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Major problem of algebraic geometry

One of the major problems of algebraic geometry over algebra A
consists in classifying algebraic sets over the algebra A with
accuracy up to isomorphism.

Due to Theorem on dual equivalence of the category of algebraic
sets and the category of coordinate algebras this problem is
equivalent to the problem of classifications of coordinate algebras.

And Unifications Theorems are useful for solving this problem.
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Unification Theorem A (No coefficients)

Let A be an equationally Noetherian algebra in a language L (with
no predicates). Then for a finitely generated algebra C of L the
following conditions are equivalent:

1 Th∀(A) ⊆ Th∀(C), i.e., C ∈ Ucl(A);

2 Th∃(A) ⊇ Th∃(C);
3 C embeds into an ultrapower of A;

4 C is discriminated by A;

5 C is a limit algebra over A;

6 C is an algebra defined by a complete atomic type in the
theory Th∀(A) in L;

7 C is the coordinate algebra of a non-empty irreducible
algebraic set over A defined by a system of coefficient-free
equations.
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Unification Theorem C (No coefficients)

Let A be an equationally Noetherian algebra in a language L (with
no predicates). Then for a finitely generated algebra C of L the
following conditions are equivalent:

1 C ∈ Qvar(A), i.e., Thqi(A) ⊆ Thqi(C);
2 C ∈ Pvar(A);

3 C embeds into a direct power of A;

4 C is separated by A;

5 C is a subdirect product of finitely many limit algebras over A;

6 C is an algebra defined by a complete atomic type in the
theory Thqi(A) in L;

7 C is the coordinate algebra of a non-empty algebraic set over
A defined by a system of coefficient-free equations.
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Zariski Topology and Irreducible Sets
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Zariski topology

There are three perspectives for investigation in algebraic geometry
over algebra A: algebraic, geometrical and logic. Geometrical
approach is connected with examination of affine space An as
topological space.

We define Zariski topology on An, where algebraic sets over A
form a subbase of closed sets, i.e., closed sets in this topology are
obtained from the algebraic sets by finite unions and (arbitrary)
intersections.
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Irreducible sets

A subset Y ⊆ An is called irreducible if for all closed subsets
Y1,Y2 ⊆ An inclusion Y ⊆ Y1 ∪ Y2 involves Y ⊆ Y1 or Y ⊆ Y2;
otherwise, it is called reducible. For example, any singleton set {p}
(p ∈ An) is irreducible.

Lemma
An algebraic set Y ⊆ An is irreducible if and only if it is not a
finite union of proper algebraic subsets.
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Irreducible sets

Lemma
Every algebraic set Y ⊆ An is a union of maximal with respect to
including irreducible algebraic sets over A.

Lemma
A finitely generated L-algebra C is the coordinate algebra of an
algebraic set over A if and only if it is a subdirect product of
coordinate algebras of irreducible algebraic sets over A.

9 / 37



Irreducible sets

Lemma
Every algebraic set Y ⊆ An is a union of maximal with respect to
including irreducible algebraic sets over A.

Lemma
A finitely generated L-algebra C is the coordinate algebra of an
algebraic set over A if and only if it is a subdirect product of
coordinate algebras of irreducible algebraic sets over A.

9 / 37



Link
Subdirect product

Let Ci , i ∈ I , be an L-algebras. Denote by pj , j ∈ I , the canonical
projections

∏
i∈I Ci → Cj .

Recall, that a subalgebra C of direct product
∏

i∈I Ci is a subdirect
product of the algebras Ci , i ∈ I , if pj(C) = Cj for all j ∈ I .
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Equationally Noetherian Algebras
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Equationally Noetherian algebras
Definition

Definition
An L-algebra A is equationally Noetherian, if for any positive
integer n and any system of equations S ⊆ AtL(x1, . . . , xn) there
exists a finite subsystem S0 ⊆ S such that V(S) = V(S0).
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Equationally Noetherian algebras

Example

The following algebras are equationally Noetherian in the language
with constants (LA for A):

• any Noetherian commutative ring;

• any linear group over Noetherian ring (in particular, free
groups, polycyclic groups, finitely generated metabelian
groups) [Bryant, Guba, Baumslag, Myasnikov,
Remeslennikov];

• any torsion-free hyperbolic group [Sela];

• any free solvable group [Gupta, Romanovskii];

• any finitely generated metabelian (or nilpotent) Lie algebra
[Shirshov, 1964].
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Equationally Noetherian algebras

Example

The following algebras are not equationally Noetherian:

• infinitely generated nilpotent groups [Myasnikov,
Remeslennikov, Romanovskii];

• A o B, where A is non-abelian and B is infinite [Baumslag,
Myasnikov, Roman’kov];

• the Grigorchuk group Γ [Grigorchuk, Sapir];

• the Min-Max structures MR = 〈R; max,min, ·,+,−, 0, 1〉 and
MN = 〈N; max,min,+, 0, 1〉 [Dvorjestky, Kotov].

14 / 37



Equationally Noetherian algebras

Example

The following algebras are not equationally Noetherian:

• infinitely generated nilpotent groups [Myasnikov,
Remeslennikov, Romanovskii];

• A o B, where A is non-abelian and B is infinite [Baumslag,
Myasnikov, Roman’kov];

• the Grigorchuk group Γ [Grigorchuk, Sapir];

• the Min-Max structures MR = 〈R; max,min, ·,+,−, 0, 1〉 and
MN = 〈N; max,min,+, 0, 1〉 [Dvorjestky, Kotov].

14 / 37



Equationally Noetherian algebras

Example

The following algebras are not equationally Noetherian:

• infinitely generated nilpotent groups [Myasnikov,
Remeslennikov, Romanovskii];

• A o B, where A is non-abelian and B is infinite [Baumslag,
Myasnikov, Roman’kov];

• the Grigorchuk group Γ [Grigorchuk, Sapir];

• the Min-Max structures MR = 〈R; max,min, ·,+,−, 0, 1〉 and
MN = 〈N; max,min,+, 0, 1〉 [Dvorjestky, Kotov].

14 / 37



Equationally Noetherian algebras

Example

The following algebras are not equationally Noetherian:

• infinitely generated nilpotent groups [Myasnikov,
Remeslennikov, Romanovskii];

• A o B, where A is non-abelian and B is infinite [Baumslag,
Myasnikov, Roman’kov];

• the Grigorchuk group Γ [Grigorchuk, Sapir];

• the Min-Max structures MR = 〈R; max,min, ·,+,−, 0, 1〉 and
MN = 〈N; max,min,+, 0, 1〉 [Dvorjestky, Kotov].

14 / 37



Equationally Noetherian algebras

Example

The following algebras are not equationally Noetherian:

• infinitely generated nilpotent groups [Myasnikov,
Remeslennikov, Romanovskii];

• A o B, where A is non-abelian and B is infinite [Baumslag,
Myasnikov, Roman’kov];

• the Grigorchuk group Γ [Grigorchuk, Sapir];

• the Min-Max structures MR = 〈R; max,min, ·,+,−, 0, 1〉 and
MN = 〈N; max,min,+, 0, 1〉 [Dvorjestky, Kotov].

14 / 37



Equationally Noetherian algebras

Open Problems

Are the following algebras equationally Noetherian:

• free Lie algebra?

• free anti-commutative algebra?

• free associative algebra?

• free products of equationally Noetherian groups?
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Equationally Noetherian algebras

Lemma
Let A be an equationally Noetherian algebra. Then the following
algebras are equationally Noetherian too:

1 every subalgebra of A;

2 every filterpower (ultrapower, direct power) of A;

3 coordinate algebra Γ(Y ) of an algebraic set Y over A;

4 every algebra separated by A;

5 every algebra discriminated by A;

6 every algebra from Qvar(A);

7 every algebra from Ucl(A);

8 every limit algebra over A;

9 every algebra defined by a complete atomic type in the theory
Th∀(A) in L.
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Equationally Noetherian algebras

Lemma
For an algebra A the following conditions are equivalent:

1 A is equationally Noetherian;

2 for any positive integer n Zariski topology on An is Noetherian
(i.e., it satisfies the descending chain condition on closed
subsets);

3 every chain of proper epimorphisms

C0 −→ C1 −→ C2 −→ C3 −→ . . .

of coordinate algebras of algebraic sets over A is finite.
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Equationally Noetherian algebras
Irreducible algebraic sets

Theorem
Every algebraic set over equationally Noetherian algebra A can be
expressed as a finite union of irreducible algebraic sets (irreducible
components). Furthermore, this decomposition is unique up to
permutation of irreducible components and omission of superfluous
ones.
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Equationally Noetherian algebras
Irreducible coordinate algebras

Theorem
Let A be an equationally Noetherian L-algebra. A finitely
generated L-algebra C is the coordinate algebra of an algebraic set
over A if and only if it is a subdirect product of finitely many
coordinate algebras of irreducible algebraic sets over A.

Corollary

Classification of irreducible algebraic sets (or/and their coordinate
algebras) is the essential problem of algebraic geometry over
equationally Noetherian algebra.
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Unification Theorems
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Unification Theorem A (No coefficients)

Let A be an equationally Noetherian algebra in a language L (with
no predicates). Then for a finitely generated algebra C of L the
following conditions are equivalent:

1 Th∀(A) ⊆ Th∀(C), i.e., C ∈ Ucl(A);

2 Th∃(A) ⊇ Th∃(C);
3 C embeds into an ultrapower of A;

4 C is discriminated by A;

5 C is a limit algebra over A;

6 C is an algebra defined by a complete atomic type in the
theory Th∀(A) in L;

7 C is the coordinate algebra of a non-empty irreducible
algebraic set over A defined by a system of coefficient-free
equations.
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Unification Theorem B (With coefficients)

Let A be an equationally Noetherian algebra in the language LA
(with no predicates in L). Then for a finitely generated A-algebra
C the following conditions are equivalent:

1 Th∀,A(A) = Th∀,A(C), i.e., C ≡∀,A A;

2 Th∃,A(A) = Th∃,A(C), i.e., C ≡∃,A A;

3 C A-embeds into an ultrapower of A;

4 C is A-discriminated by A;

5 C is a limit algebra over A;

6 C is an algebra defined by a complete atomic type in the
theory Th∀,A(A) in the language LA;

7 C is the coordinate algebra of a non-empty irreducible
algebraic set over A defined by a system of equations with
coefficients in A.
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Unification Theorem C (No coefficients)

Let A be an equationally Noetherian algebra in a language L (with
no predicates). Then for a finitely generated algebra C of L the
following conditions are equivalent:

1 C ∈ Qvar(A), i.e., Thqi(A) ⊆ Thqi(C);
2 C ∈ Pvar(A);

3 C embeds into a direct power of A;

4 C is separated by A;

5 C is a subdirect product of finitely many limit algebras over A;

6 C is an algebra defined by a complete atomic type in the
theory Thqi(A) in L;

7 C is the coordinate algebra of a non-empty algebraic set over
A defined by a system of coefficient-free equations.
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Unification Theorem D (With coefficients)

Let A be an equationally Noetherian algebra in the language LA
(with no predicates in L). Then for a finitely generated A-algebra
C the following conditions are equivalent:

1 C ∈ QvarA(A), i.e., Thqi,A(A) = Thqi,A(C);
2 C ∈ PvarA(A);

3 C A-embeds into a direct power of A;

4 C is A-separated by A;

5 C is a subdirect product of finitely many limit algebras over A;

6 C is an algebra defined by a complete atomic type in the
theory Thqi,A(A) in the language LA;

7 C is the coordinate algebra of a non-empty algebraic set over
A defined by a system of equations with coefficients in A.
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Unification Theorems

Remark
As follows from proof of Theorems A and C, some of them arrows
hold for arbitrary algebra A (not necessary equationally
Noetherian), namely:

Theorem A: {4⇔ 7} −→ {1⇔ 2⇔ 3⇔ 5⇔ 6};

Theorem C: {5} −→ {1⇔ 6} ←− {2⇔ 3⇔ 4⇔ 7}.
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Examples
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Min-Max structures

Example (Dvorjetsky, Kotov)

The structure MR = 〈R; max,min, ·,+,−, 0, 1〉 with obvious
interpretation of the symbols from signature on R is an example of
so-called Min-Max structure.

Theorem
A set Y ⊆ Rn is algebraic overMR if and only if it is closed in
topology induced by Euclidean metric on Rn.
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Abelian groups

Example (Myasnikov, Remeslennikov)

Let A be a fixed abelian group and L be the language of abelian
groups with constants from A: L = {+,−, 0, ca, a ∈ A}.

Theorem
Let C be a finitely generated A-group. Then C is the coordinate
group of an algebraic set over A if and only if the following
conditions holds:

1 C ' A⊕ B, where B is a finitely generated abelian group;

2 e(A) = e(C ) and ep(A) = ep(C ) for every prime number p.
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Abelian groups
Notations

Example (Myasnikov, Remeslennikov)

Recall, that the period of an abelian group A is the minimal
positive integer m, if it exists, such that mA = 0; and ∞ otherwise.

Let T (A) be the torsion part of A and T (A) ' ⊕pTp(A) be the
primary decomposition of T (A) (here and below in this Example p
is a prime number).

Denote by e(A) the period of A, and by ep(A) the period of Tp(A).
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Abelian groups
Algebraic sets

Example (Myasnikov, Remeslennikov)

Now it is easy to describe algebraic set Y , corresponding to
coordinate group C = A⊕ B from Theorem above. Fix a primary
cyclic decomposition of the group B:

B ' 〈a1〉 ⊕ . . .⊕ 〈ar 〉 ⊕ 〈b1〉 ⊕ . . .⊕ 〈bt〉,

here ai -s are generators o infinite cyclic groups and bj -s are
generators of finite cyclic groups of orders p

mj

j .
For positive integer n denote by A[n] the set {a ∈ A | na = 0}.
Then

Y = A⊕ . . .⊕ A︸ ︷︷ ︸
r

⊕ A[pm1
1 ]⊕ . . .⊕ A[pmt

t ].
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Abelian groups
Coordinate groups of irreducible algebraic sets

Example (Myasnikov, Remeslennikov)

For a positive integer k and a prime number p we denote by
αpk (A) the dimension, if it exists, of factor-group A[pk ]/A[pk−1] as
vector-space over finite field with p elements; and ∞ otherwise.

Theorem
Let C be a finitely generated A-group. Then C is the coordinate
group of an irreducible algebraic set over A if and only if the
following conditions holds:

1 C ' A⊕ B, where B is a finitely generated abelian group;

2 e(A) = e(C ) and ep(A) = ep(C ) for every prime number p;

3 αpk (A) = αpk (C ) for each prime number p and positive
integer k.

31 / 37



Abelian groups
Coordinate groups of irreducible algebraic sets

Example (Myasnikov, Remeslennikov)

For a positive integer k and a prime number p we denote by
αpk (A) the dimension, if it exists, of factor-group A[pk ]/A[pk−1] as
vector-space over finite field with p elements; and ∞ otherwise.

Theorem
Let C be a finitely generated A-group. Then C is the coordinate
group of an irreducible algebraic set over A if and only if the
following conditions holds:

1 C ' A⊕ B, where B is a finitely generated abelian group;

2 e(A) = e(C ) and ep(A) = ep(C ) for every prime number p;

3 αpk (A) = αpk (C ) for each prime number p and positive
integer k.

31 / 37



Free Lie algebra

Example (Daniyarova, Remeslennikov)

Let L be a free Lie algebra of finite rank over a field k.

• An algebraic set Y is called bounded if it enters into some
finite dimensional subspace of Ln as k-linear space.

• Examples of bounded algebraic sets are so-called
n-parallelepipeds.

• Under n-parallelepiped V we mean a Cartesian product of a
n-tuple of finite dimensional subspaces V1, . . . ,Vn of L:

V = V1 × . . .× Vn.
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Free Lie algebra

Example (Daniyarova, Remeslennikov)

1-parallelepipeds are finite dimensional subspaces in L. For linear
subspace in L with basis v1, . . . , vm we have

s1(x) = [x , v1],

s2(x) = [[x , v1], [v2, v1]],

. . .

sm(x) = [sm−1(x), sm−1(vm)].

So that V(sm) = link{v1, . . . , vm}.
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Free Lie algebra

Example (Daniyarova, Remeslennikov)

• The dimension of n-parallelepiped V is

dim(V) = dim(V1) + . . . + dim(Vn).

• An algebraic set Y is bounded by parallelepiped V if Y ⊆ V.
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Free Lie algebra

Example (Daniyarova, Remeslennikov)

Theorem
Let V be a n-parallelepiped over the free Lie algebra L over a field
k. Algebraic sets over the algebra L, bounded by parallelepiped V,
lie in one-to-one correspondence with algebraic sets over the field
k, which conform to systems of equations in dim(V) variables.

Corollary

Algebraic geometry over the free Lie algebra L over a field k is so
extensive as it comprises the whole theory of diophantine algebraic
geometry of the ground field k.
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Free Lie algebra
Translator

Example (Daniyarova, Remeslennikov)

Let V = V1 × . . .× Vn and {v i
1, . . . , v

i
mi
} — a basis of the linear

space Vi , i = 1, n.

Then the correspondence (reference to the previous theorem) is set
by the rule:

{α1
1v

1
1 + . . . + α1

m1
v1
m1

, . . . , αn
1v

n
1 + . . . + αn

mn
vn
mn
} ⊆ V

↘ ↗
{α1

1, . . . , α
1
m1

, . . . , αn
1, . . . , α

n
mn
} ⊆ kdim(V).
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