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1.Some history Algorithmic results Needed tools The proof

Notation

A = {a1, . . . , an} is a finite alphabet (n letters).
A±1 = A ∪ A−1 = {a1, a−1

1 , . . . , an, a−1
n }.

Fn is the free group on A.
Aut (Fn) ⊆ Mono (Fn) ⊆ End (Fn).
I let endomorphisms φ : Fn → Fn act on the right, x 7→ xφ.
Fix (φ) = {x ∈ Fn | xφ = x} 6 Fn.
If S ⊆ End (Fn) then
Fix (S) = {x ∈ Fn | xφ = x ∀φ ∈ S} = ∩φ∈SFix (φ) 6 Fn.
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Fixed subgroups are complicated

φ : F3 → F3
a 7→ a
b 7→ ba
c 7→ ca2

Fix φ = 〈a, bab−1, cac−1〉

ϕ : F4 → F4
a 7→ dac
b 7→ c−1a−1d−1ac
c 7→ c−1a−1b−1ac
d 7→ c−1a−1bc

Fix ϕ = 〈w〉, where...

w = c−1a−1bd−1c−1a−1d−1ad−1c−1b−1acdadacdcdbcda−1a−1d−1

a−1d−1c−1a−1d−1c−1b−1d−1c−1d−1c−1daabcdaccdb−1a−1.
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What is known about fixed subgroups ?

Theorem (Dyer-Scott, 75)

Let G 6 Aut (Fn) be a finite group of automorphisms of Fn. Then,
Fix (G) 6ff Fn; in particular, r(Fix (G)) 6 n.

Conjecture (Scott)

For every φ ∈ Aut (Fn), r(Fix (φ)) 6 n.

Theorem (Gersten, 83 (published 87))

Let φ ∈ Aut (Fn). Then r(Fix (φ)) <∞.

Theorem (Thomas, 88)

Let G 6 Aut (Fn) be an arbitrary group of automorphisms of Fn. Then,
r(Fix (G)) <∞.
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Train-tracks

Main result in this story:

Theorem (Bestvina-Handel, 88 (published 92))

Let φ ∈ Aut (Fn). Then r(Fix (φ)) 6 n.

introducing the theory of train-tracks for graphs.

After Bestvina-Handel, live continues ...

Theorem (Imrich-Turner, 89)

Let φ ∈ End (Fn). Then r(Fix (φ)) 6 n.

Theorem (Turner, 96)

Let φ ∈ End (Fn). If φ is not bijective then r(Fix (φ)) 6 n − 1.
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Inertia

Definition

A subgroup H 6 Fn is called inert if r(H ∩K ) 6 r(K ) for every K 6 Fn.

Theorem (Dicks-V, 96)

Let G ⊆ Mon (Fn) be an arbitrary set of monomorphisms of Fn. Then,
Fix (G) is inert; in particular, r(Fix (G)) 6 n.

Theorem (Bergman, 99)

Let G ⊆ End (Fn) be an arbitrary set of endomorphisms of Fn. Then,
r(Fix (G)) 6 n.

Conjecture (V.)

Let φ ∈ End (Fn). Then Fix (φ) is inert.
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The four families

Definition
A subgroup H 6 Fn is said to be

1-auto-fixed if H = Fix (φ) for some φ ∈ Aut (Fn),
1-endo-fixed if H = Fix (φ) for some φ ∈ End (Fn),
auto-fixed if H = Fix (S) for some S ⊆ Aut (Fn),
endo-fixed if H = Fix (S) for some S ⊆ End (Fn),

Easy to see that 1-mono-fixed = 1-auto-fixed.
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Relations between them

1− auto − fixed ⊆ 1− endo − fixed

∩| ∩|

auto − fixed ⊆ endo − fixed
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Relations between them

1− auto − fixed
⊆
6= 1− endo − fixed

∩| ∩|

auto − fixed
⊆
6= endo − fixed

Example (Martino-V., 03; Ciobanu-Dicks, 06)

Let F3 = 〈a, b, c〉 and H = 〈b, cacbab−1c−1〉 6 F3. Then,
H = Fix (a 7→ 1, b 7→ b, c 7→ cacbab−1c−1), but H is NOT the fixed
subgroup of any set of automorphism of F3.
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Relations between them

1− auto − fixed
⊆
6= 1− endo − fixed

∩| ‖ ? ∩| ‖ ?

auto − fixed
⊆
6= endo − fixed

Theorem (Martino-V., 00)

Let S ⊆ End (Fn). Then, ∃φ ∈ 〈S〉 such that Fix (S) 6ff Fix (φ).

But... free factors of 1-endo-fixed (1-auto-fixed) subgroups need not
be even endo-fixed (auto-fixed).
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Computing fixed subgroups

Proposition (Turner, 86)

There exists a pseudo-algorithm to compute fix of an endo.

Easy but is not an algorithm...

Theorem (Maslakova, 03)

Fixed subgroups of automorphisms of Fn are computable.

Difficult but it is an algorithm!

Conjecture

Fixed subgroups of endomorphisms of Fn are computable.
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Deciding fixedness

In this talk, I’ll solve the two dual problems:

Theorem
Given H 6fg Fn, one can algorithmically decide whether

i) H is auto-fixed or not,
ii) H is endo-fixed or not,

and in the affirmative case, find a finite family, S = {φ1, . . . , φm}, of
automorphisms (endomorphisms) of Fn such that Fix (S) = H.

Conjecture

Given H 6fg Fn, one can algorithmically decide whether
i) H is 1-auto-fixed or not,
ii) H is 1-endo-fixed or not,

and in the affirmative case, find one automorphism (endomorphism)
φ of Fn such that Fix (φ) = H.
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Fixed closures

Definition
Given H 6fg Fn, we define the (auto- and endo-) stabilizer of H,
respectively, as

AutH(Fn) = {φ ∈ Aut (Fn) | H 6 Fix (φ)} 6 Aut (Fn)

and
EndH(Fn) = {φ ∈ End (Fn) | H 6 Fix (φ)} 6 End (Fn)

Definition
Given H 6 Fn, we define the auto-closure and endo-closure of H as

a-Cl (H) = Fix (AutH(Fn)) > H

and
e-Cl (H) = Fix (EndH(Fn)) > H
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Main result

Theorem

For every H 6fg Fn, a-Cl (H) and e-Cl (H) are finitely generated and
one can algorithmically compute bases for them.

Corollary

Auto-fixedness and endo-fixedness are decidable.

Observe that e-Cl (H) 6 a-Cl (H) but, in general, they are not equal.
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Retracts

Definition
A subgroup H 6 Fn is a retract if there exists a retraction, i.e. a
morphism ρ : Fn → H which restricts to the identity of H.

Free factors are retracts, but there are more.

Observation

If H 6 Fn is a retract then r(H) 6 n (and, r(H) = n ⇔ H = Fn).

Observation (Turner)

It is algorithmically decidable whether a given H 6 Fn is a retract or
not.
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The stable image

Definition

Let φ ∈ End (Fn). The stable image of φ is Fnφ
∞ = ∩∞i=1Fnφ

i .

Theorem (Imrich-Turner, 89)

For every endomorphism φ : Fn → Fn,
i) Fnφ

∞ is φ-invariant,
ii) the restriction φ : Fnφ

∞ → Fnφ
∞ is an isomorphism,

iii) Fnφ
∞ is a retract.

Example: For φ : F2 → F2, a 7→ a, b 7→ b2, we have F2φ = 〈a, b2〉,
F2φ

2 = 〈a, b4〉, F2φ
3 = 〈a, b8〉, . . .. So, F2φ

∞ = 〈a〉 6ff F2.
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∞ is an isomorphism,

iii) Fnφ
∞ is a retract.

Example: For φ : F2 → F2, a 7→ a, b 7→ b2, we have F2φ = 〈a, b2〉,
F2φ

2 = 〈a, b4〉, F2φ
3 = 〈a, b8〉, . . .. So, F2φ

∞ = 〈a〉 6ff F2.
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Stallings’ graphs and intersections

Theorem (Stallings, 83)

For any free group Fn = F (A), there is an effectively computable
bijection

{f.g. subgroups of Fn} ←→ {finite A-labeled core graphs}

Theorem
Given sets of generators for H, K 6fg Fn, one can algorithmically
compute a basis for H ∩ K .
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Algebraic extensions

Definition
An extension of subgroups H 6 K 6 Fn is called algebraic, denoted
H 6alg K , if H is not contained in any proper free factor of K . Write

AE(H) = {K 6 Fn | H 6alg K}.

Theorem (Takahasi, 51)

If H 6fg Fn then AE(H) is finite and computable (i.e. H has finitely
many algebraic extensions, all of them are finitely generated, and
bases are computable from H).
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The automorphism case

Theorem (McCool)

Let H 6fg Fn. Then AutH(Fn) is finitely generated (in fact, finitely
presented) and a finite set of generators (and relations) is
algorithmically computable from H.

Theorem

For every H 6fg Fn, a-Cl (H) is finitely generated and algorithmically
computable.

Proof. a-Cl (H) = Fix (AutH(Fn))
= Fix (〈φ1, . . . , φm〉)
= Fix (φ1) ∩ · · · ∩ Fix (φm). �
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The endomorphism case

Theorem

For every H 6fg Fn, e-Cl (H) is finitely generated and algorithmically
computable.

Proof. Given H (in generators),
Compute AE(H) = {H1, H2, . . . , Hq}.
Select those which are retracts, AE ret(H) = {H1, . . . , Hr}
(1 6 r 6 q).
Write the generators of H as words on the generators of each
one of these Hi ’s, i = 1, . . . , r .
Compute bases for a-Cl H1(H), . . . , a-Cl Hr (H).
Compute a basis for a-Cl H1(H) ∩ · · · ∩ a-Cl Hr (H).

Claim

a-Cl H1(H) ∩ · · · ∩ a-Cl Hr (H) = e-Cl (H).
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The endomorphism case

Claim

a-Cl H1(H) ∩ · · · ∩ a-Cl Hr (H) = e-Cl (H).

Proof. Let us see that

r⋂
i=1

⋂
α ∈ Aut (Hi )
H 6 Fix (α)

Fix (α) =
⋂

β ∈ End (Fn)
H 6 Fix (β)

Fix (β).

Take β ∈ End (Fn) with H 6 Fix (β).
∃i = 1, . . . , r such that H 6alg Hi 6ff Fβ∞ 6 F .
Now, β restricts to an automorphism α : Hi → Hi .
And, clearly, Fix (α) = Fix (β) > H.
Hence, we have "6”.
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The endomorphism case

r⋂
i=1

⋂
α ∈ Aut (Hi )
H 6 Fix (α)

Fix (α) =
⋂

β ∈ End (Fn)
H 6 Fix (β)

Fix (β).

Take Hi ∈ AE ret(H), and α ∈ Aut (Hi) with H 6 Fix (α).
Let ρ : F → Hi be a retraction, and consider the endomorphism,
β : Fn

ρ→ Hi
α→ Hi

ι
↪→ Fn.

Clearly, H 6 Fix (α) = Fix (β).
Hence, we have ">”. �
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