Algebraic geometry over algebraic structures
Lecture 1

Vladimir N. Remeslennikov!
based on joint results with Evelina Yu. Daniyarova® and
Alexei G. Myasnikov?

1 Sobolev Institute of Mathematics of the SB RAS, Omsk Branch,
2 McGill University, Montreal, Canada

Workshop,
December 14—-20, 2008, Alagna Valsesia, Italia

29



Outline

@ Introduction

@® Elements of Model Theory
Languages and Formulas
Algebraic Structures and Universal Classes

© Elements of Algebraic Geometry
Equations and Algebraic Sets
Equationally Noetherian Structures

29



Introduction

Universal Algebraic Geometry over Algebraic Structures

Let A be an algebraic structure (group, monoid, ring etc.).
e Definition of algebraic geometry over A;
e Universal algebraic geometry;

e References.
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Unification Theorem A (No coefficients)

Let A be an equationally Noetherian algebraic structure in a
language L (with no predicates). Then for a finitely generated
algebraic structure C of L the following conditions are equivalent:

® Thy(A) C Thy(C), i.e., C € Ucl(A),

® Ths(A) 2 Ths(C);

©® C embeds into an ultrapower of A;

O C is discriminated by A;

@ C is a limit algebra over A;

@ C is an algebra defined by a complete atomic type in the
theory Thy(A) in L;

@ C is the coordinate algebra of a non-empty irreducible

algebraic set over A defined by a system of coefficient-free
equations.



Introduction
Extended language

By L4 =LU{a| a€ A} we denote the language L extended by
elements from A as new constant symbols. We say that a structure
C in the language L 4 is an A-structure if the substructure of C
generated by the constants a € A is canonically isomorphic to A.
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Unification Theorem B (With coefficients)

Let A be an equationally Noetherian algebraic structure in the
language L 4 (with no predicates in L). Then for a finitely
generated algebraic A-structure C the following conditions are
equivalent:

® Thy 4(A) = Thy 4(C), ie, C=ya A;
® Ths 4(A) = Th3 4(C), ie, C=34 A;
© C A-embeds into an ultrapower of A;
O C is A-discriminated by A;

© C is a limit algebra over A;

® C is an algebra defined by a complete atomic type in the
theory Thy 4(A) in the language L 4,

@ C is the coordinate algebra of a non-empty irreducible
algebraic set over A defined by a system of equations with
coefficients in A.
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Unification Theorem C (No coefficients)

Let A be an equationally Noetherian algebraic structure in a
language L (with no predicates). Then for a finitely generated
algebraic structure C of L the following conditions are equivalent:

® C € Quar(A), i.e, Thei(A) C Thyi(C),
® C € Pvar(A);

© C embeds into a direct power of A;

O C is separated by A;

@ C is a subdirect product of finitely many limit algebras over A;

® C is an algebra defined by a complete atomic type in the
theory Thei(A) in L;

@ C is the coordinate algebra of a non-empty algebraic set over
A defined by a system of coefficient-free equations.
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Unification Theorem D (With coefficients)

Let A be an equationally Noetherian algebraic structure in the
language L 4 (with no predicates in L). Then for a finitely
generated algebraic A-structure C the following conditions are
equivalent:

® C € Quary(A), ie, Thqi7A(A) = Thqi’A(C);
® C € Pvary(A),;

© C A-embeds into a direct power of A;

O C is A-separated by A;

© C is a subdirect product of finitely many limit algebras over A;

® C is an algebra defined by a complete atomic type in the
theory Thqi 4(A) in the language L 4;

@ C is the coordinate algebra of a non-empty algebraic set over
A defined by a system of equations with coefficients in A.
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Introduction

Besides

Dually equivalence theorem for the categories of algebraic sets
and coordinate algebras;

General theorems on dimension;
Geometric equivalence;

The process that Alexei talked about.
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Introduction

Methods of Proofs of Unification Theorems

e Model-theoretic methods, more precisely, methods of atomic
model theory;

e Methods of universal algebra.
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Introduction

Criterion of a New Branch in Mathematics According to
D. Hilbert

@ Motivated by other sciences and branches of Mathematics;

® Every scientific branch can sustain life while it has an excess
of new problems;

© It is to contribute to the unity of Mathematics.
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Introduction

Motivation

® Quantum polynomials (physics and quantum mechanics);
® Min-Max algebraic structures;
e Let A be an L-algebra, extend L to
L£* = LU {min(x,y), max(x, y)};
e For example, take (R, +, min);
e The study of the latter is motivated by quantum mechanics
and linear programming.
© Take (R,+,—,-,0,1,f(x) = y), where f is an analytic
function, e.g. f = e*. This algebraic system is important in
studying analytic varieties.

O Extended Presburger arithmetic — for problems in computer
science.
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Languages and formulas

Languages

Let £L = FUC be a first-order language with no predicates,
consisting of a set F of symbols of operations F (given together
with their arities ng), and a set of constants C.
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Languages and formulas

Example

e The language of groups £, consists of a binary operation -
(multiplication), a unary operation ~! (inversion), and a
constant symbol e (the identity). Every group G with a
natural interpretation of the symbols of £, is an Ls-structure.
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Languages and formulas

Example

e The language of groups £, consists of a binary operation -
(multiplication), a unary operation ~! (inversion), and a
constant symbol e (the identity). Every group G with a

natural interpretation of the symbols of £, is an Ls-structure.

e The language of additive commutative monoids L, consists
of a binary operation + (addition) and a constant symbol 0
(the identity).
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Languages and formulas

Example

e The language of groups £, consists of a binary operation -
(multiplication), a unary operation ~! (inversion), and a
constant symbol e (the identity). Every group G with a
natural interpretation of the symbols of £, is an Ls-structure.

e The language of additive commutative monoids L, consists
of a binary operation + (addition) and a constant symbol 0
(the identity).

e The language L1 of Lie algebras over fixed field k consists of
two binary operations + and [,] (addition and multiplication),
a set of unary operations F,, a € k (multiplication by a € k),
and constant symbol 0.
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Languages and formulas

Terms

Let X = {x1, x2, ...} be a finite or countable set of variables.
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Languages and formulas

Terms

Let X = {x1, x2, ...} be a finite or countable set of variables.

Recall that terms in £ in variables X are formal expressions defined

recursively as follows:

T1) variables x1,xp, ..., X, ... are terms;

T2) constants from L are terms;

T3) if F(x1,...,xn) € L is function and ti,...,t, are terms then
F(ti,...,ty) is a term.
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Languages and formulas

Terms and atomic formulas

By T, (X) we denote the set of all terms in L.
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Languages and formulas

Terms and atomic formulas

By T, (X) we denote the set of all terms in L.

The set of all atomic formulas (t = s), t,s € Tz(X), we denote by
AtL(X).
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Languages and formulas
Formulas
Formulas in £ in variables X are defined recursively as follows:
F1) atomic formulas are formulas;
F2) if ¢ and v are formulas then =, (¢ V ¥), (¢ A ), (¢ — ¢)
are formulas;

F3) If ¢ is a formula and x is a variable then ¥x¢ and 3x¢ are
formulas.
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Languages and formulas

Formulas

Formulas in £ in variables X are defined recursively as follows:
F1) atomic formulas are formulas;

F2) if ¢ and v are formulas then =, (¢ V ¥), (¢ A ), (¢ — ¢)

are formulas;

F3) If ¢ is a formula and x is a variable then ¥x¢ and 3x¢ are
formulas.

One of the principle results in mathematical logic states that any
formula ¢ is equivalent to a formula ¢ in the following form:

Qua. - Q| AV 3]

i=1j=1

where Q; € {V,3} and ¢ is an atomic formula or its negation.
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Languages and formulas

Universal formulas

Recall that a universal formula in £ is a formula of the type

m S;
Vx1...VX, /\ \/ wii(X)2vii(%) |,

i=1j=1
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Languages and formulas

Universal formulas

Recall that a universal formula in £ is a formula of the type

m S;
Vx1...VX, /\ \/ wii(X)2vii(%) |,

i=1j=1

and a quasi-identity is a universal formula of the type

/\ ti(x) =si(x)) — ((x)= S(>‘<))> ,

variables X = (x1, ..., Xpn).
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Algebraic structures
Algebras

An L-structure A is given by the following data:
e a non-empty set A called the universe of A;
e a function FA: A"F — A of arity ng for each F € F;

e an element ¢ € A for each c € C.
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An L-structure A is given by the following data:
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e an element ¢ € A for each ¢ € C.

We use notation A, B, C, ... to refer to the universes of the
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Algebraic structures
Algebras

An L-structure A is given by the following data:
e a non-empty set A called the universe of A;
e a function FA: A"F — A of arity ng for each F € F;
e an element ¢ € A for each ¢ € C.

We use notation A, B, C, ... to refer to the universes of the
structures A, B.C, .. ..

Structures in a language with no predicates are termed algebras.
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Universal classes, quasivarieties

We denote by Thy(.A) the set of all universal formulas in £ which
hold on the algebra A. Similarly Thi(A) is the set of all
quasi-identities in £ which hold on A.
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Universal classes, quasivarieties

We denote by Thy(.A) the set of all universal formulas in £ which
hold on the algebra A. Similarly Thi(A) is the set of all
quasi-identities in £ which hold on A.

The universal closure of A (Ucl(.A)) is the class of all algebras in
L which satisfy all formulas from Thy(.A). And quasivariety
generated by A (Qvar(.A)) is the class of all algebras in £ which
satisfy all formulas from Thg;(.A).

20/29



Existential formulas and classes

Recall that a existential formula in £ is a formula of the type

/\\/WU x)2vii(X) |,

i=1j=1

where w;j(X), vjj(X) are terms in L in variables X = (x1,...,Xn).
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Existential formulas and classes

Recall that a existential formula in £ is a formula of the type

/\ \/ W’J #VU X) ’

i=1j=1

where w;j(X), vjj(X) are terms in L in variables X = (x1,...,Xn).

We denote by Ths(.A) the set of all existential formulas in £ which
hold on the algebra A.
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Examples of universal classes

Abelian groups

Theorem
If A and B are two torsion-free abelian groups, then
Thy(A) = Thy(B). Therefore,

Ucl(A) = {torsion free abelian groups}.

® If A= (N,+), then Ucl(A) is understood;
® Let F1 and F;, be free non-abelian group.

Theorem
Let F; and F, be free non-abelian groups, then
Thy(F1) = Thy(F2).



Elements of algebraic geometry

Equations

Let X = {x1,...,x,} be a finite set of variables.
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Elements of algebraic geometry

Equations

Let X = {x1,...,x,} be a finite set of variables.

e Equation in the language £ in variables X is an atomic
formula (t = s) € Atz(X), where t, s are terms;
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Elements of algebraic geometry

Equations

Let X = {x1,...,x,} be a finite set of variables.

e Equation in the language £ in variables X is an atomic
formula (t = s) € Atz(X), where t, s are terms;

e Any subset S C At,(X) forms a system of equations in L.

23 /29



Elements of algebraic geometry
Algebraic sets

Let A be an L-structure.
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Elements of algebraic geometry
Algebraic sets

Let A be an L-structure.

e The solution of a system of equations S over A,

Va(lS)={(a1,...,an) € A" | t(a1,...,an) = s(a1,...,an)
V(t=s)eS},

is termed the algebraic set over A.
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Elements of algebraic geometry

Diophantine algebraic geometry

If someone wants to investigate the Diophantine algebraic
geometry over A then it is enough to take instead of £ the
language £4 = LU {c, | a € A}, which is obtained from L by
adding a new constant c, for every element a € A.
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Elements of algebraic geometry

Diophantine algebraic geometry

If someone wants to investigate the Diophantine algebraic
geometry over A then it is enough to take instead of £ the
language £4 = LU {c, | a € A}, which is obtained from L by
adding a new constant c, for every element a € A.

The structure A in obvious way is an £ 4-structure.

We also refer to equations in the language £ 4 as A-equations.
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Elements of algebraic geometry

Major problem

One of the major problems of algebraic geometry over L-structure
A consists in classifying algebraic sets over the structure A with
accuracy up to isomorphism.
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Elements of algebraic geometry

Major problem

One of the major problems of algebraic geometry over L-structure
A consists in classifying algebraic sets over the structure A with
accuracy up to isomorphism.

The equivalent problem is problem of classification of coordinate
algebras of algebraic sets over A.

26
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Equationally Noetherian structures

Irreducible algebraic sets

Theorem

Every algebraic set over equationally Noetherian structure A can
be expressed as a finite union of irreducible algebraic sets
(irreducible components). Furthermore, this decomposition is

unique up to permutation of irreducible components and omission
of superfluous ones.
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Equationally Noetherian structures

Irreducible coordinate algebras

Theorem

Let B be an equationally Noetherian L-algebra. A finitely
generated L-algebra C is the coordinate algebra of an algebraic set
over B if and only if it is a subdirect product of finitely many
coordinate algebras of irreducible algebraic sets over B.
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Equationally Noetherian structures

Irreducible coordinate algebras

Theorem

Let B be an equationally Noetherian L-algebra. A finitely
generated L-algebra C is the coordinate algebra of an algebraic set
over B if and only if it is a subdirect product of finitely many
coordinate algebras of irreducible algebraic sets over B.

Corollary

Classification of irreducible algebraic sets (or/and their coordinate
structures) is the essential problem of algebraic geometry over
equationally Noetherian structure.
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