ABELIAN SUBGROUP STRUCTURE OF SQUARE COMPLEX GROUPS AND ARITHMETIC OF QUATERNIONS

DIEGO RATTAGGI AND GUYAN ROBERTSON

1. Introduction

A square complex is a 2-complex formed by gluing squares together. This article is concerned with the fundamental group Γ of certain square complexes of nonpositive curvature, related to quaternion algebras. The abelian subgroup structure of Γ is studied in some detail. Before outlining the results, it is necessary to describe the construction of Γ .

In [Moz, Section 3], there is constructed a lattice subgroup $\Gamma = \Gamma_{p,l}$ of $G = PGL_2(\mathbb{Q}_p) \times PGL_2(\mathbb{Q}_l)$, where $p, l \equiv 1 \pmod{4}$ are two distinct primes. This restriction was made because -1 has a square root in \mathbb{Q}_p if and only if $p \equiv 1 \pmod{4}$, but the construction of Γ is generalized in [Rat, Chapter 3] to all pairs (p, l) of distinct odd primes.

The affine building Δ of G is a product of two homogeneous trees of degrees (p+1) and (l+1) respectively. The group Γ is a finitely presented torsion free group which acts freely and transitively on the vertices of Δ , with a finite square complex as quotient Δ/Γ .

Here is how Γ is constructed. Let

$$\mathbb{H}(\mathbb{Z}) = \{ x = x_0 + x_1 i + x_2 j + x_3 k; x_0, x_1, x_2, x_3 \in \mathbb{Z} \}$$

be the ring of integer quaternions where $i^2=j^2=k^2=-1$, ij=-ji=k. Let $\overline{x}=x_0-x_1i-x_2j-x_3k$ be the conjugate of x, and $|x|^2=x\overline{x}=x_0^2+x_1^2+x_2^2+x_3^2$ its norm.

Let $c_p, d_p \in \mathbb{Q}_p$ and $c_l, d_l \in \mathbb{Q}_l$ be elements such that $c_p^2 + d_p^2 + 1 = 0$, $c_l^2 + d_l^2 + 1 = 0$. Such elements exist by Hensel's Lemma and [DSV, Proposition 2.5.3]. We can take $d_p = 0$, if $p \equiv 1 \pmod{4}$, and $d_l = 0$, if $l \equiv 1 \pmod{4}$. Define

$$\psi: \mathbb{H}(\mathbb{Z}) - \{0\} \to PGL_2(\mathbb{Q}_p) \times PGL_2(\mathbb{Q}_l)$$

Date: January 8, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 11R52, 52C20, 20E08, 20E07. Secondary: 20E42.

by

(1)
$$\psi(x) = \begin{pmatrix} x_0 + x_1 c_p + x_3 d_p & -x_1 d_p + x_2 + x_3 c_p \\ -x_1 d_p - x_2 + x_3 c_p & x_0 - x_1 c_p - x_3 d_p \end{pmatrix},$$
$$\begin{pmatrix} x_0 + x_1 c_l + x_3 d_l & -x_1 d_l + x_2 + x_3 c_l \\ -x_1 d_l - x_2 + x_3 c_l & x_0 - x_1 c_l - x_3 d_l \end{pmatrix}.$$

This formula abuses notation by identifying an element of $PGL_2(\mathbb{Q}_p) \times PGL_2(\mathbb{Q}_l)$ with its representative in $GL_2(\mathbb{Q}_p) \times GL_2(\mathbb{Q}_l)$.

Note that $\psi(xy) = \psi(x)\psi(y)$, $\psi(\lambda x) = \psi(x)$, if $\lambda \in \mathbb{Z} - \{0\}$, and $\psi(x)^{-1} = \psi(\overline{x})$. Moreover the inverse image under ψ of the identity element in $PGL_2(\mathbb{Q}_p) \times PGL_2(\mathbb{Q}_l)$ is precisely

$$\mathbb{Z} - \{0\} = \{x \in \mathbb{H}(\mathbb{Z}); x_0 \neq 0, x_1 = x_2 = x_3 = 0\}.$$

Let

$$\tilde{\Gamma} = \{ x \in \mathbb{H}(\mathbb{Z}) ; |x|^2 = p^r l^s, r, s \ge 0 ;$$

$$x_0 \text{ odd}, x_1, x_2, x_3 \text{ even, if } |x|^2 \equiv 1 \pmod{4} ;$$

$$x_1 \text{ even, } x_0, x_2, x_3 \text{ odd, if } |x|^2 \equiv 3 \pmod{4} \}.$$

Then $\Gamma = \psi(\tilde{\Gamma})$ is a torsion free cocompact lattice in G. Let

$$\tilde{A} = \{x \in \tilde{\Gamma}; x_0 > 0, |x|^2 = p\}, \quad \tilde{B} = \{y \in \tilde{\Gamma}; y_0 > 0, |y|^2 = l\}.$$

Then \tilde{A} contains p+1 elements and \tilde{B} contains l+1 elements, by a result of Jacobi [Lub, Theorem 2.1.8]. The images $A=\psi(\tilde{A}), B=\psi(\tilde{B})$ of \tilde{A}, \tilde{B} in Γ generate free groups $\Gamma_p=\langle A\rangle=\langle a_1,\ldots,a_{\frac{p+1}{2}}\rangle$, $\Gamma_l=\langle B\rangle=\langle b_1,\ldots,b_{\frac{l+1}{2}}\rangle$ of ranks (p+1)/2, (l+1)/2 respectively and Γ itself is generated by $A\cup B$. The 1-skeleton of Δ is the Cayley graph of Γ relative to this set of generators. The group Γ has a finite presentation with generators $\{a_1,\ldots,a_{\frac{p+1}{2}}\}\cup\{b_1,\ldots,b_{\frac{l+1}{2}}\}$ and (p+1)(l+1)/4 relations of the form $ab=\tilde{b}\tilde{a}$, where $a,\tilde{a}\in A,b,\tilde{b}\in B$. In fact, given any $a\in A,b\in B$, there are unique elements $\tilde{a}\in A,\tilde{b}\in B$ such that $ab=\tilde{b}\tilde{a}$. This follows from a special case of Dickson's factorization property for integer quaternions ([Dic, Theorem 8]).

Proposition 1.1. ([Dic]) Let $x \in \tilde{\Gamma}$ such that $|x|^2 = pl$. Then there are uniquely determined $z, \tilde{z} \in \tilde{A}, y, \tilde{y} \in \tilde{B}$ such that $zy, \tilde{y}\tilde{z} = \pm x$.

It is worth noting that $zy \neq \tilde{y}\tilde{z}$ in general, as demonstrated by the following example.

Example 1.2. Let
$$p = 3$$
, $l = 5$ and $x = 1 + 2i + j + 3k$. Then $(1 - j + k)(1 + 2i) = x$ and $(1 - 2k)(1 - j - k) = -x$.

We can now outline the contents of this article. A fundamental fact, upon which much else depends, is that Γ is *commutative transitive*, in the sense that the relation of commutativity is transitive on non-trivial elements of Γ . In particular Γ cannot contain a subgroup isomorphic

to $F_2 \times F_2$, where F_2 denotes the free group of rank 2. Furthermore, Γ is a CSA-group, i.e. all its maximal abelian subgroups Γ_0 satisfy $g\Gamma_0g^{-1}\cap\Gamma_0=\{1\}$ for all $g\in\Gamma-\Gamma_0$.

Every nontrivial element $\gamma \in \Gamma$ is the image under ψ of a quaternion of the form $x_0 + z_0(c_1i + c_2j + c_3k)$ where $c_1, c_2, c_3 \in \mathbb{Z}$ are relatively prime. The element γ is contained in a unique maximal abelian subgroup Γ_0 and the integer $n = n(\Gamma_0) = c_1^2 + c_2^2 + c_3^2$ depends only on Γ_0 rather than the particular choice of γ . We define a class of maximal abelian subgroups of Γ isomorphic to \mathbb{Z}^2 , which we call period subgroups, and which are characterized by the condition $\left(\frac{-n}{p}\right) = \left(\frac{-n}{l}\right) = 1$. Every maximal abelian subgroup $\Gamma_0 \cong \mathbb{Z}^2$ is conjugate in Γ to a period subgroup and, as the name suggests, period subgroups are closely related to periodic tilings of the plane. On the other hand, some maximal abelian subgroups of Γ are isomorphic to \mathbb{Z} , and we show how to construct these. Several explicit examples and counterexamples are included.

2. The CSA property

Let $\tau : \mathbb{H}(\mathbb{Q}) - \mathbb{Q} \to \mathbb{P}^2(\mathbb{Q})$ be defined by $\tau(x) = \mathbb{Q}(x_1, x_2, x_3)$, which is a line in \mathbb{Q}^3 through (0,0,0). By [Moz, Section 3], two quaternions $x,y \in \mathbb{H}(\mathbb{Q}) - \mathbb{Q}$ commute if and only if $\tau(x) = \tau(y)$. This directly implies the following lemma, which in turn has Proposition 2.2 as a consequence, see also [Rat, Chapter 3].

Lemma 2.1. Elements $x, y \in \tilde{\Gamma}$ commute if and only if their images $\psi(x), \psi(y) \in \Gamma$ commute.

A group is said to be *commutative transitive* if the relation of commutativity is transitive on its non-trivial elements.

Proposition 2.2. The group Γ is commutative transitive.

Wise has asked in [Wis, Problem 10.9] whether the fundamental group of any nonelementary complete square complex contains a subgroup isomorphic to $F_2 \times F_2$. We can give a negative answer of this question, since our group Γ belongs to this class of fundamental groups, and it is a direct consequence of Proposition 2.2 that Γ does not contain a $F_2 \times F_2$ subgroup. In fact, since Γ is torsion free, and a (free) abelian subgroup of Γ has rank ≤ 2 [Pra, Lemma 3.2], we have a more precise result.

Corollary 2.3. The only nontrivial direct product subgroup of Γ is $\mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2$.

If $\gamma = \psi(x) \in \Gamma - \{1\}$ then the centralizer $\Gamma_0 = Z_{\Gamma}(\gamma)$ is the unique maximal abelian subgroup of Γ containing γ . Moreover Γ_0 is determined by $\tau(x)$, independent of the choice of x.

As described in [MR, Remark 4], a group is commutative transitive if and only if the centralizer of any non-trivial element is abelian. A third equivalent condition (called SA-property in [MR]) is proved for Γ in the following lemma. It is used to show in Proposition 2.6 that Γ is a CSA-group, i.e. all its maximal abelian subgroups are malnormal, where a subgroup Γ_0 of Γ is malnormal (or conjugate separated) if $g\Gamma_0g^{-1}\cap\Gamma_0=\{1\}$ for all $g\in\Gamma-\Gamma_0$. Any CSA-group is commutative transitive, but the converse is not true, see [MR].

Lemma 2.4. If Γ_1 and Γ_2 are maximal abelian subgroups of Γ and $\Gamma_1 \neq \Gamma_2$ then $\Gamma_1 \cap \Gamma_2 = \{1\}$.

Proof. Suppose that there exists a nontrivial element $\gamma \in \Gamma_1 \cap \Gamma_2$. If $\gamma_i \in \Gamma_i - \{1\}$, i = 1, 2, then $\gamma \gamma_1 = \gamma_1 \gamma$ and $\gamma \gamma_2 = \gamma_2 \gamma$ which implies $\gamma_1 \gamma_2 = \gamma_2 \gamma_1$ by Proposition 2.2. Since Γ_1 , Γ_2 are maximal abelian, $\Gamma_1 = \Gamma_2$.

It is well known that there is a (surjective) homomorphism

$$\theta: \mathbb{H}(\mathbb{Q}) - \{0\} \to \mathrm{SO}_3(\mathbb{Q})$$

defined by $\theta(y)x = yxy^{-1}$, for $x = x_1i + x_2j + x_3k \in \mathbb{H}(\mathbb{Q})$ identified with $(x_1, x_2, x_3) \in \mathbb{Q}^3$.

If $y \in \mathbb{H}(\mathbb{Q}) - \mathbb{Q}$ then the axis of rotation of $\theta(y)$ is $\tau(y)$. This is an immediate consequence of the fact that

$$\theta(y)(y - y_0) = y(y - y_0)y^{-1} = y - y_0.$$

Moreover the angle of rotation is 2α where $\cos \alpha = \frac{y_0}{|y|}$ [Vig, Chapitre I, §3]. In particular, the angle of rotation is a multiple of π only if $y_0 = 0$.

Lemma 2.5. (a) Suppose that $x, y \in \mathbb{H}(\mathbb{Q}) - \mathbb{Q}$ and $y_0 \neq 0$. Then yxy^{-1} commutes with x if and only if y commutes with x.

(b) If $a, b \in \Gamma$, then bab^{-1} commutes with a if and only if b commutes with a.

Proof. (a) If yxy^{-1} commutes with x, then the rotations $\theta(yxy^{-1})$ and $\theta(x)$ have the same axis. However, the axis of $\theta(yxy^{-1}) = \theta(y)\theta(x)\theta(y)^{-1}$ is $\theta(y)\tau(x)$. Therefore $\theta(y)\tau(x) = \tau(x)$: in other words $\theta(y)(x_1, x_2, x_3) = \pm(x_1, x_2, x_3)$. Now if $\theta(y)(x_1, x_2, x_3) = -(x_1, x_2, x_3)$ then $\theta(y)$ is a rotation of angle π , with axis perpendicular to (x_1, x_2, x_3) . This cannot happen since $y_0 \neq 0$. Therefore $\theta(y)$ has axis $\tau(x)$. That is $\tau(y) = \tau(x)$, and consequently y commutes with x. The converse is clear.

(b) If a = 1 or b = 1, the statement is obvious. If $a, b \in \Gamma - \{1\}$ and bab^{-1} commutes with a, then representatives x, y for a, b in $\mathbb{H}(\mathbb{Q}) - \mathbb{Q}$ have nonzero real parts and satisfy the same relation, by Lemma 2.1. The assertion follows from (a). Again, the converse is clear.

Proposition 2.6. Γ is CSA.

Proof. Suppose that Γ_0 is a maximal abelian subgroup of Γ and that $b \in \Gamma$, with $b\Gamma_0 b^{-1} \cap \Gamma_0 \neq \{1\}$. We must show that $b \in \Gamma_0$.

By Lemma 2.4, $b\Gamma_0b^{-1} = \Gamma_0$. Let $a \in \Gamma_0$. Then bab^{-1} commutes with a and so, by Lemma 2.5, b commutes with a. Since Γ_0 is maximal abelian, $b \in \Gamma_0$.

We now recall the following known result.

Lemma 2.7. (a) ([MR, Proposition 9(5)]) A non-abelian CSA-group has no non-abelian solvable subgroups.

(b) ([MR, Proposition 10(3)]) Subgroups of CSA-groups are CSA.

Corollary 2.8. Let $a \in \Gamma_p - \{1\}$ and $b \in \Gamma_l - \{1\}$. Then either $\langle a, b \rangle \cong \mathbb{Z}^2$ or $\langle a, b \rangle$ contains a free subgroup of rank 2.

Proof. If a, b commute, then $\langle a, b \rangle \cong \mathbb{Z}^2$, since Γ is torsion free and $\langle a, b \rangle$ is not cyclic. Assume that a, b do not commute. We will show that $\langle a, b \rangle$ is not virtually solvable. The Tits Alternative for finitely generated linear groups (see [Tit]) then implies that $\langle a, b \rangle$ contains a free subgroup of rank 2. Note that Γ is linear, see [Rat, Section 3.2] for an explicit injective homomorphism $\Gamma \to SO_3(\mathbb{Q})$. Let U be a finite index subgroup of $\langle a, b \rangle$, in particular there are $r, s \in \mathbb{N}$ such that $a^r, b^s \in U$. The elements a^r and b^s do not commute since otherwise also a and b would commute by Proposition 2.2. It follows that U is not abelian. By Proposition 2.6 and Lemma 2.7(b), $\langle a, b \rangle$ is CSA. Lemma 2.7(a) shows that U is not solvable.

3. Maximal abelian subgroups and period subgroups.

Recall that the group Γ acts freely and transitively on the vertex set of the affine building Δ of $PGL_2(\mathbb{Q}_p) \times PGL_2(\mathbb{Q}_l)$. The building Δ is a product of two homogeneous trees and the apartments (maximal flats) in Δ are copies of the Euclidean plane tesselated by squares.

Notation 3.1. If n is an integer and p is an odd prime, then the **Legendre symbol** is

$$\left(\frac{n}{p}\right) = \begin{cases} 0 & \text{if } p \mid n, \\ 1 & \text{if } p \nmid n \text{ and } n \text{ is a square mod } p, \\ -1 & \text{if } p \nmid n \text{ and } n \text{ is not a square mod } p. \end{cases}$$

Any element of $\Gamma - \{1\}$ is the image under ψ of a quaternion of the form

(2)
$$x = x_0 + z_0(c_1i + c_2j + c_3k),$$

where $c_1, c_2, c_3 \in \mathbb{Z}$ are relatively prime, $z_0 \neq 0, (c_1, c_2, c_3) \neq (0, 0, 0),$

$$|x|^2 = x_0^2 + (c_1^2 + c_2^2 + c_3^2)z_0^2 = p^r l^s, r, s \ge 0.$$

Recall that $\tau(x) = \mathbb{Q}(c_1, c_2, c_3) \in \mathbb{P}^2(\mathbb{Q})$ and recall that elements $\psi(x), \psi(y) \in \Gamma - \{1\}$ commute if and only if $\tau(x) = \tau(y)$. Moreover the centralizer $\Gamma_0 = Z_{\Gamma}(\psi(x))$ is the unique maximal abelian subgroup of Γ containing $\psi(x)$. Let

$$n(x) = n(\psi(x)) = n(\Gamma_0) = c_1^2 + c_2^2 + c_3^2$$
.

An abelian subgroup of Γ has rank ≤ 2 [Pra, Lemma 3.2]. Since Γ is torsion free, a nontrivial abelian subgroup Γ_0 of Γ is isomorphic to either \mathbb{Z} or \mathbb{Z}^2 . If $\Gamma_0 \cong \mathbb{Z}^2$ then there is a unique apartment \mathcal{A}_{Γ_0} which is stabilized by Γ_0 [Pra, 6.8], and Γ_0 acts cocompactly by translation on this apartment. We call \mathcal{A}_{Γ_0} a periodic apartment.

Definition 3.2. A maximal abelian subgroup $\Gamma_0 \cong \mathbb{Z}^2$ will be called a **period subgroup** if the apartment \mathcal{A}_{Γ_0} contains the vertex O of Δ whose stabilizer in G is $PGL_2(\mathbb{Z}_p) \times PGL_2(\mathbb{Z}_l)$.

Since the action of Γ on Δ is vertex transitive, every maximal abelian subgroup $\Gamma_0 \cong \mathbb{Z}^2$ is conjugate in Γ to a period subgroup. We want to show that n(x) determines when $Z_{\Gamma}(\psi(x))$ is a period subgroup of Γ .

Recall that Γ is generated by free groups Γ_p , Γ_l , of ranks (p+1)/2, (l+1)/2 respectively. If $\gamma \in \Gamma$, let $\ell(\gamma)$ denote the natural word length of γ , in terms of the generators of Γ_p , Γ_l . The condition $\ell(\gamma^2) = 2\ell(\gamma)$, which is used in the next lemma, is equivalent to the assertion that γ has an axis containing O, upon which γ acts by translation.

Lemma 3.3. Let $a = \psi(x) \in \Gamma_p - \{1\}$ and let n = n(x). The following statements are equivalent.

- (a) $p \nmid n$;
- (b) $\ell(a^2) = 2\ell(a);$ (c) $\left(\frac{-n}{p}\right) = 1.$

Similar equivalent assertions hold, if p is replaced by l.

Before giving the proof, we note that

$$\left(\frac{-n}{p}\right) = \begin{cases} \left(\frac{n}{p}\right), & \text{if } p \equiv 1 \pmod{4}, \\ -\left(\frac{n}{p}\right), & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Proof. (a) \Leftrightarrow (b). The idea for this comes from the proof of [Moz, Proposition 3.15]. Write x as in (2) with $|x|^2 = x_0^2 + nz_0^2 = p^r$, r > 0. Extracting a common factor, if necessary, we may assume $gcd(x_0, z_0) =$ 1. This means that $r = \ell(a)$ [Rat, Corollary 3.11(4), Theorem 3.30(1)].

Suppose that $p \nmid n$. To prove $\ell(a^2) = 2\ell(a)$ we must show that p does not divide x^2 . Now if p divides

$$x^{2} = (x_{0}^{2} - nz_{0}^{2}) + 2x_{0}z_{0}(c_{1}i + c_{2}j + c_{3}k),$$

then p divides the real part $x_0^2 - nz_0^2$. Therefore p divides x_0 (since p divides $p^r = x_0^2 + nz_0^2$). But this implies that p divides z_0 , since $p \nmid n$. This contradicts the assumption $gcd(x_0, z_0) = 1$.

Conversely, suppose that $\ell(a^2) = 2\ell(a)$. If p divides n, then p divides x_0 (since p divides $x_0^2 + nz_0^2$). Therefore p divides the real and imaginary parts of $x^2 = (x_0^2 - nz_0^2) + 2x_0z_0(c_1i + c_2j + c_3k)$. But this implies that $\ell(a^2) < 2r$, a contradiction.

 $(a) \Leftrightarrow (c)$. Suppose that $p \nmid n$. Note that p does not divide z_0 : otherwise p also divides x_0 . It follows that z_0 has a multiplicative inverse (mod p). That is, one can choose $t \in \mathbb{Z}$ such that $z_0 t \equiv 1 \pmod{p}$. Then

$$0 \equiv (x_0^2 + nz_0^2)t^2 \equiv x_0^2t^2 + n \pmod{p}.$$

Since $p \nmid n$, this means that $\left(\frac{-n}{p}\right) = 1$. The converse is obvious. \square

Lemma 3.4. If $\Gamma_0 \cong \mathbb{Z}^2$ is a period subgroup of Γ and $n = n(\Gamma_0)$, then $\left(\frac{-n}{p}\right) = \left(\frac{-n}{l}\right) = 1$.

Proof. The group Γ_0 acts cocompactly by translation on the apartment \mathcal{A}_{Γ_0} containing the vertex O. It follows that Γ_0 contains elements $a \in \Gamma_p - \{1\}$, $b \in \Gamma_l - \{1\}$. These elements act freely by translation on the apartment, and so $\ell(a^2) = 2\ell(a)$, $\ell(b^2) = 2\ell(b)$. Therefore $\left(\frac{-n}{p}\right) = \left(\frac{-n}{l}\right) = 1$, by Lemma 3.3.

Lemma 3.5. If $\gamma = \psi(x) \in \Gamma - (\Gamma_p \cup \Gamma_l)$ and gcd(n(x), pl) = 1, then $Z_{\Gamma}(\gamma)$ is a period subgroup of Γ .

Proof. Let $x = x_0 + z_0(c_1i + c_2j + c_3k)$ as in (2) and $n = n(x) = c_1^2 + c_2^2 + c_3^2$. We may assume $gcd(x_0, z_0) = 1$ and $|x|^2 = x_0^2 + nz_0^2 = p^r l^s$, where $r, s \ge 1$ because $\psi(x) \notin \Gamma_p \cup \Gamma_l$.

The assumption $\gcd(n,pl)=1$ implies that $\gcd(x_0z_0,pl)=1$. For example, if $p\mid x_0$ then $p\mid z_0$, since $p\mid (x_0^2+nz_0^2)$ and $p\nmid n$. This contradicts $\gcd(x_0,z_0)=1$. Similarly $p\nmid z_0$. It follows from the "if" part of the proof of [Moz, Proposition 3.15] (and an obvious generalization to the cases where $p\equiv 3\pmod 4$ or $l\equiv 3\pmod 4$) that $\gamma=\psi(x)$ lies in an abelian subgroup Γ_0 of Γ , with $\Gamma_0\cong\mathbb{Z}^2$. The same proof also shows that Γ_0 acts cocompactly by translation on an apartment \mathcal{A} containing O. (The essential point in the proof of Mozes is that $\ell(\gamma^2)=2\ell(\gamma)$.) However, $Z_{\Gamma}(\gamma)$ is the unique maximal abelian subgroup containing Γ_0 . Therefore $Z_{\Gamma}(\gamma)$ acts cocompactly by translation on the apartment \mathcal{A} , by the uniqueness assertion in [Pra, 6.8]. In other words, $Z_{\Gamma}(\gamma)$ is a period subgroup of Γ .

Now we can describe the period subgroups of Γ .

Proposition 3.6. Let Γ_0 be a maximal abelian subgroup of Γ , and let $n = n(\Gamma_0)$. Then Γ_0 is a period subgroup if and only if $\left(\frac{-n}{p}\right) = \left(\frac{-n}{l}\right) = 1$.

Before proceeding with the proof, we introduce some notation. There is a canonical Cartan subgroup C of $G = PGL_2(\mathbb{Q}_p) \times PGL_2(\mathbb{Q}_l)$ defined by

 $C = \left(\begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}, \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right) \cap G.$

The group C acts by translation on an apartment A, which contains the vertex O whose stabilizer in G is $PGL_2(\mathbb{Z}_p) \times PGL_2(\mathbb{Z}_l)$. The action of C is transitive on the vertices of A.

Proof of Proposition 3.6. In view of Lemma 3.4, it suffices to show that $\left(\frac{-n}{p}\right) = \left(\frac{-n}{l}\right) = 1$ implies that Γ_0 is a period subgroup. Suppose therefore that $\left(\frac{-n}{p}\right) = \left(\frac{-n}{l}\right) = 1$. Then $\gcd(n, pl) = 1$. The result will therefore follow from Lemma 3.5, if we can show that Γ_0 is not contained in $\Gamma_p \cup \Gamma_l$. By symmetry it is enough to prove that if Γ_0 contains an element $b = \psi(y) \in \Gamma_l - \{1\}$, then it also contains an element $a = \psi(x) \in \Gamma_p - \{1\}$. For then the element ba does not lie in $\Gamma_p \cup \Gamma_l$.

Write $y = y_0 + z_0(c_1i + c_2j + c_3k)$, where $c_1, c_2, c_3 \in \mathbb{Z}$ are relatively prime and $n = n(y) = c_1^2 + c_2^2 + c_3^2$. The quaternion y represents the element b of Γ_l of word length $\ell(b) = s > 0$. By Lemma 3.3, b acts by translation of distance s along an axis L_b containing O.

The element of $GL_2(\mathbb{Q}_p) \times GL_2(\mathbb{Q}_l)$ corresponding to y in the formula (1) has eigenvalues $y_0 \pm z_0 \sqrt{-n}$. The assumption $\left(\frac{-n}{p}\right) = \left(\frac{-n}{l}\right) = 1$ implies that $\sqrt{-n}$ exists in both \mathbb{Q}_p and \mathbb{Q}_l and therefore that b is diagonalizable in G. In other words, there exists an element $h \in G$ such that $h^{-1}bh \in C$.

The group hCh^{-1} acts by translation on the apartment hA. Also the element $b \in hCh^{-1} \cap \Gamma_l$ acts by translation on the apartment hA, in a direction which will be called "vertical". Now hA necessarily contains the axis L_b of b, by [BH, Theorem II.6.8 (3)]. In particular, $O \in hA$.

Choose $g \in hCh^{-1}$ to act on hA by horizontal translation. Consider the horizontal strip H in hA obtained by translating the vertical segment [O, bO].

Since Γ acts freely and transitively on the vertices of Δ , each vertical segment $g^i[O,bO]$ of H lies in the Γ -orbit of precisely one segment of the form $[O,\gamma O], \ \gamma \in \Gamma_l, \ \ell(\gamma) = s$. Moreover, there are only finitely many such segments $[O,\gamma O]$.

If i > 0 then $g^iO = u_iO$, for some $u_i \in \Gamma_p - \{1\}$. Since b and g commute, we have $g^ibO = bg^iO = bu_iO$. That is, $g^i[O, bO] = [u_iO, bu_iO]$, which lies in the Γ -orbit of the segment $[O, u_i^{-1}bu_iO]$. By the finiteness

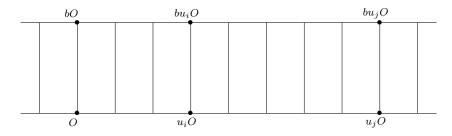


FIGURE 1. The horizontal strip H.

assertion in the preceding paragraph, there exist integers j > i > 0 such that

$$[O, u_i^{-1}bu_iO] = [O, u_i^{-1}bu_iO].$$

By freeness of the action of Γ ,

$$u_i^{-1}bu_i = u_j^{-1}bu_j \,,$$

and $u_i \neq u_j$. Therefore ab = ba, where $a = u_i u_i^{-1} \in \Gamma_p - \{1\}$.

A maximal abelian subgroup Γ_0 of Γ may be isomorphic to \mathbb{Z} . Here is a way of providing some examples.

Corollary 3.7. Suppose that $a \in \Gamma_p - \{1\}$, and n = n(a) satisfies

$$\left(\frac{-n}{p}\right) = 1, \quad \left(\frac{-n}{l}\right) = -1.$$

Then $Z_{\Gamma}(a) < \Gamma_p$ is a maximal abelian subgroup of Γ , and $Z_{\Gamma}(a) \cong \mathbb{Z}$. A similar assertion applies to elements of $\Gamma_l - \{1\}$.

Proof. The hypothesis implies that gcd(n, pl) = 1. If $Z_{\Gamma}(a) \not\subset \Gamma_p$, then $Z_{\Gamma}(a)$ contains an element $\gamma \not\in \Gamma_p \cup \Gamma_l$. Therefore $Z_{\Gamma}(a) = Z_{\Gamma}(\gamma)$ is a period group, by Lemma 3.5. But this implies $\left(\frac{-n}{l}\right) = 1$, by Proposition 3.6, – a contradiction.

Example 3.8. Let $\Gamma = \Gamma_{3,5}$. This group has a presentation with generators $\{a_1, a_2, b_1, b_2, b_3\}$ and relators

 $\{a_1b_1a_2b_2, a_1b_2a_2b_1^{-1}, a_1b_3a_2^{-1}b_1, a_1b_3^{-1}a_1b_2^{-1}, a_1b_1^{-1}a_2^{-1}b_3, a_2b_3a_2b_2^{-1}\},\$ where

$$a_{1} = \psi(1+j+k), \qquad a_{1}^{-1} = \psi(1-j-k),$$

$$a_{2} = \psi(1+j-k), \qquad a_{2}^{-1} = \psi(1-j+k),$$

$$b_{1} = \psi(1+2i), \qquad b_{1}^{-1} = \psi(1-2i),$$

$$b_{2} = \psi(1+2j), \qquad b_{2}^{-1} = \psi(1-2j),$$

$$b_{3} = \psi(1+2k), \qquad b_{3}^{-1} = \psi(1-2k).$$

The subgroup $\langle a_1 \rangle = Z_{\Gamma}(a_1) < \Gamma_3$ is maximal abelian in Γ by Corollary 3.7, since $n(a_1) = 2$, $\left(\frac{-2}{3}\right) = 1$ and $\left(\frac{-2}{5}\right) = -1$.

The subgroup $\langle a_1 a_2^{-1} a_1^2 \rangle = \langle \psi(-5 - 6i - 2j + 4k) \rangle$ is not maximal abelian. It is contained in the period subgroup

$$\Gamma_0 = \langle a_1 a_2^{-1} a_1^2, b_3 b_2^{-1} b_3^{-1} b_1 \rangle \cong \mathbb{Z}^2.$$

Indeed, $n(\Gamma_0) = n(a_1 a_2^{-1} a_1^2) = 14$, $\left(\frac{-14}{3}\right) = 1$, $\left(\frac{-14}{5}\right) = 1$. Note that $b_3 b_2^{-1} b_3^{-1} b_1 = \psi(-11 + 18i + 6j - 12k)$. Part of the period lattice for Γ_0 is illustrated in Figure 2.

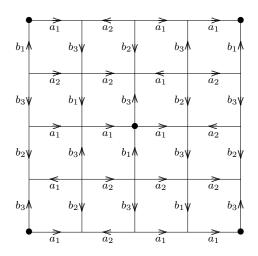


Figure 2. Part of a periodic apartment for $\Gamma_0 < \Gamma_{3,5}$.

Example 3.9. Let $\Gamma = \Gamma_{3,5}$. Consider $b_1a_1b_1^{-1} = \psi(5-7j+k)$. By Example 3.8, $\langle a_1 \rangle$ is maximal abelian in Γ . Therefore so also is $\Gamma_0 = \langle b_1a_1b_1^{-1} \rangle = b_1\langle a_1\rangle b_1^{-1}$. Now $\gamma = b_1a_1^6b_1^{-1} = a_2a_1^{-1}a_2^{-2}a_1^{-1}a_2 = \psi(5(23+14j-2k)) = \psi(x) \in \Gamma_3$, with $|x|^2 = 5^2.3^6$. Also $n(x) = n(\Gamma_0) = 50$, $\left(\frac{-50}{3}\right) = 1$ and $\left(\frac{-50}{5}\right) = 0$. There is a periodic horizontal strip of height 2 (Figure 3), upon which γ acts by translation. This strip is the union of the axes of γ .

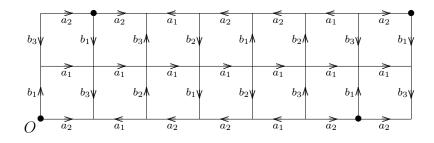


FIGURE 3. Part of a periodic horizontal strip.

Example 3.10. Let $\Gamma = \Gamma_{3,5}$. Conjugating the period subgroup $\langle a_1 a_2^{-1} a_1^2, b_3 b_2^{-1} b_3^{-1} b_1 \rangle$ of Example 3.8 by a_2 gives the group

$$\begin{split} \Gamma_0 &= \langle a_2 a_1 a_2^{-1} a_1^2 a_2^{-1}, \ a_2 b_3 b_2^{-1} b_3^{-1} b_1 a_2^{-1} \rangle = \langle a_2 a_1 a_2^{-1} a_1^2 a_2^{-1}, \ b_2 b_1^{-1} b_2^2 \rangle \\ &= \langle \psi(-15+10i+2j+20k), \ \psi(-11-10i-2j-20k) \rangle \cong \mathbb{Z}^2 \,, \end{split}$$

which is not a period subgroup since $n(\Gamma_0) = 126$, $\left(\frac{-126}{5}\right) = 1$ and $\left(\frac{-126}{3}\right) = 0$.

One could conjecture that every maximal abelian subgroup of Γ is conjugate to either a period subgroup or to a subgroup of Γ_p or Γ_l . The next example shows that this conjecture is not true. We need the following definition and Lemma 3.11:

If $x = x_0 + x_1i + x_2j + x_3k \in \mathbb{H}(\mathbb{Z})$, let $m(x) = |x|^2 - \Re(x)^2 = x_1^2 + x_2^2 + x_3^2$, where $\Re(x) = x_0$ denotes the real part of x. Observe that $m(x) = \lambda^2 n(x)$ for some integer λ .

Lemma 3.11. Let $x, y \in \mathbb{H}(\mathbb{Z})$, then $m(xy\overline{x}) = (|x|^2)^2 m(y)$.

Proof. Using the rules
$$\Re(xy)=\Re(yx)$$
 and $|xy|^2=|x|^2|y|^2$, we conclude $m(xy\overline{x})=|xy\overline{x}|^2-\Re(xy\overline{x})^2=(|x|^2)^2|y|^2-(|x|^2\Re(y))^2=(|x|^2)^2m(y)$.

Example 3.12. Let $\Gamma = \Gamma_{3,5}$ and $a_2b_3 = \psi(3+2i+j+k)$. The group $\Gamma_0 = Z_{\Gamma}(a_2b_3)$ is a maximal abelian subgroup of Γ such that $n(\Gamma_0) = 6$. We fix any element $\gamma = \psi(x) \in \Gamma$.

The maximal abelian subgroup $\gamma\Gamma_0\gamma^{-1}$ is not a subgroup of Γ_3 or Γ_5 , since $\gamma a_2 b_3 \gamma^{-1} \in \gamma \Gamma_0 \gamma^{-1}$ is the ψ -image of $x(3+2i+j+k)\overline{x}$ whose norm is a product of an odd power of 3 and an odd power of 5.

We claim that $\gamma \Gamma_0 \gamma^{-1}$ is not a period subgroup. If $|x|^2 = 3^r 5^s$, $r, s \geq 0$, then by Lemma 3.11

$$(3^r 5^s)^2 \cdot 6 = m(x(3+2i+j+k)\overline{x}) = \lambda^2 n(\gamma \Gamma_0 \gamma^{-1})$$

for some integer λ . It follows that $3 \mid n(\gamma \Gamma_0 \gamma^{-1})$, in particular

$$\left(\frac{-n(\gamma\Gamma_0\gamma^{-1})}{3}\right) = 0$$

and Proposition 3.6 proves the claim.

Since any maximal abelian subgroup of rank 2 is conjugate to a period subgroup, it also follows that $\Gamma_0 \cong \mathbb{Z}$. See Figure 4 for a periodic vertical strip of width 1 which is globally invariant under the action of a_2b_3 . Note that $(a_2b_3)^2 = b_2b_3$. Therefore a_2b_3 acts upon the strip by glide reflection and the unique axis of a_2b_3 is the vertical central line of the strip.

It is well-known that period subgroups in Γ always exist. See for example [Rat, Proposition 4.2] for an elementary proof of this fact, using doubly periodic tilings of the Euclidean plane by unit squares. We mention a corollary of this in terms of integer quaternions.

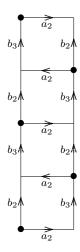


Figure 4. Part of a periodic vertical strip.

Corollary 3.13. Given any pair (p, l) of distinct odd primes, there are $x, y \in \tilde{\Gamma}$ and $1 \le r \le 4(p+1)^2(l+1)^2$ such that xy = yx and

$$|x|^2 = p^r, |y|^2 = l^r, \left(\frac{-n(x)}{p}\right) = \left(\frac{-n(y)}{l}\right) = 1.$$

The integer r in this corollary comes from the constructive proof of [Rat, Proposition 4.2], and its upper bound is certainly not optimal. In fact, if $p, l \equiv 1 \pmod{4}$, there is a direct proof of Corollary 3.13 (with r = 1), applying the Two Square Theorem.

References

- [BH] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.
- [DSV] G. Davidoff, P. Sarnak and A. Valette, *Elementary number theory, group theory, and Ramanujan graphs*, London Mathematical Society Student Texts, 55. Cambridge University Press, Cambridge, 2003.
- [Dic] L. E. Dickson, Arithmetic of quaternions, *Proc. London Math. Soc.* (2), **20** (1922), 225–232.
- [Moz] S. Mozes, Actions of Cartan Subgroups, *Israel J. Math.*, **90** (1995), 253–294.
- [Lub] A. Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Mathematics, 125. Birkhäuser Verlag, Basel, 1994.
- [MR] A. G. Myasnikov and V. N. Remeslennikov, Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups, *Internat. J. Algebra Comput.*, 6 (1996), no. 6, 687–711.
- [Pra] G. Prasad, Lattices in Semisimple Groups over Local Fields. Studies in algebra and number theory. Adv. Math. Suppl. Studies, 6 (1979), 285–356.
- [Rat] D. Rattaggi, Computations in groups acting on a product of trees: normal subgroup structures and quaternion lattices, Ph.D. thesis, ETH Zürich, 2004
- [Tit] J. Tits, Free subgroups in linear groups, J. Algebra, 20 (1972), 250–270.

- [Vig] M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Springer-Verlag, Berlin, 1980.
- [Wis] D. Wise, Complete square complexes, Preprint September 11, 2003, www.math.mcgill.ca/wise/papers.html

Université de Genève, Section de mathématiques, 2–4 rue du Lièvre, CP 64, CH–1211 Genève 4, Switzerland.

 $E ext{-}mail\ address: rattaggi@math.unige.ch}$

School of Mathematics and Statistics, University of Newcastle, NE1 $7\mathrm{RU},\,\mathrm{U.K.}$

 $E\text{-}mail\ address: \verb"a.g.robertson@newcastle.ac.uk"$