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Introduction

Motivation: Bleak classified all solvable subgroups of a special
class of homeomorphisms of [0, 1].

Can we extend this classification to S1? Can we relax the
hypotheses?

Loose idea: First study elements with fixed points. Then study
the action of elements which have no fixed points. Understand the
interaction of these two types of elements.
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Some known classification results

Theorem (Ghys)

Every solvable subgroup of Diff ω

+ (S1) is metabelian.

Theorem (Plante-Thurston)

Any nilpotent subgroup of Diff 2
+(S1) must be abelian.

Theorem (Farb-Franks)

Every finitely-generated, torsion-free nilpotent group is isomorphic
to a subgroup of Diff 1

+(S1).
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Let Homeo+(S1) be the group of orientation-preserving
Homeomorphisms of the unit circle S1.
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Let Homeo+(S1) be the group of orientation-preserving
Homeomorphisms of the unit circle S1.

Given f ∈ Homeo+(S1), a lift F of f is a map F : R → R such
that

for all x ∈ R,F (x + 1) = F (x) + 1, and

f (x) = F (x) (mod 1).
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Definition

Given f ∈ Homeo+(S1), let F : R → R be one of its lifts.
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Definition

Given f ∈ Homeo+(S1), let F : R → R be one of its lifts. We
define the rotation number of f to be

rot(f ) = lim
n→∞

F n(x)

n
(mod 1)

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of Homeo(S1)



Rotation Number
Rotation Map is a Homomorphism

Structure and Embedding Theorems
Definition and Tools

Rotation Number

Definition

Given f ∈ Homeo+(S1), let F : R → R be one of its lifts. We
define the rotation number of f to be
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Rotation Number

Definition

Given f ∈ Homeo+(S1), let F : R → R be one of its lifts. We
define the rotation number of f to be

rot(f ) = lim
n→∞

F n(x)

n
(mod 1) (it exists!)

The limit is independent of the choice of x and of the lift.
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Here is an example with rotation number 1/4.
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Theorem (Poincarè)

Let f ∈ Homeo+(S1). Then f has a periodic orbit of length q if
and only if rot(f ) = p/q ∈ Q/Z, p, q coprime positive integers.
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Theorem (Poincarè)

Let f ∈ Homeo+(S1). Then f has a periodic orbit of length q if
and only if rot(f ) = p/q ∈ Q/Z, p, q coprime positive integers.

Theorem (Denjoy)

Let f ∈ Homeo+(S1) be such that

1 rot(f ) irrational, and

2 f is a C 2-diffeomorphism or a piecewise-linear with finitely
many breakpoints.
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Poincarè and Denjoy’s Theorems

Theorem (Poincarè)

Let f ∈ Homeo+(S1). Then f has a periodic orbit of length q if
and only if rot(f ) = p/q ∈ Q/Z, p, q coprime positive integers.

Theorem (Denjoy)

Let f ∈ Homeo+(S1) be such that

1 rot(f ) irrational, and

2 f is a C 2-diffeomorphism or a piecewise-linear with finitely
many breakpoints.

Then f is conjugate to a rotation by an element in Homeo+(S1).
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Fact: If G is an abelian group of circle homomorphisms, then the
rotation number map is a homomorphism from G to R/Z.
Fact: This is not true for a generic subgroup of Homeo+(S1).
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Ping-Pong Lemma

Theorem (Ping-Pong)

Let G be a group of permutations on a set X . Let g1 and g2 be
elements of G . If there are non-empty, disjoint sets X1 and X2

contained in X , where for all n 6= 0 and i 6= j , we have Xig
n
j ⊂ Xj ,

then 〈g1, g2〉 ≤ G is isomorphic to a free group on two generators.
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Theorem (reference needed, BKM)

Suppose G ≤ Homeo+(S1) has no non-abelian free subgroups and
define

G0 = {g ∈ G |Fix(g) 6= ∅}.

Then
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Suppose G ≤ Homeo+(S1) has no non-abelian free subgroups and
define

G0 = {g ∈ G |Fix(g) 6= ∅}.

Then
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Theorem (reference needed, BKM)

Suppose G ≤ Homeo+(S1) has no non-abelian free subgroups and
define

G0 = {g ∈ G |Fix(g) 6= ∅}.

Then

The subset G0 is a subgroup.

The map rot : G → R/Z is a homomorphism,
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Theorem (reference needed, BKM)

Suppose G ≤ Homeo+(S1) has no non-abelian free subgroups and
define

G0 = {g ∈ G |Fix(g) 6= ∅}.

Then

The subset G0 is a subgroup.

The map rot : G → R/Z is a homomorphism,

ker(rot) = G0,
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Groups without non-Abelian Free Subgroups

Theorem (reference needed, BKM)

Suppose G ≤ Homeo+(S1) has no non-abelian free subgroups and
define

G0 = {g ∈ G |Fix(g) 6= ∅}.

Then

The subset G0 is a subgroup.

The map rot : G → R/Z is a homomorphism,

ker(rot) = G0,

G/G0
∼= rot(G ) ≤ R/Z.
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Ingredients of the Proof

Lemma

G0 is a normal subgroup of G .

For every finitely generated H ≤ G0, we have Fix(H) 6= ∅
(finite intersection property).
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Groups without non-Abelian Free Subgroups
Direct applications

Ingredients of the Proof

Lemma

G0 is a normal subgroup of G .

For every finitely generated H ≤ G0, we have Fix(H) 6= ∅
(finite intersection property).

G0 admits a global fixed point (by compactness of S1).
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If g , h ∈ G with rot(g) = rot(h), then gh−1 ∈ G0. If rot(g)
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Ingredients of the Proof

If g , h ∈ G with rot(g) = rot(h), then gh−1 ∈ G0. If rot(g)
irrational, we do not need the hypothesis on free subgroups.

If rot(g) is rational, we require that G has no free subgroups.
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Groups without non-Abelian Free Subgroups
Direct applications

Ingredients of the Proof

If g , h ∈ G with rot(g) = rot(h), then gh−1 ∈ G0. If rot(g)
irrational, we do not need the hypothesis on free subgroups.

If rot(g) is rational, we require that G has no free subgroups.

Corollary

The commutator subgroup [G ,G ] lies inside G0.
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Idea of the Proof

Le f , g ∈ Homeo+(S1). Rewrite the product

(fg)n = f ngnhn

with hn product of commutators.
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Le f , g ∈ Homeo+(S1). Rewrite the product

(fg)n = f ngnhn

with hn product of commutators. Since hn ∈ G0, we can ignore it.

Let F ,G , be lifts for f , g , and s ∈ Fix(G0). Then
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Idea of the Proof

Le f , g ∈ Homeo+(S1). Rewrite the product

(fg)n = f ngnhn

with hn product of commutators. Since hn ∈ G0, we can ignore it.

Let F ,G , be lifts for f , g , and s ∈ Fix(G0). Then

(F n(s) − s) + (G n(s) − s) − 2 ≤ F nG n(s)
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Le f , g ∈ Homeo+(S1). Rewrite the product

(fg)n = f ngnhn

with hn product of commutators. Since hn ∈ G0, we can ignore it.

Let F ,G , be lifts for f , g , and s ∈ Fix(G0). Then

(F n(s) − s) + (G n(s) − s) − 2 ≤ F nG n(s)

Now divide by n, send it to ∞ and get
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Groups without non-Abelian Free Subgroups
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Idea of the Proof

Le f , g ∈ Homeo+(S1). Rewrite the product

(fg)n = f ngnhn

with hn product of commutators. Since hn ∈ G0, we can ignore it.

Let F ,G , be lifts for f , g , and s ∈ Fix(G0). Then

(F n(s) − s) + (G n(s) − s) − 2 ≤ F nG n(s)

Now divide by n, send it to ∞ and get

rot(fg) = rot(f ) + rot(g).�
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Theorem (Margulis)

Suppose G ≤ Homeo+(S1) admits no non-abelian free subgroups.
Then there is a G-invariant probability measure on S1.
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Margulis’ Theorem

Theorem (Margulis)

Suppose G ≤ Homeo+(S1) admits no non-abelian free subgroups.
Then there is a G-invariant probability measure on S1.

Let s ∈ Fix(G0), sG be its orbit and write S1 as I = [0, 1].
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Margulis’ Theorem

Theorem (Margulis)

Suppose G ≤ Homeo+(S1) admits no non-abelian free subgroups.
Then there is a G-invariant probability measure on S1.

Let s ∈ Fix(G0), sG be its orbit and write S1 as I = [0, 1].

Define ϕ(g(s)) = rot(g), extend to ϕ : I → I left-continuous
increasing.
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Margulis’ Theorem

Theorem (Margulis)

Suppose G ≤ Homeo+(S1) admits no non-abelian free subgroups.
Then there is a G-invariant probability measure on S1.

Let s ∈ Fix(G0), sG be its orbit and write S1 as I = [0, 1].

Define ϕ(g(s)) = rot(g), extend to ϕ : I → I left-continuous
increasing.

This induces the measure µ on S1:

µ((a, b]) = ϕ(b) − ϕ(a) for any a, b ∈ [0, 1]
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Margulis’ Theorem

Theorem (Margulis)

Suppose G ≤ Homeo+(S1) admits no non-abelian free subgroups.
Then there is a G-invariant probability measure on S1.

Let s ∈ Fix(G0), sG be its orbit and write S1 as I = [0, 1].

Define ϕ(g(s)) = rot(g), extend to ϕ : I → I left-continuous
increasing.

This induces the measure µ on S1:

µ((a, b]) = ϕ(b) − ϕ(a) for any a, b ∈ [0, 1]

If a = g(s), b = h(s), then it becomes

= rot(h) − rot(g) �
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Groups with an element of irrational rotation number

Another known result:
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Groups with an element of irrational rotation number

Another known result:

Theorem

Suppose G ≤ Homeo+(S1) admits no non-abelian free subgroups
and there is a g ∈ G such that
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Groups with an element of irrational rotation number

Another known result:

Theorem

Suppose G ≤ Homeo+(S1) admits no non-abelian free subgroups
and there is a g ∈ G such that

1 rot(g) irrational, and
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Groups with an element of irrational rotation number

Another known result:

Theorem

Suppose G ≤ Homeo+(S1) admits no non-abelian free subgroups
and there is a g ∈ G such that

1 rot(g) irrational, and

2 g is a C 2-diffeomorphism or a piecewise-linear with finitely
many breakpoints.
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Groups with an element of irrational rotation number

Another known result:

Theorem

Suppose G ≤ Homeo+(S1) admits no non-abelian free subgroups
and there is a g ∈ G such that

1 rot(g) irrational, and

2 g is a C 2-diffeomorphism or a piecewise-linear with finitely
many breakpoints.

Then G is topologically conjugate to a group of rotations. In
particular, G is abelian.
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Groups with an element of irrational rotation number

Another known result:

Theorem

Suppose G ≤ Homeo+(S1) admits no non-abelian free subgroups
and there is a g ∈ G such that

1 rot(g) irrational, and

2 g is a C 2-diffeomorphism or a piecewise-linear with finitely
many breakpoints.

Then G is topologically conjugate to a group of rotations. In
particular, G is abelian.

Proof: Let s ∈ Fix(G0). By Denjoy’s Theorem, the orbit
sG ⊆ Fix(G0) is dense in S1. So Fix(G0) = S1 and G ≤ R/Z. �

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of Homeo(S1)



Rotation Number
Rotation Map is a Homomorphism

Structure and Embedding Theorems

Groups without non-Abelian Free Subgroups
Direct applications

Fixed-Point Free Actions on the Circle

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of Homeo(S1)



Rotation Number
Rotation Map is a Homomorphism

Structure and Embedding Theorems

Groups without non-Abelian Free Subgroups
Direct applications

Fixed-Point Free Actions on the Circle

For the unit interval [0, 1] we have
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Fixed-Point Free Actions on the Circle

For the unit interval [0, 1] we have

Theorem (Sacksteder)

Let G ≤ Homeo+([0, 1]). Suppose that every element of G \ {id}
has no fixed points on (0, 1). Then G is abelian.
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Fixed-Point Free Actions on the Circle

For the unit interval [0, 1] we have

Theorem (Sacksteder)

Let G ≤ Homeo+([0, 1]). Suppose that every element of G \ {id}
has no fixed points on (0, 1). Then G is abelian.

We get another proof of its generalization to the unit circle:
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For the unit interval [0, 1] we have

Theorem (Sacksteder)

Let G ≤ Homeo+([0, 1]). Suppose that every element of G \ {id}
has no fixed points on (0, 1). Then G is abelian.

We get another proof of its generalization to the unit circle:

Theorem

Let G ≤ Homeo+(S1). Suppose that every element of G \ {id}
has no fixed points. Then G is abelian.
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Structure of solvable PL-groups

Definition of a Fundamental Domain

Idea: If G0 is trivial, then G ∼= rot(G ) ≤ R/Z.
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Definition of a Fundamental Domain

Idea: If G0 is trivial, then G ∼= rot(G ) ≤ R/Z.

If G0 is non-trivial, take s ∈ Fix(G0) and consider sG orbit under G .
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Definition of a Fundamental Domain

Idea: If G0 is trivial, then G ∼= rot(G ) ≤ R/Z.

If G0 is non-trivial, take s ∈ Fix(G0) and consider sG orbit under G .

S1 \ sG is a countable union of open intervals on which G acts.
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Definition of a Fundamental Domain

Idea: If G0 is trivial, then G ∼= rot(G ) ≤ R/Z.

If G0 is non-trivial, take s ∈ Fix(G0) and consider sG orbit under G .

S1 \ sG is a countable union of open intervals on which G acts.

Two intervals I1, I2 are equivalent if g(I1) = I2, for some g ∈ G .
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Definition of a Fundamental Domain

Idea: If G0 is trivial, then G ∼= rot(G ) ≤ R/Z.

If G0 is non-trivial, take s ∈ Fix(G0) and consider sG orbit under G .

S1 \ sG is a countable union of open intervals on which G acts.

Two intervals I1, I2 are equivalent if g(I1) = I2, for some g ∈ G .

Let {Ii} be a family of representatives and define D =
⋃

Ii .
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Main Structure Theorem

D is a fundamental domain for G acting on the intervals of S1 \ sG .
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Main Structure Theorem

D is a fundamental domain for G acting on the intervals of S1 \ sG .

We consider H0 restriction of G0 to the domain D =
⋃

Ii and
define it the identity otherwise.
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Main Structure Theorem

D is a fundamental domain for G acting on the intervals of S1 \ sG .

We consider H0 restriction of G0 to the domain D =
⋃

Ii and
define it the identity otherwise.

Theorem (BKM)

Suppose G admits no non-abelian free subgroups, then
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Main Structure Theorem

D is a fundamental domain for G acting on the intervals of S1 \ sG .

We consider H0 restriction of G0 to the domain D =
⋃

Ii and
define it the identity otherwise.

Theorem (BKM)

Suppose G admits no non-abelian free subgroups, then

G embeds in R/Z, or
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Main Structure Theorem

D is a fundamental domain for G acting on the intervals of S1 \ sG .

We consider H0 restriction of G0 to the domain D =
⋃

Ii and
define it the identity otherwise.

Theorem (BKM)

Suppose G admits no non-abelian free subgroups, then

G embeds in R/Z, or

G embeds in H0 ≀ K, unrestricted wreath product, where
K := G/G0 is isomorphic to a subgroup of R/Z (at most
countable) and H0 ≤

∏
Homeo+(Ii ) has no non-abelian free

subgroups.

Recall: H0 ≀ K = K ⋉
∏

k∈K Hk
0 .
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Some Embedding Theorems

Theorem (BKM)

For every K ≤ R/Z countable and for every H0 ≤ Homeo+([0, 1]),
there is an embedding of the unrestricted wreath product H0 ≀ K
into Homeo+(S1).
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Some Embedding Theorems

Theorem (BKM)

For every K ≤ R/Z countable and for every H0 ≤ Homeo+([0, 1]),
there is an embedding of the unrestricted wreath product H0 ≀ K
into Homeo+(S1).

Theorem (BKM)

For every K ≤ Q/Z, there is an embedding of the restricted
wreath product F ≀ K into T , where F and T are the respective
Thompson’s groups.
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How to embed F ≀ Q/Z in PL+(S1)

Define PL+(I ) as the group of piecewise-linear orientation
preserving Homeomorphisms of [0, 1]. Similarly, define PL+(S1).
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How to embed F ≀ Q/Z in PL+(S1)

Define PL+(I ) as the group of piecewise-linear orientation
preserving Homeomorphisms of [0, 1]. Similarly, define PL+(S1).
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How to embed F ≀ Q/Z in PL+(S1)

Define PL+(I ) as the group of piecewise-linear orientation
preserving Homeomorphisms of [0, 1]. Similarly, define PL+(S1).

We have (Xn)
n = Xn−1 and the domain D is an interval.
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How we started: Solvable subgroups of PL+(S1)

Theorem (Bleak)

Let H ≤ PL+(I ). Then H is a solvable group of derived length n if
and only if H can be realized as a subgroup of Gn.
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How we started: Solvable subgroups of PL+(S1)

Theorem (Bleak)

Let H ≤ PL+(I ). Then H is a solvable group of derived length n if
and only if H can be realized as a subgroup of Gn.

Let G0 = 1 and, for n ∈ N, we define inductively a group Gn by

Gn =
⊕

k∈Z

(Gn−1 ≀ Z)
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How we started: Solvable subgroups of PL+(S1)

Theorem (Bleak)

Let H ≤ PL+(I ). Then H is a solvable group of derived length n if
and only if H can be realized as a subgroup of Gn.

Let G0 = 1 and, for n ∈ N, we define inductively a group Gn by

Gn =
⊕

k∈Z

(Gn−1 ≀ Z)

Theorem (BKM)

A solvable subgroup G of PL+(S1) either
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How we started: Solvable subgroups of PL+(S1)

Theorem (Bleak)

Let H ≤ PL+(I ). Then H is a solvable group of derived length n if
and only if H can be realized as a subgroup of Gn.

Let G0 = 1 and, for n ∈ N, we define inductively a group Gn by

Gn =
⊕

k∈Z

(Gn−1 ≀ Z)

Theorem (BKM)

A solvable subgroup G of PL+(S1) either

embeds in Q/Z, or
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Structure of Groups without non-Abelian Free Subgroups
Embeddings in Homeo+(S1)
Structure of solvable PL-groups

How we started: Solvable subgroups of PL+(S1)

Theorem (Bleak)

Let H ≤ PL+(I ). Then H is a solvable group of derived length n if
and only if H can be realized as a subgroup of Gn.

Let G0 = 1 and, for n ∈ N, we define inductively a group Gn by

Gn =
⊕

k∈Z

(Gn−1 ≀ Z)

Theorem (BKM)

A solvable subgroup G of PL+(S1) either

embeds in Q/Z, or

embeds in Gn ≀ K, restricted wreath product, for some K
subgroup of Q/Z and some positive integer n.
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A ”Tits’ alternative” Theorem for PL+(S1)

Let W0 = 1 and, for n ∈ N, we define Wi = Wi−1 ≀ Z. We build
the group

W =
⊕

i∈Z

Wi
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A ”Tits’ alternative” Theorem for PL+(S1)

Let W0 = 1 and, for n ∈ N, we define Wi = Wi−1 ≀ Z. We build
the group

W =
⊕

i∈Z

Wi

Theorem (BKM)

A subgroup H of PL+(S1) either

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of Homeo(S1)



Rotation Number
Rotation Map is a Homomorphism

Structure and Embedding Theorems

Structure of Groups without non-Abelian Free Subgroups
Embeddings in Homeo+(S1)
Structure of solvable PL-groups

A ”Tits’ alternative” Theorem for PL+(S1)

Let W0 = 1 and, for n ∈ N, we define Wi = Wi−1 ≀ Z. We build
the group

W =
⊕

i∈Z

Wi

Theorem (BKM)

A subgroup H of PL+(S1) either

contains a non-abelian free subgroup on two generators, or
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A ”Tits’ alternative” Theorem for PL+(S1)

Let W0 = 1 and, for n ∈ N, we define Wi = Wi−1 ≀ Z. We build
the group

W =
⊕

i∈Z

Wi

Theorem (BKM)

A subgroup H of PL+(S1) either

contains a non-abelian free subgroup on two generators, or

contains a copy of W , or

Francesco Matucci (joint with C.Bleak and M.Kassabov) Structure Theorems for Subgroups of Homeo(S1)



Rotation Number
Rotation Map is a Homomorphism

Structure and Embedding Theorems

Structure of Groups without non-Abelian Free Subgroups
Embeddings in Homeo+(S1)
Structure of solvable PL-groups

A ”Tits’ alternative” Theorem for PL+(S1)

Let W0 = 1 and, for n ∈ N, we define Wi = Wi−1 ≀ Z. We build
the group

W =
⊕

i∈Z

Wi

Theorem (BKM)

A subgroup H of PL+(S1) either

contains a non-abelian free subgroup on two generators, or

contains a copy of W , or

is solvable.
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