BOUNDARY OPERATOR ALGEBRAS FOR FREE UNIFORM TREE LATTICES

GUYAN ROBERTSON

Communicated by Vern I. Paulsen

ABSTRACT. Let X be a finite connected graph, each of whose vertices has degree at least three. The fundamental group Γ of X is a free group and acts on the universal covering tree Δ and on its boundary $\partial \Delta$, endowed with a natural topology and Borel measure. The crossed product C^* -algebra $C(\partial \Delta) \rtimes \Gamma$ depends only on the rank of Γ and is a Cuntz-Krieger algebra whose structure is explicitly determined. The crossed product von Neumann algebra does not possess this rigidity. If X is homogeneous of degree q + 1 then the von Neumann algebra $L^{\infty}(\partial \Delta) \rtimes \Gamma$ is the hyperfinite factor of type III_{λ} where $\lambda = 1/q^2$ if X is bipartite, and $\lambda = 1/q$ otherwise.

INTRODUCTION

Let Δ be a locally finite tree whose automorphism group $\operatorname{Aut}(\Delta)$ is equipped with the compact open topology. Let Γ be a discrete subgroup of $\operatorname{Aut}(\Delta)$ which acts freely on Δ . That is, no element $g \in \Gamma - \{1\}$ stabilizes any vertex or geometric edge of Δ . Assume furthermore that Γ acts cocompactly on Δ , so that the quotient $\Gamma \setminus \Delta$ is a finite graph. Then Γ is a finitely generated free group and is referred to as a free uniform tree lattice.

Conversely, if X is a finite connected graph and Γ is the fundamental group of X, then Γ is a finitely generated free group and acts freely and cocompactly on the universal covering tree Δ .

It is fruitful to think of the tree Δ as a combinatorial analogue of the Poincaré disc and Γ as an analogue of a Fuchsian group. The group Γ is the free group on γ

²⁰⁰⁰ Mathematics Subject Classification. 46L55; 37A55; 46L80; 22E35.

Key words and phrases. Tree Lattices, Boundaries, C^* -algebras, K-theory, Type III Factors. This research was supported by the Australian Research Council.

⁹¹³

generators, where $\gamma = 1 - \chi(\Gamma \setminus \Delta)$ and $\chi(\Gamma \setminus \Delta)$ is the Euler-Poincaré characteristic of the quotient graph. Let S be a free set of generators for Γ .

Define a $\{0,1\}$ -matrix A of order 2γ , with entries indexed by elements of $S \cup S^{-1}$, by

(0.1)
$$A(x,y) = \begin{cases} 1 & \text{if } y \neq x^{-1}, \\ 0 & \text{if } y = x^{-1}. \end{cases}$$

Notice that the matrix A depends only on the rank of the free group Γ .

The boundary $\partial \Delta$ of the tree Δ is the set of equivalence classes of infinite semi-geodesics in Δ , where equivalent semi-geodesics contain a common sub-semigeodesic. There is a natural compact totally disconnected topology on $\partial \Delta$ [S, I.2.2]. Denote by $C(\partial \Delta)$ the algebra of continuous complex valued functions on $\partial \Delta$. The full crossed product algebra $C(\partial \Delta) \rtimes \Gamma$ is the universal C^* -algebra generated by the commutative C^* -algebra $C(\partial \Delta)$ and the image of a unitary representation π of Γ , satisfying the covariance relation

$$f(g^{-1}\omega) = \pi(g) \cdot f \cdot \pi(g)^{-1}(\omega)$$

for $f \in C(\partial \Delta)$, $g \in \Gamma$ and $\omega \in \partial \Delta$ [Ped, Chapter 7].

Theorem 1. Let Δ be a locally finite tree whose vertices all have degree at least three. Let Γ be a free uniform lattice in Aut(Δ). Then the boundary C^* -algebra $\mathcal{A}(\Gamma) = C(\partial \Delta) \rtimes \Gamma$ depends only on the rank of Γ , and Γ is itself determined by $K_0(\mathcal{A}(\Gamma))$. More precisely,

- (1) $\mathcal{A}(\Gamma)$ is isomorphic to the simple Cuntz-Krieger algebra \mathcal{O}_A associated with the matrix A;
- (2) $K_0(\mathcal{A}(\Gamma)) = \mathbb{Z}^{\gamma} \oplus \mathbb{Z}/(\gamma 1)\mathbb{Z}$ and the class of the identity [1] is the generator of the summand $\mathbb{Z}/(\gamma 1)\mathbb{Z}$. Moreover $K_1(\mathcal{A}(\Gamma)) = \mathbb{Z}^{\gamma}$.

The algebra $\mathcal{A}(\Gamma)$ satisfies the hypotheses of the classification theorem of [K],[Ph]. Therefore the isomorphism class of the algebra $\mathcal{A}(\Gamma)$ is determined by its K-theory together with the class of the identity in K_0 . The fact that the class [1] in K_0 has order equal to $-\chi(\Gamma \setminus \Delta)$ strengthens the result of [Rob, Section 1] and provides an exact analogy with the Fuchsian case [AD].

Theorem 1 will be proved in Lemmas 1.4 and 2.1 below. The key point in the proof is that the Cuntz-Krieger algebra \mathcal{O}_A is defined uniquely, up to isomorphism, by a finite number of generators and relations [CK], and it is possible to identify these explicitly in $\mathcal{A}(\Gamma)$. The original motivation for this result was the paper of J. Spielberg [Spi], which showed that if Γ acts freely and transitively on the tree

 Δ then $\mathcal{A}(\Gamma)$ is a Cuntz-Krieger algebra. Higher rank analogues were studied in [RS].

There is a natural Borel measure on $\partial \Delta$ and one may also consider the crossed product von Neumann algebra $L^{\infty}(\partial \Delta) \rtimes \Gamma$. This is the von Neumann algebra arising from the classical group measure space construction of Murray and von Neumann [Su]. In contrast to Theorem 1, the structure of this algebra depends on the tree Δ and on the action of Γ . For simplicity, only the case where Δ is a homogeneous tree is considered.

Theorem 2. Let Δ be a homogeneous tree of degree q + 1, where $q \geq 1$, and let Γ be a free uniform lattice in $\operatorname{Aut}(\Delta)$. Then $\operatorname{L}^{\infty}(\partial \Delta) \rtimes \Gamma$ is the hyperfinite factor of type $\operatorname{III}_{\lambda}$ where

$$\lambda = \begin{cases} 1/q^2 & \text{if the graph } \Gamma \backslash \Delta \text{ is bipartite} \\ 1/q & \text{otherwise.} \end{cases}$$

Theorem 2 will be proved in Section 3. The result could equally well have been stated as a classification of the measure theoretic boundary actions up to orbit equivalence [HO]. The analogous result for a Fuchsian group Γ acting on the circle is that $L^{\infty}(S^1) \rtimes \Gamma$ is the hyperfinite factor of type III₁ [Spa].

The special case of Theorem 2 where Γ acts freely and transitively on the vertices of Δ was dealt with in [RR]. In that case q is odd, Γ is the free group of rank $\frac{q+1}{2}$, and $L^{\infty}(\partial \Delta) \rtimes \Gamma$ is the hyperfinite factor of type $III_{1/q}$. We remark that R. Okayasu [Ok] constructs similar algebras in a different way, but does not explicitly compute the value of λ .

There is a type map τ defined on the vertices of Δ and taking values in $\mathbb{Z}/2\mathbb{Z}$, defined as follows. Fix a vertex $v_0 \in \Delta$ and let $\tau(v) = d(v_0, v) \pmod{2}$, where d(u, v) denotes the usual graph distance between vertices of the tree. The type map is independent of v_0 , up to addition of 1 (mod 2). It therefore induces a canonical partition of the vertex set of Δ into two classes, so that two vertices are in the same class if and only if the distance between them is even. An automorphism $g \in \operatorname{Aut}(\Delta)$ is said to be *type preserving* if, for every vertex v, $\tau(gv) = \tau(v)$. The graph $\Gamma \setminus \Delta$ is bipartite if and only if the action of Γ is type preserving.

Let \mathbb{F} be a nonarchimedean local field with residue field of order q. The Bruhat-Tits building associated with $\mathrm{PGL}(2,\mathbb{F})$ is a regular tree Δ of degree q+1 whose boundary may be identified with the projective line $\mathbb{P}_1(\mathbb{F})$. If Γ is a torsion free lattice in $\mathrm{PGL}(2,\mathbb{F})$ then Γ is necessarily a free group of rank $\gamma \geq 2$, which acts freely and cocompactly on Δ [S, Chapitres I.3.3, II.1.5], and the results apply to the action of Γ on $\mathbb{P}_1(\mathbb{F})$.

Let \mathcal{O} denote the valuation ring of \mathbb{F} . Then $K = \operatorname{PGL}(2, \mathcal{O})$ is an open maximal compact subgroup of $\operatorname{PGL}(2, \mathbb{F})$ and the vertex set of Δ may be identified with the homogeneous space $\operatorname{PGL}(2, \mathbb{F})/K$. If the Haar measure μ on $\operatorname{PGL}(2, \mathbb{F})$ is normalized so that $\mu(K) = 1$, then the covolume $\operatorname{covol}(\Gamma)$ is equal to the number of vertices of $X = \Gamma \setminus \Delta$ and $\gamma - 1 = \frac{(q-1)}{2} \operatorname{covol}(\Gamma)$, (c.f. [S, Chapitre II.1.5]).

The action of Γ on Δ is type preserving if and only if Γ is a subgroup of $PSL(2, \mathbb{F})$. Combining Theorem 1 and Theorem 2, in this special case, yields

Corollary 1. Let Γ be a torsion free lattice in PGL(2, \mathbb{F}). Using the above notation, the boundary algebras are determined as follows.

(1) The C^* -algebra $\mathcal{A}(\Gamma) = C(\mathbb{P}_1(\mathbb{F})) \rtimes \Gamma$ is the unique Cuntz-Krieger algebra satisfying

 $(K_0(\mathcal{A}(\Gamma)), [\mathbf{1}]) = (\mathbb{Z}^{\gamma} \oplus \mathbb{Z}/(\gamma - 1)\mathbb{Z}, (0, 0, \dots, 0, 1)).$

(2) The von Neumann algebra $L^{\infty}(\mathbb{P}_1(\mathbb{F})) \rtimes \Gamma$ is the hyperfinite factor of type III_{λ} where

$$\lambda = \begin{cases} 1/q^2 & \text{if } \Gamma \subset \mathrm{PSL}(2, \mathbb{F}), \\ 1/q & \text{otherwise.} \end{cases}$$

1. The Cuntz-Krieger Algebra

Let Δ be a locally finite tree whose vertices all have degree at least three. The results and terminology of [S] will be used extensively. The edges of Δ are directed edges and each geometric edge of Δ corresponds to two directed edges d and \overline{d} . Let Δ^0 denote the set of vertices and Δ^1 the set of directed edges of Δ .

Suppose that Γ is a torsion free discrete group acting freely on Δ : that is no element $g \in \Gamma - \{1\}$ stabilizes any vertex or geometric edge of Δ . Then Γ is a free group [S, I.3.3] and there is an orientation on the edges which is invariant under Γ [S, I.3.1]. Choose such an orientation. This orientation consists of a partition $\Delta^1 = \Delta^1_+ \sqcup \overline{\Delta^1_+}$ and a bijective involution $d \mapsto \overline{d} : \Delta^1 \to \Delta^1$ which interchanges the two components of Δ^1 . Each directed edge d has an origin $o(d) \in \Delta^0$ and a terminal vertex $t(d) \in \Delta^0$ such that $o(\overline{d}) = t(d)$.

Assume that Γ acts cocompactly on Δ . This means that the quotient $\Gamma \setminus \Delta$ is a finite connected graph with vertex set $V = \Gamma \setminus \Delta^0$ and directed edge set $E = E_+ \sqcup \overline{E_+} = \Gamma \setminus \Delta^1_+ \sqcup \Gamma \setminus \overline{\Delta^1_+}$. The Euler-Poincaré characteristic of the graph is $\chi(\Gamma \setminus \Delta) = n_0 - n_1$ where $n_0 = \#(V)$ and $n_1 = \#(E_+)$, and Γ is the free group on γ generators, where $\gamma = 1 - \chi(\Gamma \setminus \Delta)$.

Choose a tree T of representatives of $\Delta \pmod{\Gamma}$; that is a lifting of a maximal tree of $\Gamma \setminus \Delta$. The tree T is finite, since Γ acts cocompactly on Δ . Let S be the set of elements $x \in \Gamma - \{1\}$ such that there exists an edge $e \in \Delta^1_+$ with $o(e) \in T$ and $t(e) \in xT$. Then S is a free set of generators for the free group Γ [S, I.3.3, Théorème 4'] and $\gamma = \#S$. It is clear that S^{-1} is the set of elements $x \in \Gamma - \{1\}$ such that there exists an edge $e \in \Delta^1_-$ with $o(e) \in T$ and $t(e) \in xT$. The map $g \mapsto gT$ is a bijection from Γ onto the set of Γ translates of the tree T in Δ , and these translates are pairwise disjoint [S, I.3.3, Proof of Théorème 4']. Moreover each vertex of Δ lies in precisely one of the sets gT.

The boundary $\partial \Delta$ of the tree Δ is the set of equivalence classes of infinite semigeodesics in Δ , where equivalent semi-geodesics agree except on finitely many edges. Also $\partial \Delta$ has a natural compact totally disconnected topology [S, I.2.2]. The group Γ acts on $\partial \Delta$ and one can form the crossed product algebra $C(\partial \Delta) \rtimes \Gamma$. This is the universal C^* -algebra generated by the commutative C^* -algebra $C(\partial \Delta)$ and the image of a unitary representation π of Γ , satisfying the covariance relation

(1.1)
$$f(g^{-1}\omega) = \pi(g) \cdot f \cdot \pi(g)^{-1}(\omega)$$

for $f \in C(\partial \Delta)$, $g \in \Gamma$ and $\omega \in \partial \Delta$ [Ped]. This covariance relation implies that for each clopen set $E \subset \partial \Delta$ we have

(1.2)
$$\chi_{gE} = \pi(g) \cdot \chi_E \cdot \pi(g)^{-1}.$$

In this equation, χ_E is a continuous function and is regarded as an element of the crossed product algebra via the embedding $C(\partial \Delta) \subset C(\partial \Delta) \rtimes \Gamma$. In the present setup the algebra $C(\partial \Delta) \rtimes \Gamma$ is seen a posteriori to be simple. Therefore $C(\partial \Delta) \rtimes \Gamma$ coincides with the reduced crossed product algebra [Ped, 7.7.4] and there is no need to distinguish between them notationally.

Fix a vertex $O \in \Delta$ with $O \in T$. Each $\omega \in \partial \Delta$ has a unique representative semi-geodesic $[O, \omega)$ with initial vertex O. A basic open neighbourhood of $\omega \in \partial \Delta$ consists of those $\omega' \in \partial \Delta$ such that $[O, \omega) \cap [O, \omega') \supset [O, v]$ for some fixed $v \in [O, \omega)$. If $g \in \Gamma - \{1\}$, let Π_g denote the set of all $\omega \in \partial \Delta$ such that $[O, \omega)$ meets the tree gT. Note that Π_g is clopen, since T is finite. The characteristic function p_g of the set Π_g is continuous and so lies in $C(\partial \Delta) \subset C(\partial \Delta) \rtimes \Gamma$. The identity element **1** of $C(\partial \Delta) \rtimes \Gamma$ is the constant function defined by $\mathbf{1}(\omega) = 1, \omega \in \partial \Delta$.

Lemma 1.1. If $x, y \in S \cup S^{-1}$ with $x \neq y^{-1}$ then

- (a) $\pi(x)p_{x^{-1}}\pi(x^{-1}) = \mathbf{1} p_x$;
- (b) $\pi(x)p_y\pi(x^{-1}) = p_{xy}$.

PROOF. (a) By (1.2), the element $\pi(x)p_{x^{-1}}\pi(x^{-1})$ is the characteristic function of the set

$$F_x = \{x\omega \; ; \; \omega \in \partial \Delta, x^{-1}T \cap [O, \omega) \neq \emptyset\}$$
$$= \{x\omega \; ; \; \omega \in \partial \Delta, T \cap [xO, x\omega) \neq \emptyset\}$$
$$= \{\omega \in \partial \Delta \; ; \; T \cap [xO, \omega) \neq \emptyset\}.$$

Now there exists a unique edge $e \in \Delta^1$ such that $o(e) \in T$ and $t(e) \in xT$. If $x \in S$ then $e \in \Delta^1_+$ and if $x \in S^{-1}$ then $e \in \overline{\Delta^1_+}$. Therefore

$$\partial \Delta - F_x = \{ \omega \in \partial \Delta \ ; \ T \cap [xO, \omega) = \emptyset \}$$
$$= \{ \omega \in \partial \Delta \ ; \ xT \cap [O, \omega) \neq \emptyset \}$$
$$= \Pi_x,$$

and the characteristic function of this set is p_x . See Figure 1.

The proof of (b) is an easy consequence of (1.2).

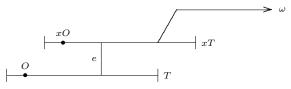


FIGURE 1. A boundary point $\omega \in \Pi_x$.

Lemma 1.2. The family of projections $P = \{p_g ; g \in \Gamma - \{1\}\}$ generates $C(\partial \Delta)$ as a C^* -algebra.

PROOF. We show that P separates points of $\partial \Delta$. Let $\omega_1, \omega_2 \in \partial \Delta$ with $\omega_1 \neq \omega_2$. Let $[O, \omega_1) \cap [O, \omega_2) = [O, v]$, and choose $u \in [v, \omega_1)$ such that d(v, u) is greater than the diameter of T. See Figure 2.

Let $g \in \Gamma$ be the unique element such that $u \in gT$. Then $v \notin gT$ and so $gT \cap [O, \omega_2) = \emptyset$. Therefore $p_g(\omega_1) = 1$ and $p_g(\omega_2) = 0$.

Lemma 1.3. The sets of the form Π_x , $x \in S \cup S^{-1}$, are pairwise disjoint and their union is $\partial \Delta$.

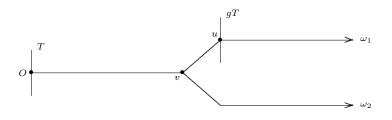


FIGURE 2. Separation of boundary points.

PROOF. Given $\omega \in \partial \Delta$, let v be the unique vertex of Δ such that $[O, \omega) \cap T = [O, v]$. Let v' be the vertex of $[O, \omega)$ such that d(O, v') = d(O, v) + 1. Then let x be the unique element of $S \cup S^{-1}$ such that $v' \in xT$. See Figure 3. Then $\omega \in \Pi_x$. The sets Π_x , $x \in S \cup S^{-1}$, are pairwise disjoint since the sets xT, $x \in S \cup S^{-1}$, are pairwise disjoint.

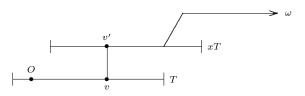


FIGURE 3. Definition of the set Π_x containing ω .

For $x \in S \cup S^{-1}$ define a partial isometry

$$s_x = \pi(x)(\mathbf{1} - p_{x^{-1}}) \in C(\partial \Delta) \rtimes \Gamma.$$

Then, by Lemma 1.1,

$$s_x s_x^* = \pi(x)(\mathbf{1} - p_{x^{-1}})\pi(x^{-1}) = \mathbf{1} - \pi(x)p_{x^{-1}}\pi(x^{-1}) = p_x,$$

and

$$s_x^* s_x = \mathbf{1} - p_{x^{-1}}.$$

Therefore the elements s_x satisfy the relations

(1.3)
$$s_x^* s_x = \sum_{\substack{y \in S \cup S^{-1} \\ y \neq x^{-1}}} s_y s_y^*.$$

Also, it follows from Lemma 1.3 that

(1.4)
$$\mathbf{1} = \sum_{x \in S \cup S^{-1}} p_x = \sum_{x \in S \cup S^{-1}} s_x s_x^*.$$

The relations (1.3),(1.4) are precisely the Cuntz-Krieger relations [CK] corresponding to the $\{0,1\}$ -matrix A, with entries indexed by elements of $S \cup S^{-1}$, defined by

(1.5)
$$A(x,y) = \begin{cases} 1 & \text{if } y \neq x^{-1}, \\ 0 & \text{if } y = x^{-1}. \end{cases}$$

The matrix A depends only on the rank of the free group Γ . Also A is irreducible and not a permutation matrix. It follows that the C^* -subalgebra \mathcal{A} of $C(\partial \Delta) \rtimes \Gamma$ generated by $\{s_x ; x \in S \cup S^{-1}\}$ is isomorphic to the simple Cuntz-Krieger algebra \mathcal{O}_A [CK]. It remains to show that \mathcal{A} is the whole of $C(\partial \Delta) \rtimes \Gamma$.

Lemma 1.4. Under the above hypotheses, $C(\partial \Delta) \rtimes \Gamma = \mathcal{A}$.

PROOF. By the discussion above, it is enough to show that

$$\mathcal{A} \supseteq C(\partial \Delta) \rtimes \Gamma.$$

First of all we show that $\mathcal{A} \supseteq \pi(\Gamma)$. It suffices to show that $\pi(x) \in \mathcal{A}$ for each $x \in S \cup S^{-1}$. Now

$$s_{x^{-1}}^* = (\mathbf{1} - p_x)\pi(x) = \pi(x)p_{x^{-1}},$$

by Lemma 1.1. Therefore

(1.6)
$$s_x + s_{x^{-1}}^* = \pi(x)(1 - p_{x^{-1}}) + \pi(x)p_{x^{-1}} = \pi(x).$$

It follows that $\pi(x) \in \mathcal{A}$, as required.

Finally, we must show that $\mathcal{A} \supseteq C(\partial \Delta)$. Since $s_x s_x^* = p_x$, it is certainly true that $p_x \in \mathcal{A}$ for all $x \in S \cup S^{-1}$. It follows by induction from Lemma 1.1(b), that $p_g \in \mathcal{A}$ for all $g \in \Gamma$. Lemma 1.2 now implies that $\mathcal{A} \supseteq C(\partial \Delta)$.

Example 1.5. Consider the graphs X, Y in Figure 4. Each of them has as universal covering space the 3-homogeneous tree Δ . Each has fundamental group the free group Γ on two generators. Consequently, each gives rise to an action of Γ on Δ . These two actions cannot be conjugate via an element of Aut(Δ) because their quotients are not isomorphic as graphs.

Copies of the free group on two generators, acting with these actions on the corresponding Bruhat-Tits tree Δ , can be found inside PGL(2, \mathbb{Q}_2), and also inside PGL(2, \mathbb{F}) for any local field \mathbb{F} with residue field of order 2. To see this, note that

920

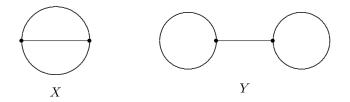


FIGURE 4. The graphs X, Y.

by [FTN, Appendix, Proposition 5.5] PGL(2, \mathbb{Q}_2) contains cocompact lattices Γ_1 , Γ_2 which act freely and transitively on the vertex set Δ^0 with

$$\Gamma_1 = (\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z}) = \langle a, b, c \mid a^2 = b^2 = c^2 = 1 \rangle$$

$$\Gamma_2 = \mathbb{Z} * (\mathbb{Z}/2\mathbb{Z}) = \langle x, d \mid d^2 = 1 \rangle.$$

The subgroups $\Gamma_X = \langle ab, ac \rangle$ and $\Gamma_Y = \langle x, dxd \rangle$ are both isomorphic to the free group on two generators. Moreover $\Gamma_X \setminus \Delta = X$ and $\Gamma_Y \setminus \Delta = Y$.

2. K-THEORY

Using the results of [C1], it is now easy to determine the K-theory of $\mathcal{A}(\Gamma)$. For each $x \in S \cup S^{-1}$, the element p_x is a projection in $\mathcal{A}(\Gamma)$ and therefore defines an equivalence class $[p_x]$ in $K_0(\mathcal{A}(\Gamma))$. It is shown in [C1] that the classes $[p_x]$ generate $K_0(\mathcal{A}(\Gamma))$. Indeed, let L denote the abelian group with generating set $S \cup S^{-1}$ and relations

(2.1)
$$x = \sum_{\substack{y \in S \cup S^{-1} \\ y \neq x^{-1}}} y \quad \text{for } x \in S \cup S^{-1}.$$

The map $x \mapsto [p_x]$ extends to an isomorphism θ from L onto $K_0(\mathcal{A}(\Gamma))$ [C1]. Moreover $\theta(\varepsilon) = [\mathbf{1}]$, where $\varepsilon = \sum_{x \in S \cup S^{-1}} x$. Now it follows from (2.1) that, for

each $x \in S$,

$$\varepsilon = x + x^{-1}$$

(2.2) Also

$$\varepsilon = \sum_{x \in S} (x + x^{-1}) = \sum_{x \in S} \varepsilon = \gamma \varepsilon.$$

Thus

$$(2.3) \qquad \qquad (\gamma - 1)\varepsilon = 0$$

The group L is therefore generated by $S \cup \{\varepsilon\}$, and the relation (2.3) is satisfied.

On the other hand, starting with an abstract abelian group with generating set $S \cup \{\varepsilon\}$ and the relations (2.2), one can make the formal definition $x^{-1} = \varepsilon - x$, for each $x \in S$, and recover the relations (2.1) via

$$\sum_{x \in S} (x + x^{-1}) = \gamma \varepsilon = \varepsilon = x + x^{-1} \quad \text{for } x \in S.$$

This discussion proves

Lemma 2.1. $K_0(\mathcal{A}(\Gamma)) \cong \mathbb{Z}^{\gamma} \oplus \mathbb{Z}/(\gamma - 1)\mathbb{Z}$ via an isomorphism which sends [1] to the generator of $\mathbb{Z}/(\gamma - 1)\mathbb{Z}$.

It is known that the C^* -algebra $\mathcal{A}(\Gamma)$ is purely infinite, simple, unital and nuclear [CK, C1, C2]. The classification theorem of [K] therefore shows that $\mathcal{A}(\Gamma)$ is determined by its K-theory.

Remark 2.2. If Γ is a torsion free cocompact lattice in PSL(2, \mathbb{R}), so that Γ is the fundamental group of a Riemann surface of genus g, then it is known, [AD, Proposition 2.9], [HN], that $\mathcal{A}(\Gamma) = C(\mathbb{P}_1(\mathbb{R})) \rtimes \Gamma$ is the unique p.i.s.u.n. C^* -algebra whose K-theory is specified by

$$(K_0(\mathcal{A}(\Gamma)), [\mathbf{1}]) = (\mathbb{Z}^{2g+1} \oplus \mathbb{Z}/(2g-2)\mathbb{Z}, (0, 0, \dots, 0, 1)),$$

$$K_1(\mathcal{A}(\Gamma)) = \mathbb{Z}^{2g+1}.$$

The proof of this result in [AD] makes use of the Thom Isomorphism Theorem of A. Connes (which has no *p*-adic analogue) to identify $K_*(\mathcal{A}(\Gamma))$ with the topological K-theory $K^*(\Gamma \setminus PSL(2, \mathbb{R}))$. It follows from the classification theorem of [K, Ph] that $\mathcal{A}(\Gamma)$ is a Cuntz-Krieger algebra. However there is no apparent dynamical reason for this fact. In contrast, the Cuntz-Krieger algebras of the present article appear naturally and explicitly.

3. The measure theoretic result

The purpose of this section is to prove Theorem 2 of the Introduction. From now on Δ is a homogeneous tree of degree q + 1, where $q \ge 1$, and Γ is a free uniform lattice in Aut(Δ). A similar Theorem could be stated for non-homogeneous trees, and proved by the same methods. The boundary $\partial \Delta$ is endowed with a natural Borel measure. In contrast to the topological result, measure theoretic rigidity for the boundary action fails: the von Neumann algebra $L^{\infty}(\partial \Delta) \rtimes \Gamma$ depends on the tree Δ and on the action of Γ . Before proceeding with the proof here are some examples.

Example 3.1. Let Γ be the free group on two generators. Then Γ is the fundamental group of each of the graphs X, Y of Figure 4. The 3-homogeneous tree Δ_3 is the universal covering of both these graphs and there are two corresponding (free, cocompact) actions of Γ on Δ_3 . It follows from Theorem 2 that the von Neumann algebra $L^{\infty}(\partial \Delta_3) \rtimes \Gamma$ is the hyperfinite factor of type $III_{1/4}$ in the first case, since X is bipartite, and type $III_{1/2}$ in the second case, since Y is not bipartite.

The group Γ is also the fundamental group of a bouquet of two circles and the corresponding action of Γ on the 4-homogeneous tree Δ_4 produces the hyperfinite factor of type III_{1/3}. These three actions are the only free and cocompact actions of the free group on two generators on a tree Δ with no vertices of degree ≤ 2 .

Remark 3.2. For each $\gamma \geq 2$, it is easy to construct bipartite and non-bipartite 3-homogeneous graphs with fundamental group the free group on γ generators. The corresponding boundary actions are of types III_{1/4} and III_{1/2} respectively.

We now proceed with the proof of Theorem 2. As before, fix a vertex $O \in \Delta$. If u, v are vertices in Δ^0 , let [u, v] be the directed geodesic path between them, with origin u. The graph distance d(u, v) between u and v is the length of [u, v], where each edge is assigned unit length. If $v \in \Delta^0$ let Ω_v be the clopen set consisting of all $\omega \in \partial \Delta$ such that $v \in [O, \omega)$.

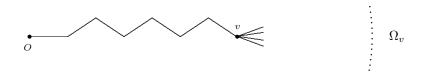


FIGURE 5. A subset Ω_v of the boundary.

There is a natural Borel measure μ on $\partial \Delta$ defined by $\mu(\Omega_v) = q^{(1-n)}$, where n = d(O, v). The consistency of this definition is easily established, using the fact that there are precisely q vertices w adjacent to v and not lying on the path [O, v]. The set Ω_v is the disjoint union of the corresponding sets Ω_w , each of which has measure q^{-n} . Note that the normalization of this measure is different from that in [FTN]. This is immaterial for the result, but makes the formulae simpler. The

measure μ clearly depends on the choice of the vertex O in Δ , but its measure class does not.

Lemma 3.3. The action of Γ on $\partial \Delta$ is measure-theoretically free, i.e.

$$\mu\left(\left\{\omega\in\partial\Delta:g\omega=\omega\right\}\right)=0$$

for all elements $g \in \Gamma - \{e\}$.

PROOF. Let $g \in \Gamma - \{e\}$. Since the action of Γ on Δ is free, g is hyperbolic; that is g fixes no point of Δ . It follows that the set $\{\omega \in \partial \Delta : g\omega = \omega\}$ contains exactly two elements and so certainly has measure zero.

It is well known (and it is an easy consequence of Lemma 3.13 below) that the action of Γ on $\partial \Delta$ is also ergodic. Therefore the von Neumann algebra $L^{\infty}(\partial \Delta) \rtimes \Gamma$ is a factor. A convenient reference for this fact and for the classification of von Neumann algebras is [Su]. Most of this section will be devoted to establishing that this factor is of type III_{λ}, for an appropriate value of λ . This will be done by determining the ratio set of W. Krieger.

Definition 3.4. Let G be a countable group of automorphisms of a measure space (Ω, μ) . Define the **ratio set** r(G) to be the subset of $[0, \infty)$ such that if $\lambda \ge 0$ then $\lambda \in r(G)$ if and only if for every $\epsilon > 0$ and measurable set A with $\mu(A) > 0$, there exists $g \in G$ and a measurable set B such that $\mu(B) > 0, B \cup gB \subseteq A$ and

$$\left|\frac{d\mu \circ g}{d\mu}(\omega) - \lambda\right| < \epsilon$$

for all $\omega \in B$.

Remark 3.5. The ratio set $r(\Gamma)$ depends only on the quasi-equivalence class of the measure μ . If the action of Γ is ergodic then $r(\Gamma) - \{0\}$ is a subgroup of the multiplicative group of positive real numbers [HO, §I-3, Lemma 14].

In order to compute $r(\Gamma)$, for the action of Γ on $\partial \Delta$, the first step is to find the possible values of the Radon-Nikodym derivatives $\frac{d\mu \circ g}{d\mu}(\omega)$, for $g \in \Gamma$ and $\omega \in \partial \Delta$.

Fix $g \in \Gamma$ and $\omega \in \partial \Delta$. Choose an open set of the form Ω_v with $v \in [O, \omega)$ and d(O, v) > d(O, gO). Such sets Ω_v form a neighbourhood base of ω . Then $v \notin [O, gO]$ (Figure 6), and $g^{-1}\Omega_v = \Omega_{g^{-1}v}$. Since $d(O, g^{-1}v) = d(gO, v)$, we have $\mu(g^{-1}\Omega_v) = q^{-d(gO,v)}$.

It follows that

(3.1)
$$\frac{d\mu \circ g}{d\mu}(\omega) = \frac{\mu(g^{-1}\Omega_v)}{\mu(\Omega_v)} = \frac{q^{-d(gO,v)}}{q^{-d(O,v)}} = q^{\delta(g,\omega)}$$

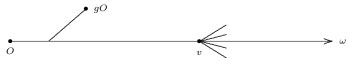


FIGURE 6

where $\delta(g,\omega) = d(O,v) - d(gO,v)$. It is clear that $\delta(g,\omega)$ depends only on gand ω , not on the choice of v. In the language of [GH, Chapter 8], $\delta(g,\omega)$ is the Busemann function $\beta_{\omega}(O,gO)$ relating the horocycles centered at ω containing O, gO respectively. For a fixed vertex v with d(O,v) > d(O,gO), the formula (3.1) remains true for all $\omega \in \Omega_v$.

We have therefore proved

Lemma 3.6. The values of the Radon-Nikodym derivatives $\frac{d\mu \circ g}{d\mu}(\omega)$, for $g \in \Gamma$ and $\omega \in \partial \Delta$, are given by

$$\frac{d\mu \circ g}{d\mu}(\omega) = q^{\delta(g,\omega)}$$

Moreover, for each $g \in \Gamma$, each of these values is attained on a nonempty open subset of $\partial \Delta$.

These considerations show that

(3.2)
$$r(\Gamma) \subseteq \{q^{\delta(g,\omega)}; g \in \Gamma, \omega \in \partial \Delta\} \cup \{0\}.$$

Since the action of Γ is ergodic, $r(\Gamma) - \{0\}$ is a multiplicative group of positive real numbers [HO, Lemma 14]. What must be done now is to show that the inclusion in (3.2) is in fact an equality. Clearly $r(\Gamma) \neq [0, \infty)$. Therefore if we can show that $r(\Gamma)$ contains a number in the open interval (0, 1) then, by [HO, Lemma 15], it must equal $\{\lambda^n ; n \in \mathbb{Z}\} \cup \{0\}$, for some $\lambda \in (0, 1)$. By definition, this will show that the action of Γ , and hence the associated von Neumann algebra $L^{\infty}(\partial \Delta) \rtimes \Gamma$), is of type III_{λ}.

Before proceeding, it is useful to interpret the situation in terms of the quotient graph $X = \Gamma \setminus \Delta$. In a connected graph X a proper path is a path which has no backtracking. That is, no edge [a, b] in the path is immediately followed by its inverse [b, a]. A cycle is a closed path, which is said to be based at its initial vertex (= final vertex). Note that a proper cycle can have a tail beginning at its base vertex, but that it can have no other tail (Figure 7). Every proper cycle determines a unique tail-less cycle which is obtained by removing the tail. A circuit is a cycle which does not pass more than once through any vertex. There is clearly an upper bound for the possible length of a circuit in X.

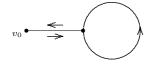


FIGURE 7. A proper cycle with tail, based at v_0 .

If $g \in \Gamma$, then the geodesic path [O, gO] in Δ projects to a proper cycle C in the quotient graph $X = \Gamma \setminus \Delta$ based at $v_0 = \Gamma O$. Moreover d(O, gO) is equal to the length $\ell(C)$ of that cycle.

Conversely if C is a proper cycle based at v_0 in the graph X then the homotopy class of C is an element g of the fundamental group Γ of X. The cycle C lifts to a unique proper path in Δ with initial vertex O, namely [O, gO], and $\ell(C) = d(O, gO)$.

In order to prove equality in (3.2) we need the auxiliary concept of the *full* group.

Definition 3.7. Given a group Γ acting on a measure space (Ω, μ) , we define the *full group*, $[\Gamma]$, of Γ by

 $[\Gamma] = \{T \in \operatorname{Aut}(\Omega) : T\omega \in \Gamma\omega \text{ for almost every } \omega \in \Omega\}.$

Remark 3.8. The ratio set $r(\Gamma)$ of a countable subgroup Γ of $Aut(\Omega)$ depends only on the full group in the sense that $r(\Gamma_1) = r(\Gamma_2)$ whenever $[\Gamma_1] = [\Gamma_2]$.

The basis for the proof of equality in (3.2) is the following well known result. It is stated without proof in [HO, I.3].

Lemma 3.9. Let Γ be a countable group acting ergodically on a measure space Ω . Suppose that the full group $[\Gamma]$ contains an ergodic measure preserving subgroup H.

If $r \in (0,\infty)$, $g \in \Gamma$ and the set $D = \{\omega \in \Omega; \frac{d\mu \circ g}{d\mu}(\omega) = r\}$ has positive measure, then $r \in r(\Gamma)$.

PROOF. Let A be a measurable subset of Ω with $\mu(A) > 0$. By the ergodicity of H, there exist $h_1, h_2 \in H$ such that the set $B = \{\omega \in A : h_1\omega \in D \text{ and } h_2gh_1\omega \in A\}$ has positive measure.

Let Γ' denote the group generated by h_1, h_2 and Γ . By Remark 3.8, $r(\Gamma') = r(\Gamma)$.

Let $t = h_2 g h_1 \in \Gamma'$. By construction, $B \cup tB \subseteq A$. Moreover, since H is measure-preserving,

$$\frac{d\mu \circ t}{d\mu}(\omega) = \frac{d\mu \circ g}{d\mu}(h_1 \omega) = r \text{ for all } \omega \in B,$$

since $h_1 \omega \in D$. This proves that $r \in r(\Gamma') = r(\Gamma)$, as required.

In view of Lemma 3.6, all that is now needed in the present setup is the construction of a subgroup H. This will require the following result.

Lemma 3.10. Let H be subgroup of $Aut(\Delta)$. Suppose that the induced action of H on $\partial \Delta$ is measure preserving and that, for each positive integer n, H acts transitively on the collection of sets

$$\{\Omega_v : v \in \Delta, \, d(O, v) = n\}.$$

Then H acts ergodically on $\partial \Delta$.

PROOF. Suppose that $S_0 \subseteq \partial \Delta$ is a Borel set which is invariant under H and such that $\mu(S_0) > 0$. We show that this implies $\mu(\partial \Delta - S_0) = 0$, thereby establishing the ergodicity of the action.

Define a new measure λ on $\partial \Delta$ by $\lambda(S) = \mu(S \cap S_0)$, for each Borel set $S \subseteq \partial \Delta$. Now, for each $k \in H$,

$$\begin{aligned} \lambda(kS) &= \mu(kS \cap S_0) = \mu(S \cap k^{-1}S_0) \\ &\leq \mu(S \cap S_0) + \mu(S \cap (k^{-1}S_0 - S_0)) \\ &= \mu(S \cap S_0) \\ &= \lambda(S), \end{aligned}$$

and therefore λ is *H*-invariant.

Fix a positive integer n. The transitivity hypothesis on the action of H implies that

$$\lambda(\Omega_v) = \lambda(\Omega_w)$$

whenever $v, w \in \Delta$, d(O, v) = d(O, w) = n. Since $\partial \Delta$ is the union of $q^{(n-1)}(q+1)$ disjoint sets $\{\Omega_v; d(O, v) = n\}$, each of which has equal measure with respect to λ , we deduce that, if d(O, v) = n,

$$\lambda(\Omega_v) = \frac{\lambda(\partial \Delta)}{q^{(n-1)}(q+1)} = \frac{\mu(S_0)}{q^{(n-1)}(q+1)}$$

Thus $\lambda(\Omega_v) = c\mu(\Omega_v)$ for every $v \in \Delta$, where $c = \frac{\mu(S_0)}{(q+1)} > 0$. Since the sets Ω_v , $v \in \Delta$, generate the Borel σ -algebra, we deduce that $\lambda(S) = c\mu(S)$ for each Borel

set S. Therefore

$$\mu(\partial \Delta - S_0) = c^{-1}\lambda(\partial \Delta - S_0) = c^{-1}\mu((\partial \Delta - S_0) \cap S_0) = 0,$$

thus proving ergodicity.

It is now convenient to introduce some new terminology.

Definition 3.11. Let X be a finite connected graph. Let v_0 be a vertex of X and let $K \ge 0$. Say that (X, v_0) has property $\mathfrak{L}(K)$ if for any two proper paths P_1, P_2 having the same length n and the same initial vertex v_0 , there exists $k \ge 0$, with $k \le K$, and proper cycles C_1, C_2 based at v_0 such that

- (a) The initial segment of C_i is P_i , i = 1, 2;
- (b) the cycles C_i have the same length n + k, i = 1, 2.

Property $\mathfrak{L}(K)$ says that any two proper paths of the same length starting at v_0 can be completed to proper cycles of the same length, with a uniform bound on how much must be added to each path.

Lemma 3.12. Let X be a finite connected graph whose vertices all have degree at least three and let v_0 be a vertex of X. Then (X, v_0) has property $\mathfrak{L}(K)$ for some $K \ge 0$.

The proof of this technical result is deferred to Section 4. We can now prove that the action of Γ on $\partial \Delta$ satisfies the hypotheses of Lemma 3.9.

Lemma 3.13. Let Δ be a homogeneous tree of degree q + 1, where $q \geq 1$ and let Γ be a free uniform lattice in Aut(Δ). Then, relative to the action of Γ on $\partial \Delta$, the full group $[\Gamma]$ contains an ergodic measure preserving subgroup H.

PROOF. By Lemma 3.10, it suffices to prove the following assertion for any $u, v \in \Delta^0$, with d(O, u) = d(O, v) = n.

(*) There exists a measure preserving automorphism $\phi \in [\Gamma]$ such that ϕ is almost everywhere a bijection from Ω_u onto Ω_v .

The geodesic paths [O, u], [O, v] in Δ project to proper paths P_u, P_v in X with initial vertex $v_0 = \Gamma O$ and length n. By hypothesis, the graph X has property $\mathfrak{L}(K)$ for some constant $K \geq 0$, relative to v_0 . Therefore there exists an integer $k \leq K$ and proper cycles C_u, C_v based at v_0 which have initial segments P_u, P_v respectively and $\ell(P_u) = \ell(P_v) = n + k$.

The cycles C_u, C_v lift to unique geodesic paths $[O, u^*], [O, v^*]$ in Δ with initial segments [O, u], [O, v] respectively and $\Gamma u^* = \Gamma v^* = \Gamma O = v_0$. Since the vertices

928

of X all have degree at least three, we can choose an edge e with $o(e) = v_0$ in X such that e meets the terminal edges of C_u and C_v only at v_0 . There are unique vertices $u_1, v_1 \in \Delta^1$ such that $e = \Gamma[u^*, u_1] = \Gamma[v^*, v_1]$. Therefore there exists an element $g \in \Gamma$ such that $g[u^*, u_1] = [v^*, v_1]$. The restriction of the action of g to $\Omega_{u_1} = \{\omega \in \partial \Delta; u_1 \in [u^*, \omega)\}$ defines a measure preserving bijection from Ω_{u_1} onto Ω_{v_1} . Define $\phi(\omega) = g(\omega)$ for $\omega \in \Omega_{u_1}$.

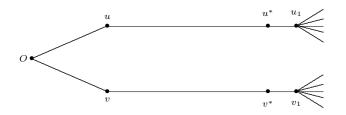


FIGURE 8. Definition of ϕ on Ω_{u_1} .

The set Ω_u is a disjoint union of q^{k+1} sets of the form Ω_w where d(O, w) = n+k+1. Each such set therefore has measure $\mu(\Omega_w) = q^{-k-1}\mu(\Omega_u)$. The map ϕ has been defined only on the set Ω_w with $w = u_1$. Therefore ϕ has not yet been defined on a proportion $(1-q^{-k-1})$ of the set Ω_u . Since $k \leq K$, the measure of the subset of Ω_u for which ϕ has not yet been defined is at most $(1-q^{-K-1})\mu(\Omega_u)$.

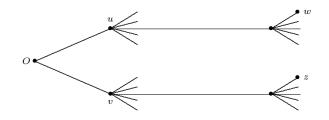


FIGURE 9. Second step in the definition of ϕ .

Now repeat the process on each of the q^{k+1} sets $\Omega_w \subset \Omega_u$, with d(O, w) = n + k + 1, on which ϕ has not yet been defined. In the preceding argument, replace Ω_u by Ω_w and Ω_v by an appropriate subset Ω_z of Ω_v disjoint from Ω_{v_1} . Note that there is a large amount of arbitrariness in the choice of which Ω_z is to

be paired with a particular Ω_w . In each such Ω_w , ϕ is then defined on a subset whose complement in Ω_w has measure at most $(1 - q^{-K-1})\mu(\Omega_w)$.

Thus after two steps, ϕ has been defined except on a set of measure at most $(1 - q^{-K-1})^2 \mu(\Omega_u)$. Continue in this way. After j steps, ϕ has been defined except on a set of measure at most $(1 - q^{-K-1})^j \mu(\Omega_u)$.

Since $(1 - q^{-K-1})^j \to 0$ as $j \to \infty$, the measure preserving map ϕ is defined almost everywhere on Ω_u , with $\phi(\omega) \in \Gamma \omega$ for almost all $\omega \in \Omega_u$. Finally define ϕ to be the inverse of the map already constructed on Ω_v and the identity map on $\partial \Delta - (\Omega_u \cup \Omega_v)$. The proof of (\star) is complete. \Box

It follows from Lemmas 3.6, 3.9, and 3.13 that we have equality in (3.2). That is

(3.3)
$$r(\Gamma) = \{q^{\delta(g,\omega)}; g \in \Gamma, \omega \in \partial \Delta\} \cup \{0\}.$$

The final step is to identify this set more precisely. Recall that there is a canonical bipartition of the vertex set of Δ , such that two vertices have the same type if and only if the distance between them is even. The graph $X = \Gamma \setminus \Delta$ is bipartite if and only if the action of Γ is type preserving. Recall also that $\delta(g, \omega) = d(O, v) - d(gO, v)$, for any vertex $v \in [O, \omega) \cap [gO, \omega)$.

Lemma 3.14. Let Δ be a locally finite tree whose vertices all have degree at least three. Let Γ be a free uniform lattice in Aut(Δ) and let $X = \Gamma \setminus \Delta$. Then

$$\{\delta(g,\omega)\,;\,g\in\Gamma,\omega\in\partial\Delta\}=\begin{cases} 2\mathbb{Z} & \text{if }X \text{ is bipartite,}\\ \mathbb{Z} & \text{otherwise.} \end{cases}$$

PROOF. Suppose first of all that X is not bipartite. Then X contains a circuit of odd length. Connecting this circuit to v_0 by a minimal path and going around the circuit an appropriate number of times shows that X contains proper cycles based at v_0 of arbitrarily large even and odd lengths.

It follows that we may choose $g \in \Gamma$ such that d(O, gO) = 2n, for arbitrarily large n. If $k \in \mathbb{Z}$, with $-n \leq k \leq n$, let $a \in [O, gO]$ with d(O, a) = n+k, d(gO, a) = n-k. Choose $\omega \in \partial \Delta$ with $[O, \omega) \cap [gO, \omega) = [a, \omega)$. This is possible since the vertex a has degree at least three (Figure 10). Then $\delta(g, \omega) = n+k-(n-k) = 2k$.

We may also choose $g \in \Gamma$ such that d(O, gO) = 2n + 1 for arbitrarily large n. If $k \in \mathbb{Z}$, with $-n \leq k \leq n$, choose $a \in [O, gO]$ with d(O, a) = n + k, d(gO, a) = n + 1 - k. Choose $\omega \in \partial \Delta$ with $[O, \omega) \cap [gO, \omega) = [a, \omega)$. Then $\delta(g, \omega) = 2k - 1$.

It follows that the range of the function $\delta(g, \omega)$ is \mathbb{Z} .

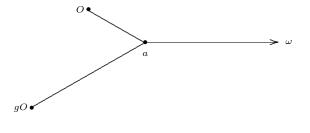


FIGURE 10

Now suppose that X is bipartite. Then the graph X contains proper cycles of arbitrarily large even length only. The preceding argument shows that the range of the function $\delta(g, \omega)$ is $2\mathbb{Z}$.

Assume the hypotheses of Theorem 2. Then by (3.3) and Lemma 3.14, the action of Γ on $\partial \Delta$ is of type III_{1/q^2} , if X is bipartite and of type $III_{1/q}$ otherwise.

In order to complete the proof of Theorem 2, it only remains to prove that the factor $L^{\infty}(\partial \Delta) \rtimes \Gamma$ is hyperfinite. By [Z1], this follows from the next result.

Proposition 3.15. The action of Γ on $\partial \Delta$ is amenable.

PROOF. The group $G = \operatorname{Aut}(\Delta)$ acts transitively on $\partial\Delta$ [FTN, Chapter I.8]. Fix an element $\omega \in \partial\Delta$, and let $G_{\omega} = \{g \in G : g\omega = \omega\}$. Then $\partial\Delta \cong G/G_{\omega}$, and μ corresponds to a measure in the unique quasi-invariant measure class of G/G_{ω} . The group G_{ω} is amenable by [FTN, Theorem 8.3]. It follows from [Z2, Corollary 4.3.7] that the action of Γ on G/G_{ω} is amenable.

4. Appendix: Proof of a Technical Lemma

This section contains a proof of the technical result, Lemma 3.12. During the course of the proof it will be necessary to concatenate paths. A difficulty arises because two proper paths cannot necessarily be concatenated to produce a proper path. The product path may backtrack at the initial edge of the second path. This problem is overcome by introducing a detour around a proper cycle attached at the initial vertex of the second path. The following auxiliary Lemma will be used to do this.

Lemma 4.1. (ATTACHING A LOOP TO AN EDGE.) Let X be a finite connected graph whose vertices all have degree at least three. Let e be an edge of X. Then there is a proper cycle L based at the terminal vertex t(e), not passing through e and having length $\ell(L) \leq \delta + \lambda$, where δ is the diameter of X and λ is the maximum length of a circuit in X. PROOF. The edge e is contained in a maximal tree T in X. Every vertex of X is a vertex of T. Let P be a maximal proper (geodesic) path in T with initial vertex o(e) and initial edge e. Let v be the terminal vertex of P and f the terminal edge. Then v is an endpoint of T. The vertex v has degree at least three. It follows that there are two edges in X other than \overline{f} with initial vertex v. These two edges may both have terminal vertex v (in fact one may be the opposite of the other) or else one or both of them may end at a vertex other than v. However in all cases we may use one or both of these edges together with edges in T to construct a circuit L_0 based at v and not passing through e. The required proper cycle L can the be constructed from $P \cup L_0$.

PROOF OF LEMMA 3.12. Let δ be the diameter of X and λ the maximum length of a circuit in X. We show that property $\mathfrak{L}(K)$ is satisfied with $K = 10+10\delta+6\lambda$.

Let P_1, P_2 be proper paths in X having the same length n and the same initial vertex v_0 . Let p_1, p_2 be the terminal vertices of P_1, P_2 respectively. We must construct proper cycles C_1, C_2 based at v_0 satisfying the conditions of Definition 3.11.

Choose once and for all a path $[p_1, p_2]$ of shortest length between p_1 and p_2 . There are two separate cases to consider.

CASE 1. The length of $[p_1, p_2]$ is even. Denote this length by 2s where $s \ge 0$ and let p_0 be the midpoint of $[p_1, p_2]$. If s = 0 then a simpler argument will apply, and produce a smaller bound for the lengths of C_1, C_2 , so we assume that s > 0.

Choose a path R of minimal length from p_0 to v_0 . The cycles C_1, C_2 will be constructed from portions the paths $P_1, P_2, R, [p_1, p_2]$, with loops attached to avoid backtracking. Refer to Figure 11.

Choose an edge e_1 with $o(e_1) = p_1$ such that e_1 is not the initial edge of $[p_1, p_2]$ and \overline{e}_1 is not the final edge of P_1 . Choose an edge e_2 with $o(e_2) = p_2$ such that e_2 is not the initial edge of $[p_2, p_1]$ and \overline{e}_2 is not the final edge of P_2 . For i = 1, 2, attach a proper cycle L_i at $t(e_i)$, as in Lemma 4.1.

Assume that the initial edge of R does not meet either of the edges of $[p_1, p_2]$ which contain p_0 . Let C_1 be the proper cycle based at v_0 obtained by passing through the following sequence of paths and edges in the order indicated.

$$P_1 \to e_1 \to L_1 \to \overline{e}_1 \to [p_1, p_2] \to e_2 \to L_2 \to \overline{e}_2 \to [p_2, p_0] \to R$$

Similarly, let C_2 be obtained from

$$P_2 \to e_2 \to L_2 \to \overline{e}_2 \to [p_2, p_1] \to e_1 \to L_1 \to \overline{e}_1 \to [p_1, p_0] \to \overline{R}_2$$

The proper cycles C_1, C_2 have initial segments P_1, P_2 respectively and have the same length n+k, where $k = 4 + \ell(L_1) + \ell(L_2) + 3s + \ell(R) \le 4 + 2(\delta + \lambda) + \frac{3}{2}\delta + \delta < 4 + 5\delta + 2\lambda$.

Now assume that the initial edge of R meets an edge of $[p_1, p_2]$ which contains p_0 . This is precisely the situation illustrated in Figure 11. The cycles C_1, C_2 described above will no longer both be proper, since there will be a backtrack for one of them at the first edge of R. In order to avoid this, choose an edge e_0 with $o(e_0) = p_0$ such that e_0 does not meet either of the edges of $[p_1, p_2]$ containing p_0 . Attach a proper cycle L_0 at $t(e_0)$, as in Lemma 4.1. Modify the cycles C_1, C_2 above so that the final part of each becomes

$$\ldots, p_0] \to e_0 \to L_0 \to \overline{e}_0 \to R$$

The proper cycles C_1, C_2 now have the same length n + k, where $k < 6 + 6\delta + 3\lambda$.

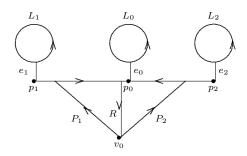


FIGURE 11. Constructing proper cycles of the same length.

CASE 2. The length of $[p_1, p_2]$ is odd. Denote this length by 2s+1 where $s \ge 0$ and let p_0 be the vertex of $[p_1, p_2]$ with $d(p_0, p_1) = s, d(p_0, p_2) = s + 1$. The argument that follows will be slightly different, but simpler, if s = 0. We therefore again assume that s > 0.

Exactly the same argument as in Case 1 shows that there are proper cycles C_1, C_2 based at v_0 and with initial segments P_1, P_2 respectively. The only difference is that $\ell(C_1) = n + k + 1$, $\ell(C_2) = n + k$, where $k < 6 + 6\delta + 3\lambda$.

The cycles will be modified to have the same length by adding to the end of each an appropriate proper cycle based at v_0 . The (possibly improper) cycle

$$P_1 \to [p_1, p_2] \to \overline{P}_2$$

has odd length. Deleting appropriate parts of this cycle shows that X contains a circuit C_0 of odd length 2t + 1. (In other words, the graph X is not bipartite.)

Choose a path S_1 of minimal length from v_0 to C_0 . Let v_1 be the terminal vertex of S_1 . The circuit C_0 is the union of two proper paths C_0^+ , C_0^- with lengths t + 1, t respectively and initial vertex v_1 . Let v_2 be the terminal vertex of the paths C_0^+ , C_0^- . Choose a path S_2 of minimal length from v_2 to v_1 . Add to the end of each of the cycles C_1, C_2 a cycle based at v_0 , as indicated below

$$C_1 \to S_1 \to C_0^- \to S_2$$
$$C_2 \to S_1 \to C_0^+ \to S_2$$

The resulting cycles have the same length, namely $n + k + 1 + t + \ell(S_1) + \ell(S_2) = n + k'$, where $k' \leq k + \lambda + 2\delta < 6 + 8\delta + 4\lambda$. Either or both of these cycles may have backtracking at v_0 or at v_2 (but not at v_1). If this happens add an edge (and its reverse) and adjoin a loop to both cycles at the relevant vertex as in Lemma 4.1. The resulting cycles are proper (i.e. have no backtracking) and have the same length n + k'', where $k'' \leq 10 + 10\delta + 6\lambda$.

References

- [AD] C. Anantharaman-Delaroche, C*-algèbres de Cuntz-Krieger et groupes Fuchsiens, Operator Theory, Operator Algebras and Related Topics (Timişoara 1996), 17–35, The Theta Foundation, Bucharest, 1997.
- [C1] J. Cuntz, A class of C*-algebras and topological Markov chains: Reducible chains and the Ext-functor for C*-algebras, *Invent. Math.* 63 (1981), 23–50.
- [C2] J. Cuntz, K-theory for certain C*-algebras, Ann. of Math. 113 (1981), 181–197.
- $\label{eq:constraint} \begin{array}{ll} [{\rm CK}] & {\rm J. \ Cuntz \ and \ W. \ Krieger, \ A \ class \ of \ C^*\mbox{-algebras and topological Markov chains, \ Invent.} \\ & Math. \ {\bf 56} \ (1980), \ 251\mbox{-}268. \end{array}$
- [FTN] A. Figà-Talamanca and C. Nebbia, Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees, LMS Lecture Note Series, 182, Cambridge University Press, 1991.
- [GH] E. Ghys and P. de la Harpe (editors), Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhäuser, Basel, 1990.
- [Gr] M. Gromov, Hyperbolic groups. Essays in group theory, 75–263, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987.
- [HO] T. Hamachi and M. Osikawa, Ergodic Groups of Automorphisms and Krieger's Theorems, Seminar on Mathematical Sciences No. 3, Keio University, Japan, 1981.
- [HN] H. Moriyoshi and T. Natsume, The Godbillon-Vey cyclic cocycle and longitudinal Dirac operators, *Pacific J. Math.* 172 (1996), 483–539.
- [K] E. Kirchberg, Exact C*-algebras, tensor products, and the classification of purely infinite algebras, Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 2, 943–954, Birkhäuser, Basel, 1995.
- [N] T. Natsume, Euler characteristic and the class of unit in K-theory, Math. Z. 194 (1987), 237–243.
- [Ok] R. Okayasu, Type III factors arising from Cuntz-Krieger algebras, Proc. Amer. Math. Soc. 131 (2003), 2145–2153.

- [Ped] G. K. Pedersen, C^{*}-algebras and their Automorphism Groups, Academic Press, New York, 1979.
- [Ph] N. C. Phillips, A classification theorem for nuclear purely infinite simple C*-algebras, Doc. Math.5 (2000), 49–114.
- [RR] J. Ramagge and G. Robertson, Factors from trees, Proc. Amer. Math. Soc. 125 (1997), 2051–2055.
- [Rob] G. Robertson Torsion in K-theory for boundary actions on affine buildings of type \tilde{A}_n , K-theory **22** (2001), 251–269.
- [RS] G. Robertson and T. Steger, Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras, J. reine angew. Math. 513 (1999), 115–144.
- [S] J.-P. Serre, Arbres, amalgames, SL_2 , 3^e ed., Astérisque 46, Soc. Math. France, 1983.
- [Spa] R. J. Spatzier, An example of an amenable action from geometry, Ergod. Th. & Dynam. Sys. 7 (1987), 289–293.
- [Spi] J. Spielberg, Free product groups, Cuntz-Krieger algebras, and covariant maps, International J. Math. 2 (1991), 457-476.
- [Su] V. S. Sunder, An Invitation to von Neumann Algebras, Universitext, Springer-Verlag, New York 1987.
- [Z1] R. L. Zimmer, Hyperfinite factors and amenable ergodic actions, *Invent. Math.* 41 (1977), 23–31.
- [Z2] R. L. Zimmer, Ergodic Theory and Semisimple Groups, Birkhaüser, Boston 1985.

Received May 12, 2003

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEWCASTLE, NE1 7RU, U.K. *E-mail address*: a.g.robertson@newcastle.ac.uk