Algebraic geometry over algebraic structures Lecture 4

Vladimir N. Remeslennikov¹ based on joint results with Evelina Yu. Daniyarova¹ and Alexei G. Myasnikov²

1 Sobolev Institute of Mathematics of the SB RAS, Omsk, Russia 2 McGill University, Montreal, Canada

Workshop

December 18, 2008, Alagna Valsesia, Italia

Outline

2 Unification Theorems

Unification Theorem A (No coefficients)

- 1 $\operatorname{Th}_{\forall}(\mathcal{A}) \subseteq \operatorname{Th}_{\forall}(\mathcal{C})$, *i.e.*, $\mathcal{C} \in \mathsf{Ucl}(\mathcal{A})$;
- $2 \operatorname{Th}_{\exists}(\mathcal{A}) \supseteq \operatorname{Th}_{\exists}(\mathcal{C});$
- **3** C embeds into an ultrapower of A;
- **4** C is discriminated by A;
- **5** C is a limit algebra over A;
- 6 C is an algebra defined by a complete atomic type in the theory Th_∀(A) in L;
- C is the coordinate algebra of a non-empty irreducible algebraic set over A defined by a system of coefficient-free equations.

Unification Theorem C (No coefficients)

- 1 $C \in \mathbf{Qvar}(\mathcal{A})$, *i.e.*, $\operatorname{Th}_{qi}(\mathcal{A}) \subseteq \operatorname{Th}_{qi}(\mathcal{C})$;
- **2** $C \in \mathbf{Pvar}(\mathcal{A})$;
- **3** C embeds into a direct power of A;
- **4** C is separated by A;
- **5** C is a subdirect product of finitely many limit algebras over A;
- C is an algebra defined by a complete atomic type in the theory Th_{qi}(A) in L;
- C is the coordinate algebra of a non-empty algebraic set over
 A defined by a system of coefficient-free equations.

Let $X = \{x_1, ..., x_n\}$ be a finite set of variables and T is a theory. Definition

A set p of atomic or negations of atomic formulas in variables X is called an **atomic type** relative to a theory T if $p \cup T$ is consistent. A maximal atomic type in in variables X with respect to inclusion is termed a **complete atomic type** of T.

If p is a complete atomic type in variables X then for every atomic formula $\varphi \in At_{\mathcal{L}}(X)$ either $\varphi \in p$ or $\neg \varphi \in p$.

Let $X = \{x_1, \ldots, x_n\}$ be a finite set of variables and T is a theory. Definition

A set p of atomic or negations of atomic formulas in variables X is called an atomic type relative to a theory T if $p \cup T$ is consistent. A maximal atomic type in in variables X with respect to inclusion is termed a complete atomic type of T.

If p is a complete atomic type in variables X then for every atomic formula $\varphi \in At_{\mathcal{L}}(X)$ either $\varphi \in p$ or $\neg \varphi \in p$.

Let $X = \{x_1, \ldots, x_n\}$ be a finite set of variables and T is a theory. Definition

A set p of atomic or negations of atomic formulas in variables X is called an atomic type relative to a theory T if $p \cup T$ is consistent. A maximal atomic type in in variables X with respect to inclusion is termed a complete atomic type of T.

If p is a complete atomic type in variables X then for every atomic formula $\varphi \in At_{\mathcal{L}}(X)$ either $\varphi \in p$ or $\neg \varphi \in p$.

Example

Let \mathcal{A} be an \mathcal{L} -algebra and $\bar{a} = (a_1, \ldots, a_n) \in \mathcal{A}^n$. Then the set $\operatorname{atp}^{\mathcal{A}}(\bar{a})$ of atomic or negations of atomic formulas in variables X that are true in \mathcal{A} under an interpretation $x_i \mapsto a_i, i = 1, \ldots, n$, is a complete atomic type relative to any theory T such that $\mathcal{A} \in \operatorname{Mod}(T)$.

Every complete atomic type p in variables X define congruence \sim_p on the free \mathcal{L} -algebra $\mathcal{T}_{\mathcal{L}}(X)$

$$t \sim_{p} s \iff (t = s) \in p, \quad t, s \in T_{\mathcal{L}}(X).$$

We denote by $\mathcal{T}_{\mathcal{L}}(X)/p$ corresponding factor-algebra of $\mathcal{T}_{\mathcal{L}}(X)$.

Definition

Let p be a complete atomic type in variables X. Then the factor-algebra $\mathcal{T}_{\mathcal{L}}(X)/p$ of the free \mathcal{L} -algebra $\mathcal{T}_{\mathcal{L}}(X)$ is termed the algebra defined by the type p.

Every complete atomic type p in variables X define congruence \sim_p on the free \mathcal{L} -algebra $\mathcal{T}_{\mathcal{L}}(X)$

$$t \sim_p s \iff (t = s) \in p, \quad t, s \in T_{\mathcal{L}}(X).$$

We denote by $\mathcal{T}_{\mathcal{L}}(X)/p$ corresponding factor-algebra of $\mathcal{T}_{\mathcal{L}}(X)$.

Definition

Let p be a complete atomic type in variables X. Then the factor-algebra $\mathcal{T}_{\mathcal{L}}(X)/p$ of the free \mathcal{L} -algebra $\mathcal{T}_{\mathcal{L}}(X)$ is termed the algebra defined by the type p.

Lemma

Let T be a universally axiomatized theory in \mathcal{L} . Then for any finitely generated \mathcal{L} -algebra \mathcal{A} the following conditions are equivalent:

1)
$$\mathcal{A} \in Mod(T)$$
;

2) $\mathcal{A} = \mathcal{T}_{\mathcal{L}}(X)/p$ for some complete atomic type p in T.

Unification Theorems

Unification Theorem A (No coefficients)

- 1 $\operatorname{Th}_{\forall}(\mathcal{A}) \subseteq \operatorname{Th}_{\forall}(\mathcal{C})$, *i.e.*, $\mathcal{C} \in \mathsf{Ucl}(\mathcal{A})$;
- $2 \operatorname{Th}_{\exists}(\mathcal{A}) \supseteq \operatorname{Th}_{\exists}(\mathcal{C});$
- **3** C embeds into an ultrapower of A;
- **4** C is discriminated by A;
- **5** C is a limit algebra over A;
- 6 C is an algebra defined by a complete atomic type in the theory Th_∀(A) in L;
- C is the coordinate algebra of a non-empty irreducible algebraic set over A defined by a system of coefficient-free equations.

Unification Theorem B (With coefficients)

Let \mathcal{A} be an equationally Noetherian algebra in the language $\mathcal{L}_{\mathcal{A}}$ (with no predicates in \mathcal{L}). Then for a finitely generated \mathcal{A} -algebra \mathcal{C} the following conditions are equivalent:

- 1 $\operatorname{Th}_{\forall,\mathcal{A}}(\mathcal{A}) = \operatorname{Th}_{\forall,\mathcal{A}}(\mathcal{C})$, i.e., $\mathcal{C} \equiv_{\forall,\mathcal{A}} \mathcal{A}$;
- **2** Th_{\exists,\mathcal{A}}(\mathcal{A}) = Th_{\exists,\mathcal{A}}(\mathcal{C}), *i.e.*, $\mathcal{C} \equiv_{\exists,\mathcal{A}} \mathcal{A}$;
- **3** C A-embeds into an ultrapower of A;
- **4** C is A-discriminated by A;
- **5** C is a limit algebra over A;
- C is an algebra defined by a complete atomic type in the theory Th_{∀,A}(A) in the language L_A;
- C is the coordinate algebra of a non-empty irreducible algebraic set over A defined by a system of equations with coefficients in A.

Unification Theorem C (No coefficients)

- 1 $C \in \mathbf{Qvar}(\mathcal{A})$, *i.e.*, $\operatorname{Th}_{qi}(\mathcal{A}) \subseteq \operatorname{Th}_{qi}(\mathcal{C})$;
- **2** $C \in Pvar(A)$;
- **3** C embeds into a direct power of A;
- **4** C is separated by A;
- **5** C is a subdirect product of finitely many limit algebras over A;
- C is an algebra defined by a complete atomic type in the theory Th_{qi}(A) in L;
- C is the coordinate algebra of a non-empty algebraic set over
 A defined by a system of coefficient-free equations.

Unification Theorem D (With coefficients)

Let \mathcal{A} be an equationally Noetherian algebra in the language $\mathcal{L}_{\mathcal{A}}$ (with no predicates in \mathcal{L}). Then for a finitely generated \mathcal{A} -algebra \mathcal{C} the following conditions are equivalent:

- 1 $\mathcal{C} \in \mathsf{Qvar}_{\mathcal{A}}(\mathcal{A})$, *i.e.*, $\mathrm{Th}_{\mathrm{qi},\mathcal{A}}(\mathcal{A}) = \mathrm{Th}_{\mathrm{qi},\mathcal{A}}(\mathcal{C})$;
- **2** $C \in \mathbf{Pvar}_{\mathcal{A}}(\mathcal{A})$;
- **3** C A-embeds into a direct power of A;
- **4** C is A-separated by A;
- **5** C is a subdirect product of finitely many limit algebras over A;
- C is an algebra defined by a complete atomic type in the theory Th_{qi,A}(A) in the language L_A;
- C is the coordinate algebra of a non-empty algebraic set over
 A defined by a system of equations with coefficients in A.

Unification Theorems

Remark

As follows from proof of Theorems A and C, some of them arrows hold for arbitrary algebra \mathcal{A} (not necessary equationally Noetherian), namely:

$$\begin{array}{rcl} \textit{Theorem A:} & \{4 \Leftrightarrow 7\} & \longrightarrow & \{1 \Leftrightarrow 2 \Leftrightarrow 3 \Leftrightarrow 5 \Leftrightarrow 6\};\\ \textit{Theorem C:} & \{5\} & \longrightarrow & \{1 \Leftrightarrow 6\} & \longleftarrow & \{2 \Leftrightarrow 3 \Leftrightarrow 4 \Leftrightarrow 7\}. \end{array}$$

References

- E. Daniyarova, A. Miasnikov, V. Remeslennikov, Unification theorems in algebraic geometry, Journal of Algebra and ..., 2008, and on arxiv.org.
- 2 E. Daniyarova, A. Miasnikov, V. Remeslennikov, Algebraic geometry over algebraic structures II: Foundations, to be appear.