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Abstract. Let G be a connected semisimple real algebraic group.
Assume that G(R) has no compact factors and let Γ be a torsion-
free uniform lattice subgroup of G(R). Then Γ contains a malnor-
mal abelian subgroup A. This implies that the II1 factor VN(Γ)
contains a masa A with Pukánszky invariant {∞}.

1. Introduction

A subgroup Γ0 of a group Γ is malnormal if xΓ0x
−1 ∩ Γ0 = {1} for

all x ∈ Γ−Γ0. An abelian malnormal subgroup is necessarily maximal
abelian. The main result of this article is Theorem 1.1, which rests
upon work of Prasad and Rapinchuk [PrR].

Theorem 1.1. Let G be a connected semisimple real algebraic group
and let d be the R-rank of G. Assume that G(R) has no compact factors
and let Γ be a torsion-free uniform lattice subgroup of G(R). Then Γ
contains a malnormal abelian subgroup A ∼= Zd.

Theorem 1.1 will be applied to the group factor VN(Γ). Recall that
if Γ is a group, then the von Neumann algebra VN(Γ) is the convolution
algebra

VN(Γ) = {f ∈ `2(Γ) : f ? `2(Γ) ⊆ `2(Γ)} .
It is well known that if Γ is an infinite conjugacy class group then VN(Γ)
is a factor of type II1. This is true if Γ is a lattice in a semisimple Lie
group [GHJ, Lemma 3.3.1]. If Γ0 is a subgroup of Γ, then VN(Γ0)
embeds naturally as a subalgebra of VN(Γ) via f 7→ f , where

f(x) =

{
f(x) if x ∈ Γ0,

0 otherwise.

This article is concerned with examples where Γ0 = A is an abelian
subgroup of Γ and A = VN(A) is a maximal abelian ?-subalgebra
(masa) of M = VN(Γ). Recall that A is the von Neumann subalgebra
of B(`2(Γ)) defined by the left convolution operators

λ(f) : φ 7→ f ? φ
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where f ∈ `2(A) and f ? `2(Γ) ⊆ `2(Γ). The algebra A also acts on
`2(Γ) by right convolution

ρ(f) : φ 7→ φ ? f.

Let Aopp be the von Neumann subalgebra of B(`2(Γ)) defined by this
right action of A. Let B be the von Neumann subalgebra of B(`2(Γ))
generated by A ∪ Aopp and let p denote the orthogonal projection of
`2(Γ) onto the closed subspace generated by A. Then p is in the centre
of the commutant B′, and B′p is abelian. The von Neumann algebra
B′(1− p) is of type I and may therefore be expressed as a direct sum
Bn1⊕Bn2⊕ . . . of algebras Bni

of type Ini
, where 1 ≤ n1 < n2 < · · · ≤

∞. The Pukánszky invariant [SS2, Chapter 7] is the set {n1, n2, . . . }. It
is an isomorphism invariant of the pair (A,M). It has been shown [NeS,
Corollary 3.3] that each nonempty subset S of the natural numbers
containing 1 can be realized as the Pukánszky invariant of some masa in
the hyperfinite II1 factor R. This was extended [SS1, DSS] to subsets S
containing∞ for R and for the free group factor. It was later extended
[Whi] to arbitrary subsets S ⊂ N ∪{∞} for R (and for certain other
McDuff factors).

It is known that every factor of type II1 contains a singular masa
[Po1]. S. Popa [Po2, Remark 3.4] showed that if the Pukánszky invari-
ant of (A,M) does not contain 1, then A is a singular masa in M. K.
Dykema [Dyk] has shown (using Voiculescu’s free entropy dimension)
that the Pukánszky invariant of any masa in the free group factor must
either contain ∞ or be unbounded. This means that it is not possible
for any singleton other than {∞} to be a possible Pukánszky invariant
occurring in every II1 factor. Jolissaint [Jol] has shown that if F0 is the
cyclic subgroup generated by the first generator of Thompson’s group
F then VN(F0) has Pukánszky invariant {∞}. A natural question
arises.

• Does every II1 factor M contain a masa A with Pukánszky
invariant {∞}?

This article uses Theorem 1.1 to provide an affirmative answer for
M = VN(Γ), where Γ is a torsion-free uniform lattice subgroup of a
connected semisimple real algebraic group G without compact factors.
If G has R-rank ≥ 2, then VN(Γ) has Kazhdan’s property T . This is
the first result on possible values of the Pukánszky invariant in a II1
factor with property T .

Many thanks are due to G. Prasad and Y. Shalom for their assistance
with the proofs of Theorem 1.1 and Theorem 3.2, respectively. S. White
provided valuable background information.
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2. Malnormal abelian subgroups of lattices

This section is devoted to the proof of Theorem 1.1. Let G be a
connected semisimple real algebraic group and let d be the R-rank of
G. Assume that G(R) has no compact factors and let Γ be a torsion-
free uniform lattice subgroup of G(R).

Since Γ is finitely generated, Γ < G(K) for some finitely generated
subfield K of R. By the Borel Density Theorem [Mar, Chapter II,
Corollary 4.4], Γ is Zariski dense in G(R). Therefore, according to
Theorems 1 and 2 of [PrR], there exists a maximal abelian torus sub-
group T of G with the following properties.

(1) The R-rank of T is d.
(2) A = T (R) ∩ Γ is a uniform lattice in T (R).
(3) T has no proper algebraic subgroups defined over K.

Moreover, T is the K-Zariski closure of a single R-regular element x0

in A [PrR]. In fact there are many such elements x0 [PrR, Remark 2].
We claim that A is a malnormal subgroup of Γ. To this end, fix an
arbitrary element x ∈ Γ−A. We must show that xAx−1 ∩A = {1}.

Let Ts (respectively Ta) be the maximal R-split (respectively R-
anisotropic) subtorus of T . Then T = Ts · Ta (an almost direct prod-
uct) [Bor, Proposition 8.15] and Ts is a maximal R-split torus in G
[PrR, Remark 1]. Thus T (R) = S · C, where S = Ts(R) ∼= Rd and
C = Ta(R) ∼= (R/Z)r, where r is the dimension of Ta. Since Γ is
torsion free and discrete, A is a uniform lattice in S. In particular,
A ∼= Zd.

Since T is the K-Zariski closure of A, it follows that T is defined over
K. Since x ∈ Γ ⊆ G(K), xTx−1 is also defined over K. According to
condition (3), there are only two possibilities:

• T ∩ xTx−1 = {1};
• T = xTx−1.

In the first case we also have T (K)∩xT (K)x−1 = {1}, and a fortiori
A ∩ xAx−1 = {1}, as required.

To show that the second case does not occur, assume that T = xTx−1.
This implies that T (R) is stable under conjugation by x. Also Γ is sta-
ble under conjugation by x. Therefore xAx−1 = A, since A = Γ∩T (R).
There are two possibilities to consider for the action αx : a 7→ xax−1

on A.

(a) αx fixes only the trivial element of A;
(b) αx fixes some nontrivial element of A.

Since conjugation by x stabilizes T , it also stabilizes Ts and Ta sep-
arately [Bor, Proposition 8.15(3)]. Thus xSx−1 = S. The symmetric
space of G(R) is X = G(R)/K, where K is a maximal compact sub-
group of G(R). The group Γ acts freely on X, since it is torsion free.
Since Ts is a maximal R-split torus of G, there is a unique flat F in X
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such that SF = F and S acts simply transitively on F [Mos, Lemma
5.1]. Now xF is another such flat, since

SxF = (xSx−1)xF = xSF = xF.

Hence xF = F .
The action of x on F is by some rigid motion and the action of A

on F is by translations. No nontrivial element in Γ can act trivially on
F , so we can calculate the conjugation by x of any element y ∈ A by
considering the actions of these elements on F . The two cases above
correspond to:

(a) x acts on F by a rigid motion whose linear part has trivial
1-eigenspace;

(b) x acts on F by a rigid motion whose linear part has nontrivial
1-eigenspace.

In case (a), x necessarily has a fixed point in F . Therefore x = 1,
since Γ acts freely on X.

Consider case (b). The algebraic subgroup ZG(x)∩T , which consists
of the elements commuting with x, is defined over K. In case (b),
ZG(x)∩ T contains nontrivial elements of A. That is, it has nontrivial
K-points. Hence, it must be nontrivial (as an algebraic group). By
condition (3) it must be all of T . Hence x commutes with every element
of T . Therefore the algebraic closure of {x}∪T over K is commutative.
However T is a maximal abelian subgroup over K, and so x ∈ T (K).
Therefore x ∈ A, contrary to assumption. This completes the proof of
Theorem 1.1.

3. The Pukánszky invariant

The following result was proved in [RoS, Proposition 3.6] and later
extended in [SS1, Theorem 4.1].

Proposition 3.1. Suppose that A is an abelian subgroup of a countable
group Γ such that A = VN(A) is a masa of VN(Γ). If A is malnormal
in Γ then the Pukánszky invariant of A contains precisely one element
n = #(A\Γ/A− {A}).

In view of Theorem 1.1, the next result is enough to provide examples
of masas with Pukánszky invariant {∞}.

Theorem 3.2. Let G be a connected semisimple real algebraic group.
Assume that G(R) has no compact factors. Let Γ be a torsion free
uniform lattice subgroup of G(R) and let A < Γ be an abelian sub-
group.Then

#(A\Γ/A) =∞.
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Proof. Suppose that #(A\Γ/A) <∞. Then

Γ =
⋃
x∈F

AxA

where F ⊂ Γ is finite. Taking Zariski closures, it follows from the Borel
Density Theorem that

(1) G(R) = Γ̄ =
⋃
x∈F

AxA.

For each x ∈ F , ĀxĀ is locally closed in the Zariski topology, since it
is an orbit of Ā acting on G(R)/Ā [Zim, Corollary 3.1.5]. This means
that ĀxĀ = U ∩ E where U is Zariski-open and E is Zariski closed.
Therefore

AxA = U ∩ E ⊆ E ⊆ (U ∩ E) ∪ (G(R) \ U) = (ĀxĀ) ∪ (G(R) \ U).

Since U ⊆ G(R) is Zariski open (and G(R) is Zariski connected),
G(R)\U has measure zero, relative to Haar measure µ on G(R) [Mar,
Chapter I, Proposition 2.5.3]. Therefore,

(2) µ(AxA) = µ(ĀxĀ).

Now we show that µ(ĀxĀ) = 0. Each element of A is semisimple,
since each element of Γ is [Mos, Section 11]. Therefore each element
of the Zariski closure Ā is also semisimple; in other words, Ā is a
torus subgroup. The dimension of Ā as a Lie group is no larger than
the absolute rank d′ of G (the rank over C of the Lie algebra of G).
The number of positive roots of the compexified Lie algebra of G is at
least d′, and the total number of roots is at least 2d′. Thus the total
dimension of the root spaces is at least 2d′. This means that d′ is at
most one third of the dimension of G. Thus the dimension of Ā × Ā
is at most two thirds the dimension of G. The map (a1, a2) 7→ a1xa2

from Ā × Ā to G(R) is C∞ (in fact polynomial). Therefore, by the
above dimension count, its image has measure zero. It follows from (2)
that µ(ĀxĀ) = 0. However, this contradicts (1), thereby proving the
result. �

An immediate consequence of Theorem 1.1 and Theorem 3.2 is

Corollary 3.3. Let G be a connected semisimple real algebraic group
such that G(R) has no compact factors. Let Γ be a uniform lattice
subgroup of G(R). Then there exists an abelian subgroup A < Γ such
that VN(A) is a masa of VN(Γ) with Pukánszky invariant {∞}.

Proof. Let A be the malnormal abelian subgroup of Γ whose existence
is assured by Theorem 1.1. By [SS2, p.123], VN(A) is a masa of VN(Γ).
The result follows from Proposition 3.1. �

Remark 3.4. A similar result was obtained by geometrical methods in
[Rob, Theorem 4.6], if Γ is the fundamental group of a compact locally



6 GUYAN ROBERTSON AND TIM STEGER

symmetric space M of constant negative curvature and A is generated
by the homotopy class of a simple closed geodesic in M .
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[Whi] S. White, Values of the Pukánszky invariant in McDuff factors, J. Funct.
Anal. 254 (2008), 612–631.

[Zim] R. L. Zimmer, Ergodic Theory and Semisimple Groups, Birkhaüser, Boston
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