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Introduction
Universal Algebraic Geometry over Algebraic Structures

Let A be an algebraic structure (group, monoid, ring etc.).

• Definition of algebraic geometry over A;

• Universal algebraic geometry;

• References.
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Unification Theorem A (No coefficients)

Let A be an equationally Noetherian algebraic structure in a
language L (with no predicates). Then for a finitely generated
algebraic structure C of L the following conditions are equivalent:

1 Th∀(A) ⊆ Th∀(C), i.e., C ∈ Ucl(A);

2 Th∃(A) ⊇ Th∃(C);

3 C embeds into an ultrapower of A;

4 C is discriminated by A;

5 C is a limit algebra over A;

6 C is an algebra defined by a complete atomic type in the
theory Th∀(A) in L;

7 C is the coordinate algebra of a non-empty irreducible
algebraic set over A defined by a system of coefficient-free
equations.
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Introduction
Extended language

By LA = L ∪ {a | a ∈ A} we denote the language L extended by
elements from A as new constant symbols. We say that a structure
C in the language LA is an A-structure if the substructure of C
generated by the constants a ∈ A is canonically isomorphic to A.
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Unification Theorem B (With coefficients)

Let A be an equationally Noetherian algebraic structure in the
language LA (with no predicates in L). Then for a finitely
generated algebraic A-structure C the following conditions are
equivalent:

1 Th∀,A(A) = Th∀,A(C), i.e., C ≡∀,A A;

2 Th∃,A(A) = Th∃,A(C), i.e., C ≡∃,A A;

3 C A-embeds into an ultrapower of A;

4 C is A-discriminated by A;

5 C is a limit algebra over A;

6 C is an algebra defined by a complete atomic type in the
theory Th∀,A(A) in the language LA;

7 C is the coordinate algebra of a non-empty irreducible
algebraic set over A defined by a system of equations with
coefficients in A.
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Unification Theorem C (No coefficients)

Let A be an equationally Noetherian algebraic structure in a
language L (with no predicates). Then for a finitely generated
algebraic structure C of L the following conditions are equivalent:

1 C ∈ Qvar(A), i.e., Thqi(A) ⊆ Thqi(C);

2 C ∈ Pvar(A);

3 C embeds into a direct power of A;

4 C is separated by A;

5 C is a subdirect product of finitely many limit algebras over A;

6 C is an algebra defined by a complete atomic type in the
theory Thqi(A) in L;

7 C is the coordinate algebra of a non-empty algebraic set over
A defined by a system of coefficient-free equations.
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Unification Theorem D (With coefficients)

Let A be an equationally Noetherian algebraic structure in the
language LA (with no predicates in L). Then for a finitely
generated algebraic A-structure C the following conditions are
equivalent:

1 C ∈ QvarA(A), i.e., Thqi,A(A) = Thqi,A(C);

2 C ∈ PvarA(A);

3 C A-embeds into a direct power of A;

4 C is A-separated by A;

5 C is a subdirect product of finitely many limit algebras over A;

6 C is an algebra defined by a complete atomic type in the
theory Thqi,A(A) in the language LA;

7 C is the coordinate algebra of a non-empty algebraic set over
A defined by a system of equations with coefficients in A.
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Introduction
Besides

• Dually equivalence theorem for the categories of algebraic sets
and coordinate algebras;

• General theorems on dimension;

• Geometric equivalence;

• The process that Alexei talked about.
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Introduction
Methods of Proofs of Unification Theorems

• Model-theoretic methods, more precisely, methods of atomic
model theory;

• Methods of universal algebra.
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Introduction
Criterion of a New Branch in Mathematics According to

D. Hilbert

1 Motivated by other sciences and branches of Mathematics;

2 Every scientific branch can sustain life while it has an excess
of new problems;

3 It is to contribute to the unity of Mathematics.
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Introduction
Motivation

1 Quantum polynomials (physics and quantum mechanics);

2 Min-Max algebraic structures;
• Let A be an L-algebra, extend L to
L∗ = L ∪ {min(x , y),max(x , y)};

• For example, take 〈R,+,min〉;
• The study of the latter is motivated by quantum mechanics

and linear programming.

3 Take 〈R,+,−, ·, 0, 1, f (x) = y〉, where f is an analytic
function, e.g. f = ex . This algebraic system is important in
studying analytic varieties.

4 Extended Presburger arithmetic — for problems in computer
science.
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Languages and formulas
Languages

Let L = F ∪ C be a first-order language with no predicates,
consisting of a set F of symbols of operations F (given together
with their arities nF ), and a set of constants C.
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Languages and formulas

Example

• The language of groups Lg consists of a binary operation ·
(multiplication), a unary operation −1 (inversion), and a
constant symbol e (the identity). Every group G with a
natural interpretation of the symbols of Lg is an Lg-structure.

• The language of additive commutative monoids Lm consists
of a binary operation + (addition) and a constant symbol 0
(the identity).

• The language LLie of Lie algebras over fixed field k consists of
two binary operations + and [, ] (addition and multiplication),
a set of unary operations Fα, α ∈ k (multiplication by α ∈ k),
and constant symbol 0.
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Languages and formulas
Terms

Let X = {x1, x2, . . .} be a finite or countable set of variables.

Recall that terms in L in variables X are formal expressions defined
recursively as follows:

T1) variables x1, x2, . . . , xn, . . . are terms;

T2) constants from L are terms;

T3) if F (x1, . . . , xn) ∈ L is function and t1, . . . , tn are terms then
F (t1, . . . , tn) is a term.
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Languages and formulas
Terms and atomic formulas

By TL(X ) we denote the set of all terms in L.

The set of all atomic formulas (t = s), t, s ∈ TL(X ), we denote by
AtL(X ).

16 / 29



Languages and formulas
Terms and atomic formulas

By TL(X ) we denote the set of all terms in L.

The set of all atomic formulas (t = s), t, s ∈ TL(X ), we denote by
AtL(X ).

16 / 29



Languages and formulas
Formulas

Formulas in L in variables X are defined recursively as follows:

F1) atomic formulas are formulas;

F2) if φ and ψ are formulas then ¬φ, (φ ∨ ψ), (φ ∧ ψ), (φ→ ψ)
are formulas;

F3) If φ is a formula and x is a variable then ∀xφ and ∃xφ are
formulas.

One of the principle results in mathematical logic states that any
formula φ is equivalent to a formula ψ in the following form:

Q1x1 . . .Qnxn

 m∧
i=1

si∨
j=1

ψij

 ,

where Qi ∈ {∀,∃} and ψij is an atomic formula or its negation.
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Languages and formulas
Universal formulas

Recall that a universal formula in L is a formula of the type

∀x1 . . .∀xn

 m∧
i=1

si∨
j=1

wij(x̄)=6=vij(x̄)

 ,

and a quasi-identity is a universal formula of the type

∀x1 . . .∀xn

(
(

m∧
i=1

ti (x̄) = si (x̄)) → (t(x̄) = s(x̄))

)
,

where t(x̄), s(x̄), ti (x̄), si (x̄),wij(x̄), vij(x̄) are terms in L in
variables x̄ = (x1, . . . , xn).
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Algebraic structures
Algebras

An L-structure A is given by the following data:

• a non-empty set A called the universe of A;

• a function FA : AnF → A of arity nF for each F ∈ F ;

• an element cA ∈ A for each c ∈ C.

We use notation A,B,C , . . . to refer to the universes of the
structures A,B, C, . . ..

Structures in a language with no predicates are termed algebras.
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Universal classes, quasivarieties

We denote by Th∀(A) the set of all universal formulas in L which
hold on the algebra A. Similarly Thqi(A) is the set of all
quasi-identities in L which hold on A.

The universal closure of A (Ucl(A)) is the class of all algebras in
L which satisfy all formulas from Th∀(A). And quasivariety
generated by A (Qvar(A)) is the class of all algebras in L which
satisfy all formulas from Thqi(A).
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Existential formulas and classes

Recall that a existential formula in L is a formula of the type

∃x1 . . .∀xn

 m∧
i=1

si∨
j=1

wij(x̄)=6=vij(x̄)

 ,

where wij(x̄), vij(x̄) are terms in L in variables x̄ = (x1, . . . , xn).

We denote by Th∃(A) the set of all existential formulas in L which
hold on the algebra A.
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Examples of universal classes

Abelian groups

Theorem
If A and B are two torsion-free abelian groups, then
Th∀(A) = Th∀(B). Therefore,

Ucl(A) = {torsion free abelian groups}.

1 If A = 〈N,+〉, then Ucl(A) is understood;

2 Let F1 and F2 be free non-abelian group.

Theorem
Let F1 and F2 be free non-abelian groups, then
Th∀(F1) = Th∀(F2).
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Elements of algebraic geometry
Equations

Let X = {x1, . . . , xn} be a finite set of variables.

• Equation in the language L in variables X is an atomic
formula (t = s) ∈ AtL(X ), where t, s are terms;

• Any subset S ⊆ AtL(X ) forms a system of equations in L.
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Elements of algebraic geometry
Algebraic sets

Let A be an L-structure.

• The solution of a system of equations S over A,

VA(S) = { (a1, . . . , an) ∈ An | t(a1, . . . , an) = s(a1, . . . , an)

∀ (t = s) ∈ S },

is termed the algebraic set over A.
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Elements of algebraic geometry
Diophantine algebraic geometry

If someone wants to investigate the Diophantine algebraic
geometry over A then it is enough to take instead of L the
language LA = L ∪ {ca | a ∈ A}, which is obtained from L by
adding a new constant ca for every element a ∈ A.

The structure A in obvious way is an LA-structure.

We also refer to equations in the language LA as A-equations.
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Elements of algebraic geometry
Major problem

One of the major problems of algebraic geometry over L-structure
A consists in classifying algebraic sets over the structure A with
accuracy up to isomorphism.

The equivalent problem is problem of classification of coordinate
algebras of algebraic sets over A.
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Equationally Noetherian structures
Irreducible algebraic sets

Theorem
Every algebraic set over equationally Noetherian structure A can
be expressed as a finite union of irreducible algebraic sets
(irreducible components). Furthermore, this decomposition is
unique up to permutation of irreducible components and omission
of superfluous ones.
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Equationally Noetherian structures
Irreducible coordinate algebras

Theorem
Let B be an equationally Noetherian L-algebra. A finitely
generated L-algebra C is the coordinate algebra of an algebraic set
over B if and only if it is a subdirect product of finitely many
coordinate algebras of irreducible algebraic sets over B.

Corollary

Classification of irreducible algebraic sets (or/and their coordinate
structures) is the essential problem of algebraic geometry over
equationally Noetherian structure.
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