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Abstract. Let X be a finite connected graph, each of whose vertices has

degree at least three. The fundamental group Γ of X is a free group and

acts on the universal covering tree ∆ and on its boundary ∂∆, endowed

with a natural topology and Borel measure. The crossed product C∗-algebra

C(∂∆) o Γ depends only on the rank of Γ and is a Cuntz-Krieger algebra

whose structure is explicitly determined. The crossed product von Neumann

algebra does not possess this rigidity. If X is homogeneous of degree q + 1

then the von Neumann algebra L∞(∂∆)oΓ is the hyperfinite factor of type

IIIλ where λ = 1/q2 if X is bipartite, and λ = 1/q otherwise.

Introduction

Let ∆ be a locally finite tree whose automorphism group Aut(∆) is equipped
with the compact open topology. Let Γ be a discrete subgroup of Aut(∆) which
acts freely on ∆. That is, no element g ∈ Γ − {1} stabilizes any vertex or
geometric edge of ∆. Assume furthermore that Γ acts cocompactly on ∆, so that
the quotient Γ\∆ is a finite graph. Then Γ is a finitely generated free group and
is referred to as a free uniform tree lattice.

Conversely, if X is a finite connected graph and Γ is the fundamental group of
X, then Γ is a finitely generated free group and acts freely and cocompactly on
the universal covering tree ∆.

It is fruitful to think of the tree ∆ as a combinatorial analogue of the Poincaré
disc and Γ as an analogue of a Fuchsian group. The group Γ is the free group on γ
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generators, where γ = 1−χ(Γ\∆) and χ(Γ\∆) is the Euler-Poincaré characteristic
of the quotient graph. Let S be a free set of generators for Γ.

Define a {0, 1}-matrix A of order 2γ, with entries indexed by elements of
S ∪ S−1, by

(0.1) A(x, y) =

{

1 if y 6= x−1,

0 if y = x−1.

Notice that the matrix A depends only on the rank of the free group Γ.
The boundary ∂∆ of the tree ∆ is the set of equivalence classes of infinite

semi-geodesics in ∆, where equivalent semi-geodesics contain a common sub-semi-
geodesic. There is a natural compact totally disconnected topology on ∂∆ [S,
I.2.2]. Denote by C(∂∆) the algebra of continuous complex valued functions on
∂∆. The full crossed product algebra C(∂∆) o Γ is the universal C∗-algebra
generated by the commutative C∗-algebra C(∂∆) and the image of a unitary
representation π of Γ, satisfying the covariance relation

f(g−1ω) = π(g) · f · π(g)−1(ω)

for f ∈ C(∂∆), g ∈ Γ and ω ∈ ∂∆ [Ped, Chapter 7].

Theorem 1. Let ∆ be a locally finite tree whose vertices all have degree at least
three. Let Γ be a free uniform lattice in Aut(∆). Then the boundary C∗-algebra
A(Γ) = C(∂∆)o Γ depends only on the rank of Γ, and Γ is itself determined by
K0(A(Γ)). More precisely,

(1) A(Γ) is isomorphic to the simple Cuntz-Krieger algebra OA associated
with the matrix A;

(2) K0(A(Γ)) = Zγ ⊕ Z/(γ − 1)Z and the class of the identity [1] is the
generator of the summand Z/(γ − 1)Z. Moreover K1(A(Γ)) = Zγ .

The algebra A(Γ) satisfies the hypotheses of the classification theorem of
[K],[Ph]. Therefore the isomorphism class of the algebra A(Γ) is determined
by its K-theory together with the class of the identity in K0. The fact that the
class [1] in K0 has order equal to −χ(Γ\∆) strengthens the result of [Rob, Section
1] and provides an exact analogy with the Fuchsian case [AD].

Theorem 1 will be proved in Lemmas 1.4 and 2.1 below. The key point in the
proof is that the Cuntz-Krieger algebraOA is defined uniquely, up to isomorphism,
by a finite number of generators and relations [CK], and it is possible to identify
these explicitly in A(Γ). The original motivation for this result was the paper of
J. Spielberg [Spi], which showed that if Γ acts freely and transitively on the tree
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∆ then A(Γ) is a Cuntz-Krieger algebra. Higher rank analogues were studied in
[RS].

There is a natural Borel measure on ∂∆ and one may also consider the crossed
product von Neumann algebra L∞(∂∆) o Γ. This is the von Neumann algebra
arising from the classical group measure space construction of Murray and von
Neumann [Su]. In contrast to Theorem 1, the structure of this algebra depends
on the tree ∆ and on the action of Γ. For simplicity, only the case where ∆ is a
homogeneous tree is considered.

Theorem 2. Let ∆ be a homogeneous tree of degree q + 1, where q ≥ 1, and let
Γ be a free uniform lattice in Aut(∆). Then L∞(∂∆)oΓ is the hyperfinite factor
of type IIIλ where

λ =

{

1/q2 if the graph Γ\∆ is bipartite,

1/q otherwise.

Theorem 2 will be proved in Section 3. The result could equally well have
been stated as a classification of the measure theoretic boundary actions up to
orbit equivalence [HO]. The analogous result for a Fuchsian group Γ acting on
the circle is that L∞(S1)o Γ is the hyperfinite factor of type III1 [Spa].

The special case of Theorem 2 where Γ acts freely and transitively on the
vertices of ∆ was dealt with in [RR]. In that case q is odd, Γ is the free group
of rank q+1

2 , and L∞(∂∆)o Γ is the hyperfinite factor of type III1/q. We remark
that R. Okayasu [Ok] constructs similar algebras in a different way, but does not
explicitly compute the value of λ.

There is a type map τ defined on the vertices of ∆ and taking values in Z/2Z,
defined as follows. Fix a vertex v0 ∈ ∆ and let τ(v) = d(v0, v) (mod 2), where
d(u, v) denotes the usual graph distance between vertices of the tree. The type
map is independent of v0, up to addition of 1 (mod 2). It therefore induces a
canonical partition of the vertex set of ∆ into two classes, so that two vertices
are in the same class if and only if the distance between them is even. An
automorphism g ∈ Aut(∆) is said to be type preserving if, for every vertex v,
τ(gv) = τ(v). The graph Γ\∆ is bipartite if and only if the action of Γ is type
preserving.

Let F be a nonarchimedean local field with residue field of order q. The Bruhat-
Tits building associated with PGL(2,F) is a regular tree ∆ of degree q+ 1 whose
boundary may be identified with the projective line P1(F). If Γ is a torsion free
lattice in PGL(2,F) then Γ is necessarily a free group of rank γ ≥ 2, which acts
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freely and cocompactly on ∆ [S, Chapitres I.3.3, II.1.5], and the results apply to
the action of Γ on P1(F).

Let O denote the valuation ring of F. Then K = PGL(2,O) is an open maximal
compact subgroup of PGL(2,F) and the vertex set of ∆ may be identified with
the homogeneous space PGL(2,F)/K. If the Haar measure µ on PGL(2,F) is
normalized so that µ(K) = 1, then the covolume covol(Γ) is equal to the number
of vertices of X = Γ\∆ and γ − 1 = (q−1)

2 covol(Γ), (c.f. [S, Chapitre II.1.5]).
The action of Γ on ∆ is type preserving if and only if Γ is a subgroup of

PSL(2,F). Combining Theorem 1 and Theorem 2, in this special case, yields

Corollary 1. Let Γ be a torsion free lattice in PGL(2,F). Using the above nota-
tion, the boundary algebras are determined as follows.

(1) The C∗-algebra A(Γ) = C(P1(F))oΓ is the unique Cuntz-Krieger algebra
satisfying

(K0(A(Γ)), [1]) = (Zγ ⊕ Z/(γ − 1)Z, (0, 0, . . . , 0, 1)).

(2) The von Neumann algebra L∞(P1(F))oΓ is the hyperfinite factor of type
IIIλ where

λ =

{

1/q2 if Γ ⊂ PSL(2,F),

1/q otherwise.

1. The Cuntz-Krieger algebra

Let ∆ be a locally finite tree whose vertices all have degree at least three.
The results and terminology of [S] will be used extensively. The edges of ∆ are
directed edges and each geometric edge of ∆ corresponds to two directed edges d
and d. Let ∆0 denote the set of vertices and ∆1 the set of directed edges of ∆.

Suppose that Γ is a torsion free discrete group acting freely on ∆ : that is no
element g ∈ Γ−{1} stabilizes any vertex or geometric edge of ∆. Then Γ is a free
group [S, I.3.3] and there is an orientation on the edges which is invariant under
Γ [S, I.3.1]. Choose such an orientation. This orientation consists of a partition
∆1 = ∆1

+ t∆1
+ and a bijective involution d 7→ d : ∆1 → ∆1 which interchanges

the two components of ∆1. Each directed edge d has an origin o(d) ∈ ∆0 and a
terminal vertex t(d) ∈ ∆0 such that o(d) = t(d).

Assume that Γ acts cocompactly on ∆. This means that the quotient Γ\∆
is a finite connected graph with vertex set V = Γ\∆0 and directed edge set
E = E+ t E+ = Γ\∆1

+ t Γ\∆1
+. The Euler-Poincaré characteristic of the graph



BOUNDARY OPERATOR ALGEBRAS 917

is χ(Γ\∆) = n0 − n1 where n0 = #(V ) and n1 = #(E+), and Γ is the free group
on γ generators, where γ = 1− χ(Γ\∆).

Choose a tree T of representatives of ∆ (mod Γ); that is a lifting of a maximal
tree of Γ\∆. The tree T is finite, since Γ acts cocompactly on ∆. Let S be the
set of elements x ∈ Γ− {1} such that there exists an edge e ∈ ∆1

+ with o(e) ∈ T
and t(e) ∈ xT . Then S is a free set of generators for the free group Γ [S, I.3.3,
Théorème 4′] and γ = #S. It is clear that S−1 is the set of elements x ∈ Γ−{1}
such that there exists an edge e ∈ ∆1

− with o(e) ∈ T and t(e) ∈ xT . The map
g 7→ gT is a bijection from Γ onto the set of Γ translates of the tree T in ∆, and
these translates are pairwise disjoint [S, I.3.3, Proof of Théorème 4′]. Moreover
each vertex of ∆ lies in precisely one of the sets gT .

The boundary ∂∆ of the tree ∆ is the set of equivalence classes of infinite semi-
geodesics in ∆, where equivalent semi-geodesics agree except on finitely many
edges. Also ∂∆ has a natural compact totally disconnected topology [S, I.2.2].
The group Γ acts on ∂∆ and one can form the crossed product algebra C(∂∆)oΓ.
This is the universal C∗-algebra generated by the commutative C∗-algebra C(∂∆)
and the image of a unitary representation π of Γ, satisfying the covariance relation

(1.1) f(g−1ω) = π(g) · f · π(g)−1(ω)

for f ∈ C(∂∆), g ∈ Γ and ω ∈ ∂∆ [Ped]. This covariance relation implies that
for each clopen set E ⊂ ∂∆ we have

(1.2) χgE = π(g) · χE · π(g)−1.

In this equation, χE is a continuous function and is regarded as an element of
the crossed product algebra via the embedding C(∂∆) ⊂ C(∂∆) o Γ. In the
present setup the algebra C(∂∆)o Γ is seen a posteriori to be simple. Therefore
C(∂∆) o Γ coincides with the reduced crossed product algebra [Ped, 7.7.4] and
there is no need to distinguish between them notationally.

Fix a vertex O ∈ ∆ with O ∈ T . Each ω ∈ ∂∆ has a unique representative
semi-geodesic [O,ω) with initial vertex O. A basic open neighbourhood of ω ∈ ∂∆
consists of those ω′ ∈ ∂∆ such that [O,ω) ∩ [O,ω′) ⊃ [O, v] for some fixed v ∈
[O,ω). If g ∈ Γ− {1}, let Πg denote the set of all ω ∈ ∂∆ such that [O,ω) meets
the tree gT . Note that Πg is clopen, since T is finite. The characteristic function
pg of the set Πg is continuous and so lies in C(∂∆) ⊂ C(∂∆) o Γ. The identity
element 1 of C(∂∆)o Γ is the constant function defined by 1(ω) = 1, ω ∈ ∂∆.

Lemma 1.1. If x, y ∈ S ∪ S−1 with x 6= y−1 then
(a) π(x)px−1π(x−1) = 1− px ;
(b) π(x)pyπ(x−1) = pxy.
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Proof. (a) By (1.2), the element π(x)px−1π(x−1) is the characteristic function
of the set

Fx = {xω ; ω ∈ ∂∆, x−1T ∩ [O,ω) 6= ∅}
= {xω ; ω ∈ ∂∆, T ∩ [xO, xω) 6= ∅}
= {ω ∈ ∂∆ ; T ∩ [xO, ω) 6= ∅}.

Now there exists a unique edge e ∈ ∆1 such that o(e) ∈ T and t(e) ∈ xT . If x ∈ S
then e ∈ ∆1

+ and if x ∈ S−1 then e ∈ ∆1
+. Therefore

∂∆− Fx = {ω ∈ ∂∆ ; T ∩ [xO, ω) = ∅}
= {ω ∈ ∂∆ ; xT ∩ [O,ω) 6= ∅}
= Πx,

and the characteristic function of this set is px. See Figure 1.
The proof of (b) is an easy consequence of (1.2). �

•
xO

•
O

e

T

xT.........
.........
.........
.........
.........
.........
.........
......... ω........................ ................

Figure 1. A boundary point ω ∈ Πx.

Lemma 1.2. The family of projections P = {pg ; g ∈ Γ−{1}} generates C(∂∆)
as a C∗-algebra.

Proof. We show that P separates points of ∂∆. Let ω1, ω2 ∈ ∂∆ with ω1 6= ω2.
Let [O,ω1) ∩ [O,ω2) = [O, v], and choose u ∈ [v, ω1) such that d(v, u) is greater
than the diameter of T . See Figure 2.

Let g ∈ Γ be the unique element such that u ∈ gT . Then v /∈ gT and so
gT ∩ [O,ω2) = ∅. Therefore pg(ω1) = 1 and pg(ω2) = 0. �

Lemma 1.3. The sets of the form Πx, x ∈ S ∪ S−1, are pairwise disjoint and
their union is ∂∆.
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ω1

ω2
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v
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........................ ................

Figure 2. Separation of boundary points.

Proof. Given ω ∈ ∂∆, let v be the unique vertex of ∆ such that [O,ω) ∩ T =
[O, v]. Let v′ be the vertex of [O,ω) such that d(O, v′) = d(O, v) + 1. Then let x
be the unique element of S ∪S−1 such that v′ ∈ xT . See Figure 3. Then ω ∈ Πx.
The sets Πx, x ∈ S ∪ S−1, are pairwise disjoint since the sets xT , x ∈ S ∪ S−1,
are pairwise disjoint. �

• •

•

v

v′

O
T

xT.........
.........
.........
.........
.........
.........
.........
......... ω........................ ................

Figure 3. Definition of the set Πx containing ω.

For x ∈ S ∪ S−1 define a partial isometry

sx = π(x)(1− px−1) ∈ C(∂∆)o Γ.

Then, by Lemma 1.1,

sxs
∗
x = π(x)(1− px−1)π(x−1) = 1− π(x)px−1π(x−1) = px,

and
s∗xsx = 1− px−1 .

Therefore the elements sx satisfy the relations

(1.3) s∗xsx =
∑

y∈S∪S−1

y 6=x−1

sys
∗
y.
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Also, it follows from Lemma 1.3 that

(1.4) 1 =
∑

x∈S∪S−1

px =
∑

x∈S∪S−1

sxs
∗
x.

The relations (1.3),(1.4) are precisely the Cuntz-Krieger relations [CK] corre-
sponding to the {0, 1}-matrix A, with entries indexed by elements of S ∪ S−1,
defined by

(1.5) A(x, y) =

{

1 if y 6= x−1,

0 if y = x−1.

The matrix A depends only on the rank of the free group Γ. Also A is irreducible
and not a permutation matrix. It follows that the C∗-subalgebra A of C(∂∆)oΓ
generated by {sx ; x ∈ S∪S−1} is isomorphic to the simple Cuntz-Krieger algebra
OA [CK]. It remains to show that A is the whole of C(∂∆)o Γ.

Lemma 1.4. Under the above hypotheses, C(∂∆)o Γ = A.

Proof. By the discussion above, it is enough to show that

A ⊇ C(∂∆)o Γ.

First of all we show that A ⊇ π(Γ). It suffices to show that π(x) ∈ A for each
x ∈ S ∪ S−1. Now

s∗x−1 = (1− px)π(x) = π(x)px−1 ,

by Lemma 1.1. Therefore

(1.6) sx + s∗x−1 = π(x)(1− px−1) + π(x)px−1 = π(x).

It follows that π(x) ∈ A, as required.
Finally, we must show that A ⊇ C(∂∆). Since sxs∗x = px, it is certainly true

that px ∈ A for all x ∈ S ∪S−1. It follows by induction from Lemma 1.1(b), that
pg ∈ A for all g ∈ Γ. Lemma 1.2 now implies that A ⊇ C(∂∆). �

Example 1.5. Consider the graphs X, Y in Figure 4. Each of them has as
universal covering space the 3-homogeneous tree ∆. Each has fundamental group
the free group Γ on two generators. Consequently, each gives rise to an action of
Γ on ∆. These two actions cannot be conjugate via an element of Aut(∆) because
their quotients are not isomorphic as graphs.

Copies of the free group on two generators, acting with these actions on the
corresponding Bruhat-Tits tree ∆, can be found inside PGL(2,Q2), and also inside
PGL(2,F) for any local field F with residue field of order 2. To see this, note that
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Figure 4. The graphs X, Y .

by [FTN, Appendix, Proposition 5.5] PGL(2,Q2) contains cocompact lattices Γ1,
Γ2 which act freely and transitively on the vertex set ∆0 with

Γ1 = (Z/2Z) ∗ (Z/2Z) ∗ (Z/2Z) = 〈a, b, c | a2 = b2 = c2 = 1〉

Γ2 = Z ∗ (Z/2Z) = 〈x, d | d2 = 1〉.

The subgroups ΓX = 〈ab, ac〉 and ΓY = 〈x, dxd〉 are both isomorphic to the free
group on two generators. Moreover ΓX\∆ = X and ΓY \∆ = Y .

2. K-theory

Using the results of [C1], it is now easy to determine the K-theory of A(Γ).
For each x ∈ S∪S−1, the element px is a projection in A(Γ) and therefore defines
an equivalence class [px] in K0(A(Γ)). It is shown in [C1] that the classes [px]
generate K0(A(Γ)). Indeed, let L denote the abelian group with generating set
S ∪ S−1 and relations

(2.1) x =
∑

y∈S∪S−1

y 6=x−1

y for x ∈ S ∪ S−1.

The map x 7→ [px] extends to an isomorphism θ from L onto K0(A(Γ)) [C1].
Moreover θ(ε) = [1], where ε =

∑

x∈S∪S−1

x. Now it follows from (2.1) that, for

each x ∈ S,

(2.2) ε = x+ x−1.

Also
ε =

∑

x∈S

(x+ x−1) =
∑

x∈S

ε = γε.
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Thus

(2.3) (γ − 1)ε = 0.

The group L is therefore generated by S∪{ε}, and the relation (2.3) is satisfied.
On the other hand, starting with an abstract abelian group with generating set

S ∪ {ε} and the relations (2.2), one can make the formal definition x−1 = ε− x,
for each x ∈ S, and recover the relations (2.1) via

∑

x∈S

(x+ x−1) = γε = ε = x+ x−1 for x ∈ S.

This discussion proves

Lemma 2.1. K0(A(Γ)) ∼= Zγ ⊕ Z/(γ − 1)Z via an isomorphism which sends [1]
to the generator of Z/(γ − 1)Z.

It is known that the C∗-algebra A(Γ) is purely infinite, simple, unital and
nuclear [CK, C1, C2]. The classification theorem of [K] therefore shows that
A(Γ) is determined by its K-theory.

Remark 2.2. If Γ is a torsion free cocompact lattice in PSL(2,R), so that Γ
is the fundamental group of a Riemann surface of genus g, then it is known,
[AD, Proposition 2.9], [HN], that A(Γ) = C(P1(R)) o Γ is the unique p.i.s.u.n.
C∗-algebra whose K-theory is specified by

(K0(A(Γ)), [1]) = (Z2g+1 ⊕ Z/(2g − 2)Z, (0, 0, . . . , 0, 1)),

K1(A(Γ)) = Z2g+1.

The proof of this result in [AD] makes use of the Thom Isomorphism Theo-
rem of A. Connes (which has no p-adic analogue) to identify K∗(A(Γ)) with the
topological K-theory K∗(Γ\PSL(2,R)). It follows from the classification theorem
of [K, Ph] that A(Γ) is a Cuntz-Krieger algebra. However there is no apparent
dynamical reason for this fact. In contrast, the Cuntz-Krieger algebras of the
present article appear naturally and explicitly.

3. The measure theoretic result

The purpose of this section is to prove Theorem 2 of the Introduction. From
now on ∆ is a homogeneous tree of degree q+ 1, where q ≥ 1, and Γ is a free uni-
form lattice in Aut(∆). A similar Theorem could be stated for non-homogeneous
trees, and proved by the same methods. The boundary ∂∆ is endowed with a
natural Borel measure. In contrast to the topological result, measure theoretic
rigidity for the boundary action fails: the von Neumann algebra L∞(∂∆) o Γ
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depends on the tree ∆ and on the action of Γ. Before proceeding with the proof
here are some examples.

Example 3.1. Let Γ be the free group on two generators. Then Γ is the funda-
mental group of each of the graphs X, Y of Figure 4. The 3-homogeneous tree
∆3 is the universal covering of both these graphs and there are two correspond-
ing (free, cocompact) actions of Γ on ∆3. It follows from Theorem 2 that the
von Neumann algebra L∞(∂∆3)oΓ is the hyperfinite factor of type III1/4 in the
first case, since X is bipartite, and type III1/2 in the second case, since Y is not
bipartite.

The group Γ is also the fundamental group of a bouquet of two circles and the
corresponding action of Γ on the 4-homogeneous tree ∆4 produces the hyperfinite
factor of type III1/3. These three actions are the only free and cocompact actions
of the free group on two generators on a tree ∆ with no vertices of degree ≤ 2.

Remark 3.2. For each γ ≥ 2, it is easy to construct bipartite and non-bipartite
3-homogeneous graphs with fundamental group the free group on γ generators.
The corresponding boundary actions are of types III1/4 and III1/2 respectively.

We now proceed with the proof of Theorem 2. As before, fix a vertex O ∈ ∆. If
u, v are vertices in ∆0, let [u, v] be the directed geodesic path between them, with
origin u. The graph distance d(u, v) between u and v is the length of [u, v], where
each edge is assigned unit length. If v ∈ ∆0 let Ωv be the clopen set consisting of
all ω ∈ ∂∆ such that v ∈ [O,ω).

O

• •
v

Ωv..............
..............

..............
..............

........................................................................................
..............

..............
..............

........................................................................................
..............

..............
..............

................................................................................................
......................

.........
...........................................................................................................................................................

··
··
··
··
··
··
·

Figure 5. A subset Ωv of the boundary.

There is a natural Borel measure µ on ∂∆ defined by µ(Ωv) = q(1−n), where
n = d(O, v). The consistency of this definition is easily established, using the fact
that there are precisely q vertices w adjacent to v and not lying on the path [O, v].
The set Ωv is the disjoint union of the corresponding sets Ωw, each of which has
measure q−n. Note that the normalization of this measure is different from that
in [FTN]. This is immaterial for the result, but makes the formulae simpler. The
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measure µ clearly depends on the choice of the vertex O in ∆, but its measure
class does not.

Lemma 3.3. The action of Γ on ∂∆ is measure-theoretically free, i.e.

µ ({ω ∈ ∂∆ : gω = ω}) = 0

for all elements g ∈ Γ− {e}.

Proof. Let g ∈ Γ − {e}. Since the action of Γ on ∆ is free, g is hyperbolic;
that is g fixes no point of ∆. It follows that the set {ω ∈ ∂∆ : gω = ω} contains
exactly two elements and so certainly has measure zero. �

It is well known (and it is an easy consequence of Lemma 3.13 below) that the
action of Γ on ∂∆ is also ergodic. Therefore the von Neumann algebra L∞(∂∆)oΓ
is a factor. A convenient reference for this fact and for the classification of von
Neumann algebras is [Su]. Most of this section will be devoted to establishing
that this factor is of type IIIλ, for an appropriate value of λ. This will be done
by determining the ratio set of W. Krieger.

Definition 3.4. Let G be a countable group of automorphisms of a measure space
(Ω, µ). Define the ratio set r(G) to be the subset of [0,∞) such that if λ ≥ 0
then λ ∈ r(G) if and only if for every ε > 0 and measurable set A with µ(A) > 0,
there exists g ∈ G and a measurable set B such that µ(B) > 0, B ∪ gB ⊆ A and

∣

∣

∣

∣

dµ◦g

dµ
(ω)− λ

∣

∣

∣

∣

< ε

for all ω ∈ B.

Remark 3.5. The ratio set r(Γ) depends only on the quasi-equivalence class of
the measure µ. If the action of Γ is ergodic then r(Γ)− {0} is a subgroup of the
multiplicative group of positive real numbers [HO, §I-3, Lemma 14].

In order to compute r(Γ), for the action of Γ on ∂∆, the first step is to find the
possible values of the Radon-Nikodym derivatives dµ◦g

dµ (ω), for g ∈ Γ and ω ∈ ∂∆.
Fix g ∈ Γ and ω ∈ ∂∆. Choose an open set of the form Ωv with v ∈ [O,ω)

and d(O, v) > d(O, gO). Such sets Ωv form a neighbourhood base of ω. Then
v /∈ [O, gO] (Figure 6), and g−1Ωv = Ωg−1v. Since d(O, g−1v) = d(gO, v), we
have µ(g−1Ωv) = q−d(gO,v).

It follows that

(3.1)
dµ◦g

dµ
(ω) =

µ(g−1Ωv)
µ(Ωv)

=
q−d(gO,v)

q−d(O,v)
= qδ(g,ω)
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where δ(g, ω) = d(O, v) − d(gO, v). It is clear that δ(g, ω) depends only on g

and ω, not on the choice of v. In the language of [GH, Chapter 8], δ(g, ω) is the
Busemann function βω(O, gO) relating the horocycles centered at ω containing
O, gO respectively. For a fixed vertex v with d(O, v) > d(O, gO), the formula
(3.1) remains true for all ω ∈ Ωv.

We have therefore proved

Lemma 3.6. The values of the Radon-Nikodym derivatives dµ◦g
dµ (ω), for g ∈ Γ

and ω ∈ ∂∆, are given by
dµ◦g

dµ
(ω) = qδ(g,ω)

Moreover, for each g ∈ Γ, each of these values is attained on a nonempty open
subset of ∂∆.

These considerations show that

(3.2) r(Γ) ⊆ {qδ(g,ω) ; g ∈ Γ, ω ∈ ∂∆} ∪ {0}.

Since the action of Γ is ergodic, r(Γ)−{0} is a multiplicative group of positive
real numbers [HO, Lemma 14]. What must be done now is to show that the
inclusion in (3.2) is in fact an equality. Clearly r(Γ) 6= [0,∞). Therefore if we
can show that r(Γ) contains a number in the open interval (0, 1) then, by [HO,
Lemma 15], it must equal {λn ; n ∈ Z} ∪ {0}, for some λ ∈ (0, 1). By definition,
this will show that the action of Γ, and hence the associated von Neumann algebra
L∞(∂∆)o Γ), is of type IIIλ.

Before proceeding, it is useful to interpret the situation in terms of the quotient
graph X = Γ\∆. In a connected graph X a proper path is a path which has no
backtracking. That is, no edge [a, b] in the path is immediately followed by its
inverse [b, a]. A cycle is a closed path, which is said to be based at its initial
vertex (= final vertex). Note that a proper cycle can have a tail beginning at
its base vertex, but that it can have no other tail (Figure 7). Every proper cycle
determines a unique tail-less cycle which is obtained by removing the tail. A
circuit is a cycle which does not pass more than once through any vertex. There
is clearly an upper bound for the possible length of a circuit in X.



926 GUYAN ROBERTSON

v0
• •

.............................
.............

..........
.........
.........
........
........
........
........
.........
..........

...........
................

............................................................................................................................................................................................

............................................. ................
............................................................. ........................

................

Figure 7. A proper cycle with tail, based at v0.

If g ∈ Γ, then the geodesic path [O, gO] in ∆ projects to a proper cycle C in
the quotient graph X = Γ\∆ based at v0 = ΓO. Moreover d(O, gO) is equal to
the length `(C) of that cycle.

Conversely if C is a proper cycle based at v0 in the graph X then the homotopy
class of C is an element g of the fundamental group Γ of X. The cycle C lifts
to a unique proper path in ∆ with initial vertex O, namely [O, gO], and `(C) =
d(O, gO).

In order to prove equality in (3.2) we need the auxiliary concept of the full
group.

Definition 3.7. Given a group Γ acting on a measure space (Ω, µ), we define the
full group, [Γ], of Γ by

[Γ] = {T ∈ Aut(Ω) : Tω ∈ Γω for almost every ω ∈ Ω} .

Remark 3.8. The ratio set r(Γ) of a countable subgroup Γ of Aut(Ω) depends
only on the full group in the sense that r(Γ1) = r(Γ2) whenever [Γ1] = [Γ2].

The basis for the proof of equality in (3.2) is the following well known result.
It is stated without proof in [HO, I.3].

Lemma 3.9. Let Γ be a countable group acting ergodically on a measure space Ω.
Suppose that the full group [Γ] contains an ergodic measure preserving subgroup
H.

If r ∈ (0,∞), g ∈ Γ and the set D = {ω ∈ Ω ; dµ◦g
dµ (ω) = r} has positive

measure, then r ∈ r(Γ).

Proof. Let A be a measurable subset of Ω with µ(A) > 0. By the ergodicity of
H, there exist h1, h2 ∈ H such that the set B = {ω ∈ A : h1ω ∈ D and h2gh1ω ∈
A} has positive measure.

Let Γ′ denote the group generated by h1, h2 and Γ. By Remark 3.8, r(Γ′) =
r(Γ).
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Let t = h2gh1 ∈ Γ′. By construction, B ∪ tB ⊆ A. Moreover, since H is
measure-preserving,

dµ◦t

dµ
(ω) =

dµ◦g

dµ
(h1ω) = r for all ω ∈ B,

since h1ω ∈ D. This proves that r ∈ r(Γ′) = r(Γ), as required. �

In view of Lemma 3.6, all that is now needed in the present setup is the
construction of a subgroup H. This will require the following result.

Lemma 3.10. Let H be subgroup of Aut(∆). Suppose that the induced action
of H on ∂∆ is measure preserving and that, for each positive integer n, H acts
transitively on the collection of sets

{Ωv : v ∈ ∆, d(O, v) = n} .

Then H acts ergodically on ∂∆.

Proof. Suppose that S0 ⊆ ∂∆ is a Borel set which is invariant under H and such
that µ(S0) > 0. We show that this implies µ(∂∆− S0) = 0, thereby establishing
the ergodicity of the action.

Define a new measure λ on ∂∆ by λ(S) = µ(S∩S0), for each Borel set S ⊆ ∂∆.
Now, for each k ∈ H,

λ(kS) = µ(kS ∩ S0) = µ(S ∩ k−1S0)

≤ µ(S ∩ S0) + µ(S ∩ (k−1S0 − S0))

= µ(S ∩ S0)

= λ(S),

and therefore λ is H-invariant.
Fix a positive integer n. The transitivity hypothesis on the action of H implies

that
λ(Ωv) = λ(Ωw)

whenever v, w ∈ ∆, d(O, v) = d(O,w) = n. Since ∂∆ is the union of q(n−1)(q+1)
disjoint sets {Ωv; d(O, v) = n}, each of which has equal measure with respect to
λ, we deduce that, if d(O, v) = n,

λ(Ωv) =
λ(∂∆)

q(n−1)(q + 1)
=

µ(S0)
q(n−1)(q + 1)

.

Thus λ(Ωv) = cµ(Ωv) for every v ∈ ∆, where c = µ(S0)
(q+1) > 0. Since the sets Ωv,

v ∈ ∆, generate the Borel σ-algebra, we deduce that λ(S) = cµ(S) for each Borel



928 GUYAN ROBERTSON

set S. Therefore

µ(∂∆− S0) = c−1λ(∂∆− S0) = c−1µ((∂∆− S0) ∩ S0) = 0,

thus proving ergodicity. �

It is now convenient to introduce some new terminology.

Definition 3.11. Let X be a finite connected graph. Let v0 be a vertex of X
and let K ≥ 0. Say that (X, v0) has property L(K) if for any two proper paths
P1, P2 having the same length n and the same initial vertex v0, there exists k ≥ 0,
with k ≤ K, and proper cycles C1, C2 based at v0 such that

(a) The initial segment of Ci is Pi, i = 1, 2;
(b) the cycles Ci have the same length n+ k, i = 1, 2.

Property L(K) says that any two proper paths of the same length starting at
v0 can be completed to proper cycles of the same length, with a uniform bound
on how much must be added to each path.

Lemma 3.12. Let X be a finite connected graph whose vertices all have degree
at least three and let v0 be a vertex of X. Then (X, v0) has property L(K) for
some K ≥ 0.

The proof of this technical result is deferred to Section 4. We can now prove
that the action of Γ on ∂∆ satisfies the hypotheses of Lemma 3.9.

Lemma 3.13. Let ∆ be a homogeneous tree of degree q + 1, where q ≥ 1 and let
Γ be a free uniform lattice in Aut(∆). Then, relative to the action of Γ on ∂∆,
the full group [Γ] contains an ergodic measure preserving subgroup H.

Proof. By Lemma 3.10, it suffices to prove the following assertion for any u, v ∈
∆0, with d(O, u) = d(O, v) = n.

(?) There exists a measure preserving automorphism φ ∈ [Γ] such that φ is
almost everywhere a bijection from Ωu onto Ωv.

The geodesic paths [O, u], [O, v] in ∆ project to proper paths Pu, Pv in X with
initial vertex v0 = ΓO and length n. By hypothesis, the graph X has property
L(K) for some constant K ≥ 0, relative to v0. Therefore there exists an integer
k ≤ K and proper cycles Cu, Cv based at v0 which have initial segments Pu, Pv
respectively and `(Pu) = `(Pv) = n+ k.

The cycles Cu, Cv lift to unique geodesic paths [O, u∗], [O, v∗] in ∆ with initial
segments [O, u], [O, v] respectively and Γu∗ = Γv∗ = ΓO = v0. Since the vertices
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of X all have degree at least three, we can choose an edge e with o(e) = v0 in X

such that e meets the terminal edges of Cu and Cv only at v0. There are unique
vertices u1, v1 ∈ ∆1 such that e = Γ[u∗, u1] = Γ[v∗, v1]. Therefore there exists an
element g ∈ Γ such that g[u∗, u1] = [v∗, v1]. The restriction of the action of g to
Ωu1 = {ω ∈ ∂∆; u1 ∈ [u∗, ω)} defines a measure preserving bijection from Ωu1

onto Ωv1 . Define φ(ω) = g(ω) for ω ∈ Ωu1 .
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Figure 8. Definition of φ on Ωu1 .

The set Ωu is a disjoint union of qk+1 sets of the form Ωw where d(O,w) =
n+k+1. Each such set therefore has measure µ(Ωw) = q−k−1µ(Ωu). The map φ
has been defined only on the set Ωw with w = u1. Therefore φ has not yet been
defined on a proportion (1−q−k−1) of the set Ωu. Since k ≤ K, the measure of the
subset of Ωu for which φ has not yet been defined is at most (1− q−K−1)µ(Ωu).
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Figure 9. Second step in the definition of φ.

Now repeat the process on each of the qk+1 sets Ωw ⊂ Ωu, with d(O,w) =
n + k + 1, on which φ has not yet been defined. In the preceding argument,
replace Ωu by Ωw and Ωv by an appropriate subset Ωz of Ωv disjoint from Ωv1 .
Note that there is a large amount of arbitrariness in the choice of which Ωz is to
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be paired with a particular Ωw. In each such Ωw, φ is then defined on a subset
whose complement in Ωw has measure at most (1− q−K−1)µ(Ωw).

Thus after two steps, φ has been defined except on a set of measure at most
(1 − q−K−1)2µ(Ωu). Continue in this way. After j steps, φ has been defined
except on a set of measure at most (1− q−K−1)jµ(Ωu).

Since (1 − q−K−1)j → 0 as j → ∞, the measure preserving map φ is defined
almost everywhere on Ωu, with φ(ω) ∈ Γω for almost all ω ∈ Ωu. Finally define
φ to be the inverse of the map already constructed on Ωv and the identity map
on ∂∆− (Ωu ∪ Ωv). The proof of (?) is complete. �

It follows from Lemmas 3.6, 3.9, and 3.13 that we have equality in (3.2). That
is

(3.3) r(Γ) = {qδ(g,ω) ; g ∈ Γ, ω ∈ ∂∆} ∪ {0}.

The final step is to identify this set more precisely. Recall that there is a
canonical bipartition of the vertex set of ∆, such that two vertices have the same
type if and only if the distance between them is even. The graph X = Γ\∆
is bipartite if and only if the action of Γ is type preserving. Recall also that
δ(g, ω) = d(O, v)− d(gO, v), for any vertex v ∈ [O,ω) ∩ [gO, ω).

Lemma 3.14. Let ∆ be a locally finite tree whose vertices all have degree at least
three. Let Γ be a free uniform lattice in Aut(∆) and let X = Γ\∆. Then

{δ(g, ω) ; g ∈ Γ, ω ∈ ∂∆} =

{

2Z if X is bipartite,

Z otherwise.

Proof. Suppose first of all that X is not bipartite. Then X contains a circuit
of odd length. Connecting this circuit to v0 by a minimal path and going around
the circuit an appropriate number of times shows that X contains proper cycles
based at v0 of arbitrarily large even and odd lengths.

It follows that we may choose g ∈ Γ such that d(O, gO) = 2n, for arbitrarily
large n. If k ∈ Z,with−n ≤ k ≤ n, let a ∈ [O, gO] with d(O, a) = n+k, d(gO, a) =
n − k. Choose ω ∈ ∂∆ with [O,ω) ∩ [gO, ω) = [a, ω). This is possible since the
vertex a has degree at least three (Figure 10). Then δ(g, ω) = n+k−(n−k) = 2k.

We may also choose g ∈ Γ such that d(O, gO) = 2n + 1 for arbitrarily large
n. If k ∈ Z,with −n ≤ k ≤ n, choose a ∈ [O, gO] with d(O, a) = n + k,
d(gO, a) = n + 1 − k. Choose ω ∈ ∂∆ with [O,ω) ∩ [gO, ω) = [a, ω). Then
δ(g, ω) = 2k − 1.

It follows that the range of the function δ(g, ω) is Z.
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Now suppose that X is bipartite. Then the graph X contains proper cycles of
arbitrarily large even length only. The preceding argument shows that the range
of the function δ(g, ω) is 2Z. �

Assume the hypotheses of Theorem 2. Then by (3.3) and Lemma 3.14, the
action of Γ on ∂∆ is of type III1/q2 , if X is bipartite and of type III1/q otherwise.

In order to complete the proof of Theorem 2, it only remains to prove that the
factor L∞(∂∆)o Γ is hyperfinite. By [Z1], this follows from the next result.

Proposition 3.15. The action of Γ on ∂∆ is amenable.

Proof. The group G = Aut(∆) acts transitively on ∂∆ [FTN, Chapter I.8]. Fix
an element ω ∈ ∂∆, and let Gω = {g ∈ G : gω = ω}. Then ∂∆ ∼= G/Gω, and µ

corresponds to a measure in the unique quasi-invariant measure class of G/Gω.
The group Gω is amenable by [FTN, Theorem 8.3]. It follows from [Z2, Corollary
4.3.7] that the action of Γ on G/Gω is amenable. �

4. Appendix: Proof of a Technical Lemma

This section contains a proof of the technical result, Lemma 3.12. During the
course of the proof it will be necessary to concatenate paths. A difficulty arises
because two proper paths cannot necessarily be concatenated to produce a proper
path. The product path may backtrack at the initial edge of the second path.
This problem is overcome by introducing a detour around a proper cycle attached
at the initial vertex of the second path. The following auxiliary Lemma will be
used to do this.

Lemma 4.1. (Attaching a Loop to an Edge.) Let X be a finite connected
graph whose vertices all have degree at least three. Let e be an edge of X. Then
there is a proper cycle L based at the terminal vertex t(e), not passing through
e and having length `(L) ≤ δ + λ, where δ is the diameter of X and λ is the
maximum length of a circuit in X.
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Proof. The edge e is contained in a maximal tree T in X. Every vertex of X is
a vertex of T . Let P be a maximal proper (geodesic) path in T with initial vertex
o(e) and initial edge e. Let v be the terminal vertex of P and f the terminal edge.
Then v is an endpoint of T . The vertex v has degree at least three. It follows
that there are two edges in X other than f with initial vertex v. These two edges
may both have terminal vertex v (in fact one may be the opposite of the other) or
else one or both of them may end at a vertex other than v. However in all cases
we may use one or both of these edges together with edges in T to construct a
circuit L0 based at v and not passing through e. The required proper cycle L can
the be constructed from P ∪ L0. �

Proof of Lemma 3.12. Let δ be the diameter of X and λ the maximum length
of a circuit in X. We show that property L(K) is satisfied with K = 10+10δ+6λ.

Let P1, P2 be proper paths in X having the same length n and the same initial
vertex v0. Let p1, p2 be the terminal vertices of P1, P2 respectively. We must
construct proper cycles C1, C2 based at v0 satisfying the conditions of Definition
3.11.

Choose once and for all a path [p1, p2] of shortest length between p1 and p2.
There are two separate cases to consider.

Case 1. The length of [p1, p2] is even. Denote this length by 2s where s ≥ 0 and
let p0 be the midpoint of [p1, p2]. If s = 0 then a simpler argument will apply,
and produce a smaller bound for the lengths of C1, C2, so we assume that s > 0.

Choose a path R of minimal length from p0 to v0. The cycles C1, C2 will
be constructed from portions the paths P1, P2, R, [p1, p2], with loops attached to
avoid backtracking. Refer to Figure 11.

Choose an edge e1 with o(e1) = p1 such that e1 is not the initial edge of [p1, p2]
and e1 is not the final edge of P1. Choose an edge e2 with o(e2) = p2 such that
e2 is not the initial edge of [p2, p1] and e2 is not the final edge of P2. For i = 1, 2,
attach a proper cycle Li at t(ei), as in Lemma 4.1.

Assume that the initial edge of R does not meet either of the edges of [p1, p2]
which contain p0. Let C1 be the proper cycle based at v0 obtained by passing
through the following sequence of paths and edges in the order indicated.

P1 → e1 → L1 → e1 → [p1, p2]→ e2 → L2 → e2 → [p2, p0]→ R

Similarly, let C2 be obtained from

P2 → e2 → L2 → e2 → [p2, p1]→ e1 → L1 → e1 → [p1, p0]→ R
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The proper cycles C1, C2 have initial segments P1, P2 respectively and have the
same length n+k, where k = 4+`(L1)+`(L2)+3s+`(R) ≤ 4+2(δ+λ)+ 3

2δ+δ <
4 + 5δ + 2λ.

Now assume that the initial edge of R meets an edge of [p1, p2] which contains
p0. This is precisely the situation illustrated in Figure 11. The cycles C1, C2

described above will no longer both be proper, since there will be a backtrack for
one of them at the first edge of R. In order to avoid this, choose an edge e0 with
o(e0) = p0 such that e0 does not meet either of the edges of [p1, p2] containing
p0. Attach a proper cycle L0 at t(e0), as in Lemma 4.1. Modify the cycles C1, C2

above so that the final part of each becomes

. . . , p0]→ e0 → L0 → e0 → R

The proper cycles C1, C2 now have the same length n+ k, where k < 6 + 6δ+ 3λ.

................................................................................................................................................................................
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Figure 11. Constructing proper cycles of the same length.

Case 2. The length of [p1, p2] is odd. Denote this length by 2s+1 where s ≥ 0 and
let p0 be the vertex of [p1, p2] with d(p0, p1) = s, d(p0, p2) = s+ 1. The argument
that follows will be slightly different, but simpler, if s = 0. We therefore again
assume that s > 0.

Exactly the same argument as in Case 1 shows that there are proper cycles
C1, C2 based at v0 and with initial segments P1, P2 respectively. The only differ-
ence is that `(C1) = n+ k + 1, `(C2) = n+ k, where k < 6 + 6δ + 3λ.

The cycles will be modified to have the same length by adding to the end of
each an appropriate proper cycle based at v0. The (possibly improper) cycle

P1 → [p1, p2]→ P 2

has odd length. Deleting appropriate parts of this cycle shows that X contains a
circuit C0 of odd length 2t+ 1. (In other words, the graph X is not bipartite.)
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Choose a path S1 of minimal length from v0 to C0. Let v1 be the terminal
vertex of S1. The circuit C0 is the union of two proper paths C+

0 , C−0 with lengths
t + 1, t respectively and initial vertex v1. Let v2 be the terminal vertex of the
paths C+

0 , C−0 . Choose a path S2 of minimal length from v2 to v1. Add to the
end of each of the cycles C1, C2 a cycle based at v0, as indicated below

C1 → S1 → C−0 → S2

C2 → S1 → C+
0 → S2

The resulting cycles have the same length, namely n+ k+ 1 + t+ `(S1) + `(S2) =
n+ k′, where k′ ≤ k + λ+ 2δ < 6 + 8δ + 4λ. Either or both of these cycles may
have backtracking at v0 or at v2 (but not at v1). If this happens add an edge
(and its reverse) and adjoin a loop to both cycles at the relevant vertex as in
Lemma 4.1. The resulting cycles are proper (i.e. have no backtracking) and have
the same length n+ k′′, where k′′ ≤ 10 + 10δ + 6λ. �
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[FTN] A. Figà-Talamanca and C. Nebbia, Harmonic Analysis and Representation Theory for

Groups Acting on Homogeneous Trees, LMS Lecture Note Series, 182, Cambridge Uni-

versity Press, 1991.

[GH] E. Ghys and P. de la Harpe (editors), Sur les Groupes Hyperboliques d’après Mikhael
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