INVARIANT BOUNDARY DISTRIBUTIONS FOR FINITE
GRAPHS

GUYAN ROBERTSON

ABSTRACT. Let I' be the fundamental group of a finite connected graph G. Let
9 be an abelian group. A distribution on the boundary OA of the universal
covering tree A is an 9-valued measure defined on clopen sets. If 9t has no
x(G)-torsion then the group of I'-invariant distributions on OA is isomorphic
to Hi(G, ).

1. INTRODUCTION

Let G be a finite connected graph, and let A be its universal covering tree.
The edges of A are directed and each geometric edge corresponds to two directed
edges § and §. Let AY be the set of vertices and A the set of directed edges of
A. The boundary OA is the set of equivalence classes of infinite semi-geodesics in
A, where two semi-geodesics are equivalent if they agree except on finitely many
edges. The boundary has a natural compact totally disconnected topology. The
fundamental group I' of G is a free group which acts on A and on 0A. If 9 is an
abelian group then an M-valued distribution on OA is a finitely additive M-valued
measure i defined on the clopen subsets of 0A. By integration, a distribution may
be regarded as an M-linear function on the group C* (A, M) of locally constant
M-valued functions on OA. Let DT (A, M) be the additive group of all -invariant
M-valued distributions on JA and let

D4(0A,M) = {p € DT (9A, M) : pu(9A) = 0}.
Theorem 1.1. There is an isomorphism of abelian groups
Hy(G, M) = Dj(0A,M).

Let x(G) denote the Euler characteristic of G. If 9t has no x(G)-torsion then
each element of DT (A, M) has total mass zero [Proposition 2.6]. Setting M = Z
gives:

Corollary 1.2. There is an isomorphism of abelian groups
Hl(g7 Z) = @F(8A7 Z)

A. Haefliger and L. Banghe have proved a continuous analogue of Theorem 1.1:
if I' is the fundamental group of a compact surface of genus g then the space of
[-invariant (classical) distributions on S* which vanish on constant functions has
dimension 2¢ [3, Theorem 5.A.2].

The motivation for this article came from C*-algebraic K-theory, as explained
in Section 3 below.
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2. CONSTRUCTION OF DISTRIBUTIONS

Choose an orientation on A! which is invariant under I'. This orientation consists
of a partition of A! and a bijective involution

§—0d: A — Al

which interchanges the two components of Al. Each directed edge § has an initial
vertex o(6) and a terminal vertex ¢(§), such that o(6) = #(§). The maps § — 4,
d — o(d) and § — ¢(5) are I'-equivariant. The quotient graph G = I'\A has vertex
set V = I'\A® and directed edge set E = I'\A!. There are induced maps z — 7,

2+ o(x) and z — t(z) on the quotient and the partition of A® passes to a partition
E=E, UE,.

If § € Al, let Q5 be the clopen subset of OA corresponding to the set of all
semi-geodesics with initial edge § and initial vertex o(9).

The sets 5, 6 € A! form a basis for a totally disconnected compact topology on
OA which is described as an inverse limit in [6, 1.2.2]. Any clopen set V in JA is a
finite disjoint union of sets of the form €)s5. Indeed, choose a base vertex £. Then,
for all sufficiently large n, V is a disjoint union of sets of the form 2s, where § is
directed away from o and d(o(9),&) = n. The following relations are satisfied :

(1) Q(S = |_| Qg/.

o(8")=t(6)
§'#£5
Let 9t be an abelian group and let u be an M-valued distribution on JA. Then
(2a) > wQs) = p@d),  for&e A
seAalt
o(8)=¢
(2b) n(Qs) + p(5) = p(04p), for § € A

>
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For each v = }° ., nax € H1(G,9M), define a I'-invariant distribution o by
(3) /1‘01(95) = <a —a, P5>a

where (-, ) is the standard inner product ME x ME — M and @ = 3 cp, 1T
Thus, if z € Ey,

Ny if I'd=ux,

a(Q2s) =
Ha(Ss) {—nm if T6 =7

The verification that p, is well defined is given below and it is clear from (3) that
L is T-invariant.

Example 2.1. For the directed graph below, with two vertices and three edges,
the boundary distribution corresponding to the 1-cycle o = a + 2b — 3¢ satisfies

1 if Td=a,
Lo (Q2s) =42 if To=0b
-3 if Td=c

Ma:_2,-""'
P =3

a=a+2b—3c

Recall that H;(G,9) = ker d, where the boundary map 0 : ME, — MV is
defined by 0z = t(x) — o(z) [6, Section I1.2.8]. In order to check that pu, is well
defined, if « € H1(G, M), it is enough to show that equation (3) respects the relation
(1). We must therefore show that, for all z € E,

(4) (a —@,Tz) = (a — @, x),
where T': 9ME — 9MFE is defined by

(5) Txr = Z Y= y| -7
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Equivalently, it is necessary that (I — T*)(a — @) = 0, where T™* is the adjoint of
T'. Define homomorphisms ¢q : MV — ME and ¢ : ME, — IME by

wo(v) = Z y and  ¢i(z) =2 —T.

o(y)=v

An easy calculation, using the identity

I-TYr=24+7— Z v,
t(y)=o(x)

shows that the following diagram commutes:

my —2— me,

(6) o) |
ME «— ME
-7+
If « € Hi1(G, M), it follows that (I — T™*)(a — @) = @g o () = 0, as required.

Lemma 2.2. Let M be an abelian group. The map o — g, s an injection from
H1(G, M) into D (OA, M).

Proof. Fix o =} cp,
follows from (2b) that

ngz € Hi(G,M). Choose § € Al andlet y =16 € E,. It

fa(0A) = (o —a,y +7)
=(a—a,y) +{a—-a,7)
=Ny — Ty
=0.

Thus e € D5 (0A,9M). The proof that the map is injective is straightforward. [0

Remark 2.3. The map a — pu, clearly depends on the choice of orientation on
the tree A, although the group H;(G, M) does not [6, Section 11.2.8].

The next result completes the proof of the Theorem 1.1.

Lemma 2.4. Let M be an abelian group. The map o — o is a surjection from
H1(G,9M) onto D (OA,IM).

Proof. Let u € D§(OA,9M). Since p is I-invariant, we may define a function
A E— Mby AMT6) = u(Qs). Leta =5 A(z)x. We show that o € Hy(G, M)
and that p = pq.

Since p(0A) = 0, the relations (2) project to the following flow relations on G.

zeE

(7a) Z AMz) = 0, for v € V;

zeE
o(xz)=v

(7b) AMz)+ A=) = 0, forxz € E.



BOUNDARIES 5

It follows from equations (7) that

Oa = Z Az)(t(z) — ox))

zeE
= > A@t@ - > Ma)o()
v€B, rzeE
=— Z Ax)o(z) — Z A(@)o(z)
«€Ey rchby
= Z A(z)o(x)
zeFE
- _ Z Z Az) [v=0.
veV relk

o(z)=v

Therefore o« € Hy1(G,9M). Finally, it follows from (7b) that

a—a= Z)\(x)x

z€E

and, for each 6 € A!,
ta(S2s) = (o — @, T'6) = A(I'0) = p(Ly).

Therefore p = e, as required. ([l

Remark 2.5. A special case occurs when K is a non-archimedean local field and T’
is a torsion free cocompact lattice in SL(2,K). The Bruhat-Tits building associated
with SL(2,K) is a regular tree A whose boundary A may be identified with the
projective line P;(K) [6, II.1.1]. In this context, the relations (7) assert that if
p € DF(OA,9M) then the function § — u(Qs) is a T-invariant harmonic cocycle
on Al in the sense of [2, 3.15]. The relationship between harmonic cocycles and
boundary distributions has been studied in the p-adic case in [7].

In many cases, every I'-invariant distribution on 0A has total mass zero.

Proposition 2.6. Let M be an abelian group. If M does not have x(G)-torsion
then

DT(0A, M) = DL (A, M).

Proof. Let u € DY (A, 9M). For z € E, define A(x) = 1u(Qs) if x = I'6. This is well
defined, since p is T-invariant. Let o = pu(9A). The relations (2) project to the
quotient graph G as follows.

(8) > @)

reE
o(z)=v

(8b) Az)+AZ) = o, forx € E.

for v e V;

I
Q
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Let ng [n1] be the number of vertices [edges] of G, so that x(G) = ng —ny. Since
the map « — o(z) : E — V is surjective, the relations (8) imply that

ngo = Z Z AMz) = Z A(z)

veV z€E zeE
o(x)=v
=) A@)+rx@)= Y o
zelby zelby
= Mnjo.

Therefore x(G).c = 0. The hypothesis on 9t implies that o = 0; in other words,
p € DF(OA,M). O

The following example of a nonzero I'-invariant boundary distribution shows that
the assumption that 9t does not have x(G)-torsion cannot be removed.

Example 2.7. Let G be a (¢ + 1)-regular graph, where ¢ > 3, so that x(G) =
(1 — q), where ng is the number of vertices of G. Let MM = Z;_; and define

pw € DY (DA, Zy—1) by p(Qs) = 1, for all 6 € A'. Then p(dA) =2 # 0.

3. THE RELATION TO K-THEORY

The motivation for this article came from the study of the K-theory of the
crossed product C*-algebra C(0A) x I'. Suppose that each vertex of G has at least
three neighbours. Then the compact space OA is perfect (hence uncountable) and
A = C(0A) x T is a Cuntz-Krieger algebra [4]. The group K;(.A) is isomorphic to
U(A)/Uy(A), the quotient of the unitary group of A by the connected component
of the identity, and it follows from [1] that K;(A) 2 ker(T' — 1), where T is the map
defined by equation (5), with 9t = Z. We have the following result.

Proposition 3.1. Suppose that each vertex of G has at least three neighbours. Then
the map o — «a — @ s an isomorphism from H1(G,Z) onto ker(T —1).

Proof. Let a =3 . p M)z € ker(T —I). If y € E, then the coefficient of y in the
sum representing (T — I« is

ST | -xw = D M) | -Aw) - @)
zeE,x#Yy relE
t(z)=o(y) t(z)=o(y)

This coeflicient is zero, since o € ker(T' — I). Therefore

(9) Ap) A = S A@).
zEFR
t(z)=o(y)

For any y € E, define o(y) = A(y) + A(y). The right hand side of equation (9)
depends only on o(y), therefore o(y) depends only on o(y). On the other hand,
o(y) = o(7y), so that o(y) depends only on #(y). Since the graph G is connected,
it follows that o(y) = o, a constant, for all y € E. The result follows easily, using
the arguments of Proposition 2.6 and Lemma 2.4, together with the fact that the
Euler characteristic of G is non-zero. O
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The natural map from I' into U(.A) induces a homomorphism from I" into K (A).
The isomorphism K;(A) = ker(T — 1) is described explicitly in [5, Section 2].
Combining this with Proposition 3.1 and [4, Section 1], it is easy to see that the
homomorphism I' — K (A) is surjective.
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