Algebraic geometry over algebraic structures Lecture 1

Vladimir N. Remeslennikov¹ based on joint results with Evelina Yu. Daniyarova¹ and Alexei G. Myasnikov²

1 Sobolev Institute of Mathematics of the SB RAS, Omsk Branch, 2 McGill University, Montreal, Canada

Workshop,

December 14-20, 2008, Alagna Valsesia, Italia

Outline

1 Introduction

2 Elements of Model Theory

Languages and Formulas Algebraic Structures and Universal Classes

3 Elements of Algebraic Geometry Equations and Algebraic Sets Equationally Noetherian Structures

Introduction

Universal Algebraic Geometry over Algebraic Structures

Let \mathcal{A} be an algebraic structure (group, monoid, ring etc.).

- Definition of algebraic geometry over A;
- Universal algebraic geometry;
- References.

Unification Theorem A (No coefficients)

Let \mathcal{A} be an equationally Noetherian algebraic structure in a language \mathcal{L} (with no predicates). Then for a finitely generated algebraic structure \mathcal{C} of \mathcal{L} the following conditions are equivalent:

- 1 $\operatorname{Th}_{\forall}(\mathcal{A}) \subseteq \operatorname{Th}_{\forall}(\mathcal{C})$, i.e., $\mathcal{C} \in \mathsf{Ucl}(\mathcal{A})$;
- $2 \operatorname{Th}_{\exists}(\mathcal{A}) \supseteq \operatorname{Th}_{\exists}(\mathcal{C});$
- **3** C embeds into an ultrapower of A;
- **4** C is discriminated by A;
- **5** C is a limit algebra over A;
- 6 C is an algebra defined by a complete atomic type in the theory Th_∀(A) in L;
- C is the coordinate algebra of a non-empty irreducible algebraic set over A defined by a system of coefficient-free equations.

Introduction Extended language

By $\mathcal{L}_{\mathcal{A}} = \mathcal{L} \cup \{a \mid a \in \mathcal{A}\}$ we denote the language \mathcal{L} extended by elements from \mathcal{A} as new constant symbols. We say that a structure \mathcal{C} in the language $\mathcal{L}_{\mathcal{A}}$ is an \mathcal{A} -structure if the substructure of \mathcal{C} generated by the constants $a \in \mathcal{A}$ is canonically isomorphic to \mathcal{A} .

Unification Theorem B (With coefficients)

Let \mathcal{A} be an equationally Noetherian algebraic structure in the language $\mathcal{L}_{\mathcal{A}}$ (with no predicates in \mathcal{L}). Then for a finitely generated algebraic \mathcal{A} -structure \mathcal{C} the following conditions are equivalent:

- 2 $\operatorname{Th}_{\exists,\mathcal{A}}(\mathcal{A}) = \operatorname{Th}_{\exists,\mathcal{A}}(\mathcal{C}), i.e., \mathcal{C} \equiv_{\exists,\mathcal{A}} \mathcal{A};$
- **3** C A-embeds into an ultrapower of A;
- **4** C is A-discriminated by A;
- **5** C is a limit algebra over A;
- C is an algebra defined by a complete atomic type in the theory Th_{∀,A}(A) in the language L_A;
- C is the coordinate algebra of a non-empty irreducible algebraic set over A defined by a system of equations with coefficients in A.

Unification Theorem C (No coefficients)

Let \mathcal{A} be an equationally Noetherian algebraic structure in a language \mathcal{L} (with no predicates). Then for a finitely generated algebraic structure \mathcal{C} of \mathcal{L} the following conditions are equivalent:

- 1 $C \in \mathbf{Qvar}(\mathcal{A})$, *i.e.*, $\operatorname{Th}_{qi}(\mathcal{A}) \subseteq \operatorname{Th}_{qi}(\mathcal{C})$;
- **2** $C \in Pvar(A)$;
- **3** C embeds into a direct power of A;
- **4** C is separated by A;
- **5** C is a subdirect product of finitely many limit algebras over A;
- C is an algebra defined by a complete atomic type in the theory Th_{qi}(A) in L;
- C is the coordinate algebra of a non-empty algebraic set over
 A defined by a system of coefficient-free equations.

Unification Theorem D (With coefficients)

Let \mathcal{A} be an equationally Noetherian algebraic structure in the language $\mathcal{L}_{\mathcal{A}}$ (with no predicates in \mathcal{L}). Then for a finitely generated algebraic \mathcal{A} -structure \mathcal{C} the following conditions are equivalent:

- $1 \ \mathcal{C} \in \mathsf{Qvar}_{\mathcal{A}}(\mathcal{A}), \text{ i.e., } \mathrm{Th}_{\mathrm{qi},\mathcal{A}}(\mathcal{A}) = \mathrm{Th}_{\mathrm{qi},\mathcal{A}}(\mathcal{C});$
- **2** $C \in \mathsf{Pvar}_{\mathcal{A}}(\mathcal{A})$;
- **3** C A-embeds into a direct power of A;
- **4** C is A-separated by A;
- **5** C is a subdirect product of finitely many limit algebras over A;
- C is an algebra defined by a complete atomic type in the theory Th_{qi,A}(A) in the language L_A;
- C is the coordinate algebra of a non-empty algebraic set over
 A defined by a system of equations with coefficients in A.

Introduction Besides

- Dually equivalence theorem for the categories of algebraic sets and coordinate algebras;
- General theorems on dimension;
- Geometric equivalence;
- The process that Alexei talked about.

Introduction

Methods of Proofs of Unification Theorems

- Model-theoretic methods, more precisely, methods of atomic model theory;
- Methods of universal algebra.

Introduction

Criterion of a New Branch in Mathematics According to D. Hilbert

- 1 Motivated by other sciences and branches of Mathematics;
- Every scientific branch can sustain life while it has an excess of new problems;
- **3** It is to contribute to the unity of Mathematics.

Introduction Motivation

- 1 Quantum polynomials (physics and quantum mechanics);
- Min-Max algebraic structures;
 - Let \mathcal{A} be an \mathcal{L} -algebra, extend \mathcal{L} to $\mathcal{L}^* = \mathcal{L} \cup \{\min(x, y), \max(x, y)\};$
 - For example, take $\langle \mathbb{R}, +, \min \rangle$;
 - The study of the latter is motivated by quantum mechanics and linear programming.
- 3 Take ⟨ℝ, +, -, ·, 0, 1, f(x) = y⟩, where f is an analytic function, e.g. f = e^x. This algebraic system is important in studying analytic varieties.
- Extended Presburger arithmetic for problems in computer science.

Languages and formulas Languages

Let $\mathcal{L} = \mathcal{F} \cup \mathcal{C}$ be a first-order language with no predicates, consisting of a set \mathcal{F} of symbols of operations F (given together with their arities n_F), and a set of constants \mathcal{C} .

Example

- The language of groups \mathcal{L}_g consists of a binary operation \cdot (multiplication), a unary operation $^{-1}$ (inversion), and a constant symbol e (the identity). Every group G with a natural interpretation of the symbols of \mathcal{L}_g is an \mathcal{L}_g -structure.
- The language of additive commutative monoids \mathcal{L}_m consists of a binary operation + (addition) and a constant symbol 0 (the identity).
- The language L_{Lie} of Lie algebras over fixed field k consists of two binary operations + and [,] (addition and multiplication), a set of unary operations F_α, α ∈ k (multiplication by α ∈ k), and constant symbol 0.

Example

- The language of groups \mathcal{L}_g consists of a binary operation \cdot (multiplication), a unary operation $^{-1}$ (inversion), and a constant symbol e (the identity). Every group G with a natural interpretation of the symbols of \mathcal{L}_g is an \mathcal{L}_g -structure.
- The language of additive commutative monoids \mathcal{L}_m consists of a binary operation + (addition) and a constant symbol 0 (the identity).
- The language L_{Lie} of Lie algebras over fixed field k consists of two binary operations + and [,] (addition and multiplication), a set of unary operations F_α, α ∈ k (multiplication by α ∈ k), and constant symbol 0.

Example

- The language of groups \mathcal{L}_{g} consists of a binary operation \cdot (multiplication), a unary operation $^{-1}$ (inversion), and a constant symbol *e* (the identity). Every group *G* with a natural interpretation of the symbols of \mathcal{L}_{g} is an \mathcal{L}_{g} -structure.
- The language of additive commutative monoids \mathcal{L}_m consists of a binary operation + (addition) and a constant symbol 0 (the identity).
- The language L_{Lie} of Lie algebras over fixed field k consists of two binary operations + and [,] (addition and multiplication), a set of unary operations F_α, α ∈ k (multiplication by α ∈ k), and constant symbol 0.

Languages and formulas Terms

Let $X = \{x_1, x_2, \ldots\}$ be a finite or countable set of variables.

Recall that terms in \mathcal{L} in variables X are formal expressions defined recursively as follows:

T1) variables $x_1, x_2, \ldots, x_n, \ldots$ are terms;

T2) constants from \mathcal{L} are terms;

T3) if $F(x_1, \ldots, x_n) \in \mathcal{L}$ is function and t_1, \ldots, t_n are terms then $F(t_1, \ldots, t_n)$ is a term.

Languages and formulas Terms

Let $X = \{x_1, x_2, \ldots\}$ be a finite or countable set of variables.

Recall that terms in \mathcal{L} in variables X are formal expressions defined recursively as follows:

T1) variables $x_1, x_2, \ldots, x_n, \ldots$ are terms;

T2) constants from \mathcal{L} are terms;

T3) if $F(x_1, \ldots, x_n) \in \mathcal{L}$ is function and t_1, \ldots, t_n are terms then $F(t_1, \ldots, t_n)$ is a term.

Terms and atomic formulas

By $T_{\mathcal{L}}(X)$ we denote the set of all terms in \mathcal{L} .

The set of all atomic formulas (t = s), $t, s \in T_{\mathcal{L}}(X)$, we denote by $At_{\mathcal{L}}(X)$.

Terms and atomic formulas

By $T_{\mathcal{L}}(X)$ we denote the set of all terms in \mathcal{L} . The set of all atomic formulas (t = s), $t, s \in T_{\mathcal{L}}(X)$, we denote by $At_{\mathcal{L}}(X)$.

Languages and formulas Formulas

Formulas in \mathcal{L} in variables X are defined recursively as follows:

- F1) atomic formulas are formulas;
- F2) if ϕ and ψ are formulas then $\neg \phi$, $(\phi \lor \psi)$, $(\phi \land \psi)$, $(\phi \rightarrow \psi)$ are formulas;
- F3) If ϕ is a formula and x is a variable then $\forall x \phi$ and $\exists x \phi$ are formulas.

One of the principle results in mathematical logic states that any formula ϕ is equivalent to a formula ψ in the following form:

$$Q_1 x_1 \ldots Q_n x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} \psi_{ij} \right),$$

where $Q_i \in \{\forall, \exists\}$ and ψ_{ij} is an atomic formula or its negation.

Languages and formulas Formulas

Formulas in \mathcal{L} in variables X are defined recursively as follows:

- F1) atomic formulas are formulas;
- F2) if ϕ and ψ are formulas then $\neg \phi$, $(\phi \lor \psi)$, $(\phi \land \psi)$, $(\phi \rightarrow \psi)$ are formulas;
- F3) If ϕ is a formula and x is a variable then $\forall x \phi$ and $\exists x \phi$ are formulas.

One of the principle results in mathematical logic states that any formula ϕ is equivalent to a formula ψ in the following form:

$$Q_1 x_1 \ldots Q_n x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} \psi_{ij} \right),$$

where $Q_i \in \{\forall, \exists\}$ and ψ_{ij} is an atomic formula or its negation.

Languages and formulas Universal formulas

Recall that a universal formula in ${\mathcal L}$ is a formula of the type

$$\forall x_1 \ldots \forall x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} w_{ij}(\bar{x})_{\neq}^{=} v_{ij}(\bar{x}) \right),$$

and a quasi-identity is a universal formula of the type

$$\forall x_1 \ldots \forall x_n \left((\bigwedge_{i=1}^m t_i(\bar{x}) = s_i(\bar{x})) \quad \rightarrow \quad (t(\bar{x}) = s(\bar{x})) \right),$$

where $t(\bar{x}), s(\bar{x}), t_i(\bar{x}), s_i(\bar{x}), w_{ij}(\bar{x}), v_{ij}(\bar{x})$ are terms in \mathcal{L} in variables $\bar{x} = (x_1, \dots, x_n)$.

Languages and formulas Universal formulas

Recall that a universal formula in $\mathcal L$ is a formula of the type

$$\forall x_1 \ldots \forall x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} w_{ij}(\bar{x}) \neq v_{ij}(\bar{x}) \right),$$

and a quasi-identity is a universal formula of the type

$$\forall x_1 \ldots \forall x_n \left((\bigwedge_{i=1}^m t_i(\bar{x}) = s_i(\bar{x})) \quad \rightarrow \quad (t(\bar{x}) = s(\bar{x})) \right),$$

where $t(\bar{x}), s(\bar{x}), t_i(\bar{x}), s_i(\bar{x}), w_{ij}(\bar{x}), v_{ij}(\bar{x})$ are terms in \mathcal{L} in variables $\bar{x} = (x_1, \dots, x_n)$.

Algebraic structures Algebras

An \mathcal{L} -structure \mathcal{A} is given by the following data:

- a non-empty set A called the universe of A;
- a function $F^{\mathcal{A}}: A^{n_F} \to A$ of arity n_F for each $F \in \mathcal{F}$;
- an element $c^{\mathcal{A}} \in A$ for each $c \in \mathcal{C}$.

We use notation A, B, C, \ldots to refer to the universes of the structures $\mathcal{A}, \mathcal{B}, \mathcal{C}, \ldots$

Structures in a language with no predicates are termed algebras.

Algebraic structures Algebras

An \mathcal{L} -structure \mathcal{A} is given by the following data:

- a non-empty set A called the universe of A;
- a function $F^{\mathcal{A}}: A^{n_F} \to A$ of arity n_F for each $F \in \mathcal{F}$;
- an element $c^{\mathcal{A}} \in A$ for each $c \in \mathcal{C}$.

We use notation A, B, C, \ldots to refer to the universes of the structures A, B, C, \ldots

Structures in a language with no predicates are termed algebras.

Algebraic structures Algebras

An \mathcal{L} -structure \mathcal{A} is given by the following data:

- a non-empty set A called the universe of A;
- a function $F^{\mathcal{A}}: A^{n_F} \to A$ of arity n_F for each $F \in \mathcal{F}$;
- an element $c^{\mathcal{A}} \in A$ for each $c \in \mathcal{C}$.

We use notation A, B, C, \ldots to refer to the universes of the structures A, B, C, \ldots

Structures in a language with no predicates are termed algebras.

Universal classes, quasivarieties

We denote by $\operatorname{Th}_{\forall}(\mathcal{A})$ the set of all universal formulas in \mathcal{L} which hold on the algebra \mathcal{A} . Similarly $\operatorname{Th}_{qi}(\mathcal{A})$ is the set of all quasi-identities in \mathcal{L} which hold on \mathcal{A} .

The universal closure of \mathcal{A} (Ucl(\mathcal{A})) is the class of all algebras in \mathcal{L} which satisfy all formulas from $\operatorname{Th}_{\forall}(\mathcal{A})$. And quasivariety generated by \mathcal{A} (Qvar(\mathcal{A})) is the class of all algebras in \mathcal{L} which satisfy all formulas from $\operatorname{Th}_{qi}(\mathcal{A})$.

Universal classes, quasivarieties

We denote by $\operatorname{Th}_{\forall}(\mathcal{A})$ the set of all universal formulas in \mathcal{L} which hold on the algebra \mathcal{A} . Similarly $\operatorname{Th}_{qi}(\mathcal{A})$ is the set of all quasi-identities in \mathcal{L} which hold on \mathcal{A} .

The universal closure of \mathcal{A} (Ucl(\mathcal{A})) is the class of all algebras in \mathcal{L} which satisfy all formulas from $\operatorname{Th}_{\forall}(\mathcal{A})$. And quasivariety generated by \mathcal{A} (Qvar(\mathcal{A})) is the class of all algebras in \mathcal{L} which satisfy all formulas from $\operatorname{Th}_{qi}(\mathcal{A})$.

Existential formulas and classes

Recall that a existential formula in \mathcal{L} is a formula of the type

$$\exists x_1 \ldots \forall x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} w_{ij}(\bar{x})_{\neq}^{\equiv} v_{ij}(\bar{x}) \right),$$

where $w_{ij}(\bar{x}), v_{ij}(\bar{x})$ are terms in \mathcal{L} in variables $\bar{x} = (x_1, \dots, x_n)$.

We denote by $Th_{\exists}(\mathcal{A})$ the set of all existential formulas in \mathcal{L} which hold on the algebra \mathcal{A} .

Existential formulas and classes

Recall that a existential formula in \mathcal{L} is a formula of the type

$$\exists x_1 \ldots \forall x_n \left(\bigwedge_{i=1}^m \bigvee_{j=1}^{s_i} w_{ij}(\bar{x})_{\neq}^{=} v_{ij}(\bar{x}) \right),$$

where $w_{ij}(\bar{x}), v_{ij}(\bar{x})$ are terms in \mathcal{L} in variables $\bar{x} = (x_1, \ldots, x_n)$. We denote by $\text{Th}_{\exists}(\mathcal{A})$ the set of all existential formulas in \mathcal{L} which hold on the algebra \mathcal{A} .

Examples of universal classes

Abelian groups

Theorem If A and B are two torsion-free abelian groups, then $Th_{\forall}(A) = Th_{\forall}(B)$. Therefore,

 $Ucl(A) = \{ torsion free abelian groups \}.$

- 1 If $A = \langle \mathbb{N}, + \rangle$, then **Ucl**(A) is understood;
- **2** Let F_1 and F_2 be free non-abelian group.

Theorem Let F_1 and F_2 be free non-abelian groups, then $\operatorname{Th}_{\forall}(F_1) = \operatorname{Th}_{\forall}(F_2).$

Elements of algebraic geometry Equations

Let $X = \{x_1, \ldots, x_n\}$ be a finite set of variables.

- Equation in the language L in variables X is an atomic formula (t = s) ∈ At_L(X), where t, s are terms;
- Any subset $S \subseteq At_{\mathcal{L}}(X)$ forms a system of equations in \mathcal{L} .

Elements of algebraic geometry Equations

Let $X = \{x_1, \ldots, x_n\}$ be a finite set of variables.

- Equation in the language L in variables X is an atomic formula (t = s) ∈ At_L(X), where t, s are terms;
- Any subset $S \subseteq At_{\mathcal{L}}(X)$ forms a system of equations in \mathcal{L} .

Elements of algebraic geometry Equations

Let $X = \{x_1, \ldots, x_n\}$ be a finite set of variables.

- Equation in the language L in variables X is an atomic formula (t = s) ∈ At_L(X), where t, s are terms;
- Any subset $S \subseteq At_{\mathcal{L}}(X)$ forms a system of equations in \mathcal{L} .

Elements of algebraic geometry Algebraic sets

Let \mathcal{A} be an \mathcal{L} -structure.

• The solution of a system of equations S over A,

$$V_{\mathcal{A}}(S) = \{ (a_1, \dots, a_n) \in \mathcal{A}^n \mid t(a_1, \dots, a_n) = s(a_1, \dots, a_n) \\ \forall (t = s) \in S \},$$

is termed the algebraic set over \mathcal{A} .

Elements of algebraic geometry Algebraic sets

Let ${\mathcal A}$ be an ${\mathcal L}\text{-structure}.$

• The solution of a system of equations S over A,

$$\mathrm{V}_{\mathcal{A}}(S) = \{ (a_1, \ldots, a_n) \in \mathcal{A}^n \mid t(a_1, \ldots, a_n) = s(a_1, \ldots, a_n) \ orall (t = s) \in S \},$$

is termed the algebraic set over \mathcal{A} .

Elements of algebraic geometry

Diophantine algebraic geometry

If someone wants to investigate the Diophantine algebraic geometry over \mathcal{A} then it is enough to take instead of \mathcal{L} the language $\mathcal{L}_{\mathcal{A}} = \mathcal{L} \cup \{c_a \mid a \in A\}$, which is obtained from \mathcal{L} by adding a new constant c_a for every element $a \in A$.

The structure ${\mathcal A}$ in obvious way is an ${\mathcal L}_{{\mathcal A}}$ -structure.

We also refer to equations in the language $\mathcal{L}_{\mathcal{A}}$ as \mathcal{A} -equations.

Elements of algebraic geometry Diophantine algebraic geometry

If someone wants to investigate the Diophantine algebraic geometry over \mathcal{A} then it is enough to take instead of \mathcal{L} the language $\mathcal{L}_{\mathcal{A}} = \mathcal{L} \cup \{c_a \mid a \in A\}$, which is obtained from \mathcal{L} by adding a new constant c_a for every element $a \in A$.

The structure \mathcal{A} in obvious way is an $\mathcal{L}_{\mathcal{A}}$ -structure.

We also refer to equations in the language $\mathcal{L}_{\mathcal{A}}$ as \mathcal{A} -equations.

Elements of algebraic geometry Diophantine algebraic geometry

If someone wants to investigate the Diophantine algebraic geometry over \mathcal{A} then it is enough to take instead of \mathcal{L} the language $\mathcal{L}_{\mathcal{A}} = \mathcal{L} \cup \{c_a \mid a \in A\}$, which is obtained from \mathcal{L} by adding a new constant c_a for every element $a \in A$.

The structure \mathcal{A} in obvious way is an $\mathcal{L}_{\mathcal{A}}$ -structure.

We also refer to equations in the language $\mathcal{L}_{\mathcal{A}}$ as \mathcal{A} -equations.

Elements of algebraic geometry Major problem

One of the major problems of algebraic geometry over \mathcal{L} -structure \mathcal{A} consists in classifying algebraic sets over the structure \mathcal{A} with accuracy up to isomorphism.

The equivalent problem is problem of classification of coordinate algebras of algebraic sets over \mathcal{A} .

Elements of algebraic geometry Major problem

One of the major problems of algebraic geometry over \mathcal{L} -structure \mathcal{A} consists in classifying algebraic sets over the structure \mathcal{A} with accuracy up to isomorphism.

The equivalent problem is problem of classification of coordinate algebras of algebraic sets over A.

Equationally Noetherian structures

Irreducible algebraic sets

Theorem

Every algebraic set over equationally Noetherian structure A can be expressed as a finite union of irreducible algebraic sets (irreducible components). Furthermore, this decomposition is unique up to permutation of irreducible components and omission of superfluous ones.

Equationally Noetherian structures

Irreducible coordinate algebras

Theorem

Let \mathcal{B} be an equationally Noetherian \mathcal{L} -algebra. A finitely generated \mathcal{L} -algebra \mathcal{C} is the coordinate algebra of an algebraic set over \mathcal{B} if and only if it is a subdirect product of finitely many coordinate algebras of irreducible algebraic sets over \mathcal{B} .

Corollary

Classification of irreducible algebraic sets (or/and their coordinate structures) is the essential problem of algebraic geometry over equationally Noetherian structure.

Equationally Noetherian structures

Irreducible coordinate algebras

Theorem

Let \mathcal{B} be an equationally Noetherian \mathcal{L} -algebra. A finitely generated \mathcal{L} -algebra \mathcal{C} is the coordinate algebra of an algebraic set over \mathcal{B} if and only if it is a subdirect product of finitely many coordinate algebras of irreducible algebraic sets over \mathcal{B} .

Corollary

Classification of irreducible algebraic sets (or/and their coordinate structures) is the essential problem of algebraic geometry over equationally Noetherian structure.

References

- 1 E. Daniyarova, A. Miasnikov, V. Remeslennikov, *Unification theorems in algebraic geometry*, 2008.
- 2 E. Daniyarova, A. Miasnikov, V. Remeslennikov, Algebraic geometry over algebraic structures II: Foundations, in progress.