables.



Length of a shortest solultion

Remark
If the arc E → E ′ is due to some π : Γ′′∗ → Γ∗,
δ : Ω → Γ′′∗Ω′Γ′′∗ ∪ Γ′′∗, and β : Γ′∗ → Γ′′∗, then a solution
σ′ : Ω′ → Γ′∗ of E ′ yields the solution σ = π(βσ′)δ. Hence we may
assume that the length of a solution has increased by at most an
exponential factor. Since we are going to perform the search in a
graph of at most exponential size, we automatically get a doubly
exponential upper bound for the length of a minimal solution by
backwards computation on such a path. This is still the best known
upper bound (although a singly exponential bound is conjectured).



START

So far we have done nothing but preparation.
The work starts now.



The set-up from yesterday
An equation E with constraints is a list

E = (Γ, h,Ω, ρ;L = R)

containing the following items:

◮ The alphabet Γ = (Γ, ) with involution.
◮ The morphism h : Γ∗ → M2n which is specified by a mapping

h : Γ → M2n such that h(a) = h(a) for all a ∈ Γ.
◮ The alphabet Ω = (Ω, ) with involution without fixed points.
◮ A mapping ρ : Ω → M2n such that ρ(X ) = ρ(X ) for all

X ∈ Ω.
◮ The word equation L = R where L,R ∈ (Γ ∪ Ω)+.

A solution of E is given by a mapping σ : Ω → Γ∗ such that the
following three conditions are satisfied:

σ(L) = σ(R) ,

σ(X ) = σ(X ) for all X ∈ Ω,
hσ(X ) = ρ(X ) for all X ∈ Ω.



Intervals

For a word w ∈ Γ∗ we let {0, . . . , |w |} be the set of its positions.
The idea is that factors of w are between positions. To be more
specific, let w = a1 · · · am be a word with ai ∈ Γ. Then [α, β] with
0 ≤ α < β ≤ m is called a positive interval and the word w [α, β] is
defined as the factor aα+1 · · · aβ.
It is convenient to have an involution on the set of intervals. If
[α, β] is a positive interval, then [β, α] is also called a
(non–positive) interval, and we define w [β, α] = w [α, β].
Moreover, we define w [α,α] to be the empty word. For all
0 ≤ α, β ≤ m we let [α, β] = [β, α]; therefore, w [α, β] = w [α, β].



Cuts

For i ∈ {1, . . . , d} we define positions l(i) and r(i) such that σ(xi )
starts in w0 at the left position l(i) and it ends at the right
position r(i).
We have l(1) = l(g + 1) = 0 and r(g) = r(d) = m0.
We have σ(xi ) = w0[l(i), r(i)] and σ(xi ) = w0[r(i), l(i)] for
1 ≤ i ≤ d .
The interval [l(i), r(i)] is positive, because σ(xi ) 6= 1.
The set of l– and r–positions is the set of cuts. Thus, the set of
cuts is { l(i), r(i) | 1 ≤ i ≤ d }. The positions 0 and m0 are cuts
and there are at most d cuts. These positions split the word w0

into at most d − 1 factors.



Equivalent intervals

Let us consider a pair (i , j) such that i , j ∈ {1, . . . , d} and xi = xj

or xi = xj . For µ, ν ∈ {0, . . . , r(i)− l(i)} we define a relation ∼ by:

[l(i) + µ, l(i) + ν] ∼ [l(j) + µ, l(j) + ν], if xi = xj ,

[l(i) + µ, l(i) + ν] ∼ [r(j) − µ, r(j) − ν], if xi = xj .

Note that ∼ is a symmetric relation.
By ≈ we denote the reflexive and transitive closure of ∼. Then ≈
is an equivalence relation; and [α, β] ≈ [α′, β′] implies:

1. [β, α] ≈ [β′, α′].

2. w0[α, β] = w0[α
′, β′].



Free intervals

Definition
An interval [α, β] is free, if, whenever [α, β] ≈ [α′, β′], then there
is no cut γ′ with min{α′, β′} < γ′ < max{α′, β′}.

Clearly, the set of free intervals is closed under involution, i.e.,
[α, β] is free if and only if [β, α] is free. It is also clear that [α, β] is
free if |β − α| ≤ 1.
Free intervals correspond to long factors in the solution which are
not related to any cut. If there were no constraints, then these
factors would not appear in a solution where m0 is minimal. In our
setting we cannot avoid these factors.



Example

aXXā = Y b̄Y ābY ,

has a solution:

w0 =
0

| a
1

|

X
︷ ︸︸ ︷

bcc̄b̄
5

| b̄
6

| abc
9

|

X
︷ ︸︸ ︷

c̄ b̄
11

| ā
12

| b
13

| bcc̄b̄
17

| ā
18

| .
︸ ︷︷ ︸

Y

︸ ︷︷ ︸

Y

︸ ︷︷ ︸

Y

The set of cuts is shown by the vertical bars. The intervals [1, 5],
[13, 17], and [6, 9] are not free, since [1, 5] ≈ [17, 13] ≈ [7, 11] and
[6, 9] ≈ [0, 3] and [7, 11], [0, 3] contain cuts. There is only one
equivalence class of free intervals of length longer than 1 (up to
involution), which is given by
[1, 3] ∼ [17, 15] ∼ [7, 9] ∼ [11, 9] ∼ [5, 3] ∼ [13, 15].



Maximal free

Definition
A free interval [α, β] is called maximal free, if there is no free
interval [α′, β′] such that both,
α′ ≤ min{α, β} ≤ max{α′, β′} ≤ β′ and |β − α| < β′ − α′.

Maximal free intervals do not overlap.

Lemma
Let 0 ≤ α ≤ α′ < β ≤ β′ ≤ m0 such that [α, β] and [α′, β′] are
free intervals. Then the interval [α, β′] is free, too.



Main observation on free intervals

Lemma
Let [α, β] be a maximal free interval. Then there are intervals [γ, δ]
and [γ′, δ′] such that [α, β] ≈ [γ, δ] ≈ [γ′, δ′] and γ and δ′ are cuts.

Proposition

Let Γ be the set of words w ∈ Γ∗0 such that there is a maximal free
interval [α, β] with w = w0[α, β]. Then Γ is a subset of Γ+

0 of size
at most 2d − 2. The set Γ is closed under involution.



Example

We use the same equation aXXā = Y b̄Y ābY and we consider the
solution w0.
The new solution is defined by replacing in w0 each factor bc by a
new letter d which represents a maximal free interval. The new w0

has the form

w0 =
0

| a
1

| dd̄
3

| b̄
4

| ad
6

| d̄
7

| ā
8

| b
9

| dd̄
11

| ā
12

| .

Now all maximal free intervals have length one.

Thus, we can assume that the alphabet of constants is Γ.



Critical words

For each 1 ≤ ℓ ≤ m0 we define the set of critical words Cℓ by

Cℓ = {w0[γ − ℓ, γ + ℓ], w0[γ + ℓ, γ − ℓ] | is a cut } .

Each word u ∈ Cℓ has length 2ℓ, it can be written in the form
u = u1u2 with |u1| = |u2| = ℓ.



The ℓ-factorization

For every non-empty word w ∈ Γ+ we define its ℓ-factorization as
follows. We write

Fℓ(w) = (u1,w1, v1) · · · (uk ,wk , vk)

such that w = w1 · · ·wk and:

◮ ui is a suffix of w1 · · ·wi−1,

◮ ui = 1 if and only if i = 1,

◮ vi is a prefix of wi+1 · · ·wk ,

◮ vi = 1 if and only if i = k.

◮ viui+1 ∈ Cℓ and these are all of them.



w2 · · ·wk−1

w1 v1 · · · uk wk

u2 w2 v2 · · · uk−1 wk−1 vk−1

Figure: An ℓ-factorization



If no critical word appears as a factor of w , then Fℓ(w) = (1,w , 1).
The ℓ-factorization of uv ∈ Cℓ with |u| = |v | = ℓ is

Fℓ(uv) = (1, u, v)(u, v , 1).



Body and bodies

Let
Fℓ(w) = (u1,w1, v1) · · · (uk ,wk , vk).

Define:

Headℓ(w) = (u1,w1, v1) ∈ Bℓ,

headℓ(w) = w1 ∈ Γ+,

Bodyℓ(w) = (u2,w2, v2) · · · (uk−1,wk−1, vk−1) ∈ B∗
ℓ ,

bodyℓ(w) = w2 · · ·wk−1 ∈ Γ∗,

Tailℓ(w) = (uk ,wk , vk) ∈ Bℓ,

tailℓ(w) = wk ∈ Γ+.

Fℓ(w) = Headℓ(w)Bodyℓ(w)Tailℓ(w),

w = headℓ(w)bodyℓ(w)tailℓ(w).



Assume bodyℓ(w) 6= 1 and let u, v ∈ Γ∗ be any words. Then we
can view w in the context uwv and Bodyℓ(w) appears as a proper
factor in the ℓ-factorization of uwv . More precisely, let

Fℓ(uwv) = (u1,w1, v1) · · · (uk ,wk , vk).

Then there are unique 1 ≤ p < q ≤ k such that:

Fℓ(uwv) =

(u1,w1, v1) · · · (up,wp, vp)Bodyℓ(w)(uq,wq, vq) · · · (uk ,wk , vk),

w1 · · ·wp = u headℓ(w), and wq · · ·wk = tailℓ(w)v .



The ℓ-Transformation

We consider the ℓ-factorization of the solution w0:

Fℓ(w0) = (u1,w1, v1) · · · (uk ,wk , vk).

A sequence S = (up,wp, vp) · · · (uq,wq, vq) with 1 ≤ p ≤ q ≤ k is
called an ℓ-factor .
w0[α, β] is a factor of wp · · ·wq.



The ℓ-Transformation

New variables:

Ωℓ = {X ∈ Ω0 | bodyℓ(σ(X )) 6= 1 }

New left-hand side Lℓ ∈ (Bℓ ∪ Ωℓ)
∗ and a new right-hand side

Rℓ ∈ (Bℓ ∪ Ωℓ)
∗:

For each X ∈ Ωℓ find the subsequences in

Fℓ(w0) = (u1,w1, v1) · · · (uk ,wk , vk)

corresponding to bodyℓ(σ(X )) replaces these subsequences by X .
The steps above define the ℓ-transformation and yield the following
equation:

Eℓ = (Γℓ, hℓ,Ωℓ, ρℓ;Lℓ = Rℓ).



We continue with our example aXXā = Y b̄Y ābY and the solution
σ which has been given by

w0 = | a | dd̄ | b̄ | ad | d̄ | ā | b | dd̄ | ā |,

where the bars show the cuts.
Up to involution, the set C1 is given by {ad , bd , āb, dd̄} and C2 is
given by {dd̄ b̄a, d̄ b̄ad , add̄ā, dd̄ āb}. The 1-factorization of w0 can
be obtained letter by letter.



The 2-factorization of w0 is given by the following sequence:

(1, add̄ , b̄a)(dd̄ , b̄, ad)(d̄ b̄, ad , d̄ ā)

(ad , d̄ , āb)(dd̄ , ā, bd)(d̄ ā, b, dd̄)(āb, dd̄ā, 1).

Recall that σ(X ) = dd̄b̄ad and σ(Y ) = add̄. Hence their
2-factorizations are (1, dd̄ , b̄a)(dd̄ , b̄, ad)(d̄ b̄, ad , 1) and
(1, add̄ , 1), respectively.
Let us rename the letters:

a = (1, add̄ , b̄a)

b = (d̄ ā, b, dd̄)

c = (d̄ b̄, ad , d̄ ā)

d = (ad , d̄ , āb)

e = (dd̄ , ā, bd)

After this renaming the 2-factorization of w0 becomes ab̄cdebā
and the equation E reduces to E2 : aXcdeX ā = ab̄cdebā since the
body of σ(Y ) is empty.



The reader can check that the 3-factorization of w0 after renaming
is the very same word as the 2-factorization, but the 3-factorization
of σ(X ) is now one letter, (1, dd̄ b̄ad , 1), so E3 becomes a trivial
equation. Plandowski’s algorithm will return true at this stage.



Remark
i) In the extreme case ℓ = m0, the ℓ-transformation becomes trivial.
Let a = (1,w0, 1). Then a = (1,w0, 1) and Γm0 = {a, a} ∪ Γ.
Moreover, we have Lm0 = Rm0 = a, and hm0(a) = h(w0) ∈ M2n.
Since Ωm0 = ∅, the equation with constraints Em0 trivially has a
solution. It is clear that Em0 is a node in the search graph, and if
we reach Em0 , then the algorithm will return true.
ii) The other extreme case is ℓ = 1. We can describe L1 ∈ Γ∗1 as
follows:
For 1 ≤ i ≤ g let wi = σ(xi ) and ai the last letter of σ(xi−1) if
i > 1 and a1 = 1. Let fi the first letter of σ(xi+1) if i < g and
fg = 1. Let bi the first letter of wi and ei the last letter of wi .
For |wi | = 1 we replace xi by the 1-factor (ai , bi , fi ).
For |wi | = 2 we replace xi by the 1-factor (ai , bi , ei )(bi , ei , fi ).
For |wi | ≥ 3 we let ci be the second letter of wi and di its second
last. In this case we replace xi by (ai , bi , ci )xi (di , ei , fi ).
The definition of R1 is analogous. Thus, we obtain
|L1R1| ≤ 3|L0R0| = 3d, and E1 is admissible.



The equations E1 and Em0 are admissible and hence nodes of the
search graph of E0. The goal is to reach Em0 , but it is not clear
yet, neither that the ℓ-transformations with 1 < ℓ < m0 belong to
the search graph nor that there are arcs from E0 to E1 or from E1

to E2 and so on.
This involves combinatorics on words and many technical details
which can be found in the paper:
Volker Diekert, Claudio Gutiérrez, and Christian Hagenah.
The existential theory of equations with rational constraints in free
groups is PSPACE-complete.
Information and Computation, 105–140, 202 (2005)
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