Algebraic geometry over algebraic structures Lecture 2

Evelina Yu. Daniyarova¹ based on joint results with Alexei G. Myasnikov² and Vladimir N. Remeslennikov¹

1 Sobolev Institute of Mathematics of the SB RAS, Omsk, Russia 2 McGill University, Montreal, Canada

Workshop

December 16, 2008, Alagna Valsesia, Italia

Outline

1 Elements of Model Theory

Languages and Structures Formulas

2 Elements of Algebraic Geometry Equations and Algebraic Sets Radicals and Coordinate Algebras

3 The Category of Algebraic Sets and The Category of Coordinate Algebras

4 Unification Theorems

Unification Theorem A (No coefficients)

Let \mathcal{A} be an equationally Noetherian algebraic structure in a language \mathcal{L} (with no predicates). Then for a finitely generated algebraic structure \mathcal{C} of \mathcal{L} the following conditions are equivalent:

- 1 $\operatorname{Th}_{\forall}(\mathcal{A}) \subseteq \operatorname{Th}_{\forall}(\mathcal{C})$, i.e., $\mathcal{C} \in \mathsf{Ucl}(\mathcal{A})$;
- $2 \operatorname{Th}_{\exists}(\mathcal{A}) \supseteq \operatorname{Th}_{\exists}(\mathcal{C});$
- **3** C embeds into an ultrapower of A;
- **4** C is discriminated by A;
- **5** C is a limit algebra over A;
- 6 C is an algebra defined by a complete atomic type in the theory Th_∀(A) in L;
- C is the coordinate algebra of a non-empty irreducible algebraic set over A defined by a system of coefficient-free equations.

Elements of Model Theory

Let $\mathcal{L} = \mathcal{F} \cup \mathcal{C}$ be a first-order language with no predicates, consisting of a set \mathcal{F} of symbols of functions F, given together with their arities n_F , and a set of constants \mathcal{C} .

An \mathcal{L} -structure \mathcal{A} is given by the following data:

• a non-empty set A called the universe of A;

- a function $F^{\mathcal{A}}: A^{n_F} \to A$ of arity n_F for each function $F \in \mathcal{L}$;
- an element $c^{\mathcal{A}} \in A$ for each constant $c \in \mathcal{L}$.

We use notation A, B, C, \ldots to refer to the universes of the structures A, B, C, \ldots

Let $\mathcal{L} = \mathcal{F} \cup \mathcal{C}$ be a first-order language with no predicates, consisting of a set \mathcal{F} of symbols of functions F, given together with their arities n_F , and a set of constants \mathcal{C} .

An \mathcal{L} -structure \mathcal{A} is given by the following data:

- a non-empty set A called the universe of A;
- a function $F^{\mathcal{A}}: A^{n_F} \to A$ of arity n_F for each function $F \in \mathcal{L}$;
- an element $c^{\mathcal{A}} \in A$ for each constant $c \in \mathcal{L}$.

We use notation A, B, C, \ldots to refer to the universes of the structures $\mathcal{A}, \mathcal{B}, \mathcal{C}, \ldots$

Let $\mathcal{L} = \mathcal{F} \cup \mathcal{C}$ be a first-order language with no predicates, consisting of a set \mathcal{F} of symbols of functions F, given together with their arities n_F , and a set of constants \mathcal{C} .

An \mathcal{L} -structure \mathcal{A} is given by the following data:

• a non-empty set A called the universe of A;

- a function $F^{\mathcal{A}}: A^{n_F} \to A$ of arity n_F for each function $F \in \mathcal{L}$;
- an element $c^{\mathcal{A}} \in A$ for each constant $c \in \mathcal{L}$.

We use notation A, B, C, \ldots to refer to the universes of the structures A, B, C, \ldots

Let $\mathcal{L} = \mathcal{F} \cup \mathcal{C}$ be a first-order language with no predicates, consisting of a set \mathcal{F} of symbols of functions F, given together with their arities n_F , and a set of constants \mathcal{C} .

An \mathcal{L} -structure \mathcal{A} is given by the following data:

• a non-empty set A called the universe of A;

- a function $F^{\mathcal{A}}: A^{n_F} \to A$ of arity n_F for each function $F \in \mathcal{L}$;
- an element $c^{\mathcal{A}} \in A$ for each constant $c \in \mathcal{L}$.

We use notation A, B, C, \ldots to refer to the universes of the structures A, B, C, \ldots

Let $\mathcal{L} = \mathcal{F} \cup \mathcal{C}$ be a first-order language with no predicates, consisting of a set \mathcal{F} of symbols of functions F, given together with their arities n_F , and a set of constants \mathcal{C} .

An \mathcal{L} -structure \mathcal{A} is given by the following data:

• a non-empty set A called the universe of A;

- a function $F^{\mathcal{A}}: A^{n_F} \to A$ of arity n_F for each function $F \in \mathcal{L}$;
- an element $c^{\mathcal{A}} \in A$ for each constant $c \in \mathcal{L}$.

We use notation A, B, C, ... to refer to the universes of the structures A, B, C, ...

Languages and structures

Example

- The language of groups \mathcal{L}_g consists of a binary operation \cdot (multiplication), a unary operation $^{-1}$ (inversion), and a constant symbol e (the identity). Every group G with a natural interpretation of the symbols of \mathcal{L}_g is an \mathcal{L}_g -structure.
- The language of additive commutative monoids \mathcal{L}_m consists of a binary operation + (addition) and a constant symbol 0 (the identity).
- The language L_{Lie} of Lie algebras over fixed field k consists of two binary operations + and [,] (addition and multiplication), a set of unary operations F_α, α ∈ k (multiplication by α ∈ k), and constant symbol 0.

Languages and structures

Example

- The language of groups \mathcal{L}_g consists of a binary operation \cdot (multiplication), a unary operation $^{-1}$ (inversion), and a constant symbol e (the identity). Every group G with a natural interpretation of the symbols of \mathcal{L}_g is an \mathcal{L}_g -structure.
- The language of additive commutative monoids \mathcal{L}_m consists of a binary operation + (addition) and a constant symbol 0 (the identity).
- The language L_{Lie} of Lie algebras over fixed field k consists of two binary operations + and [,] (addition and multiplication), a set of unary operations F_α, α ∈ k (multiplication by α ∈ k), and constant symbol 0.

Languages and structures

Example

- The language of groups \mathcal{L}_{g} consists of a binary operation \cdot (multiplication), a unary operation $^{-1}$ (inversion), and a constant symbol *e* (the identity). Every group *G* with a natural interpretation of the symbols of \mathcal{L}_{g} is an \mathcal{L}_{g} -structure.
- The language of additive commutative monoids \mathcal{L}_m consists of a binary operation + (addition) and a constant symbol 0 (the identity).
- The language L_{Lie} of Lie algebras over fixed field k consists of two binary operations + and [,] (addition and multiplication), a set of unary operations F_α, α ∈ k (multiplication by α ∈ k), and constant symbol 0.

Terms and atomic formulas

Let $X = \{x_1, x_2, \ldots\}$ be a finite or countable set of variables.

Recall that terms in \mathcal{L} in variables X are formal expressions defined recursively as follows:

T1) variables $x_1, x_2, \ldots, x_n, \ldots$ are terms;

T2) constants from \mathcal{L} are terms;

T3) if $F(x_1, \ldots, x_n) \in \mathcal{L}$ is function and t_1, \ldots, t_n are terms then $F(t_1, \ldots, t_n)$ is a term.

By $T_{\mathcal{L}}(X)$ we denote the set of all terms in \mathcal{L} in variables X. The set of all atomic formulas (t = s), $t, s \in T_{\mathcal{L}}(X)$, we denote by $At_{\mathcal{L}}(X)$.

Terms and atomic formulas

Let $X = \{x_1, x_2, \ldots\}$ be a finite or countable set of variables.

Recall that terms in \mathcal{L} in variables X are formal expressions defined recursively as follows:

T1) variables $x_1, x_2, \ldots, x_n, \ldots$ are terms;

T2) constants from \mathcal{L} are terms;

T3) if $F(x_1, \ldots, x_n) \in \mathcal{L}$ is function and t_1, \ldots, t_n are terms then $F(t_1, \ldots, t_n)$ is a term.

By $T_{\mathcal{L}}(X)$ we denote the set of all terms in \mathcal{L} in variables X. The set of all atomic formulas (t = s), $t, s \in T_{\mathcal{L}}(X)$, we denote by $At_{\mathcal{L}}(X)$.

Terms and atomic formulas

Let $X = \{x_1, x_2, \ldots\}$ be a finite or countable set of variables.

Recall that terms in \mathcal{L} in variables X are formal expressions defined recursively as follows:

T1) variables $x_1, x_2, \ldots, x_n, \ldots$ are terms;

T2) constants from \mathcal{L} are terms;

T3) if $F(x_1, \ldots, x_n) \in \mathcal{L}$ is function and t_1, \ldots, t_n are terms then $F(t_1, \ldots, t_n)$ is a term.

By $T_{\mathcal{L}}(X)$ we denote the set of all terms in \mathcal{L} in variables X. The set of all atomic formulas (t = s), $t, s \in T_{\mathcal{L}}(X)$, we denote by $At_{\mathcal{L}}(X)$.

Terms and atomic formulas

If given an \mathcal{L} -algebra \mathcal{A} then every term $t(x_1, \ldots, x_n) \in T_{\mathcal{L}}(X)$ defines a function $t^{\mathcal{A}} : A^n \to A$ via recursion by definition of t.

For example, when studying algebraic geometry over groups in the language of groups \mathcal{L}_g we may think about terms as words of free group, generated by X. And any atomic formula (t = s) is equivalent to atomic formula of specific form $(t \cdot s^{-1} = e)$.

So, examining commutative associative rings in the language $\mathcal{L}_{r} = \{+, -, \cdot, 0\}$, we may think about terms as polynomials in variables X over the ring \mathbb{Z} . And any atomic formula (t = s) is equivalent to atomic formula (t - s = 0).

Terms and atomic formulas

If given an \mathcal{L} -algebra \mathcal{A} then every term $t(x_1, \ldots, x_n) \in T_{\mathcal{L}}(X)$ defines a function $t^{\mathcal{A}} : A^n \to A$ via recursion by definition of t.

For example, when studying algebraic geometry over groups in the language of groups \mathcal{L}_g we may think about terms as words of free group, generated by X. And any atomic formula (t = s) is equivalent to atomic formula of specific form $(t \cdot s^{-1} = e)$.

So, examining commutative associative rings in the language $\mathcal{L}_{r} = \{+, -, \cdot, 0\}$, we may think about terms as polynomials in variables X over the ring \mathbb{Z} . And any atomic formula (t = s) is equivalent to atomic formula (t - s = 0).

Terms and atomic formulas

If given an \mathcal{L} -algebra \mathcal{A} then every term $t(x_1, \ldots, x_n) \in T_{\mathcal{L}}(X)$ defines a function $t^{\mathcal{A}} : A^n \to A$ via recursion by definition of t.

For example, when studying algebraic geometry over groups in the language of groups \mathcal{L}_g we may think about terms as words of free group, generated by X. And any atomic formula (t = s) is equivalent to atomic formula of specific form $(t \cdot s^{-1} = e)$.

So, examining commutative associative rings in the language $\mathcal{L}_{r} = \{+, -, \cdot, 0\}$, we may think about terms as polynomials in variables X over the ring \mathbb{Z} . And any atomic formula (t = s) is equivalent to atomic formula (t - s = 0).

Elements of algebraic geometry Equations

Let $X = \{x_1, \ldots, x_n\}$ be a finite set of variables.

- Equation in the language L in variables X is an atomic formula (t = s) ∈ At_L(X), where t, s are terms;
- Any subset $S \subseteq At_{\mathcal{L}}(X)$ forms a system of equations in \mathcal{L} .

Elements of algebraic geometry Equations

Let $X = \{x_1, \ldots, x_n\}$ be a finite set of variables.

- Equation in the language L in variables X is an atomic formula (t = s) ∈ At_L(X), where t, s are terms;
- Any subset $S \subseteq At_{\mathcal{L}}(X)$ forms a system of equations in \mathcal{L} .

Elements of algebraic geometry Equations

Let $X = \{x_1, \ldots, x_n\}$ be a finite set of variables.

- Equation in the language L in variables X is an atomic formula (t = s) ∈ At_L(X), where t, s are terms;
- Any subset $S \subseteq At_{\mathcal{L}}(X)$ forms a system of equations in \mathcal{L} .

Elements of algebraic geometry Algebraic sets

Let \mathcal{A} be an \mathcal{L} -algebra.

• The solution of a system of equations S over A,

$$\mathbb{V}_{\mathcal{A}}(S) = \{ (a_1, \dots, a_n) \in \mathcal{A}^n \mid t^{\mathcal{A}}(a_1, \dots, a_n) = s^{\mathcal{A}}(a_1, \dots, a_n) \ orall (t = s) \in S \},$$

is termed the algebraic set over \mathcal{A} .

Elements of algebraic geometry Algebraic sets

Let \mathcal{A} be an \mathcal{L} -algebra.

• The solution of a system of equations S over A,

$$V_{\mathcal{A}}(S) = \{ (a_1, \ldots, a_n) \in A^n \mid t^{\mathcal{A}}(a_1, \ldots, a_n) = s^{\mathcal{A}}(a_1, \ldots, a_n) \\ \forall (t = s) \in S \},$$

is termed the algebraic set over \mathcal{A} .

Elements of algebraic geometry Coefficients

If someone wants to investigate the Diophantine algebraic geometry over \mathcal{A} then it is enough to take instead of \mathcal{L} the language $\mathcal{L}_{\mathcal{A}} = \mathcal{L} \cup \{c_a \mid a \in A\}$, which is obtained from \mathcal{L} by adding a new constant c_a for every element $a \in A$.

The \mathcal{L} -algebra \mathcal{A} in obvious way is an $\mathcal{L}_{\mathcal{A}}$ -algebra.

Sometimes, to emphasize that formulas are from \mathcal{L} we call such equations (and systems of equations) coefficient-free equations, meanwhile, in the case when $\mathcal{L} = \mathcal{L}_{\mathcal{A}}$, we refer to such equations as equations with coefficients in algebra \mathcal{A} .

Elements of algebraic geometry Coefficients

If someone wants to investigate the Diophantine algebraic geometry over \mathcal{A} then it is enough to take instead of \mathcal{L} the language $\mathcal{L}_{\mathcal{A}} = \mathcal{L} \cup \{c_a \mid a \in A\}$, which is obtained from \mathcal{L} by adding a new constant c_a for every element $a \in A$.

The \mathcal{L} -algebra \mathcal{A} in obvious way is an $\mathcal{L}_{\mathcal{A}}$ -algebra.

Sometimes, to emphasize that formulas are from \mathcal{L} we call such equations (and systems of equations) coefficient-free equations, meanwhile, in the case when $\mathcal{L} = \mathcal{L}_{\mathcal{A}}$, we refer to such equations as equations with coefficients in algebra \mathcal{A} .

Elements of algebraic geometry Coefficients

If someone wants to investigate the Diophantine algebraic geometry over \mathcal{A} then it is enough to take instead of \mathcal{L} the language $\mathcal{L}_{\mathcal{A}} = \mathcal{L} \cup \{c_a \mid a \in A\}$, which is obtained from \mathcal{L} by adding a new constant c_a for every element $a \in A$.

The \mathcal{L} -algebra \mathcal{A} in obvious way is an $\mathcal{L}_{\mathcal{A}}$ -algebra.

Sometimes, to emphasize that formulas are from \mathcal{L} we call such equations (and systems of equations) coefficient-free equations, meanwhile, in the case when $\mathcal{L} = \mathcal{L}_{\mathcal{A}}$, we refer to such equations as equations with coefficients in algebra \mathcal{A} .

Diophantine algebraic geometry

It is recognized two directions in papers on algebraic geometry over concrete algebraic structures: with coefficients and with no coefficients.

For instance, if *G* is some group, then it is said about algebraic geometry over *G* with no coefficients, when studying equations in the language of groups \mathcal{L}_g and corresponding algebraic sets over *G*. If one consider equations in the extended language $\mathcal{L}_{g,G}$, then it is said about algebraic geometry over *G* with coefficient in *G*. In this case equations are called an *G*-equations, coordinate groups are *G*-groups, etc.

Diophantine algebraic geometry

It is recognized two directions in papers on algebraic geometry over concrete algebraic structures: with coefficients and with no coefficients.

For instance, if G is some group, then it is said about algebraic geometry over G with no coefficients, when studying equations in the language of groups \mathcal{L}_g and corresponding algebraic sets over G.

If one consider equations in the extended language $\mathcal{L}_{g,G}$, then it is said about algebraic geometry over G with coefficient in G. In this case equations are called an G-equations, coordinate groups are G-groups, etc.

Diophantine algebraic geometry

It is recognized two directions in papers on algebraic geometry over concrete algebraic structures: with coefficients and with no coefficients.

For instance, if *G* is some group, then it is said about algebraic geometry over *G* with no coefficients, when studying equations in the language of groups \mathcal{L}_g and corresponding algebraic sets over *G*. If one consider equations in the extended language $\mathcal{L}_{g,G}$, then it is said about algebraic geometry over *G* with coefficient in *G*. In this case equations are called an *G*-equations, coordinate groups are *G*-groups, etc.

Diophantine algebraic geometry

It is recognized two directions in papers on algebraic geometry over concrete algebraic structures: with coefficients and with no coefficients.

For instance, if *G* is some group, then it is said about algebraic geometry over *G* with no coefficients, when studying equations in the language of groups \mathcal{L}_g and corresponding algebraic sets over *G*. If one consider equations in the extended language $\mathcal{L}_{g,G}$, then it is said about algebraic geometry over *G* with coefficient in *G*. In this case equations are called an *G*-equations, coordinate groups are *G*-groups, etc.

Radicals and coordinate algebras

The set of atomic formulas

$$\begin{aligned} \operatorname{Rad}(S) &= \{ \ (t=s) \in \operatorname{At}_{\mathcal{L}}(X) \mid t^{\mathcal{A}}(a_1,\ldots,a_n) = s^{\mathcal{A}}(a_1,\ldots,a_n) \\ &\forall \ (a_1,\ldots,a_n) \in \operatorname{V}(S) \ \} \end{aligned}$$

is termed the radical of the algebraic set V(S).

The factor-algebra

$$\Gamma(S) = \mathcal{T}_{\mathcal{L}}(X)/\mathrm{Rad}(S)$$

is called the coordinate algebra of the algebraic set V(S).

Radicals and coordinate algebras

• The set of atomic formulas

$$\begin{aligned} \operatorname{Rad}(S) &= \{ \ (t=s) \in \operatorname{At}_{\mathcal{L}}(X) \mid t^{\mathcal{A}}(a_1, \dots, a_n) = s^{\mathcal{A}}(a_1, \dots, a_n) \\ &\forall \ (a_1, \dots, a_n) \in \operatorname{V}(S) \ \} \end{aligned}$$

is termed the radical of the algebraic set V(S).

The factor-algebra

$$\Gamma(S) = \mathcal{T}_{\mathcal{L}}(X) / \operatorname{Rad}(S)$$

is called the coordinate algebra of the algebraic set V(S).

Link Absolutely free algebra

The set $T_{\mathcal{L}}(X)$ of all terms in \mathcal{L} in variables X with a natural interpretation of the symbols of \mathcal{L} form absolutely free \mathcal{L} -algebra or termal algebra $\mathcal{T}_{\mathcal{L}}(X)$ with basis X.

Link Factor-algebra

Let Δ be a congruent set of atomic formulas. Then it defines congruence \sim_{Δ} on the algebra $\mathcal{T}_{\mathcal{L}}(X)$:

$$t \sim_{\Delta} s \iff (t = s) \in \Delta, \quad t, s \in T_{\mathcal{L}}(X).$$

More precisely, \sim_{Δ} is an equivalence relation on the set of terms $T_{\mathcal{L}}(X)$, which preserves all functions from \mathcal{L} such that factor-set $T_{\mathcal{L}}(X)/\sim_{\Delta}$ has a natural interpretation of all of the symbols from \mathcal{L} . Resulting \mathcal{L} -structure with universe $T_{\mathcal{L}}(X)/\sim_{\Delta}$ is termed factor-algebra. We denote it by $\mathcal{T}_{\mathcal{L}}(X)/\Delta$.

Link Congruent sets

A set of atomic formulas $\Delta \subseteq At_{\mathcal{L}}(X)$ is congruent if and only if it satisfies the following conditions:

- 1 $(t=t)\in\Delta$ for any term $t\in\mathrm{T}_{\mathcal{L}}(X);$
- 2 if $(t_1 = t_2) \in \Delta$ then $(t_2 = t_1) \in \Delta$ for any terms $t_1, t_2 \in T_{\mathcal{L}}(X)$;
- **3** if $(t_1 = t_2) \in \Delta$ and $(t_2 = t_3) \in \Delta$ then $(t_1 = t_3) \in \Delta$ for any terms $t_1, t_2, t_3 \in T_{\mathcal{L}}(X)$;

4 if
$$(t_1 = s_1), \ldots, (t_{n_F} = s_{n_F}) \in \Delta$$
 then
 $(F(t_1, \ldots, t_{n_F}) = F(s_1, \ldots, s_{n_F})) \in \Delta$ for any terms
 $t_i, s_i \in T_{\mathcal{L}}(X), i = 1, \ldots, n_F$, and any function $F \in \mathcal{L}$.

It is clear that the radical Rad(S) is congruent set of atomic formulas, so the coordinate algebra $\Gamma(S)$ is well-defined.

Link Congruent sets

A set of atomic formulas $\Delta \subseteq At_{\mathcal{L}}(X)$ is congruent if and only if it satisfies the following conditions:

$$oldsymbol{1}$$
 $(t=t)\in\Delta$ for any term $t\in\mathrm{T}_{\mathcal{L}}(X);$

2) if
$$(t_1 = t_2) \in \Delta$$
 then $(t_2 = t_1) \in \Delta$ for any terms $t_1, t_2 \in T_{\mathcal{L}}(X)$;

3 if $(t_1 = t_2) \in \Delta$ and $(t_2 = t_3) \in \Delta$ then $(t_1 = t_3) \in \Delta$ for any terms $t_1, t_2, t_3 \in T_{\mathcal{L}}(X)$;

4 if
$$(t_1 = s_1), \ldots, (t_{n_F} = s_{n_F}) \in \Delta$$
 then
 $(F(t_1, \ldots, t_{n_F}) = F(s_1, \ldots, s_{n_F})) \in \Delta$ for any terms
 $t_i, s_i \in T_{\mathcal{L}}(X), i = 1, \ldots, n_F$, and any function $F \in \mathcal{L}$.

It is clear that the radical $\operatorname{Rad}(S)$ is congruent set of atomic formulas, so the coordinate algebra $\Gamma(S)$ is well-defined.

One of the major problems of algebraic geometry over \mathcal{L} -algebra \mathcal{A} consists in classifying algebraic sets over the algebra \mathcal{A} with accuracy up to isomorphism.

One can classify algebraic sets by means of three languages, which are equivalent to each other:

- in geometric language, by describing algebraic sets directly;
- 2 in the language of radical ideals;
- and in algebraic language, by classifying coordinate algebras of algebraic sets.

One of the major problems of algebraic geometry over \mathcal{L} -algebra \mathcal{A} consists in classifying algebraic sets over the algebra \mathcal{A} with accuracy up to isomorphism.

One can classify algebraic sets by means of three languages, which are equivalent to each other:

- in geometric language, by describing algebraic sets directly;
- in the language of radical ideals;
- and in algebraic language, by classifying coordinate algebras of algebraic sets.

One of the major problems of algebraic geometry over \mathcal{L} -algebra \mathcal{A} consists in classifying algebraic sets over the algebra \mathcal{A} with accuracy up to isomorphism.

One can classify algebraic sets by means of three languages, which are equivalent to each other:

- 1 in geometric language, by describing algebraic sets directly;
- 2 in the language of radical ideals;
- 3 and in algebraic language, by classifying coordinate algebras of algebraic sets.

One of the major problems of algebraic geometry over \mathcal{L} -algebra \mathcal{A} consists in classifying algebraic sets over the algebra \mathcal{A} with accuracy up to isomorphism.

One can classify algebraic sets by means of three languages, which are equivalent to each other:

- 1 in geometric language, by describing algebraic sets directly;
- 2 in the language of radical ideals;
- 3 and in algebraic language, by classifying coordinate algebras of algebraic sets.

The category of coordinate algebras

We introduce two categories: the category AS(A) of algebraic sets over A and the category CA(A) of coordinate algebras of algebraic sets over A.

Objects of $CA(\mathcal{A})$ are all coordinate algebras of algebraic sets over \mathcal{A} . Morphism here are \mathcal{L} -homomorphisms.

The category of coordinate algebras

We introduce two categories: the category AS(A) of algebraic sets over A and the category CA(A) of coordinate algebras of algebraic sets over A.

Objects of CA(A) are all coordinate algebras of algebraic sets over A. Morphism here are \mathcal{L} -homomorphisms.

The category of algebraic sets

Objects of $AS(\mathcal{A})$ are all algebraic sets over \mathcal{A} . To define morphisms in $AS(\mathcal{A})$ we need the notion of a term-map. A map $\Pi : \mathcal{A}^n \to \mathcal{A}^m$ is called a term-map if there exist terms $t_1, \ldots, t_m \in T_{\mathcal{L}}(x_1, \ldots, x_n)$ such that

$$\Pi(b_1,\ldots,b_n)=(t_1^{\mathcal{A}}(b_1,\ldots,b_n),\ldots,t_m^{\mathcal{A}}(b_1,\ldots,b_n))$$

for all $(b_1, \ldots, b_n) \in A^n$. For two non-empty algebraic sets $Y \subseteq A^n$ and $Z \subseteq A^m$ a map $\Pi : Y \to Z$ is called a term-map if it is a restriction on Y of some term-map $\Pi : A^n \to A^m$ such that $\Pi(Y) \subseteq Z$.

The theorem on dual equivalence

As usual, one can define the notion of a isomorphism in the categories CA(A) and AS(A).

Theorem

The category AS(A) of algebraic sets over algebra A and the category CA(A) of coordinate algebras of algebraic sets over A are dually equivalent.

Corollary

Two algebraic sets Y and Z over algebra A are isomorphic if and only if $\Gamma(Y) \cong \Gamma(Z)$.

The theorem on dual equivalence

As usual, one can define the notion of a isomorphism in the categories CA(A) and AS(A).

Theorem

The category AS(A) of algebraic sets over algebra A and the category CA(A) of coordinate algebras of algebraic sets over A are dually equivalent.

Corollary

Two algebraic sets Y and Z over algebra A are isomorphic if and only if $\Gamma(Y) \cong \Gamma(Z)$.

The theorem on dual equivalence

As usual, one can define the notion of a isomorphism in the categories CA(A) and AS(A).

Theorem

The category AS(A) of algebraic sets over algebra A and the category CA(A) of coordinate algebras of algebraic sets over A are dually equivalent.

Corollary

Two algebraic sets Y and Z over algebra A are isomorphic if and only if $\Gamma(Y) \cong \Gamma(Z)$.

How algebraic sets and coordinate algebras correspond to each other?

If $Y \subseteq A^n$ an algebraic set over \mathcal{A} , then his coordinate algebra $\Gamma(Y)$ is corresponds to him.

Otherwise, if we known that C is a coordinate algebra of some algebraic set Y over A, then we can white algebraic set, isomorphic to Y. It is the set Hom(C, A) of all homomorphisms from C to A. More detailed, as

 $C = T_{\mathcal{L}}(x_1, \ldots, x_n) / \operatorname{Rad}(S),$

every homomorphism $h \in \text{Hom}(\mathcal{C}, \mathcal{A})$ is uniquely defined by the images of elements $x_i/\text{Rad}(S) \in A$, $i = \overline{1, n}$. These tuples form appropriate algebraic set over \mathcal{A} .

Corresponding

How algebraic sets and coordinate algebras correspond to each other?

If $Y \subseteq A^n$ an algebraic set over \mathcal{A} , then his coordinate algebra $\Gamma(Y)$ is corresponds to him.

Otherwise, if we known that C is a coordinate algebra of some algebraic set Y over A, then we can white algebraic set, isomorphic to Y. It is the set Hom(C, A) of all homomorphisms from C to A. More detailed, as

$$C = T_{\mathcal{L}}(x_1, \ldots, x_n) / \operatorname{Rad}(S),$$

every homomorphism $h \in \text{Hom}(\mathcal{C}, \mathcal{A})$ is uniquely defined by the images of elements $x_i/\text{Rad}(S) \in A$, $i = \overline{1, n}$. These tuples form appropriate algebraic set over \mathcal{A} .

Corresponding

How algebraic sets and coordinate algebras correspond to each other?

If $Y \subseteq A^n$ an algebraic set over \mathcal{A} , then his coordinate algebra $\Gamma(Y)$ is corresponds to him.

Otherwise, if we known that C is a coordinate algebra of some algebraic set Y over A, then we can white algebraic set, isomorphic to Y. It is the set Hom(C, A) of all homomorphisms from C to A. More detailed, as

 $C = T_{\mathcal{L}}(x_1, \ldots, x_n) / \operatorname{Rad}(S),$

every homomorphism $h \in \text{Hom}(\mathcal{C}, \mathcal{A})$ is uniquely defined by the images of elements $x_i/\text{Rad}(S) \in A$, $i = \overline{1, n}$. These tuples form appropriate algebraic set over \mathcal{A} .

Corresponding

How algebraic sets and coordinate algebras correspond to each other?

If $Y \subseteq A^n$ an algebraic set over \mathcal{A} , then his coordinate algebra $\Gamma(Y)$ is corresponds to him.

Otherwise, if we known that C is a coordinate algebra of some algebraic set Y over A, then we can white algebraic set, isomorphic to Y. It is the set Hom(C, A) of all homomorphisms from C to A. More detailed, as

$$C = T_{\mathcal{L}}(x_1, \ldots, x_n) / \operatorname{Rad}(S),$$

every homomorphism $h \in \text{Hom}(\mathcal{C}, \mathcal{A})$ is uniquely defined by the images of elements $x_i/\text{Rad}(S) \in \mathcal{A}$, $i = \overline{1, n}$. These tuples form appropriate algebraic set over \mathcal{A} .

Unification Theorems

Unification Theorem A (No coefficients)

Let \mathcal{A} be an equationally Noetherian algebra in a language \mathcal{L} (with no predicates). Then for a finitely generated algebra \mathcal{C} of \mathcal{L} the following conditions are equivalent:

- 1 $\operatorname{Th}_{\forall}(\mathcal{A}) \subseteq \operatorname{Th}_{\forall}(\mathcal{C})$, i.e., $\mathcal{C} \in \operatorname{Ucl}(\mathcal{A})$;
- $2 \operatorname{Th}_{\exists}(\mathcal{A}) \supseteq \operatorname{Th}_{\exists}(\mathcal{C});$
- **3** C embeds into an ultrapower of A;
- **4** C is discriminated by A;
- **5** C is a limit algebra over A;
- 6 C is an algebra defined by a complete atomic type in the theory Th_∀(A) in L;
- C is the coordinate algebra of a non-empty irreducible algebraic set over A defined by a system of coefficient-free equations.

Unification Theorem B (With coefficients)

Let \mathcal{A} be an equationally Noetherian algebra in the language $\mathcal{L}_{\mathcal{A}}$ (with no predicates in \mathcal{L}). Then for a finitely generated \mathcal{A} -algebra \mathcal{C} the following conditions are equivalent:

- 1 $\operatorname{Th}_{\forall,\mathcal{A}}(\mathcal{A}) = \operatorname{Th}_{\forall,\mathcal{A}}(\mathcal{C})$, i.e., $\mathcal{C} \equiv_{\forall,\mathcal{A}} \mathcal{A}$;
- 2 $\operatorname{Th}_{\exists,\mathcal{A}}(\mathcal{A}) = \operatorname{Th}_{\exists,\mathcal{A}}(\mathcal{C}), i.e., \mathcal{C} \equiv_{\exists,\mathcal{A}} \mathcal{A};$
- **3** C A-embeds into an ultrapower of A;
- **4** C is A-discriminated by A;
- **5** C is a limit algebra over A;
- C is an algebra defined by a complete atomic type in the theory Th_{∀,A}(A) in the language L_A;
- C is the coordinate algebra of a non-empty irreducible algebraic set over A defined by a system of equations with coefficients in A.

Unification Theorem C (No coefficients)

Let \mathcal{A} be an equationally Noetherian algebra in a language \mathcal{L} (with no predicates). Then for a finitely generated algebra \mathcal{C} of \mathcal{L} the following conditions are equivalent:

- 1 $C \in \mathbf{Qvar}(\mathcal{A})$, *i.e.*, $\operatorname{Th}_{qi}(\mathcal{A}) \subseteq \operatorname{Th}_{qi}(\mathcal{C})$;
- **2** $C \in Pvar(A)$;
- **3** C embeds into a direct power of A;
- **4** C is separated by A;
- **5** C is a subdirect product of finitely many limit algebras over A;
- C is an algebra defined by a complete atomic type in the theory Th_{qi}(A) in L;
- C is the coordinate algebra of a non-empty algebraic set over
 A defined by a system of coefficient-free equations.

Unification Theorem D (With coefficients)

Let \mathcal{A} be an equationally Noetherian algebra in the language $\mathcal{L}_{\mathcal{A}}$ (with no predicates in \mathcal{L}). Then for a finitely generated \mathcal{A} -algebra \mathcal{C} the following conditions are equivalent:

- 1 $\mathcal{C} \in \mathbf{Qvar}_{\mathcal{A}}(\mathcal{A})$, *i.e.*, $\mathrm{Th}_{\mathrm{qi},\mathcal{A}}(\mathcal{A}) = \mathrm{Th}_{\mathrm{qi},\mathcal{A}}(\mathcal{C})$;
- **2** $C \in \mathbf{Pvar}_{\mathcal{A}}(\mathcal{A})$;
- **3** C A-embeds into a direct power of A;
- **4** C is A-separated by A;
- **5** C is a subdirect product of finitely many limit algebras over A;
- C is an algebra defined by a complete atomic type in the theory Th_{qi,A}(A) in the language L_A;
- C is the coordinate algebra of a non-empty algebraic set over
 A defined by a system of equations with coefficients in A.

Link Formulas

Formulas in \mathcal{L} in variables X are defined recursively as follows:

- F1) atomic formulas are formulas;
- F2) if Φ and Ψ are formulas then $\neg \Phi$, $(\Phi \lor \Psi)$, $(\Phi \land \Psi)$, $(\Phi \rightarrow \Psi)$ are formulas;
- F3) If Φ is a formula and x is a variable then $\forall x \Phi$ and $\exists x \Phi$ are formulas.

One of the principle results in mathematical logic states that any formula Φ is equivalent to a formula Ψ in the following prenex form:

$$Q_1 x_1 \dots Q_n x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} \Psi_{ij} \right),$$

where $Q_i \in \{\forall, \exists\}$ and Ψ_{ij} is an atomic formula or its negation.

Link Formulas

Formulas in \mathcal{L} in variables X are defined recursively as follows:

- F1) atomic formulas are formulas;
- F2) if Φ and Ψ are formulas then $\neg \Phi$, $(\Phi \lor \Psi)$, $(\Phi \land \Psi)$, $(\Phi \rightarrow \Psi)$ are formulas;
- F3) If Φ is a formula and x is a variable then $\forall x \Phi$ and $\exists x \Phi$ are formulas.

One of the principle results in mathematical logic states that any formula Φ is equivalent to a formula Ψ in the following prenex form:

$$Q_1 x_1 \ldots Q_n x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} \Psi_{ij} \right),$$

where $Q_i \in \{\forall, \exists\}$ and Ψ_{ij} is an atomic formula or its negation.

Link Universal formulas

Recall that a universal formula in $\mathcal L$ is a formula of the type

$$\forall x_1 \ldots \forall x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} w_{ij}(\bar{x})_{\neq}^{=} v_{ij}(\bar{x}) \right),$$

and a quasi-identity is a universal formula of the type

$$\forall x_1 \ldots \forall x_n \left((\bigwedge_{i=1}^m t_i(\bar{x}) = s_i(\bar{x})) \quad \rightarrow \quad (t(\bar{x}) = s(\bar{x})) \right),$$

where $t(\bar{x}), s(\bar{x}), t_i(\bar{x}), s_i(\bar{x}), w_{ij}(\bar{x}), v_{ij}(\bar{x})$ are terms in \mathcal{L} in variables $\bar{x} = (x_1, \dots, x_n)$.

Link Universal formulas

Recall that a universal formula in $\mathcal L$ is a formula of the type

$$\forall x_1 \ldots \forall x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} w_{ij}(\bar{x}) \neq v_{ij}(\bar{x}) \right),$$

and a quasi-identity is a universal formula of the type

$$\forall x_1 \ldots \forall x_n \left((\bigwedge_{i=1}^m t_i(\bar{x}) = s_i(\bar{x})) \quad \rightarrow \quad (t(\bar{x}) = s(\bar{x})) \right),$$

where $t(\bar{x}), s(\bar{x}), t_i(\bar{x}), s_i(\bar{x}), w_{ij}(\bar{x}), v_{ij}(\bar{x})$ are terms in \mathcal{L} in variables $\bar{x} = (x_1, \dots, x_n)$.

Universal classes, quasivarieties

We denote by $\operatorname{Th}_{\forall}(\mathcal{A})$ the set of all universal formulas in \mathcal{L} which hold on the algebra \mathcal{A} . Similarly, $\operatorname{Th}_{qi}(\mathcal{A})$ is the set of all quasi-identities in \mathcal{L} which hold on \mathcal{A} .

The universal closure of \mathcal{A} (denoted by $Ucl(\mathcal{A})$) is the class of all algebras in \mathcal{L} which satisfy all formulas from $Th_{\forall}(\mathcal{A})$. And quasivariety generated by \mathcal{A} (denoted by $Qvar(\mathcal{A})$) is the class of all algebras in \mathcal{L} which satisfy all formulas from $Th_{qi}(\mathcal{A})$.

Universal classes, quasivarieties

We denote by $\operatorname{Th}_{\forall}(\mathcal{A})$ the set of all universal formulas in \mathcal{L} which hold on the algebra \mathcal{A} . Similarly, $\operatorname{Th}_{qi}(\mathcal{A})$ is the set of all quasi-identities in \mathcal{L} which hold on \mathcal{A} .

The universal closure of \mathcal{A} (denoted by $Ucl(\mathcal{A})$) is the class of all algebras in \mathcal{L} which satisfy all formulas from $Th_{\forall}(\mathcal{A})$. And quasivariety generated by \mathcal{A} (denoted by $Qvar(\mathcal{A})$) is the class of all algebras in \mathcal{L} which satisfy all formulas from $Th_{qi}(\mathcal{A})$.

Existential formulas and classes

Recall that a existential formula in \mathcal{L} is a formula of the type

$$\exists x_1 \ldots \exists x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} w_{ij}(\bar{x})_{\neq}^{=} v_{ij}(\bar{x}) \right),$$

where $w_{ij}(\bar{x}), v_{ij}(\bar{x})$ are terms in \mathcal{L} in variables $\bar{x} = (x_1, \dots, x_n)$.

We denote by $\operatorname{Th}_{\exists}(\mathcal{A})$ the set of all existential formulas in \mathcal{L} which hold on the algebra \mathcal{A} .

Existential formulas and classes

Recall that a existential formula in \mathcal{L} is a formula of the type

$$\exists x_1 \ldots \exists x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} w_{ij}(\bar{x}) \neq v_{ij}(\bar{x}) \right),$$

where $w_{ij}(\bar{x}), v_{ij}(\bar{x})$ are terms in \mathcal{L} in variables $\bar{x} = (x_1, \dots, x_n)$.

We denote by $\operatorname{Th}_{\exists}(\mathcal{A})$ the set of all existential formulas in \mathcal{L} which hold on the algebra \mathcal{A} .

Link Prevarieties

By Pvar(A) we denote the prevariety, generated by algebra A, i.e., the least class of \mathcal{L} -algebras, closed under direct products and subalgebras, and containing algebra A.

The definitions of direct product and subalgebras for \mathcal{L} -algebras is the same as for groups. So, subalgebra of algebra \mathcal{A} is any subset of universe $B \subseteq A$, closed under all functions from \mathcal{L} and containing all constants from \mathcal{L} .

Link Prevarieties

By $Pvar(\mathcal{A})$ we denote the prevariety, generated by algebra \mathcal{A} , i.e., the least class of \mathcal{L} -algebras, closed under direct products and subalgebras, and containing algebra \mathcal{A} .

The definitions of direct product and subalgebras for \mathcal{L} -algebras is the same as for groups. So, subalgebra of algebra \mathcal{A} is any subset of universe $B \subseteq A$, closed under all functions from \mathcal{L} and containing all constants from \mathcal{L} .

Discrimination and separation

We say that an \mathcal{L} -algebra \mathcal{B} is \mathcal{L} -separated by \mathcal{L} -algebra \mathcal{A} if for any distinct elements $b_1, b_2 \in B$ there is a \mathcal{L} -homomorphism $h : \mathcal{B} \to \mathcal{A}$ such that $h(b_1) \neq h(b_2)$.

We say that an \mathcal{L} -algebra \mathcal{B} is \mathcal{L} -discriminated by \mathcal{L} -algebra \mathcal{A} if for any finite set W of elements from B there is a \mathcal{L} -homomorphism $h : \mathcal{B} \to \mathcal{A}$ whose restriction onto W is injective.

Discrimination and separation

We say that an \mathcal{L} -algebra \mathcal{B} is \mathcal{L} -separated by \mathcal{L} -algebra \mathcal{A} if for any distinct elements $b_1, b_2 \in B$ there is a \mathcal{L} -homomorphism $h : \mathcal{B} \to \mathcal{A}$ such that $h(b_1) \neq h(b_2)$.

We say that an \mathcal{L} -algebra \mathcal{B} is \mathcal{L} -discriminated by \mathcal{L} -algebra \mathcal{A} if for any finite set W of elements from B there is a \mathcal{L} -homomorphism $h : \mathcal{B} \to \mathcal{A}$ whose restriction onto W is injective.

References

- 1 E. Daniyarova, A. Miasnikov, V. Remeslennikov, *Unification theorems in algebraic geometry*, 2008.
- 2 E. Daniyarova, A. Miasnikov, V. Remeslennikov, Algebraic geometry over algebraic structures II: Foundations, in progress.