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Abstract. Let ∆ be an infinite, locally finite tree with more than two ends.
Let Γ < Aut(∆) be an acylindrical uniform lattice. Then the boundary al-

gebra AΓ = C(∂∆) o Γ is a simple Cuntz-Krieger algebra whose K-theory is

determined explicitly.

1. Introduction

Let ∆ be an infinite, locally finite tree with more than two ends and with bound-
ary ∂∆. Let k be a positive integer and let Γ be a group of automorphisms of ∆
without inversion and with no proper invariant subtree. Say that Γ is k-acylindrical
if the stabilizer of any path of length k in ∆ is trivial [BP, Sel]. The group Γ is
acylindrical if it is k-acylindrical for some integer k ≥ 1. The main result of this
article is

Theorem 1.1. Let Γ < Aut(∆) be an acylindrical uniform lattice. Then the
boundary algebra AΓ = C(∂∆) o Γ is a simple Cuntz-Krieger algebra.

The action of Γ on ∂∆ is amenable, so the maximal crossed product AΓ =
C(∂∆) o Γ coincides with the reduced crossed product and is nuclear by Propo-
sition 4.8 and Théorème 4.5 in [AD]. The algebra AΓ is described in Section 4
below. Cuntz-Krieger algebras were introduced in [CK] and are classified up to
isomorphism by their K-theory [K]. A special case, where Γ is a free uniform tree
lattice, was studied in [R2] by different methods. The K-groups of the boundary
algebra AΓ are isomorphic to the Bowen-Franks invariants of flow equivalence for a
certain subshift of finite type associated with the geodesic flow [C3]. This subshift
was studied in [BP, 6.3].

The K-groups of the algebra AΓ may be computed explicitly. For example, if
Γ = Zl+1 ∗Zm+1 acts on its Bass-Serre tree, where l,m ≥ 1, then K0(AΓ) = Zlm−1

via an isomorphism sending the class of the identity idempotent to l+m. It follows
that AΓ

∼= Ml+m⊗Olm, where On denotes the Cuntz algebra, which is generated by
n isometries on a Hilbert space whose range projections sum to the identity operator
[C1]. It follows that if Γ′ = Zl′+1 ∗ Zm′+1 and AΓ

∼= AΓ′ , then {l,m} = {l′,m′}.

Remark 1.2. The algebra AΓ depends only on Γ. The group Γ and the tree ∆ are
quasi-isometric; more precisely, for any base vertex in ∆, the natural mapping from
Γ onto the orbit of this vertex is a quasi-isometry from Γ to ∆. This is a special
case of the “Fundamental Observation of Geometric Group Theory” [Ha, Theo-
rem IV.23]. The mapping from Γ to ∆ induces a Γ-equivariant homeomorphism of
the boundaries of Γ and ∆.
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2. Background

The edges of the tree ∆ are directed, and each geometric edge of ∆ corresponds
to two directed edges. Let ∆0 denote the set of vertices and ∆1 the set of directed
edges of ∆. There is a distance function d defined on the geometric realization of ∆
which assigns unit length to each edge. Choose an orientation on the set of edges
which is invariant under Γ. This orientation consists of a partition of ∆1 and a
bijective involution

e 7→ e : ∆1 → ∆1

which interchanges the two components of ∆1. Each directed edge e has an initial
vertex o(e) and a terminal vertex t(e) such that o(e) = t(e).

Let Γ be a group of automorphisms of ∆ without inversion and with no proper
invariant subtree. Say that Γ is k-acylindrical, where k ≥ 1, if the stabilizer of
any path of length k in ∆ is trivial [BP]. (In [Sel] such a group Γ is said to be
(k − 1)-acylindrical.) To say that Γ is 1-acylindrical is the same as saying that Γ
acts freely on ∆1. For example, the action of a free product Γ = Γ1 ∗ Γ2 on the
associated Bass-Serre tree [Ser, I.4.1] is 1-acylindrical. If Γ = Γ1 ∗Γ0 Γ2 is a free
product with amalgamation over Γ0, then the action of Γ on the associated Bass-
Serre tree is 2-acylindrical if Γ0 is malnormal in each Γj , i.e. g−1Γ0g∩Γ0 = {1} for
all g ∈ Γj − Γ0, j = 1, 2. Every small splitting of a torsion free hyperbolic group
gives rise to a 3-acylindrical action [Sel].

The boundary ∂∆ is the set of equivalence classes of infinite semi-geodesics in ∆,
where two semi-geodesics are said to be equivalent if they agree except on finitely
many edges. For the rest of this article we make the following assumptions.

Standing Hypotheses
(1): ∆ is an infinite locally finite tree with more than two boundary points.
(2): Γ < Aut(∆) is a uniform tree lattice.
(3): Γ acts without inversion and with no proper invariant subtree.
(4): Γ is k-acylindrical, where k ≥ 1.

Remark 2.1. The standing hypotheses imply that ∂∆ is uncountable.

Remark 2.2. The assumption that Γ has no proper invariant subtree is part of the
definition of “acylindrical” in [Sel] (but not in [BP], which is why it is emphasised
separately here). It implies that the action of Γ on ∂∆ is minimal. The assumption
could have been omitted here if ∂∆ were replaced throughout by the limit set ΛΓ.

Remark 2.3. The assumption that Γ is a uniform lattice is natural and necessary
in the context of the theory of [RS]. It would be interesting to study AΓ for non-
uniform tree lattices. For example, [BP] provides an example of a 5-acylindrical
action of the Nagao lattice PGL2(Fq[t]).

3. Cuntz-Krieger algebras

It is convenient to use the approach to Cuntz-Krieger algebras developed in [RS].
Choose a nonzero matrix M with entries in {0, 1}. For m ≥ 0, let Wm denote the
set of all words of length m+ 1 based on the alphabet A and the transition matrix
M . A word w ∈ Wm is a formal product w = a0a1 . . . am, where aj ∈ A and
M(aj+1, aj) = 1, 0 ≤ j ≤ m− 1. Define o(w) = a0 and t(w) = am.

Fix a nonempty finite or countable set D (whose elements are “decorations”)
and a map δ : D → A. Let Wm = {(d,w) ∈ D × Wm; o(w) = δ(d)}, the
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set of “decorated words” of length m + 1, and identify D with W 0 via the map
d 7→ (d, δ(d)). Let W =

⋃
mWm and W =

⋃
mWm, the sets of all words and all

decorated words respectively. Define o : Wm → D and t : Wm → A by o(d,w) = d
and t(d,w) = t(w).

Let u = a0a1 . . . am ∈ Wm and v = b0b1 . . . bn ∈ Wn. If t(u) = o(v), then there
exists a unique product uv ∈Wm+n defined by

uv = a0a1 . . . amb1 . . . bn.

If w = a0a1 . . . al ∈ Wl where l ≥ 0 and if p 6= 0, we say that w is p-periodic if
aj+p = aj whenever both sides are defined. Assume that the nonzero {0, 1}-matrix
M has been chosen so that the following conditions from [RS] hold.

(H2): If a, b ∈ A then there exists w ∈W such that o(w) = a and t(w) = b.
(H3): For each nonzero integer p, there exists some w ∈ W which is not
p-periodic.

Definition 3.1. [RS] The C∗-algebra AD = A(A,D,M) is the universal C∗-
algebra generated by a family of partial isometries {su,v; u, v ∈W and t(u) = t(v)}
satisfying the relations

su,v
∗ = sv,u(3.1a)

su,vsv,w = su,w(3.1b)

su,v =
∑

w∈W1,
o(w)=t(u)=t(v)

suw,vw(3.1c)

su,usv,v = 0, for u, v ∈W 0, u 6= v.(3.1d)

Remark 3.2. If D is finite (as is the case in this article), then AD is isomorphic to
a simple Cuntz-Krieger algebra with identity element 1 =

∑
u∈W 0

su,u [R1].

Remark 3.3. Two decorations δ1 : D1 → A and δ2 : D2 → A are said to be
equivalent [RS, Section 5] if there is a bijection η : D1 → D2 such that δ1 = δ2η.
Equivalent decorations δ1, δ2 give rise to isomorphic algebras AD1 ,AD2 .

Remark 3.4. Denote by AA the Cuntz-Krieger algebra with decorating set A and
with δ the identity map. The algebra AA is isomorphic to the algebra OMt gen-
erated by a set of partial isometries {Sa; a ∈ A} satisfying the relations S∗aSa =∑
bM(b, a)SbS∗b [RS, Remark 3.11]. If A contains n elements and M(b, a) = 1, for

all a, b ∈ A, then AA is the Cuntz algebra On generated by n isometries whose
range projections sum to the identity operator [C1].

4. The algebra associated with an acylindrical group

The Standing Hypotheses (1)–(4) are now in force. A geodesic γ in ∆ is a
sequence (sj)∞j=−∞ of vertices such that d(si, sj) = |i− j|. A directed segment σ of
length n is a sequence (s0, s1, . . . , sn) of vertices such that d(si, sj) = |i−j|. Denote
such a directed segment by [s0, sn] and let Sn be the set of directed segments of
length n in ∆. Since the group Γ is k-acylindrical, Γ acts freely on the set Sk.

The alphabet A is defined to be Γ\Sk+1, the set of Γ-orbits of directed segments
of length k + 1 in ∆. Since Γ is a uniform lattice, A is finite.
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Define a matrix M with entries in {0, 1} as follows. If a, b ∈ A, we say that
M(b, a) = 1 if and only if a = Γσ and b = Γτ , where σ = (s0, s1, . . . , sk+1),
τ = (t0, t1, . . . , tk+1) are directed segments such that sj+1 = tj , 0 ≤ j ≤ k. The
definition is illustrated in Figure 1.

• • • • • •

s0 sk+1

t0 tk+1

Figure 1. The condition M(b, a) = 1.

As in Section 3, Wm denotes the set of all words of length m + 1 based on the
alphabet A and transition matrix M . Let Wm = Γ\Sm+k+1 and let W =

⋃
m Wm.

There is a map
α : Wm →Wm

defined by

α(Γ(s0, s1, . . . , sm+k+1)) = (Γ[s0, sk+1])(Γ[s1, sk+2]) . . . (Γ[sm, sm+k+1]).

Lemma 4.1. The map α is a bijection from Wm onto Wm.

Proof. Suppose that α(Γσ) = α(Γτ), where σ = (s0, s1, . . . , sm+k+1) and τ =
(t0, t1, . . . , tm+k+1). Then Γ[sj , sj+k+1] = Γ[tj , tj+k+1], 0 ≤ j ≤ m. For each j there
exists gj ∈ Γ such that gj [sj , sj+k+1] = [tj , tj+k+1], and gj is uniquely determined,
since Γ acts freely on the set of segments of length k. Now if 0 ≤ j ≤ m − 1,
then [sj , sj+k+1] ∩ [sj+1, sj+k+2] = [sj+1, sj+k+1] is a segment of length k. Also
gj [sj+1, sj+k+1] = [tj+1, tj+k+1] = gj+1[sj+1, sj+k+1]. Therefore gj = gj+1. It
follows that g0σ = τ and so Γσ = Γτ . This proves injectivity.

To prove surjectivity, suppose that w = a0a1 . . . am ∈ Wm. Then by definition
aj = Γσj for 0 ≤ j ≤ m, where σj∩σj+1 is a segment of length k, for 1 ≤ j ≤ m−1.
It follows that there is a directed segment σ = (s0, s1, . . . , sm+k+1) ∈ Sm+k+1 such
that σj = [sj , sj+k+1], 0 ≤ j ≤ m. Thus α(Γσ) = w. �

Now fix a vertex P ∈ ∆0. Let Wm denote the set of directed segments of length
m+k+1 which begin at P and let W =

⋃
m≥0 Wm. The decorating set is D = W0,

and the decorating map δ : D → A is defined by δ(d) = Γd. Define α : W→W by

α(σ) = (o(σ), α(Γσ)) ,

where o(σ) = (s0, s1, . . . , sk+1) is the initial segment of length k + 1 of σ. Also
define t(σ) to be the final segment of length k + 1 of σ.

Lemma 4.2. The map α is a bijection from Wm onto Wm, for each m ≥ 0.

Proof. If α(σ1) = α(σ2), then o(σ1) = o(σ2); moreover Γσ1 = Γσ2 by Lemma 4.1.
Since Γ acts freely on Sk, it follows that σ1 = σ2. Therefore α is injective.

To see that α is surjective, let w = (d,w) ∈Wm, where w ∈Wm and d ∈ D. By
Lemma 4.1, there exists σ ∈ Sm+k+1 such that α(Γσ) = w. Now

Γd = δ(d) = o(w) = o(α(Γσ)) = Γo(σ).

Replacing σ by gσ for suitable g ∈ Γ ensures that o(σ) = d. Then σ ∈ Wm and
α(σ) = w. �
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Recall that each ω ∈ ∂∆ is represented by a unique semi-geodesic [s0, ω) with
initial vertex s0 ∈ ∆0. If σ is a directed segment with initial vertex t0, let

Ω(σ) = {ω ∈ ∂∆ : [t0, ω) contains σ} .

σ
•t0

• Ω(σ)...................................... ..................................................................................................................................................
.......................

.......................
.......................

.......................
.......................

.....................

......................................................
......................................................

...........................................

.......................................................................................................................................................

...............................................................................................................................................................

··
··
··
··
··
··
··
··
··
··
··

The boundary ∂∆ has a natural compact totally disconnected topology generated
by sets of the form Ω(σ) where σ ∈ W [Ser, I.2.2]. The group Γ acts on ∂∆, and
one can form the crossed product C∗-algebra C(∂∆) o Γ. This is the universal
C∗-algebra generated by the commutative C∗-algebra C(∂∆) and the image of a
unitary representation π of Γ, satisfying the covariance relation

(4.1) f(g−1ω) = π(g) · f · π(g)−1(ω)

for f ∈ C(∂∆), g ∈ Γ and ω ∈ ∂∆. It is convenient to denote π(g) simply by g.
Equation (4.1) implies that for each clopen set E ⊂ ∂∆,

(4.2) χgE = g · χE · g−1.

The indicator function χE is continuous and is regarded as an element of the crossed
product algebra via the embedding C(∂∆) ⊂ C(∂∆) o Γ. The following is a more
precise version of Theorem 1.1.

Theorem 4.3. Let AΓ = C(∂∆)oΓ. Then AΓ is isomorphic to the Cuntz-Krieger
algebra AD associated with the alphabet A, the decorating set D and the transition
matrix M .

Proof. The isomorphism φ : AD → C(∂∆) o Γ is defined as follows. Let wj =
α(σj) ∈ W , j = 1, 2, with t(w1) = t(w2). By the definition of α, there is an
element g ∈ Γ such that gt(σ1) = t(σ2). Recall that t(σ1) and t(σ2) are segments
of length k + 1. Therefore g is unique, since Γ acts freely on Sk. Define the
homomorphism φ by

φ(sw2,w1) = gχΩ(σ1) = χΩ(σ2)g.

This equation defines a ∗-homomorphism of AΓ because the operators of the form
φ(sw2,w1) are easily seen to satisfy the relations (3.1). Since the algebra AD is
simple [RS, Theorem 5.9], φ is injective.

Now χΩ(σ) = φ(sw,w), where σ ∈W and w = α(σ). Since the sets Ω(σ), σ ∈W,
form a basis for the topology of Ω, the linear span of {χΩ(σ);σ ∈ W} is dense in
C(∂∆). It follows that the range of φ contains C(∂∆). To show that φ is surjective,
it therefore suffices to show that the range of φ contains Γ.

Let g ∈ Γ and choose an integer m ≥ d(P, g−1P ). Let σ ∈ Wm. Then σ is a
directed segment of length m+ k + 1 with initial vertex P and final vertex Q, say.
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Let σ′′ be the directed segment with initial vertex g−1P and final vertex Q. Since
m ≥ d(P, g−1P ), it follows that t(σ′′) = t(σ).

.................................................................................................................................P Q

g−1P

•

•

• •
t(σ)
·····························

Let σ′ = gσ′′. Then σ′ is a path beginning at P and t(σ′) = gt(σ). Let w1 = α(σ)
and w2 = α(σ′). Then t(w1) = t(w2) and gχΩ(σ) = φ(sw2,w1) ∈ φ(AD). This holds
for each σ ∈Wm. Therefore

g =
∑

σ∈Wm

gχΩ(σ) ∈ φ(AD).

This shows that the range of φ contains Γ, as required. �

We now prove that conditions (H2) and (H3) are satisfied. To verify condition
(H2), it is enough to show that if a, b ∈ A, then there is a directed segment σ such
that

(4.3) a = Γo(σ), b = Γt(σ).

Let a = Γσ1, b = Γτ2, where σ1, τ2 ∈ Sk+1. By [Ch, Proposition 1 (iii)], there
is a Γ-periodic geodesic γ containing τ2. By definition, this means that there is a
subgroup of Γ which leaves the geodesic γ invariant and acts upon it by translation.
Choose ω ∈ ∂∆ to be the boundary point of γ with

τ2 ⊂ [o(τ2), ω).

Since the action of Γ on ∂∆ is minimal, there exists g ∈ Γ such that gω ∈ Ω(σ1).
The geodesic gγ is Γ-periodic. Therefore the semi-geodesic [go(τ2), gω) contains
infinitely many directed segments σ2 which are Γ-translates of τ2. Choose such a
segment σ2 far enough away from gτ2 so that σ2 ∈ Ω(σ1). Let σ be the directed
segment with o(σ) = σ1 and t(σ) = σ2. Then (4.3) is satisfied.

......................................................................................................................................................................................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.......................

.......................
.................. gω

•
•

gτ2go(τ2)

•

•σ1

• •
σ2

............................ ................

······························
···································

····················
·················

To prove that condition (H3) holds, let p > 0. Since ∆ has more than two ends,
there exist vertices of ∆ which have degree greater than 2. Let σ = (s0, s1, . . . , sp+k) ∈
Sp+k be a directed segment whose final vertex sp+k has degree greater than 2. Ex-
tend σ to two different segments:

(s0, s1, . . . , sp+k, t), (s0, s1, . . . , sp+k, t
′) ∈ Sp+k+1.
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..............................................................................................................................................................................................

••

•

•

s0 sp+k+1

t

t′

Let w = α(Γ(s0, . . . , sp+k, t)) and w′ = α(Γ(s0, . . . , sp+k, t
′)). Then w,w′ ∈Wp,

o(w) = o(w′) and t(w) 6= t(w′) since Γ acts freely on Sk and α is injective. Therefore
at least one of the words w,w′ is not p-periodic.

5. K-theory and examples

The Standing Hypotheses (1)–(4) remain in force. Thus the algebra AΓ is iso-
morphic to the Cuntz-Krieger algebra AD associated with the alphabet A, the set
of decorations D and transition matrix M .

The simple Cuntz-Krieger algebras AD are purely infinite, nuclear and satisfy
the Universal Coefficient Theorem [RS, Remark 6.5]. They are therefore classified
by their K-theory [K]. It is convenient to consider the related algebra AA which
is stably isomorphic to AD. Recall from Remark 3.4 that AA is isomorphic to
the algebra OMt . The groups K0(AA), K1(AA) are the Bowen-Franks invariants
of flow equivalence for a certain subshift associated with (Γ,∆). More precisely,
according to [C3, Proposition 3.1] the group K0(AA) is isomorphic to the abelian
group

(5.1) GΓ =

〈
A

∣∣∣∣∣ a =
∑
b∈A

M(a, b)b, a ∈ A

〉
.

Note that, as the notation suggests, GΓ depends only on Γ, by Remark 1.2. Also
K1(AA) is the torsion free part of GΓ. Therefore AA is classified up to stable
isomorphism by the group GΓ. Since the algebra AD is stably isomorphic to AA
[RS, Corollary 5.15], we obtain the following result.

Theorem 5.1. Under the Standing Hypotheses (1)–(4), K0(AΓ) ∼= GΓ.

To completely classify AA up to isomorphism, we need to identify the class [1]
of the identity idempotent in K0(AA) [K]. By Remark 3.2, this class corresponds
to the element

(5.2) ε =
∑
a∈A

a ∈ GΓ.

Here are explicit calculations in the case where Γ is a free product of finite cyclic
groups.

5.1. Example: The group Γ = Zl+1 ∗ Zm+1 acts on its Bass-Serre tree [Ser, I.4]
with an edge y = [P,Q] as its fundamental domain. The stabilizer ΓP of P is
isomorphic to Zl+1 and the stabilizer ΓQ of Q is isomorphic to Zm+1.

..................... ................. ••P Q

y
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By construction, Γ acts freely and transitively on the geometric edges of ∆. In
other words, Γ is 1-acylindrical. The theory applies, with k = 1, and the alphabet
A is the set of Γ-orbits of directed segments of length 2 in ∆.

Let A1 = ΓP − {1} and A2 = ΓQ − {1}, so that |A1| = l, |A2| = m. Each
directed segment of length 2 in ∆ lies in the Γ-orbit of one of the directed segments
[P, a2P ], [Q, a1Q], for some a1 ∈ A1, a2 ∈ A2. Let â2 = Γ[P, a2P ], â1 = Γ[Q, a1Q]
be the corresponding elements of A2, A1.

..................... ................. ...................................... •••
P Q a2P

y a2y
...................................... ..................... ................. •••

Q P a1Q
y a1y

The map a 7→ â is a bijection from A1 ∪ A2 onto A. The {0, 1}-matrix M is
defined by M(â, b̂) = 1⇐⇒ either a ∈ A1, b ∈ A2 or b ∈ A1, a ∈ A2.

••••
P Q = a2Q a2a1Qa2P

The condition M(â1, â2) = 1.

By Theorem 5.1,

(5.3) K0(AΓ) =

〈
Â1 ∪ Â2

∣∣∣∣∣∣ â =
∑

b∈A3−j

b̂, a ∈ Aj , j = 1, 2

〉
.

The relations on the right side of (5.3) show that all the generators of Â1 are equal
and all the generators of Â2 are equal. Therefore

K0(AΓ) = 〈â1, â2 | â2 = lâ1, â1 = mâ2〉 = 〈â1 | â1 = lmâ1〉 = Zlm−1.

Recall that the classical Cuntz algebra On is generated by n isometries whose range
projections sum to the identity operator [C1]. Now K0(On) = Zn−1 [C2]. It follows
from the classification theorem [K] that AΓ is stably isomorphic to Olm.

In order to classify AD up to isomorphism, the class of the identity idempotent
in K0(AΓ) must be identified. This is done by showing that AΓ

∼= AA. Choose the
decorating set D to be the set of directed segments of length 2 which begin at P .
The map δ : d 7→ Γd has domain D and range Â2. Each of the l + 1 edges with
origin P is the initial edge of precisely one directed segment of length 2 from each
Γ-orbit in Â2, and so δ−1(â2) contains l + 1 elements, for each â2 ∈ Â2.

Define a new decorating set

D′ = {(â, w) ∈ (Â2 ×W0) ∪ (Â1 ×W1) : o(w) = â}

and a decorating map δ′ : D′ → A by δ′(â, w) = t(w). The range of δ′ is Â2 and
for each â2 ∈ Â2, δ′−1(â2) contains l + 1 elements: one element from Â2 ×W0,
and l elements from Â1 ×W1. It follows that δ′ is equivalent to δ, in the sense of
Remark 3.3, and so the algebras AD,AD′ are isomorphic.

On the other hand, there is an isomorphism φ : AD′ → AA defined by

φ(s(w1,u1),(w2,u2)) = sw1u1,w2u2
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for w1, w2 ∈ D′, u1, u2 ∈ W , o(ui) = δ′(wi) = t(wi), and t(u1) = t(u2). The proof
of this fact is contained in [RS, Lemma 5.15]. Therefore

AΓ
∼= AD ∼= AD′ ∼= AA.

Since A contains l +m elements, it follows from (5.2) that the class [1] in K0(AΓ)
corresponds to the element l +m ∈ Zlm−1. Now it is known [C2] that

(K0(Mk ⊗On), [1]) ∼= (Zn−1, k).

This proves that AΓ
∼= Ml+m ⊗ Olm. Note further that AΓ

∼= Olm if and only if
l +m is a generator of Zlm−1; that is, (l +m, lm− 1) = 1.

5.2. Example: More generally, a free product of finite groups Γ = Γ1 ∗Γ2 ∗ · · · ∗Γn
acts on its Bass-Serre tree. The fundamental domain is a tree consisting of n edges
yi with terminal vertex Qi emanating from a common vertex P . The stabilizer of
P and of each of the edges yj is trivial, and the stabilizer of Qj is isomorphic to Γj .

................................................................................................................................................................................................................................................................................................................................

•

•

•

•

Q1

Q2

Q3

P
y2

y1

y3

The group Γ is 1-acylindrical and acts freely (but not transitively, in contrast to
Example 5.1) on the set of edges of ∆, with finitely many orbits.

Let Ai = Γi − {1} and γi = |Ai|, 1 ≤ i ≤ n. Each directed segment of length 2
in ∆ lies in the Γ-orbit of a directed segment of the form (P,Qi, aP ), a ∈ Ai, or
(Qj , P,Qk), j 6= k, as illustrated below.

•••
P Qiyi ayi aP

•••
Qj Pyj yk Qk

Let Âi = {â = Γ(P,Qi, aP ) : a ∈ Ai}, and let B̂ = {b̂jk = Γ(Qj , P,Qk) : j 6= k}.
Then by Theorem 5.1

(5.4) K0(AΓ) =

〈⋃
i

Âi ∪ B̂

∣∣∣∣∣∣ â =
∑
j 6=i

b̂ij (â ∈ Âi), b̂jk =
∑
â∈Âk

â

〉
.

The relations on the right side of (5.4) show that b̂jk depends only on k. There-
fore, for each i, all the generators in Âi are equal. It follows that

(5.5) K0(AΓ) = 〈âi | âi =
∑
j 6=i

γj âj〉.

It is easy to see from (5.5) that K0(AΓ) is a torsion group and therefore that
K1(AΓ) = 0. In other words, the unitary group of AΓ is connected [C2]. If all the
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groups Γi have the same order, say γ+1, and δ = γ(n−1)−1, then (5.5) simplifies
to

K0(AΓ) = Z(γ+1)δ ⊕ (Zγ+1)n−2

with canonical generators â1, â2 − â1, â3 − â1, . . . , ân−1 − â1.
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