Structure Theorems for Subgroups of $Homeo(S^1)$

Francesco Matucci

(joint with C.Bleak and M.Kassabov)

Alagna Valsesia, December 19th, 2008

- 4 回 ト 4 ヨ ト 4 ヨ ト

Introduction

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Introduction

Motivation: Bleak classified all solvable subgroups of a special class of homeomorphisms of [0, 1].

(本部) (문) (문) (문

Introduction

Motivation: Bleak classified all solvable subgroups of a special class of homeomorphisms of [0, 1].

Can we extend this classification to S^1 ? Can we relax the hypotheses?

- * 同 * * き * * き * … き

Introduction

Motivation: Bleak classified all solvable subgroups of a special class of homeomorphisms of [0, 1].

Can we extend this classification to S^1 ? Can we relax the hypotheses?

Loose idea: First study elements with fixed points. Then study the action of elements which have no fixed points. Understand the interaction of these two types of elements.

イロト イポト イヨト イヨト

Some known classification results

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Some known classification results

Theorem (Ghys)

Every solvable subgroup of $Diff^{\omega}_+(S^1)$ is metabelian.

- * 同 * * き * * き * … き

Some known classification results

Theorem (Ghys)

Every solvable subgroup of $Diff^{\omega}_+(S^1)$ is metabelian.

Theorem (Plante-Thurston)

Any nilpotent subgroup of $Diff_+^2(S^1)$ must be abelian.

・ロト ・回ト ・ヨト ・

Some known classification results

Theorem (Ghys)

Every solvable subgroup of $Diff^{\omega}_+(S^1)$ is metabelian.

Theorem (Plante-Thurston)

Any nilpotent subgroup of $Diff_+^2(S^1)$ must be abelian.

Theorem (Farb-Franks)

Every finitely-generated, torsion-free nilpotent group is isomorphic to a subgroup of $\text{Diff}^1_+(S^1)$.

イロト イポト イヨト イヨト

Rotation Map is a Homomorphism Structure and Embedding Theorems

Rotation Number

Definition and Tools

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rotation Map is a Homomorphism Structure and Embedding Theorems

Rotation Number

Definition and Tools

(本間) (本語) (本語) (語)

Let $Homeo_+(S^1)$ be the group of orientation-preserving Homeomorphisms of the unit circle S^1 .

Rotation Map is a Homomorphism Structure and Embedding Theorems **Definition and Tools**

(ロ) (同) (E) (E) (E)

Rotation Number

Let $Homeo_+(S^1)$ be the group of orientation-preserving Homeomorphisms of the unit circle S^1 .

Given $f \in Homeo_+(S^1)$, a lift F of f is a map $F : \mathbb{R} \to \mathbb{R}$ such that

- for all $x \in \mathbb{R}$, F(x+1) = F(x) + 1, and
- $f(x) = F(x) \pmod{1}$.

Rotation Map is a Homomorphism Structure and Embedding Theorems **Definition and Tools**

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Rotation Map is a Homomorphism Structure and Embedding Theorems **Definition and Tools**

<ロ> (四) (四) (注) (注) (注) (三)

Rotation Map is a Homomorphism Structure and Embedding Theorems Definition and Tools

<ロ> (四) (四) (三) (三) (三)

Rotation Map is a Homomorphism Structure and Embedding Theorems Definition and Tools

<ロ> (四) (四) (注) (注) (注) (三)

Rotation Map is a Homomorphism Structure and Embedding Theorems

Rotation Number

Definition and Tools

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rotation Map is a Homomorphism Structure and Embedding Theorems

Rotation Number

Definition and Tools

(ロ) (同) (E) (E) (E)

Definition

Given $f \in Homeo_+(S^1)$, let $F : \mathbb{R} \to \mathbb{R}$ be one of its lifts.

Rotation Map is a Homomorphism Structure and Embedding Theorems **Definition and Tools**

(ロ) (同) (E) (E) (E)

Rotation Number

Definition

Given $f \in Homeo_+(S^1)$, let $F : \mathbb{R} \to \mathbb{R}$ be one of its lifts. We define the **rotation number** of f to be

$$rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} \pmod{1}$$

Rotation Map is a Homomorphism Structure and Embedding Theorems **Definition and Tools**

(ロ) (同) (E) (E) (E)

Rotation Number

Definition

Given $f \in Homeo_+(S^1)$, let $F : \mathbb{R} \to \mathbb{R}$ be one of its lifts. We define the **rotation number** of f to be

$$rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} \pmod{1}$$
 (it exists!)

Rotation Map is a Homomorphism Structure and Embedding Theorems

Rotation Number

Definition and Tools

(ロ) (同) (E) (E) (E)

Definition

Given $f \in Homeo_+(S^1)$, let $F : \mathbb{R} \to \mathbb{R}$ be one of its lifts. We define the **rotation number** of f to be

$$rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} \pmod{1}$$
 (it exists!)

The limit is independent of the choice of x and of the lift.

Rotation Map is a Homomorphism Structure and Embedding Theorems

Rotation Number

Definition and Tools

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition and Tools

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rotation Map is a Homomorphism Structure and Embedding Theorems

Rotation Number

Here is an example with rotation number 1/4.

Rotation Number Rotation Map is a Homomorphism

Structure and Embedding Theorems

Definition and Tools

<ロ> (日) (日) (日) (日) (日)

3

Rotation Number

Here is an example with rotation number 1/4.

Rotation Map is a Homomorphism Structure and Embedding Theorems

Definition and Tools

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Poincarè and Denjoy's Theorems

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Definition and Tools

- 4 同 ト 4 ヨ ト - 4 ヨ ト

Poincarè and Denjoy's Theorems

Theorem (Poincarè)

Let $f \in Homeo_+(S^1)$. Then f has a periodic orbit of length q if and only if $rot(f) = p/q \in \mathbb{Q}/\mathbb{Z}$, p, q coprime positive integers.

Definition and Tools

・ロト ・回ト ・ヨト ・ヨト

Poincarè and Denjoy's Theorems

Theorem (Poincarè)

Let $f \in Homeo_+(S^1)$. Then f has a periodic orbit of length q if and only if $rot(f) = p/q \in \mathbb{Q}/\mathbb{Z}$, p, q coprime positive integers.

Theorem (Denjoy)

Let $f \in \mathit{Homeo}_+(S^1)$ be such that

Definition and Tools

・ロト ・回ト ・ヨト ・ヨト

Poincarè and Denjoy's Theorems

Theorem (Poincarè)

Let $f \in Homeo_+(S^1)$. Then f has a periodic orbit of length q if and only if $rot(f) = p/q \in \mathbb{Q}/\mathbb{Z}$, p, q coprime positive integers.

Theorem (Denjoy)

Let $f \in Homeo_+(S^1)$ be such that

rot(f) irrational, and

Definition and Tools

イロト イポト イヨト イヨト

Poincarè and Denjoy's Theorems

Theorem (Poincarè)

Let $f \in Homeo_+(S^1)$. Then f has a periodic orbit of length q if and only if $rot(f) = p/q \in \mathbb{Q}/\mathbb{Z}$, p, q coprime positive integers.

Theorem (Denjoy)

Let $f \in Homeo_+(S^1)$ be such that

- rot(f) irrational, and
- f is a C²-diffeomorphism or a piecewise-linear with finitely many breakpoints.

Definition and Tools

Poincarè and Denjoy's Theorems

Theorem (Poincarè)

Let $f \in Homeo_+(S^1)$. Then f has a periodic orbit of length q if and only if $rot(f) = p/q \in \mathbb{Q}/\mathbb{Z}$, p, q coprime positive integers.

Theorem (Denjoy)

Let $f \in Homeo_+(S^1)$ be such that

- rot(f) irrational, and
- f is a C²-diffeomorphism or a piecewise-linear with finitely many breakpoints.

Then f is conjugate to a rotation by an element in $Homeo_+(S^1)$.

イロン イヨン イヨン ・ ヨン

Rotation Map is a Homomorphism Structure and Embedding Theorems **Definition and Tools**

(ロ) (同) (E) (E) (E)

Is the Rotation Number Map a Homomorphism?

マロト イヨト イヨト

Is the Rotation Number Map a Homomorphism?

Fact: If G is an abelian group of circle homomorphisms, then the rotation number map is a homomorphism from G to \mathbb{R}/\mathbb{Z} . Fact: This is not true for a generic subgroup of $Homeo_+(S^1)$.

Is the Rotation Number Map a Homomorphism?

Fact: If G is an abelian group of circle homomorphisms, then the rotation number map is a homomorphism from G to \mathbb{R}/\mathbb{Z} . Fact: This is not true for a generic subgroup of $Homeo_+(S^1)$.

- **A B A B A B A**

Is the Rotation Number Map a Homomorphism?

Fact: If G is an abelian group of circle homomorphisms, then the rotation number map is a homomorphism from G to \mathbb{R}/\mathbb{Z} . Fact: This is not true for a generic subgroup of $Homeo_+(S^1)$.

Is the Rotation Number Map a Homomorphism?

Fact: If G is an abelian group of circle homomorphisms, then the rotation number map is a homomorphism from G to \mathbb{R}/\mathbb{Z} . Fact: This is not true for a generic subgroup of $Homeo_+(S^1)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Rotation Map is a Homomorphism Structure and Embedding Theorems **Definition and Tools**

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ping-Pong Lemma

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$
Rotation Number

Rotation Map is a Homomorphism Structure and Embedding Theorems

Ping-Pong Lemma

Definition and Tools

・ロト ・回ト ・ヨト ・ヨト - ヨ

Theorem (Ping-Pong)

Let G be a group of permutations on a set X. Let g_1 and g_2 be elements of G. If there are non-empty, disjoint sets X_1 and X_2 contained in X, where for all $n \neq 0$ and $i \neq j$, we have $X_i g_j^n \subset X_j$, then $\langle g_1, g_2 \rangle \leq G$ is isomorphic to a free group on two generators.

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Groups without non-Abelian Free Subgroups

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Groups without non-Abelian Free Subgroups Direct applications

イロン イヨン イヨン ・ ヨン

Groups without non-Abelian Free Subgroups

Theorem (reference needed, BKM)

Suppose $G \leq Homeo_+(S^1)$ has no non-abelian free subgroups and define

$$G_0 = \{g \in G | Fix(g) \neq \emptyset\}.$$

イロト イポト イヨト イヨト

Groups without non-Abelian Free Subgroups

Theorem (reference needed, BKM)

Suppose $G \leq Homeo_+(S^1)$ has no non-abelian free subgroups and define

$$G_0 = \{g \in G | Fix(g) \neq \emptyset\}.$$

Then

• The subset G_0 is a subgroup.

イロト イポト イヨト イヨト

Groups without non-Abelian Free Subgroups

Theorem (reference needed, BKM)

Suppose $G \leq Homeo_+(S^1)$ has no non-abelian free subgroups and define

$$G_0 = \{g \in G | Fix(g) \neq \emptyset\}.$$

- The subset G_0 is a subgroup.
- The map rot : $G \to \mathbb{R}/\mathbb{Z}$ is a homomorphism,

イロト イポト イヨト イヨト

Groups without non-Abelian Free Subgroups

Theorem (reference needed, BKM)

Suppose $G \leq Homeo_+(S^1)$ has no non-abelian free subgroups and define

$$G_0 = \{g \in G | Fix(g) \neq \emptyset\}.$$

- The subset G₀ is a subgroup.
- The map rot : $G \to \mathbb{R}/\mathbb{Z}$ is a homomorphism,

•
$$ker(rot) = G_{0}$$

<ロ> (日) (日) (日) (日) (日)

Groups without non-Abelian Free Subgroups

Theorem (reference needed, BKM)

Suppose $G \leq Homeo_+(S^1)$ has no non-abelian free subgroups and define

$$G_0 = \{g \in G | Fix(g) \neq \emptyset\}.$$

- The subset G₀ is a subgroup.
- The map rot : $G \to \mathbb{R}/\mathbb{Z}$ is a homomorphism,
- $\operatorname{ker}(\operatorname{rot}) = G_0$,

•
$$G/G_0 \cong rot(G) \leq \mathbb{R}/\mathbb{Z}$$
.

Groups without non-Abelian Free Subgroups Direct applications

・ロト ・回ト ・ヨト ・ヨト … ヨ

Ingredients of the Proof

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Ingredients of the Proof

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Ingredients of the Proof

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Ingredients of the Proof

Groups without non-Abelian Free Subgroups Direct applications

(ロ) (同) (E) (E) (E)

Ingredients of the Proof

Groups without non-Abelian Free Subgroups Direct applications

・ロト ・回ト ・ヨト ・ヨト … ヨ

Ingredients of the Proof

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Ingredients of the Proof

Lemma

• G_0 is a normal subgroup of G.

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Ingredients of the Proof

Lemma

- G₀ is a normal subgroup of G.
- For every finitely generated H ≤ G₀, we have Fix(H) ≠ Ø (finite intersection property).

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Ingredients of the Proof

Lemma

- G₀ is a normal subgroup of G.
- For every finitely generated H ≤ G₀, we have Fix(H) ≠ Ø (finite intersection property).
- G_0 admits a global fixed point (by compactness of S^1).

Groups without non-Abelian Free Subgroups Direct applications

・ロト ・回ト ・ヨト ・ヨト … ヨ

Ingredients of the Proof

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Groups without non-Abelian Free Subgroups Direct applications

・ 同 ト ・ ヨ ト ・ ヨ ト

Ingredients of the Proof

Groups without non-Abelian Free Subgroups Direct applications

→ ∃ >

Ingredients of the Proof

Groups without non-Abelian Free Subgroups Direct applications

A (1) > (1) > (1)

- - E - F

Ingredients of the Proof

Groups without non-Abelian Free Subgroups Direct applications

・ 同下 ・ ヨト ・ ヨト

Ingredients of the Proof

Groups without non-Abelian Free Subgroups Direct applications

(人間) とうり くうり

Ingredients of the Proof

Groups without non-Abelian Free Subgroups Direct applications

(人間) とうり くうり

Ingredients of the Proof

If $g, h \in G$ with rot(g) = rot(h), then $gh^{-1} \in G_0$. If rot(g) irrational, we do not need the hypothesis on free subgroups.

If rot(g) is rational, we require that G has no free subgroups.

Groups without non-Abelian Free Subgroups Direct applications

Ingredients of the Proof

If $g, h \in G$ with rot(g) = rot(h), then $gh^{-1} \in G_0$. If rot(g) irrational, we do not need the hypothesis on free subgroups.

If rot(g) is rational, we require that G has no free subgroups.

Corollary

The commutator subgroup [G, G] lies inside G_0 .

Image: Construct of the commutator subgroup of t

Groups without non-Abelian Free Subgroups Direct applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Idea of the Proof

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Groups without non-Abelian Free Subgroups Direct applications

Idea of the Proof

```
Le f, g \in Homeo_+(S^1).
```

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Idea of the Proof

Le $f, g \in Homeo_+(S^1)$. Rewrite the product

$$(fg)^n = f^n g^n h_n$$

with h_n product of commutators.

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Idea of the Proof

Le $f,g \in Homeo_+(S^1)$. Rewrite the product

$$(fg)^n = f^n g^n h_n$$

with h_n product of commutators. Since $h_n \in G_0$, we can ignore it.

Groups without non-Abelian Free Subgroups Direct applications

(ロ) (同) (E) (E) (E)

Idea of the Proof

Le $f, g \in Homeo_+(S^1)$. Rewrite the product

$$(fg)^n = f^n g^n h_n$$

with h_n product of commutators. Since $h_n \in G_0$, we can ignore it.

Let F, G, be lifts for f, g, and $s \in Fix(G_0)$. Then

(ロ) (同) (E) (E) (E)

Idea of the Proof

Le $f, g \in Homeo_+(S^1)$. Rewrite the product

$$(fg)^n = f^n g^n h_n$$

with h_n product of commutators. Since $h_n \in G_0$, we can ignore it.

Let F, G, be lifts for f, g, and $s \in Fix(G_0)$. Then

$$(F^n(s)-s)+(G^n(s)-s)-2\leq F^nG^n(s)$$

イロト イポト イヨト イヨト

Idea of the Proof

Le $f,g \in Homeo_+(S^1)$. Rewrite the product

$$(fg)^n = f^n g^n h_n$$

with h_n product of commutators. Since $h_n \in G_0$, we can ignore it.

Let F, G, be lifts for f, g, and $s \in Fix(G_0)$. Then

$$(F^n(s)-s)+(G^n(s)-s)-2\leq F^nG^n(s)$$

Now divide by *n*, send it to ∞ and get

イロト イポト イヨト イヨト

Idea of the Proof

Le $f,g \in Homeo_+(S^1)$. Rewrite the product

$$(fg)^n = f^n g^n h_n$$

with h_n product of commutators. Since $h_n \in G_0$, we can ignore it.

Let F, G, be lifts for f, g, and $s \in Fix(G_0)$. Then

$$(F^n(s)-s)+(G^n(s)-s)-2\leq F^nG^n(s)$$

Now divide by *n*, send it to ∞ and get

$$rot(fg) = rot(f) + rot(g).\square$$

Groups without non-Abelian Free Subgroups Direct applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Margulis' Theorem

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Margulis' Theorem

Theorem (Margulis)

Suppose $G \leq Homeo_+(S^1)$ admits no non-abelian free subgroups. Then there is a G-invariant probability measure on S^1 .

(ロ) (同) (E) (E) (E)

Margulis' Theorem

Theorem (Margulis)

Suppose $G \leq Homeo_+(S^1)$ admits no non-abelian free subgroups. Then there is a G-invariant probability measure on S^1 .

Let $s \in Fix(G_0)$, s^G be its orbit and write S^1 as I = [0, 1].

イロト イポト イヨト イヨト 二日

Margulis' Theorem

Theorem (Margulis)

Suppose $G \leq Homeo_+(S^1)$ admits no non-abelian free subgroups. Then there is a G-invariant probability measure on S^1 .

Let $s \in Fix(G_0)$, s^G be its orbit and write S^1 as I = [0, 1]. Define $\varphi(g(s)) = rot(g)$, extend to $\overline{\varphi} : I \to I$ left-continuous increasing.
Margulis' Theorem

Theorem (Margulis)

Suppose $G \leq Homeo_+(S^1)$ admits no non-abelian free subgroups. Then there is a G-invariant probability measure on S^1 .

Let
$$s \in Fix(G_0)$$
, s^G be its orbit and write S^1 as $I = [0, 1]$.
Define $\varphi(g(s)) = rot(g)$, extend to $\overline{\varphi} : I \to I$ left-continuous increasing.

This induces the measure μ on S^1 :

$$\mu((a,b]) = \overline{arphi}(b) - \overline{arphi}(a)$$
 for any $a,b \in [0,1]$

Groups without non-Abelian Free Subgroups Direct applications

(日) (同) (三) (三) (三)

Margulis' Theorem

Theorem (Margulis)

Suppose $G \leq Homeo_+(S^1)$ admits no non-abelian free subgroups. Then there is a G-invariant probability measure on S^1 .

Let
$$s \in Fix(G_0)$$
, s^G be its orbit and write S^1 as $I = [0, 1]$.
Define $\varphi(g(s)) = rot(g)$, extend to $\overline{\varphi} : I \to I$ left-continuous increasing.

This induces the measure μ on S^1 :

$$\mu((a, b]) = \overline{\varphi}(b) - \overline{\varphi}(a) \quad \text{for any } a, b \in [0, 1]$$

If $a = g(s), b = h(s)$, then it becomes
$$= rot(h) - rot(g) \qquad \Box$$

Groups without non-Abelian Free Subgroups Direct applications

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Groups with an element of irrational rotation number

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Groups with an element of irrational rotation number

Another known result:

Groups with an element of irrational rotation number

Another known result:

Theorem

Suppose $G \leq Homeo_+(S^1)$ admits no non-abelian free subgroups and there is a $g \in G$ such that

Groups with an element of irrational rotation number

Another known result:

Theorem

Suppose $G \leq Homeo_+(S^1)$ admits no non-abelian free subgroups and there is a $g \in G$ such that

rot(g) irrational, and

Groups with an element of irrational rotation number

Another known result:

Theorem

Suppose $G \leq Homeo_+(S^1)$ admits no non-abelian free subgroups and there is a $g \in G$ such that

- rot(g) irrational, and
- g is a C²-diffeomorphism or a piecewise-linear with finitely many breakpoints.

Groups with an element of irrational rotation number

Another known result:

Theorem

Suppose $G \leq Homeo_+(S^1)$ admits no non-abelian free subgroups and there is a $g \in G$ such that

- rot(g) irrational, and
- g is a C²-diffeomorphism or a piecewise-linear with finitely many breakpoints.

Then G is topologically conjugate to a group of rotations. In particular, G is abelian.

・ロト ・同ト ・ヨト ・ヨト

Groups with an element of irrational rotation number

Another known result:

Theorem

Suppose $G \leq Homeo_+(S^1)$ admits no non-abelian free subgroups and there is a $g \in G$ such that

- rot(g) irrational, and
- g is a C²-diffeomorphism or a piecewise-linear with finitely many breakpoints.

Then G is topologically conjugate to a group of rotations. In particular, G is abelian.

Proof: Let $s \in Fix(G_0)$. By Denjoy's Theorem, the orbit $s^G \subseteq Fix(G_0)$ is dense in S^1 . So $Fix(G_0) = S^1$ and $G \leq \mathbb{R}/\mathbb{Z}$. \Box

Groups without non-Abelian Free Subgroups Direct applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fixed-Point Free Actions on the Circle

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Fixed-Point Free Actions on the Circle

For the unit interval $\left[0,1\right]$ we have

Groups without non-Abelian Free Subgroups Direct applications

イロン イ部ン イヨン イヨン 三日

Fixed-Point Free Actions on the Circle

For the unit interval [0,1] we have

Theorem (Sacksteder)

Let $G \leq Homeo_+([0,1])$. Suppose that every element of $G \setminus \{id\}$ has no fixed points on (0,1). Then G is abelian.

Groups without non-Abelian Free Subgroups Direct applications

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Fixed-Point Free Actions on the Circle

For the unit interval [0,1] we have

Theorem (Sacksteder)

Let $G \leq Homeo_+([0,1])$. Suppose that every element of $G \setminus \{id\}$ has no fixed points on (0,1). Then G is abelian.

We get another proof of its generalization to the unit circle:

Groups without non-Abelian Free Subgroups Direct applications

イロン イヨン イヨン ・ ヨン

Fixed-Point Free Actions on the Circle

For the unit interval [0,1] we have

Theorem (Sacksteder)

Let $G \leq Homeo_+([0,1])$. Suppose that every element of $G \setminus \{id\}$ has no fixed points on (0,1). Then G is abelian.

We get another proof of its generalization to the unit circle:

Theorem

Let $G \leq Homeo_+(S^1)$. Suppose that every element of $G \setminus \{id\}$ has no fixed points. Then G is abelian.

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

(ロ) (同) (E) (E) (E)

Definition of a Fundamental Domain

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

(ロ) (同) (E) (E) (E)

Definition of a Fundamental Domain

Idea: If G_0 is trivial, then $G \cong rot(G) \leq \mathbb{R}/\mathbb{Z}$.

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

(ロ) (同) (E) (E) (E)

Definition of a Fundamental Domain

Idea: If G_0 is trivial, then $G \cong rot(G) \leq \mathbb{R}/\mathbb{Z}$.

If G_0 is non-trivial, take $s \in Fix(G_0)$ and consider s^G orbit under G.

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

Definition of a Fundamental Domain

Idea: If G_0 is trivial, then $G \cong rot(G) \leq \mathbb{R}/\mathbb{Z}$.

If G_0 is non-trivial, take $s \in Fix(G_0)$ and consider s^G orbit under G.

 $S^1 \setminus \overline{s^G}$ is a countable union of open intervals on which G acts.

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

(ロ) (同) (E) (E) (E)

Definition of a Fundamental Domain

Idea: If G_0 is trivial, then $G \cong rot(G) \leq \mathbb{R}/\mathbb{Z}$.

If G_0 is non-trivial, take $s \in Fix(G_0)$ and consider s^G orbit under G.

 $S^1 \setminus \overline{s^G}$ is a countable union of open intervals on which G acts.

Two intervals l_1, l_2 are equivalent if $g(l_1) = l_2$, for some $g \in G$.

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

(ロ) (同) (E) (E) (E)

Definition of a Fundamental Domain

Idea: If G_0 is trivial, then $G \cong rot(G) \leq \mathbb{R}/\mathbb{Z}$.

If G_0 is non-trivial, take $s \in Fix(G_0)$ and consider s^G orbit under G.

 $S^1 \setminus \overline{s^G}$ is a countable union of open intervals on which G acts.

Two intervals I_1, I_2 are equivalent if $g(I_1) = I_2$, for some $g \in G$.

Let $\{I_i\}$ be a family of representatives and define $D = \bigcup I_i$.

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main Structure Theorem

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

(ロ) (同) (E) (E) (E)

Main Structure Theorem

D is a fundamental domain for *G* acting on the intervals of $S^1 \setminus \overline{s^G}$.

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

(ロ) (同) (E) (E) (E)

Main Structure Theorem

D is a fundamental domain for *G* acting on the intervals of $S^1 \setminus \overline{s^G}$.

We consider H_0 restriction of G_0 to the domain $D = \bigcup I_i$ and define it the identity otherwise.

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

イロト イポト イヨト イヨト

Main Structure Theorem

D is a fundamental domain for G acting on the intervals of $S^1 \setminus \overline{s^G}$.

We consider H_0 restriction of G_0 to the domain $D = \bigcup I_i$ and define it the identity otherwise.

Theorem (BKM)

Suppose G admits no non-abelian free subgroups, then

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

<ロ> (日) (日) (日) (日) (日)

Main Structure Theorem

D is a fundamental domain for G acting on the intervals of $S^1 \setminus \overline{s^G}$.

We consider H_0 restriction of G_0 to the domain $D = \bigcup I_i$ and define it the identity otherwise.

Theorem (BKM)

Suppose G admits no non-abelian free subgroups, then

• G embeds in \mathbb{R}/\mathbb{Z} , or

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

イロト イヨト イヨト イヨト

Main Structure Theorem

D is a fundamental domain for G acting on the intervals of $S^1 \setminus \overline{s^G}$.

We consider H_0 restriction of G_0 to the domain $D = \bigcup I_i$ and define it the identity otherwise.

Theorem (BKM)

Suppose G admits no non-abelian free subgroups, then

- G embeds in \mathbb{R}/\mathbb{Z} , or
- G embeds in H₀ ≥ K, unrestricted wreath product, where K := G/G₀ is isomorphic to a subgroup of ℝ/ℤ (at most countable) and H₀ ≤ ∏ Homeo₊(I_i) has no non-abelian free subgroups.

Recall:
$$H_0 \wr K = K \ltimes \prod_{k \in K} H_0^k$$
.

Structure of Groups without non-Abelian Free Subgroups **Embeddings in** $Homeo_+(S^1)$ Structure of solvable PL-groups

<ロ> (四) (四) (三) (三) (三)

Some Embedding Theorems

Structure of Groups without non-Abelian Free Subgroups **Embeddings in** $Homeo_+(S^1)$ Structure of solvable PL-groups

イロト イポト イヨト イヨト

Some Embedding Theorems

Theorem (BKM)

For every $K \leq \mathbb{R}/\mathbb{Z}$ countable and for every $H_0 \leq \text{Homeo}_+([0,1])$, there is an embedding of the unrestricted wreath product $H_0 \wr K$ into $\text{Homeo}_+(S^1)$.

Structure of Groups without non-Abelian Free Subgroups **Embeddings in** $Homeo_+(S^1)$ Structure of solvable PL-groups

イロト イポト イヨト イヨト

Some Embedding Theorems

Theorem (BKM)

For every $K \leq \mathbb{R}/\mathbb{Z}$ countable and for every $H_0 \leq \text{Homeo}_+([0,1])$, there is an embedding of the unrestricted wreath product $H_0 \wr K$ into $\text{Homeo}_+(S^1)$.

Theorem (BKM)

For every $K \leq \mathbb{Q}/\mathbb{Z}$, there is an embedding of the restricted wreath product $F \wr K$ into T, where F and T are the respective Thompson's groups.

Structure of Groups without non-Abelian Free Subgroups **Embeddings in** $Homeo_+(S^1)$ Structure of solvable PL-groups

(ロ) (同) (E) (E) (E)

How to embed $F \wr \mathbb{Q}/\mathbb{Z}$ in $PL_+(S^1)^{\vee}$

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Structure of Groups without non-Abelian Free Subgroups Embeddings in ${\it Homeo}_+(S^1)$ Structure of solvable PL-groups

イロン イヨン イヨン ・ ヨン

How to embed $F \wr \mathbb{Q}/\mathbb{Z}$ in $PL_+(S^1)$

Define $PL_+(I)$ as the group of piecewise-linear orientation preserving Homeomorphisms of [0, 1]. Similarly, define $PL_+(S^1)$.

Structure of Groups without non-Abelian Free Subgroups Embeddings in ${\it Homeo}_+(S^1)$ Structure of solvable PL-groups

ヘロン 人間 とくほど くほど

How to embed $\overline{F} \wr \mathbb{Q}/\mathbb{Z}$ in $PL_+(S^1)$

Define $PL_+(I)$ as the group of piecewise-linear orientation preserving Homeomorphisms of [0, 1]. Similarly, define $PL_+(S^1)$.

Structure of Groups without non-Abelian Free Subgroups Embeddings in ${\it Homeo}_+(S^1)$ Structure of solvable PL-groups

イロト イヨト イヨト イヨト

How to embed $\overline{F} \wr \mathbb{Q}/\mathbb{Z}$ in $PL_+(S^1)$

Define $PL_+(I)$ as the group of piecewise-linear orientation preserving Homeomorphisms of [0, 1]. Similarly, define $PL_+(S^1)$.

Structure of Groups without non-Abelian Free Subgroups Embeddings in ${\it Homeo}_+(S^1)$ Structure of solvable PL-groups

イロト イポト イヨト イヨト

How to embed $F \wr \mathbb{Q}/\mathbb{Z}$ in $PL_+(S^1)$

Define $PL_+(I)$ as the group of piecewise-linear orientation preserving Homeomorphisms of [0, 1]. Similarly, define $PL_+(S^1)$.

We have $(X_n)^n = X_{n-1}$ and the domain D is an interval.

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

イロン イ部 とくほど くほとう ほ

How we started: Solvable subgroups of $PL_+(S^1)$

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

イロト イポト イヨト イヨト

How we started: Solvable subgroups of $PL_+(S^1)$

Theorem (Bleak)

Let $H \leq PL_+(I)$. Then H is a solvable group of derived length n if and only if H can be realized as a subgroup of G_n .
Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

イロト イポト イヨト イヨト

How we started: Solvable subgroups of $PL_+(S^1)$

Theorem (Bleak)

Let $H \leq PL_+(I)$. Then H is a solvable group of derived length n if and only if H can be realized as a subgroup of G_n .

Let $G_0 = 1$ and, for $n \in \mathbb{N}$, we define inductively a group G_n by

$$G_n = \bigoplus_{k \in \mathbb{Z}} (G_{n-1} \wr \mathbb{Z})$$

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

How we started: Solvable subgroups of $PL_+(S^1)$

Theorem (Bleak)

Let $H \leq PL_+(I)$. Then H is a solvable group of derived length n if and only if H can be realized as a subgroup of G_n .

Let $G_0 = 1$ and, for $n \in \mathbb{N}$, we define inductively a group G_n by

$$G_n = \bigoplus_{k \in \mathbb{Z}} (G_{n-1} \wr \mathbb{Z})$$

Theorem (BKM)

A solvable subgroup G of $PL_+(S^1)$ either

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

How we started: Solvable subgroups of $PL_+(S^1)$

Theorem (Bleak)

Let $H \leq PL_+(I)$. Then H is a solvable group of derived length n if and only if H can be realized as a subgroup of G_n .

Let $G_0 = 1$ and, for $n \in \mathbb{N}$, we define inductively a group G_n by

$$G_n = \bigoplus_{k \in \mathbb{Z}} (G_{n-1} \wr \mathbb{Z})$$

Theorem (BKM)

A solvable subgroup G of $PL_+(S^1)$ either

• embeds in \mathbb{Q}/\mathbb{Z} , or

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

How we started: Solvable subgroups of $PL_+(S^1)$

Theorem (Bleak)

Let $H \leq PL_+(I)$. Then H is a solvable group of derived length n if and only if H can be realized as a subgroup of G_n .

Let $G_0 = 1$ and, for $n \in \mathbb{N}$, we define inductively a group G_n by

$$G_n = \bigoplus_{k \in \mathbb{Z}} (G_{n-1} \wr \mathbb{Z})$$

Theorem (BKM)

A solvable subgroup G of $PL_+(S^1)$ either

- embeds in \mathbb{Q}/\mathbb{Z} , or
- embeds in G_n \ K, restricted wreath product, for some K subgroup of Q/Z and some positive integer n.

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

A "Tits' alternative" Theorem for $PL_+(S^1)$

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of $Homeo(S^1)$

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

(ロ) (同) (E) (E) (E)

A "Tits' alternative" Theorem for $PL_+(S^1)$

Let $W_0 = 1$ and, for $n \in \mathbb{N}$, we define $W_i = W_{i-1} \wr \mathbb{Z}$. We build the group

$$W = igoplus_{i \in \mathbb{Z}} W_i$$

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

イロン イヨン イヨン ・ ヨン

A "Tits' alternative" Theorem for $PL_+(S^1)$

Let $W_0 = 1$ and, for $n \in \mathbb{N}$, we define $W_i = W_{i-1} \wr \mathbb{Z}$. We build the group

$$W = \bigoplus_{i \in \mathbb{Z}} W_i$$

Theorem (BKM)

A subgroup H of $PL_+(S^1)$ either

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

<ロ> (日) (日) (日) (日) (日)

A "Tits' alternative" Theorem for $PL_+(S^1)$

Let $W_0 = 1$ and, for $n \in \mathbb{N}$, we define $W_i = W_{i-1} \wr \mathbb{Z}$. We build the group

$$W = \bigoplus_{i \in \mathbb{Z}} W_i$$

Theorem (BKM)

A subgroup H of $PL_+(S^1)$ either

• contains a non-abelian free subgroup on two generators, or

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

イロン イヨン イヨン ・ ヨン

A "Tits' alternative" Theorem for $PL_+(S^1)$

Let $W_0 = 1$ and, for $n \in \mathbb{N}$, we define $W_i = W_{i-1} \wr \mathbb{Z}$. We build the group

$$W = \bigoplus_{i \in \mathbb{Z}} W_i$$

Theorem (BKM)

- A subgroup H of $PL_+(S^1)$ either
 - contains a non-abelian free subgroup on two generators, or
 - contains a copy of W, or

Structure of Groups without non-Abelian Free Subgroups Embeddings in $Homeo_+(S^1)$ Structure of solvable PL-groups

イロト イポト イヨト イヨト

A "Tits' alternative" Theorem for $PL_+(S^1)$

Let $W_0 = 1$ and, for $n \in \mathbb{N}$, we define $W_i = W_{i-1} \wr \mathbb{Z}$. We build the group

$$W = \bigoplus_{i \in \mathbb{Z}} W_i$$

Theorem (BKM)

A subgroup H of $PL_+(S^1)$ either

- contains a non-abelian free subgroup on two generators, or
- contains a copy of W, or
- is solvable.