1.Some	history	
00000	00000	

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Deciding endo-fixedness

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Alagna, December 17, 2008

1.Some history	Algorithmic results	Needed tools	The proof
Outline			

Some history

- 2 Algorithmic results
- 3 Needed tools

Notation

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq$ Mono $(F_n) \subseteq$ End (F_n) .
- I let endomorphisms $\phi: F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leq F_n$.
- If $S \subseteq \text{End}(F_n)$ then Fix $(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \text{Fix}(\phi) \leq F_n$.

1.Some history	Algorithmic results	Needed tools	The proof
•0000000			
Notation			

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq$ Mono $(F_n) \subseteq$ End (F_n) .
- I let endomorphisms $\phi \colon F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leq F_n$.
- If $S \subseteq \text{End}(F_n)$ then Fix $(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \text{Fix}(\phi) \leq F_n$.

1.Some history	Algorithmic results	Needed tools	The proof
•0000000			
Notation			

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq$ Mono $(F_n) \subseteq$ End (F_n) .
- I let endomorphisms $\phi \colon F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leq F_n$.
- If $S \subseteq \text{End}(F_n)$ then Fix $(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \text{Fix}(\phi) \leq F_n$.

1.Some history	Algorithmic results	Needed tools	The proof
Notation			

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq$ Mono $(F_n) \subseteq$ End (F_n) .
- I let endomorphisms $\phi \colon F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leq F_n$.
- If $S \subseteq \text{End}(F_n)$ then Fix $(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \text{Fix}(\phi) \leq F_n$.

•0000000	00	000000	00000
Natation			

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq$ Mono $(F_n) \subseteq$ End (F_n) .
- I let endomorphisms $\phi \colon F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$.
- If $S \subseteq \text{End}(F_n)$ then Fix $(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \text{Fix}(\phi) \leqslant F_n$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1.Some history	Algorithmic results	Needed tools	The proof
Notation			

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq$ Mono $(F_n) \subseteq$ End (F_n) .
- I let endomorphisms $\phi \colon F_n \to F_n$ act on the right, $x \mapsto x\phi$.

• Fix
$$(\phi) = \{x \in F_n \mid x\phi = x\} \leqslant F_n$$
.

• If $S \subseteq \text{End}(F_n)$ then Fix $(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \text{Fix}(\phi) \leq F_n$.

1.Some history	Algorithmic results	Needed tools	The proof
Notation			

- $A = \{a_1, \ldots, a_n\}$ is a finite alphabet (*n* letters).
- $A^{\pm 1} = A \cup A^{-1} = \{a_1, a_1^{-1}, \dots, a_n, a_n^{-1}\}.$
- F_n is the free group on A.
- Aut $(F_n) \subseteq$ Mono $(F_n) \subseteq$ End (F_n) .
- I let endomorphisms $\phi \colon F_n \to F_n$ act on the right, $x \mapsto x\phi$.
- Fix $(\phi) = \{x \in F_n \mid x\phi = x\} \leq F_n$.
- If $S \subseteq \text{End}(F_n)$ then Fix $(S) = \{x \in F_n \mid x\phi = x \ \forall \phi \in S\} = \cap_{\phi \in S} \text{Fix}(\phi) \leq F_n$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Fixed subgroups are complicated

$$\phi: F_{3} \rightarrow F_{3}$$

$$a \mapsto a$$

$$b \mapsto ba$$

$$c \mapsto ca^{2}$$

$$\varphi: F_{4} \rightarrow F_{4}$$

$$a \mapsto dac$$

$$b \mapsto c^{-1}a^{-1}d^{-1}ac$$

$$c \mapsto c^{-1}a^{-1}b^{-1}ac$$

$$Fix \varphi = \langle w \rangle, \text{ where...}$$

 $w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}a^{-1}d^{-1}c^{-1}d^{$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへぐ

1.Some history Needed tools 000000000

Fixed subgroups are complicated

$$\phi: F_3 \rightarrow F_3$$

$$a \mapsto a$$

$$b \mapsto ba$$

$$c \mapsto ca^2$$

$$\varphi: F_4 \rightarrow F_4$$

$$a \mapsto dac$$

$$b \mapsto c^{-1}a^{-1}d^{-1}ac$$

$$c \mapsto c^{-1}a^{-1}bc$$

Fix $\phi = \langle a, bab^{-1}, cac^{-1} \rangle$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Fixed subgroups are complicated

$$\phi: F_{3} \rightarrow F_{3}$$

$$a \mapsto a$$

$$b \mapsto ba$$

$$c \mapsto ca^{2}$$

$$\varphi: F_{4} \rightarrow F_{4}$$

$$a \mapsto dac$$

$$b \mapsto c^{-1}a^{-1}d^{-1}ac$$

$$c \mapsto c^{-1}a^{-1}b^{-1}ac$$

$$d \mapsto c^{-1}a^{-1}bc$$
Fix $\varphi = \langle w \rangle$, where...

 $w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}a^{-1}d^{-1}c^{-1}d^{$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

1.Some history Needed tools 00000000

Fixed subgroups are complicated

$$\phi: F_{3} \rightarrow F_{3}$$

$$a \mapsto a$$

$$b \mapsto ba$$

$$c \mapsto ca^{2}$$

$$\varphi: F_{4} \rightarrow F_{4}$$

$$a \mapsto dac$$

$$b \mapsto c^{-1}a^{-1}d^{-1}ac$$

$$c \mapsto c^{-1}a^{-1}b^{-1}ac$$

$$d \mapsto c^{-1}a^{-1}bc$$

$$Fix \varphi = \langle w \rangle, where...$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1.Some history Needed tools 000000000

Fixed subgroups are complicated

 $w = c^{-1}a^{-1}bd^{-1}c^{-1}a^{-1}d^{-1}ad^{-1}c^{-1}b^{-1}acdadacdcdbcda^{-1}a^{-1}d^{-1}$ $a^{-1}d^{-1}c^{-1}a^{-1}d^{-1}c^{-1}b^{-1}d^{-1}c^{-1}d^{-1}c^{-1}daabcdaccdb^{-1}a^{-1}$.

Algorithmic results

Needed tools

The proof

What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let $G \leq Aut(F_n)$ be a finite group of automorphisms of F_n . Then, Fix $(G) \leq_{\text{ff}} F_n$; in particular, $r(Fix(G)) \leq n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leq n$.

Theorem (Gersten, 83 (published 87)) Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $G \leq Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

・ロト・西ト・西ト・日下 ひゃぐ

Algorithmic results

Needed tools

The proof

What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let $G \leq Aut(F_n)$ be a finite group of automorphisms of F_n . Then, Fix $(G) \leq_{\text{ff}} F_n$; in particular, $r(Fix(G)) \leq n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leq n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $G \leq Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

・ロト・西ト・田・・田・ ひゃぐ

Algorithmic results

Needed tools

The proof

What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let $G \leq Aut(F_n)$ be a finite group of automorphisms of F_n . Then, Fix $(G) \leq_{\text{ff}} F_n$; in particular, $r(Fix(G)) \leq n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leq n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $G \leq Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Algorithmic results

Needed tools

The proof

What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let $G \leq Aut(F_n)$ be a finite group of automorphisms of F_n . Then, Fix $(G) \leq_{\text{ff}} F_n$; in particular, $r(Fix(G)) \leq n$.

Conjecture (Scott)

For every $\phi \in Aut(F_n)$, $r(Fix(\phi)) \leq n$.

Theorem (Gersten, 83 (published 87))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) < \infty$.

Theorem (Thomas, 88)

Let $G \leq Aut(F_n)$ be an arbitrary group of automorphisms of F_n . Then, $r(Fix(G)) < \infty$.

1.Some history	Algorithmic results	Needed tools	The proof
00000000			
Train-tracks			

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) \leq n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89) Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leq n$.

Theorem (Turner, 96)

Let $\phi \in End(F_n)$. If ϕ is not bijective then $r(Fix(\phi)) \leqslant n-1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1.Some history	Algorithmic results	Needed tools	The proof
0000000	00	000000	00000
Train tracks			
Hallflachs			

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) \leq n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leq n$.

Theorem (Turner, 96)

Let $\phi\in {\it End}({\it F_n}).$ If ϕ is not bijective then $r({\it Fix}(\phi))\leqslant n-1.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1.Some history	Algorithmic results	Needed tools	The proof
0000000	00	000000	00000
Train tracks			
Hallflachs			

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let $\phi \in Aut(F_n)$. Then $r(Fix(\phi)) \leq n$.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let $\phi \in End(F_n)$. Then $r(Fix(\phi)) \leq n$.

Theorem (Turner, 96)

Let $\phi \in End(F_n)$. If ϕ is not bijective then $r(Fix(\phi)) \leq n-1$.

1.Some history 0000●0000	Algorithmic results	Needed tools	The proof
Inertia			

A subgroup $H \leq F_n$ is called inert if $r(H \cap K) \leq r(K)$ for every $K \leq F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leq n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then Fix (ϕ) is inert.

1.Some history 0000●0000	Algorithmic results	Needed tools	The proof
Inortia			

A subgroup $H \leq F_n$ is called inert if $r(H \cap K) \leq r(K)$ for every $K \leq F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leq n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then Fix (ϕ) is inert.

1.Some history 0000●0000	Algorithmic results	Needed tools	The proof
Inortia			

A subgroup $H \leq F_n$ is called inert if $r(H \cap K) \leq r(K)$ for every $K \leq F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leq n$.

Conjecture (v.) Let $\phi \in End(E_n)$ Then Fix(ϕ) is

1.Some history 0000●0000	Algorithmic results	Needed tools	The proof
Inortia			

A subgroup $H \leq F_n$ is called inert if $r(H \cap K) \leq r(K)$ for every $K \leq F_n$.

Theorem (Dicks-V, 96)

Let $G \subseteq Mon(F_n)$ be an arbitrary set of monomorphisms of F_n . Then, Fix(G) is inert; in particular, $r(Fix(G)) \leq n$.

Theorem (Bergman, 99)

Let $G \subseteq End(F_n)$ be an arbitrary set of endomorphisms of F_n . Then, $r(Fix(G)) \leq n$.

Conjecture (V.)

Let $\phi \in End(F_n)$. Then $Fix(\phi)$ is inert.

1.Some history

Algorithmic results

Needed tools

The proof

The four families

Definition

A subgroup $H \leq F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Easy to see that 1-mono-fixed = 1-auto-fixed.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへ⊙

1.Some history

Algorithmic results

Needed tools

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The four families

Definition

A subgroup $H \leq F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,

• endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Needed tools

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The four families

Definition

A subgroup $H \leq F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,

• endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Needed tools

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The four families

Definition

A subgroup $H \leq F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

Needed tools

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The four families

Definition

A subgroup $H \leq F_n$ is said to be

- 1-auto-fixed if $H = Fix(\phi)$ for some $\phi \in Aut(F_n)$,
- 1-endo-fixed if $H = Fix(\phi)$ for some $\phi \in End(F_n)$,
- auto-fixed if H = Fix(S) for some $S \subseteq Aut(F_n)$,
- endo-fixed if H = Fix(S) for some $S \subseteq End(F_n)$,

1.Some history	Algorithmic results	Needed tools	The proof
000000000			

Relations between them

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Deletione lestres			
000000000	00	000000	00000
1.Some history	Algorithmic results	Needed tools	The proof

$$\begin{array}{c|c} 1 - auto - fixed \end{array} \stackrel{\subseteq}{\neq} & 1 - endo - fixed \\ \hline \\ \hline \\ auto - fixed \end{array} \stackrel{\subseteq}{\neq} & endo - fixed \end{array}$$

Example (Martino-V., 03; Ciobanu-Dicks, 06)

Let $F_3 = \langle a, b, c \rangle$ and $H = \langle b, cacbab^{-1}c^{-1} \rangle \leq F_3$. Then, $H = Fix(a \mapsto 1, b \mapsto b, c \mapsto cacbab^{-1}c^{-1})$, but H is NOT the fixed subgroup of any set of automorphism of F_3 .

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

		00000
Relations betwe	en them	

$$\begin{array}{c|c} 1 - auto - fixed \end{array} \stackrel{\subseteq}{\neq} \hline 1 - endo - fixed \\ \cap | \parallel ? & \cap | \parallel ? \\ \hline auto - fixed \end{array} \stackrel{\subseteq}{\neq} \hline endo - fixed \end{array}$$

Theorem (Martino-V., 00)

Let $S \subseteq End(F_n)$. Then, $\exists \phi \in \langle S \rangle$ such that $Fix(S) \leq_{\mathrm{ff}} Fix(\phi)$.

But... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not be even endo-fixed (auto-fixed).

1.Some history	Algorithmic results	Needed tools	The proof
Outline			

1.Some history	1.Some history Algo ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○		Algo •O	rithmic results	Needed tools	The proof
~						

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03

Fixed subgroups of automorphisms of F_n are computable.

Difficult but it is an algorithm!

Conjecture

Fixed subgroups of endomorphisms of F_n are computable.

イロト 不良 とくほ とくほう 二日
1.Some history		Algorithmic results	Needed to 000000	bls The proof

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of F_n are computable.

Difficult but it is an algorithm!

Conjecture

Fixed subgroups of endomorphisms of F_n are computable.

・ コット (雪) (小田) (コット 日)

1.Some history		Algorithmic ●O	results	Needed tools	The proof

Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of F_n are computable.

Difficult but it is an algorithm!

Conjecture

Fixed subgroups of endomorphisms of F_n are computable.

Deciding fixed	ness		
1.Some history	Algorithmic results	Needed tools	The proof

In this talk, I'll solve the two dual problems:

Theorem

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is auto-fixed or not,
- ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, $S = \{\phi_1, \dots, \phi_m\}$, of automorphisms (endomorphisms) of F_n such that Fix(S) = H.

Conjecture

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is 1-auto-fixed or not,
- ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism) ϕ of F_n such that $Fix(\phi) = H$.

Deciding fixed	ess		
1.Some history	Algorithmic results O●	Needed tools	The proof

In this talk, I'll solve the two dual problems:

Theorem

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is auto-fixed or not,
- ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, $S = \{\phi_1, \dots, \phi_m\}$, of automorphisms (endomorphisms) of F_n such that Fix(S) = H.

Conjecture

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is 1-auto-fixed or not,
- ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism) ϕ of F_n such that $Fix(\phi) = H$.

Deciding fixedness		
1.Some history Algorithmic results 000000000 0●	Needed tools	The proof

In this talk, I'll solve the two dual problems:

Theorem

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is auto-fixed or not,
- ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, $S = \{\phi_1, \dots, \phi_m\}$, of automorphisms (endomorphisms) of F_n such that Fix(S) = H.

Conjecture

Given $H \leq_{fg} F_n$, one can algorithmically decide whether

- i) H is 1-auto-fixed or not,
- ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism) ϕ of F_n such that $Fix(\phi) = H$.

Needed tools

Some history

2 Algorithmic results

3 Needed tools

4 The proof

- 4 日 > 4 昼 > 4 巻 > 4 巻 > - 巻 - のへぐ

1.Some history	Algorithmic results	Needed tools ●○○○○○	The proof
Fixed closures			

Given $H \leq_{fg} F_n$, we define the (auto- and endo-) stabilizer of H, respectively, as

 $Aut_{H}(F_{n}) = \{\phi \in Aut(F_{n}) \mid H \leq Fix(\phi)\} \leq Aut(F_{n})$

and

 $End_{H}(F_{n}) = \{\phi \in End(F_{n}) \mid H \leq Fix(\phi)\} \leq End(F_{n})$

Definition

Given $H \leq F_n$, we define the auto-closure and endo-closure of H as

a- $CI(H) = Fix(Aut_H(F_n)) \ge H$

and

e- $CI(H) = Fix(End_H(F_n)) \ge H$

▲□▶▲□▶▲□▶▲□▶ □ のQで

1.Some history	Algorithmic results	Needed tools ●○○○○○	The proof
Fixed closures			

Given $H \leq_{fg} F_n$, we define the (auto- and endo-) stabilizer of H, respectively, as

 $Aut_{H}(F_{n}) = \{\phi \in Aut(F_{n}) \mid H \leq Fix(\phi)\} \leq Aut(F_{n})$

and

 $End_{H}(F_{n}) = \{\phi \in End(F_{n}) \mid H \leq Fix(\phi)\} \leq End(F_{n})$

Definition

Given $H \leq F_n$, we define the auto-closure and endo-closure of H as

a- $CI(H) = Fix(Aut_H(F_n)) \ge H$

and

$$e$$
- $Cl(H) = Fix(End_H(F_n)) \ge H$

1.Some history	Algorithmic results	Needed tools O●OOOO	The proof
Main result			

Theorem

For every $H \leq_{fg} F_n$, a-Cl(H) and e-Cl(H) are finitely generated and one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that e- $CI(H) \leq a$ -CI(H) but, in general, they are not equal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1.Some history	Algorithmic results	Needed tools O●OOOO	The proof
Main result			

Theorem

For every $H \leq_{fg} F_n$, a-CI(H) and e-CI(H) are finitely generated and one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that e- $CI(H) \leq a$ -CI(H) but, in general, they are not equal.

(日) (日) (日) (日) (日) (日) (日)

1.Some history	Algorithmic results	Needed tools	The proof
		000000	
Retracts			

A subgroup $H \leq F_n$ is a retract if there exists a retraction, i.e. a morphism $\rho: F_n \to H$ which restricts to the identity of H.

Free factors are retracts, but there are more.

Observation

If $H \leq F_n$ is a retract then $r(H) \leq n$ (and, $r(H) = n \Leftrightarrow H = F_n$).

Observation (Turner)

It is algorithmically decidable whether a given $H \leq F_n$ is a retract or not.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1.Some history	Algorithmic results	Needed tools	The proof
		000000	
Retracts			

A subgroup $H \leq F_n$ is a retract if there exists a retraction, i.e. a morphism $\rho: F_n \to H$ which restricts to the identity of H.

Free factors are retracts, but there are more.

Observation

If $H \leq F_n$ is a retract then $r(H) \leq n$ (and, $r(H) = n \Leftrightarrow H = F_n$).

Observation (Turner)

It is algorithmically decidable whether a given $H \leq F_n$ is a retract or not.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1.Some history	Algorithmic results	Needed tools	The proof
		000000	
Retracts			

A subgroup $H \leq F_n$ is a retract if there exists a retraction, i.e. a morphism $\rho: F_n \to H$ which restricts to the identity of H.

Free factors are retracts, but there are more.

Observation

If $H \leq F_n$ is a retract then $r(H) \leq n$ (and, $r(H) = n \Leftrightarrow H = F_n$).

Observation (Turner)

It is algorithmically decidable whether a given $H \leq F_n$ is a retract or not.

1.Some history	Algorithmic results	Needed tools	The proof
The stable imag	e		

Let $\phi \in End(F_n)$. The stable image of ϕ is $F_n\phi^{\infty} = \bigcap_{i=1}^{\infty} F_n\phi^i$.

Theorem (Imrich-Turner, 89)

For every endomorphism $\phi \colon F_n \to F_n$,

- i) $F_n \phi^{\infty}$ is ϕ -invariant,
- ii) the restriction $\phi: F_n \phi^{\infty} \to F_n \phi^{\infty}$ is an isomorphism,
- iii) $F_n \phi^\infty$ is a retract.

Example: For $\phi: F_2 \to F_2$, $a \mapsto a, b \mapsto b^2$, we have $F_2 \phi = \langle a, b^2 \rangle$, $F_2 \phi^2 = \langle a, b^4 \rangle$, $F_2 \phi^3 = \langle a, b^8 \rangle$, So, $F_2 \phi^{\infty} = \langle a \rangle \leq_{\text{ff}} F_2$.

1.Some history	Algorithmic results	Needed tools	The proof
The stable imag	е		

Let $\phi \in End(F_n)$. The stable image of ϕ is $F_n \phi^{\infty} = \bigcap_{i=1}^{\infty} F_n \phi^i$.

Theorem (Imrich-Turner, 89)

For every endomorphism $\phi \colon F_n \to F_n$,

- i) $F_n \phi^{\infty}$ is ϕ -invariant,
- ii) the restriction $\phi: F_n \phi^{\infty} \to F_n \phi^{\infty}$ is an isomorphism,
- iii) $F_n \phi^{\infty}$ is a retract.

Example: For $\phi: F_2 \to F_2$, $a \mapsto a$, $b \mapsto b^2$, we have $F_2 \phi = \langle a, b^2 \rangle$, $F_2 \phi^2 = \langle a, b^4 \rangle$, $F_2 \phi^3 = \langle a, b^8 \rangle$, So, $F_2 \phi^{\infty} = \langle a \rangle \leq_{\text{ff}} F_2$.

・ロト・西ト・ヨト ・日・ うろの

1.Some history	Algorithmic results	Needed tools	The proof
The stable image	e		

Let $\phi \in End(F_n)$. The stable image of ϕ is $F_n \phi^{\infty} = \bigcap_{i=1}^{\infty} F_n \phi^i$.

Theorem (Imrich-Turner, 89)

For every endomorphism $\phi \colon F_n \to F_n$,

- i) $F_n \phi^{\infty}$ is ϕ -invariant,
- ii) the restriction $\phi: F_n \phi^{\infty} \to F_n \phi^{\infty}$ is an isomorphism,

iii) $F_n \phi^{\infty}$ is a retract.

Example: For $\phi: F_2 \to F_2$, $a \mapsto a$, $b \mapsto b^2$, we have $F_2 \phi = \langle a, b^2 \rangle$, $F_2 \phi^2 = \langle a, b^4 \rangle$, $F_2 \phi^3 = \langle a, b^8 \rangle$, So, $F_2 \phi^{\infty} = \langle a \rangle \leq_{\text{ff}} F_2$.

000000000			00000
Stallings'	graphs and intersed	ctions	

Theorem (Stallings, 83)

For any free group $F_n = F(A)$, there is an effectively computable bijection

{*f.g.* subgroups of F_n } \longleftrightarrow {*finite* A-labeled core graphs}

Theorem

Given sets of generators for $H, K \leq_{fg} F_n$, one can algorithmically compute a basis for $H \cap K$.

▲□▶▲□▶▲□▶▲□▶ □ のQで

1.Some history	Algorithmic results	Needed tools ○○○○●○	The proof
Stallings'	graphs and intersed	ctions	

Theorem (Stallings, 83)

For any free group $F_n = F(A)$, there is an effectively computable bijection

{*f.g.* subgroups of F_n } \longleftrightarrow {*finite* A-labeled core graphs}

Theorem

Given sets of generators for $H, K \leq_{fg} F_n$, one can algorithmically compute a basis for $H \cap K$.

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Algebraic ex	tensions		
1.Some history	Algorithmic results	Needed tools	The proof

An extension of subgroups $H \leq K \leq F_n$ is called algebraic, denoted $H \leq_{alg} K$, if H is not contained in any proper free factor of K. Write

 $\mathcal{AE}(H) = \{ K \leqslant F_n \mid H \leqslant_{\mathrm{alg}} K \}.$

Theorem (Takahasi, 51)

If $H \leq_{fg} F_n$ then $\mathcal{AE}(H)$ is finite and computable (i.e. H has finitely many algebraic extensions, all of them are finitely generated, and bases are computable from H).

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Algebraic ex	rtensions		
1.Some history	Algorithmic results	Needed tools	The proof

An extension of subgroups $H \leq K \leq F_n$ is called algebraic, denoted $H \leq_{alg} K$, if H is not contained in any proper free factor of K. Write

 $\mathcal{AE}(H) = \{ K \leqslant F_n \mid H \leqslant_{\mathrm{alg}} K \}.$

Theorem (Takahasi, 51)

If $H \leq_{fg} F_n$ then $\mathcal{AE}(H)$ is finite and computable (i.e. H has finitely many algebraic extensions, all of them are finitely generated, and bases are computable from H).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 Some history

Some history

2 Algorithmic results

3 Needed tools

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

 Some history

Needed tools

The automorphism case

Theorem (McCool)

Let $H \leq_{\text{fg}} F_n$. Then $Aut_H(F_n)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H.

Theorem

For every $H \leq_{fg} F_n$, a-Cl(H) is finitely generated and algorithmically computable.

Proof. a- $Cl(H) = Fix (Aut_H(F_n))$ $= Fix (\langle \phi_1, \dots, \phi_m \rangle)$ $= Fix (\phi_1) \cap \dots \cap Fix (\phi_m).$

・ロト・四ト・モー・ 中・ シック

 Some history

Needed tools

The automorphism case

Theorem (McCool)

Let $H \leq_{\text{fg}} F_n$. Then $Aut_H(F_n)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H.

Theorem

For every $H \leq_{fg} F_n$, a-CI(H) is finitely generated and algorithmically computable.

Proof. a- $Cl(H) = Fix (Aut_H(F_n))$ = $Fix (\langle \phi_1, \dots, \phi_m \rangle)$ = $Fix (\phi_1) \cap \dots \cap Fix (\phi_m).$

 Some history

Needed tools

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The automorphism case

Theorem (McCool)

Let $H \leq_{\text{fg}} F_n$. Then $Aut_H(F_n)$ is finitely generated (in fact, finitely presented) and a finite set of generators (and relations) is algorithmically computable from H.

Theorem

For every $H \leq_{fg} F_n$, a-CI(H) is finitely generated and algorithmically computable.

Proof.
$$a$$
- $Cl(H) = Fix (Aut_H(F_n))$
= $Fix (\langle \phi_1, \dots, \phi_m \rangle)$
= $Fix (\phi_1) \cap \dots \cap Fix (\phi_m)$.

Theorem

For every $H \leq_{fg} F_n$, e-CI(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, \ldots, H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leq r \leq q).$
- Write the generators of *H* as words on the generators of each one of these *H_i*'s, *i* = 1,...,*r*.
- Compute bases for $a-Cl_{H_1}(H), \ldots, a-Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

1.Some history

Needed tools

The endomorphism case

Theorem

For every $H \leq_{fg} F_n$, e-CI(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, \dots, H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leq r \leq q).$
- Write the generators of *H* as words on the generators of each one of these *H_i*'s, *i* = 1,...,*r*.
- Compute bases for $a-Cl_{H_1}(H), \ldots, a-Cl_{H_r}(H)$.
- Compute a basis for a- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H)$.

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

 Some history

Needed tools

The endomorphism case

Theorem

For every $H \leq_{fg} F_n$, e-CI(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

• Compute $\mathcal{AE}(H) = \{H_1, H_2, \dots, H_q\}.$

• Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leq r \leq q).$

- Write the generators of *H* as words on the generators of each one of these *H_i*'s, *i* = 1,...,*r*.
- Compute bases for $a-Cl_{H_1}(H), \ldots, a-Cl_{H_r}(H)$.
- Compute a basis for $a-CI_{H_1}(H) \cap \cdots \cap a-CI_{H_r}(H)$.

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

1.Some history

Theorem

For every $H \leq_{fg} F_n$, e-CI(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, \dots, H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leq r \leq q).$
- Write the generators of *H* as words on the generators of each one of these *H_i*'s, *i* = 1,...,*r*.
- Compute bases for $a-Cl_{H_1}(H), \ldots, a-Cl_{H_r}(H)$.
- Compute a basis for $a-CI_{H_1}(H) \cap \cdots \cap a-CI_{H_r}(H)$.

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

1.Some history

Theorem

For every $H \leq_{fg} F_n$, e-CI(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, \dots, H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leq r \leq q).$
- Write the generators of *H* as words on the generators of each one of these *H_i*'s, *i* = 1,...,*r*.
- Compute bases for $a-Cl_{H_1}(H), \ldots, a-Cl_{H_r}(H)$.
- Compute a basis for $a-Cl_{H_1}(H) \cap \cdots \cap a-Cl_{H_r}(H)$.

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

1.Some history

Theorem

For every $H \leq_{fg} F_n$, e-CI(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, \dots, H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leq r \leq q).$
- Write the generators of *H* as words on the generators of each one of these *H_i*'s, *i* = 1,...,*r*.
- Compute bases for $a-Cl_{H_1}(H), \ldots, a-Cl_{H_r}(H)$.
- Compute a basis for $a-Cl_{H_1}(H) \cap \cdots \cap a-Cl_{H_r}(H)$.

```
a-Cl_{H_1}(H) \cap \cdots \cap a-Cl_{H_r}(H) = e-Cl(H).
```

1.Some history

Theorem

For every $H \leq_{fg} F_n$, e-CI(H) is finitely generated and algorithmically computable.

Proof. Given *H* (in generators),

- Compute $\mathcal{AE}(H) = \{H_1, H_2, \dots, H_q\}.$
- Select those which are retracts, $\mathcal{AE}_{ret}(H) = \{H_1, \dots, H_r\}$ $(1 \leq r \leq q).$
- Write the generators of *H* as words on the generators of each one of these *H_i*'s, *i* = 1,...,*r*.
- Compute bases for $a-Cl_{H_1}(H), \ldots, a-Cl_{H_r}(H)$.
- Compute a basis for $a-Cl_{H_1}(H) \cap \cdots \cap a-Cl_{H_r}(H)$.

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

1.Some history	Algorithmic results	Needed tools	The proof 00●00
<u> </u>			

Claim

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

Proof. Let us see that

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leq \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, Fix $(\alpha) = Fix(\beta) \ge H$.
- Hence, we have "≤".

1.Some history	Algorithmic results	Needed tools	The proof 00●00
<u> </u>			

Claim

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

Proof. Let us see that

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

• Take $\beta \in \text{End}(F_n)$ with $H \leq \text{Fix}(\beta)$.

- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, Fix $(\alpha) = Fix(\beta) \ge H$.
- Hence, we have "≤".

1.Some history	Algorithmic results	Needed tools	The proof 00●00
<u> </u>			

Claim

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

Proof. Let us see that

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leq \text{Fix}(\beta)$.
- $\exists i = 1, \ldots, r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, Fix $(\alpha) = Fix(\beta) \ge H$.
- Hence, we have "≤".

1.Some history	Algorithmic results	Needed tools	The proof 00●00
<u> </u>			

Claim

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

Proof. Let us see that

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Take $\beta \in \text{End}(F_n)$ with $H \leq \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, Fix $(\alpha) = Fix(\beta) \ge H$.
- Hence, we have "≤".

1.Some history	Algorithmic results	Needed tools	The proof 00●00
<u> </u>			

Claim

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

Proof. Let us see that

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leq \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.

• And, clearly, Fix
$$(\alpha) = Fix(\beta) \ge H$$
.

● Hence, we have "≤".
1.Some history	Algorithmic results	Needed tools	The proof 00€00
<u> </u>			

Claim

$$a$$
- $Cl_{H_1}(H) \cap \cdots \cap a$ - $Cl_{H_r}(H) = e$ - $Cl(H)$.

Proof. Let us see that

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $\beta \in \text{End}(F_n)$ with $H \leq \text{Fix}(\beta)$.
- $\exists i = 1, ..., r$ such that $H \leq_{\text{alg}} H_i \leq_{\text{ff}} F \beta^{\infty} \leq F$.
- Now, β restricts to an automorphism $\alpha \colon H_i \to H_i$.
- And, clearly, Fix $(\alpha) = Fix(\beta) \ge H$.
- Hence, we have "≤".

1.Some history	Algorithmic results	Needed tools	The proof
			00000

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leq Fix(\alpha)$.
- Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \xrightarrow{\rho} H_i \xrightarrow{\alpha} H_i \xrightarrow{\iota} F_n.$

- Clearly, $H \leq \text{Fix}(\alpha) = \text{Fix}(\beta)$.
- Hence, we have " \geq ". \Box

1.Some history	Algorithmic results	Needed tools	The proof
			00000

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

• Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leq Fix(\alpha)$.

• Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \xrightarrow{\rho} H_i \xrightarrow{\alpha} H_i \xrightarrow{\iota} F_n$.

- Clearly, $H \leq \text{Fix}(\alpha) = \text{Fix}(\beta)$.
- Hence, we have " \geq ". \Box

1.Some history	Algorithmic results	Needed tools	The proof
			00000

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

• Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leq Fix(\alpha)$.

• Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \xrightarrow{\rho} H_i \xrightarrow{\alpha} H_i \xrightarrow{\iota} F_n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Clearly,
$$H \leq \text{Fix}(\alpha) = \text{Fix}(\beta)$$
.

• Hence, we have " \geq ". \Box

1.Some history	Algorithmic results	Needed tools	The proof
			00000

$$\bigcap_{i=1}^{r} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

• Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leq Fix(\alpha)$.

• Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \xrightarrow{\rho} H_i \xrightarrow{\alpha} H_i \xrightarrow{\iota} F_n$.

- Clearly, $H \leq \text{Fix}(\alpha) = \text{Fix}(\beta)$.
- Hence, we have "≥". □

1.Some history	Algorithmic results	Needed tools	The proof
			00000

$$\bigcap_{i=1}^{\prime} \bigcap_{\substack{\alpha \in \operatorname{Aut}(H_i) \\ H \leqslant \operatorname{Fix}(\alpha)}} \operatorname{Fix}(\alpha) = \bigcap_{\substack{\beta \in \operatorname{End}(F_n) \\ H \leqslant \operatorname{Fix}(\beta)}} \operatorname{Fix}(\beta).$$

- Take $H_i \in \mathcal{AE}_{ret}(H)$, and $\alpha \in Aut(H_i)$ with $H \leq Fix(\alpha)$.
- Let $\rho: F \to H_i$ be a retraction, and consider the endomorphism, $\beta: F_n \xrightarrow{\rho} H_i \xrightarrow{\alpha} H_i \xrightarrow{\iota} F_n$.

- Clearly, $H \leq \operatorname{Fix}(\alpha) = \operatorname{Fix}(\beta)$.
- Hence, we have " \geq ". \Box

1.Some	history
00000	00000

THANKS

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@