BOUNDARY C*-ALGEBRAS FOR ACYLINDRICAL GROUPS

GUYAN ROBERTSON

ABSTRACT. Let Δ be an infinite, locally finite tree with more than two ends. Let $\Gamma < \operatorname{Aut}(\Delta)$ be an acylindrical uniform lattice. Then the boundary algebra $\mathcal{A}_{\Gamma} = C(\partial \Delta) \rtimes \Gamma$ is a simple Cuntz-Krieger algebra whose K-theory is determined explicitly.

1. INTRODUCTION

Let Δ be an infinite, locally finite tree with more than two ends and with boundary $\partial \Delta$. Let k be a positive integer and let Γ be a group of automorphisms of Δ without inversion and with no proper invariant subtree. Say that Γ is k-acylindrical if the stabilizer of any path of length k in Δ is trivial [BP, Sel]. The group Γ is *acylindrical* if it is k-acylindrical for some integer $k \geq 1$. The main result of this article is

Theorem 1.1. Let $\Gamma < \operatorname{Aut}(\Delta)$ be an acylindrical uniform lattice. Then the boundary algebra $\mathcal{A}_{\Gamma} = C(\partial \Delta) \rtimes \Gamma$ is a simple Cuntz-Krieger algebra.

The action of Γ on $\partial \Delta$ is amenable, so the maximal crossed product $\mathcal{A}_{\Gamma} = C(\partial \Delta) \rtimes \Gamma$ coincides with the reduced crossed product and is nuclear by Proposition 4.8 and Théorème 4.5 in [AD]. The algebra \mathcal{A}_{Γ} is described in Section 4 below. Cuntz-Krieger algebras were introduced in [CK] and are classified up to isomorphism by their K-theory [K]. A special case, where Γ is a free uniform tree lattice, was studied in [R2] by different methods. The K-groups of the boundary algebra \mathcal{A}_{Γ} are isomorphic to the Bowen-Franks invariants of flow equivalence for a certain subshift of finite type associated with the geodesic flow [C3]. This subshift was studied in [BP, 6.3].

The K-groups of the algebra \mathcal{A}_{Γ} may be computed explicitly. For example, if $\Gamma = \mathbb{Z}_{l+1} * \mathbb{Z}_{m+1}$ acts on its Bass-Serre tree, where $l, m \geq 1$, then $K_0(\mathcal{A}_{\Gamma}) = \mathbb{Z}_{lm-1}$ via an isomorphism sending the class of the identity idempotent to l+m. It follows that $\mathcal{A}_{\Gamma} \cong \mathcal{M}_{l+m} \otimes \mathcal{O}_{lm}$, where \mathcal{O}_n denotes the Cuntz algebra, which is generated by n isometries on a Hilbert space whose range projections sum to the identity operator [C1]. It follows that if $\Gamma' = \mathbb{Z}_{l'+1} * \mathbb{Z}_{m'+1}$ and $\mathcal{A}_{\Gamma} \cong \mathcal{A}_{\Gamma'}$, then $\{l, m\} = \{l', m'\}$.

Remark 1.2. The algebra \mathcal{A}_{Γ} depends only on Γ . The group Γ and the tree Δ are quasi-isometric; more precisely, for any base vertex in Δ , the natural mapping from Γ onto the orbit of this vertex is a quasi-isometry from Γ to Δ . This is a special case of the "Fundamental Observation of Geometric Group Theory" [Ha, Theorem IV.23]. The mapping from Γ to Δ induces a Γ -equivariant homeomorphism of the boundaries of Γ and Δ .

Date: October 5, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20E08, 46L80.

Key words and phrases. Acylindrical group, boundary, Cuntz-Krieger algebra.

2. Background

The edges of the tree Δ are directed, and each geometric edge of Δ corresponds to two directed edges. Let Δ^0 denote the set of vertices and Δ^1 the set of directed edges of Δ . There is a distance function d defined on the geometric realization of Δ which assigns unit length to each edge. Choose an orientation on the set of edges which is invariant under Γ . This orientation consists of a partition of Δ^1 and a bijective involution

$$e \mapsto \overline{e} : \Delta^1 \to \Delta^1$$

which interchanges the two components of Δ^1 . Each directed edge e has an initial vertex o(e) and a terminal vertex t(e) such that $o(\overline{e}) = t(e)$.

Let Γ be a group of automorphisms of Δ without inversion and with no proper invariant subtree. Say that Γ is k-acylindrical, where $k \geq 1$, if the stabilizer of any path of length k in Δ is trivial [BP]. (In [Sel] such a group Γ is said to be (k-1)-acylindrical.) To say that Γ is 1-acylindrical is the same as saying that Γ acts freely on Δ^1 . For example, the action of a free product $\Gamma = \Gamma_1 * \Gamma_2$ on the associated Bass-Serre tree [Ser, I.4.1] is 1-acylindrical. If $\Gamma = \Gamma_1 * \Gamma_0 \Gamma_2$ is a free product with amalgamation over Γ_0 , then the action of Γ on the associated Bass-Serre tree is 2-acylindrical if Γ_0 is malnormal in each Γ_j , i.e. $g^{-1}\Gamma_0g\cap\Gamma_0 = \{1\}$ for all $g \in \Gamma_j - \Gamma_0$, j = 1, 2. Every small splitting of a torsion free hyperbolic group gives rise to a 3-acylindrical action [Sel].

The boundary $\partial \Delta$ is the set of equivalence classes of infinite semi-geodesics in Δ , where two semi-geodesics are said to be equivalent if they agree except on finitely many edges. For the rest of this article we make the following assumptions.

Standing Hypotheses

(1): Δ is an infinite locally finite tree with more than two boundary points.

- (2): $\Gamma < \operatorname{Aut}(\Delta)$ is a uniform tree lattice.
- (3): Γ acts without inversion and with no proper invariant subtree.
- (4): Γ is k-acylindrical, where $k \ge 1$.

Remark 2.1. The standing hypotheses imply that $\partial \Delta$ is uncountable.

Remark 2.2. The assumption that Γ has no proper invariant subtree is part of the definition of "acylindrical" in [Sel] (but not in [BP], which is why it is emphasised separately here). It implies that the action of Γ on $\partial \Delta$ is minimal. The assumption could have been omitted here if $\partial \Delta$ were replaced throughout by the limit set Λ_{Γ} .

Remark 2.3. The assumption that Γ is a uniform lattice is natural and necessary in the context of the theory of [RS]. It would be interesting to study \mathcal{A}_{Γ} for nonuniform tree lattices. For example, [BP] provides an example of a 5-acylindrical action of the Nagao lattice $\mathrm{PGL}_2(\mathbb{F}_q[t])$.

3. CUNTZ-KRIEGER ALGEBRAS

It is convenient to use the approach to Cuntz-Krieger algebras developed in [RS]. Choose a nonzero matrix M with entries in $\{0, 1\}$. For $m \ge 0$, let W_m denote the set of all words of length m + 1 based on the alphabet A and the transition matrix M. A word $w \in W_m$ is a formal product $w = a_0a_1 \dots a_m$, where $a_j \in A$ and $M(a_{j+1}, a_j) = 1, 0 \le j \le m - 1$. Define $o(w) = a_0$ and $t(w) = a_m$.

Fix a nonempty finite or countable set D (whose elements are "decorations") and a map $\delta : D \to A$. Let $\overline{W}_m = \{(d, w) \in D \times W_m; o(w) = \delta(d)\}$, the set of "decorated words" of length m + 1, and identify D with \overline{W}_0 via the map $d \mapsto (d, \delta(d))$. Let $W = \bigcup_m W_m$ and $\overline{W} = \bigcup_m \overline{W}_m$, the sets of all words and all decorated words respectively. Define $o: \overline{W}_m \to D$ and $t: \overline{W}_m \to A$ by o(d, w) = d and t(d, w) = t(w).

Let $u = a_0 a_1 \dots a_m \in W_m$ and $v = b_0 b_1 \dots b_n \in W_n$. If t(u) = o(v), then there exists a unique product $uv \in W_{m+n}$ defined by

$$uv = a_0a_1\ldots a_mb_1\ldots b_n.$$

If $w = a_0 a_1 \dots a_l \in W_l$ where $l \ge 0$ and if $p \ne 0$, we say that w is *p*-periodic if $a_{j+p} = a_j$ whenever both sides are defined. Assume that the nonzero $\{0, 1\}$ -matrix M has been chosen so that the following conditions from [RS] hold.

(H2): If $a, b \in A$ then there exists $w \in W$ such that o(w) = a and t(w) = b. (H3): For each nonzero integer p, there exists some $w \in W$ which is not p-periodic.

Definition 3.1. [RS] The C^* -algebra $\mathcal{A}_D = \mathcal{A}(A, D, M)$ is the universal C^* -algebra generated by a family of partial isometries $\{s_{u,v}; u, v \in \overline{W} \text{ and } t(u) = t(v)\}$ satisfying the relations

(3.1a)
$$s_{u,v}^* = s_{v,v}$$

$$(3.1b) s_{u,v}s_{v,w} = s_{u,w}$$

(3.1c)
$$s_{u,v} = \sum_{\substack{w \in W_1, \\ o(w) = t(u) = t(v)}} s_{uw,vu}$$

(3.1d)
$$s_{u,u}s_{v,v} = 0, \text{ for } u, v \in \overline{W}_0, u \neq v.$$

Remark 3.2. If D is finite (as is the case in this article), then \mathcal{A}_D is isomorphic to a simple Cuntz-Krieger algebra with identity element $\mathbf{1} = \sum_{u \in \overline{W}_0} s_{u,u}$ [R1].

Remark 3.3. Two decorations $\delta_1 : D_1 \to A$ and $\delta_2 : D_2 \to A$ are said to be equivalent [RS, Section 5] if there is a bijection $\eta : D_1 \to D_2$ such that $\delta_1 = \delta_2 \eta$. Equivalent decorations δ_1, δ_2 give rise to isomorphic algebras $\mathcal{A}_{D_1}, \mathcal{A}_{D_2}$.

Remark 3.4. Denote by \mathcal{A}_A the Cuntz-Krieger algebra with decorating set A and with δ the identity map. The algebra \mathcal{A}_A is isomorphic to the algebra \mathcal{O}_{M^t} generated by a set of partial isometries $\{S_a; a \in A\}$ satisfying the relations $S_a^*S_a = \sum_b M(b,a)S_bS_b^*$ [RS, Remark 3.11]. If A contains n elements and M(b,a) = 1, for all $a, b \in A$, then \mathcal{A}_A is the Cuntz algebra \mathcal{O}_n generated by n isometries whose range projections sum to the identity operator [C1].

4. The Algebra associated with an acylindrical group

The Standing Hypotheses (1)–(4) are now in force. A geodesic γ in Δ is a sequence $(s_j)_{j=-\infty}^{\infty}$ of vertices such that $d(s_i, s_j) = |i-j|$. A directed segment σ of length n is a sequence (s_0, s_1, \ldots, s_n) of vertices such that $d(s_i, s_j) = |i-j|$. Denote such a directed segment by $[s_0, s_n]$ and let \mathfrak{S}_n be the set of directed segments of length n in Δ . Since the group Γ is k-acylindrical, Γ acts freely on the set \mathfrak{S}_k .

The alphabet A is defined to be $\Gamma \setminus \mathfrak{S}_{k+1}$, the set of Γ -orbits of directed segments of length k + 1 in Δ . Since Γ is a uniform lattice, A is finite.

Define a matrix M with entries in $\{0,1\}$ as follows. If $a, b \in A$, we say that M(b,a) = 1 if and only if $a = \Gamma \sigma$ and $b = \Gamma \tau$, where $\sigma = (s_0, s_1, \ldots, s_{k+1})$, $\tau = (t_0, t_1, \ldots, t_{k+1})$ are directed segments such that $s_{j+1} = t_j$, $0 \le j \le k$. The definition is illustrated in Figure 1.

$$--- \underbrace{t_0}_{s_0} \underbrace{t_{k+1}}_{s_{k+1}} - - - -$$

FIGURE 1. The condition M(b, a) = 1.

As in Section 3, W_m denotes the set of all words of length m + 1 based on the alphabet A and transition matrix M. Let $\mathfrak{W}_m = \Gamma \backslash \mathfrak{S}_{m+k+1}$ and let $\mathfrak{W} = \bigcup_m \mathfrak{W}_m$. There is a map

$$\alpha:\mathfrak{W}_m\to W_m$$

defined by

$$\alpha(\Gamma(s_0, s_1, \dots, s_{m+k+1})) = (\Gamma[s_0, s_{k+1}])(\Gamma[s_1, s_{k+2}]) \dots (\Gamma[s_m, s_{m+k+1}]).$$

Lemma 4.1. The map α is a bijection from \mathfrak{W}_m onto W_m .

Proof. Suppose that $\alpha(\Gamma\sigma) = \alpha(\Gamma\tau)$, where $\sigma = (s_0, s_1, \ldots, s_{m+k+1})$ and $\tau = (t_0, t_1, \ldots, t_{m+k+1})$. Then $\Gamma[s_j, s_{j+k+1}] = \Gamma[t_j, t_{j+k+1}]$, $0 \le j \le m$. For each j there exists $g_j \in \Gamma$ such that $g_j[s_j, s_{j+k+1}] = [t_j, t_{j+k+1}]$, and g_j is uniquely determined, since Γ acts freely on the set of segments of length k. Now if $0 \le j \le m-1$, then $[s_j, s_{j+k+1}] \cap [s_{j+1}, s_{j+k+2}] = [s_{j+1}, s_{j+k+1}]$ is a segment of length k. Also $g_j[s_{j+1}, s_{j+k+1}] = [t_{j+1}, t_{j+k+1}] = g_{j+1}[s_{j+1}, s_{j+k+1}]$. Therefore $g_j = g_{j+1}$. It follows that $g_0\sigma = \tau$ and so $\Gamma\sigma = \Gamma\tau$. This proves injectivity.

To prove surjectivity, suppose that $w = a_0 a_1 \dots a_m \in W_m$. Then by definition $a_j = \Gamma \sigma_j$ for $0 \leq j \leq m$, where $\sigma_j \cap \sigma_{j+1}$ is a segment of length k, for $1 \leq j \leq m-1$. It follows that there is a directed segment $\sigma = (s_0, s_1, \dots, s_{m+k+1}) \in \mathfrak{S}_{m+k+1}$ such that $\sigma_j = [s_j, s_{j+k+1}], 0 \leq j \leq m$. Thus $\alpha(\Gamma \sigma) = w$.

Now fix a vertex $P \in \Delta^0$. Let $\overline{\mathfrak{W}}_m$ denote the set of directed segments of length m+k+1 which begin at P and let $\overline{\mathfrak{W}} = \bigcup_{m\geq 0} \overline{\mathfrak{W}}_m$. The decorating set is $D = \overline{\mathfrak{W}}_0$, and the decorating map $\delta: D \to A$ is defined by $\delta(d) = \Gamma d$. Define $\overline{\alpha}: \overline{\mathfrak{W}} \to \overline{W}$ by

$$\overline{\alpha}(\sigma) = (o(\sigma), \alpha(\Gamma\sigma)),$$

where $o(\sigma) = (s_0, s_1, \dots, s_{k+1})$ is the initial segment of length k + 1 of σ . Also define $t(\sigma)$ to be the final segment of length k + 1 of σ .

Lemma 4.2. The map $\overline{\alpha}$ is a bijection from $\overline{\mathfrak{W}}_m$ onto \overline{W}_m , for each $m \geq 0$.

Proof. If $\overline{\alpha}(\sigma_1) = \overline{\alpha}(\sigma_2)$, then $o(\sigma_1) = o(\sigma_2)$; moreover $\Gamma \sigma_1 = \Gamma \sigma_2$ by Lemma 4.1. Since Γ acts freely on \mathfrak{S}_k , it follows that $\sigma_1 = \sigma_2$. Therefore $\overline{\alpha}$ is injective.

To see that $\overline{\alpha}$ is surjective, let $\overline{w} = (d, w) \in \overline{W}_m$, where $w \in W_m$ and $d \in D$. By Lemma 4.1, there exists $\sigma \in \mathfrak{S}_{m+k+1}$ such that $\alpha(\Gamma \sigma) = w$. Now

$$\Gamma d = \delta(d) = o(w) = o(\alpha(\Gamma\sigma)) = \Gamma o(\sigma).$$

Replacing σ by $g\sigma$ for suitable $g \in \Gamma$ ensures that $o(\sigma) = d$. Then $\sigma \in \overline{\mathfrak{W}}_m$ and $\overline{\alpha}(\sigma) = \overline{w}$.

Recall that each $\omega \in \partial \Delta$ is represented by a unique semi-geodesic $[s_0, \omega)$ with initial vertex $s_0 \in \Delta^0$. If σ is a directed segment with initial vertex t_0 , let

 $\Omega(\sigma) = \{ \omega \in \partial \Delta : [t_0, \omega) \text{ contains } \sigma \}.$

The boundary $\partial \Delta$ has a natural compact totally disconnected topology generated by sets of the form $\Omega(\sigma)$ where $\sigma \in \overline{\mathfrak{W}}$ [Ser, I.2.2]. The group Γ acts on $\partial \Delta$, and one can form the crossed product C^* -algebra $C(\partial \Delta) \rtimes \Gamma$. This is the universal C^* -algebra generated by the commutative C^* -algebra $C(\partial \Delta)$ and the image of a unitary representation π of Γ , satisfying the covariance relation

(4.1)
$$f(g^{-1}\omega) = \pi(g) \cdot f \cdot \pi(g)^{-1}(\omega)$$

for $f \in C(\partial \Delta)$, $g \in \Gamma$ and $\omega \in \partial \Delta$. It is convenient to denote $\pi(g)$ simply by g. Equation (4.1) implies that for each clopen set $E \subset \partial \Delta$,

(4.2)
$$\chi_{gE} = g \cdot \chi_E \cdot g^{-1}.$$

The indicator function χ_E is continuous and is regarded as an element of the crossed product algebra via the embedding $C(\partial \Delta) \subset C(\partial \Delta) \rtimes \Gamma$. The following is a more precise version of Theorem 1.1.

Theorem 4.3. Let $\mathcal{A}_{\Gamma} = C(\partial \Delta) \rtimes \Gamma$. Then \mathcal{A}_{Γ} is isomorphic to the Cuntz-Krieger algebra \mathcal{A}_D associated with the alphabet A, the decorating set D and the transition matrix M.

Proof. The isomorphism $\phi : \mathcal{A}_D \to C(\partial \Delta) \rtimes \Gamma$ is defined as follows. Let $\overline{w}_j = \overline{\alpha}(\sigma_j) \in \overline{W}, \ j = 1, 2$, with $t(\overline{w}_1) = t(\overline{w}_2)$. By the definition of $\overline{\alpha}$, there is an element $g \in \Gamma$ such that $gt(\sigma_1) = t(\sigma_2)$. Recall that $t(\sigma_1)$ and $t(\sigma_2)$ are segments of length k + 1. Therefore g is unique, since Γ acts freely on \mathfrak{S}_k . Define the homomorphism ϕ by

$$\phi(s_{\overline{w}_2,\overline{w}_1}) = g\chi_{\Omega(\sigma_1)} = \chi_{\Omega(\sigma_2)}g.$$

This equation defines a *-homomorphism of \mathcal{A}_{Γ} because the operators of the form $\phi(s_{\overline{w}_2,\overline{w}_1})$ are easily seen to satisfy the relations (3.1). Since the algebra \mathcal{A}_D is simple [RS, Theorem 5.9], ϕ is injective.

Now $\chi_{\Omega(\sigma)} = \phi(s_{\overline{w},\overline{w}})$, where $\sigma \in \overline{\mathfrak{W}}$ and $\overline{w} = \overline{\alpha}(\sigma)$. Since the sets $\Omega(\sigma)$, $\sigma \in \overline{\mathfrak{W}}$, form a basis for the topology of Ω , the linear span of $\{\chi_{\Omega(\sigma)}; \sigma \in \overline{\mathfrak{W}}\}$ is dense in $C(\partial \Delta)$. It follows that the range of ϕ contains $C(\partial \Delta)$. To show that ϕ is surjective, it therefore suffices to show that the range of ϕ contains Γ .

Let $g \in \Gamma$ and choose an integer $m \geq d(P, g^{-1}P)$. Let $\sigma \in \overline{\mathfrak{W}}_m$. Then σ is a directed segment of length m + k + 1 with initial vertex P and final vertex Q, say.

Let σ'' be the directed segment with initial vertex $g^{-1}P$ and final vertex Q. Since $m \ge d(P, g^{-1}P)$, it follows that $t(\sigma'') = t(\sigma)$.

Let $\sigma' = g\sigma''$. Then σ' is a path beginning at P and $t(\sigma') = gt(\sigma)$. Let $\overline{w}_1 = \overline{\alpha}(\sigma)$ and $\overline{w}_2 = \overline{\alpha}(\sigma')$. Then $t(\overline{w}_1) = t(\overline{w}_2)$ and $g\chi_{\Omega(\sigma)} = \phi(s_{\overline{w}_2,\overline{w}_1}) \in \phi(\mathcal{A}_D)$. This holds for each $\sigma \in \overline{\mathfrak{W}}_m$. Therefore

$$g = \sum_{\sigma \in \overline{\mathfrak{W}}_m} g \chi_{\Omega(\sigma)} \in \phi(\mathcal{A}_D).$$

This shows that the range of ϕ contains Γ , as required.

We now prove that conditions (H2) and (H3) are satisfied. To verify condition (H2), it is enough to show that if $a, b \in A$, then there is a directed segment σ such that

(4.3)
$$a = \Gamma o(\sigma), \quad b = \Gamma t(\sigma).$$

Let $a = \Gamma \sigma_1$, $b = \Gamma \tau_2$, where $\sigma_1, \tau_2 \in \mathfrak{S}_{k+1}$. By [Ch, Proposition 1 (iii)], there is a Γ -periodic geodesic γ containing τ_2 . By definition, this means that there is a subgroup of Γ which leaves the geodesic γ invariant and acts upon it by translation. Choose $\omega \in \partial \Delta$ to be the boundary point of γ with

$$\tau_2 \subset [o(\tau_2), \omega).$$

Since the action of Γ on $\partial \Delta$ is minimal, there exists $g \in \Gamma$ such that $g\omega \in \Omega(\sigma_1)$. The geodesic $g\gamma$ is Γ -periodic. Therefore the semi-geodesic $[go(\tau_2), g\omega)$ contains infinitely many directed segments σ_2 which are Γ -translates of τ_2 . Choose such a segment σ_2 far enough away from $g\tau_2$ so that $\sigma_2 \in \Omega(\sigma_1)$. Let σ be the directed segment with $o(\sigma) = \sigma_1$ and $t(\sigma) = \sigma_2$. Then (4.3) is satisfied.

To prove that condition (H3) holds, let p > 0. Since Δ has more than two ends, there exist vertices of Δ which have degree greater than 2. Let $\sigma = (s_0, s_1, \ldots, s_{p+k}) \in \mathfrak{S}_{p+k}$ be a directed segment whose final vertex s_{p+k} has degree greater than 2. Extend σ to two different segments:

$$(s_0, s_1, \ldots, s_{p+k}, t), (s_0, s_1, \ldots, s_{p+k}, t') \in \mathfrak{S}_{p+k+1}.$$

Let $w = \alpha(\Gamma(s_0, \ldots, s_{p+k}, t))$ and $w' = \alpha(\Gamma(s_0, \ldots, s_{p+k}, t'))$. Then $w, w' \in W_p$, o(w) = o(w') and $t(w) \neq t(w')$ since Γ acts freely on \mathfrak{S}_k and α is injective. Therefore at least one of the words w, w' is not *p*-periodic.

5. K-THEORY AND EXAMPLES

The Standing Hypotheses (1)–(4) remain in force. Thus the algebra \mathcal{A}_{Γ} is isomorphic to the Cuntz-Krieger algebra \mathcal{A}_D associated with the alphabet A, the set of decorations D and transition matrix M.

The simple Cuntz-Krieger algebras \mathcal{A}_D are purely infinite, nuclear and satisfy the Universal Coefficient Theorem [RS, Remark 6.5]. They are therefore classified by their K-theory [K]. It is convenient to consider the related algebra \mathcal{A}_A which is stably isomorphic to \mathcal{A}_D . Recall from Remark 3.4 that \mathcal{A}_A is isomorphic to the algebra \mathcal{O}_{M^t} . The groups $K_0(\mathcal{A}_A)$, $K_1(\mathcal{A}_A)$ are the Bowen-Franks invariants of flow equivalence for a certain subshift associated with (Γ, Δ) . More precisely, according to [C3, Proposition 3.1] the group $K_0(\mathcal{A}_A)$ is isomorphic to the abelian group

(5.1)
$$\mathcal{G}_{\Gamma} = \left\langle A \middle| a = \sum_{b \in A} M(a, b)b, \ a \in A \right\rangle.$$

Note that, as the notation suggests, \mathcal{G}_{Γ} depends only on Γ , by Remark 1.2. Also $K_1(\mathcal{A}_A)$ is the torsion free part of \mathcal{G}_{Γ} . Therefore \mathcal{A}_A is classified up to stable isomorphism by the group \mathcal{G}_{Γ} . Since the algebra \mathcal{A}_D is stably isomorphic to \mathcal{A}_A [RS, Corollary 5.15], we obtain the following result.

Theorem 5.1. Under the Standing Hypotheses (1)–(4), $K_0(\mathcal{A}_{\Gamma}) \cong \mathcal{G}_{\Gamma}$.

To completely classify \mathcal{A}_A up to isomorphism, we need to identify the class [1] of the identity idempotent in $K_0(\mathcal{A}_A)$ [K]. By Remark 3.2, this class corresponds to the element

(5.2)
$$\varepsilon = \sum_{a \in A} a \in \mathcal{G}_{\Gamma}.$$

Here are explicit calculations in the case where Γ is a free product of finite cyclic groups.

5.1. **Example:** The group $\Gamma = \mathbb{Z}_{l+1} * \mathbb{Z}_{m+1}$ acts on its Bass-Serre tree [Ser, I.4] with an edge y = [P, Q] as its fundamental domain. The stabilizer Γ_P of P is isomorphic to \mathbb{Z}_{l+1} and the stabilizer Γ_Q of Q is isomorphic to \mathbb{Z}_{m+1} .

$$P \longrightarrow Q$$

By construction, Γ acts freely and transitively on the geometric edges of Δ . In other words, Γ is 1-acylindrical. The theory applies, with k = 1, and the alphabet A is the set of Γ -orbits of directed segments of length 2 in Δ .

Let $A_1 = \Gamma_P - \{1\}$ and $A_2 = \Gamma_Q - \{1\}$, so that $|A_1| = l$, $|A_2| = m$. Each directed segment of length 2 in Δ lies in the Γ -orbit of one of the directed segments $[P, a_2P]$, $[Q, a_1Q]$, for some $a_1 \in A_1$, $a_2 \in A_2$. Let $\hat{a}_2 = \Gamma[P, a_2P]$, $\hat{a}_1 = \Gamma[Q, a_1Q]$ be the corresponding elements of A_2 , A_1 .

The map $a \mapsto \hat{a}$ is a bijection from $A_1 \cup A_2$ onto A. The $\{0, 1\}$ -matrix M is defined by $M(\hat{a}, \hat{b}) = 1 \iff$ either $a \in A_1, b \in A_2$ or $b \in A_1, a \in A_2$.

$$P \qquad Q = a_2 Q \qquad a_2 P \qquad a_2 a_1 Q$$

The condition $M(\hat{a}_1, \hat{a}_2) = 1$.

By Theorem 5.1,

(5.3)
$$K_0(\mathcal{A}_{\Gamma}) = \left\langle \hat{A}_1 \cup \hat{A}_2 \middle| \hat{a} = \sum_{b \in A_{3-j}} \hat{b}, \quad a \in A_j, \quad j = 1, 2 \right\rangle.$$

The relations on the right side of (5.3) show that all the generators of \hat{A}_1 are equal and all the generators of \hat{A}_2 are equal. Therefore

$$K_0(\mathcal{A}_{\Gamma}) = \langle \hat{a}_1, \hat{a}_2 \mid \hat{a}_2 = l\hat{a}_1, \hat{a}_1 = m\hat{a}_2 \rangle = \langle \hat{a}_1 \mid \hat{a}_1 = lm\hat{a}_1 \rangle = \mathbb{Z}_{lm-1}$$

Recall that the classical Cuntz algebra \mathcal{O}_n is generated by n isometries whose range projections sum to the identity operator [C1]. Now $K_0(\mathcal{O}_n) = \mathbb{Z}_{n-1}$ [C2]. It follows from the classification theorem [K] that \mathcal{A}_{Γ} is stably isomorphic to \mathcal{O}_{lm} .

In order to classify \mathcal{A}_D up to isomorphism, the class of the identity idempotent in $K_0(\mathcal{A}_{\Gamma})$ must be identified. This is done by showing that $\mathcal{A}_{\Gamma} \cong \mathcal{A}_A$. Choose the decorating set D to be the set of directed segments of length 2 which begin at P. The map $\delta : d \mapsto \Gamma d$ has domain D and range \hat{A}_2 . Each of the l + 1 edges with origin P is the initial edge of precisely one directed segment of length 2 from each Γ -orbit in \hat{A}_2 , and so $\delta^{-1}(\hat{a}_2)$ contains l + 1 elements, for each $\hat{a}_2 \in \hat{A}_2$.

Define a new decorating set

$$D' = \{ (\hat{a}, w) \in (\hat{A}_2 \times W_0) \cup (\hat{A}_1 \times W_1) : o(w) = \hat{a} \}$$

and a decorating map $\delta': D' \to A$ by $\delta'(\hat{a}, w) = t(w)$. The range of δ' is \hat{A}_2 and for each $\hat{a}_2 \in \hat{A}_2$, $\delta'^{-1}(\hat{a}_2)$ contains l + 1 elements: one element from $\hat{A}_2 \times W_0$, and l elements from $\hat{A}_1 \times W_1$. It follows that δ' is equivalent to δ , in the sense of Remark 3.3, and so the algebras $\mathcal{A}_D, \mathcal{A}_{D'}$ are isomorphic.

On the other hand, there is an isomorphism $\phi : \mathcal{A}_{D'} \to \mathcal{A}_A$ defined by

$$\phi(s_{(\overline{w}_1,u_1),(\overline{w}_2,u_2)}) = s_{\overline{w}_1u_1,\overline{w}_2u_2}$$

for $\overline{w}_1, \overline{w}_2 \in D'$, $u_1, u_2 \in W$, $o(u_i) = \delta'(\overline{w}_i) = t(\overline{w}_i)$, and $t(u_1) = t(u_2)$. The proof of this fact is contained in [RS, Lemma 5.15]. Therefore

$$\mathcal{A}_{\Gamma} \cong \mathcal{A}_{D} \cong \mathcal{A}_{D'} \cong \mathcal{A}_{A}.$$

Since A contains l + m elements, it follows from (5.2) that the class [1] in $K_0(\mathcal{A}_{\Gamma})$ corresponds to the element $l + m \in \mathbb{Z}_{lm-1}$. Now it is known [C2] that

$$(K_0(M_k \otimes \mathcal{O}_n), [\mathbf{1}]) \cong (\mathbb{Z}_{n-1}, k).$$

This proves that $\mathcal{A}_{\Gamma} \cong M_{l+m} \otimes \mathcal{O}_{lm}$. Note further that $\mathcal{A}_{\Gamma} \cong \mathcal{O}_{lm}$ if and only if l+m is a generator of \mathbb{Z}_{lm-1} ; that is, (l+m, lm-1) = 1.

5.2. **Example:** More generally, a free product of finite groups $\Gamma = \Gamma_1 * \Gamma_2 * \cdots * \Gamma_n$ acts on its Bass-Serre tree. The fundamental domain is a tree consisting of n edges y_i with terminal vertex Q_i emanating from a common vertex P. The stabilizer of P and of each of the edges y_j is trivial, and the stabilizer of Q_j is isomorphic to Γ_j .

The group Γ is 1-acylindrical and acts freely (but not transitively, in contrast to Example 5.1) on the set of edges of Δ , with finitely many orbits.

Let $A_i = \Gamma_i - \{1\}$ and $\gamma_i = |A_i|, 1 \leq i \leq n$. Each directed segment of length 2 in Δ lies in the Γ -orbit of a directed segment of the form $(P, Q_i, aP), a \in A_i$, or $(Q_j, P, Q_k), j \neq k$, as illustrated below.

Let $\hat{A}_i = \{\hat{a} = \Gamma(P, Q_i, aP) : a \in A_i\}$, and let $\hat{B} = \{\hat{b}_{jk} = \Gamma(Q_j, P, Q_k) : j \neq k\}$. Then by Theorem 5.1

(5.4)
$$K_0(\mathcal{A}_{\Gamma}) = \left\langle \bigcup_i \hat{A}_i \cup \hat{B} \middle| \hat{a} = \sum_{j \neq i} \hat{b}_{ij} \quad (\hat{a} \in \hat{A}_i), \quad \hat{b}_{jk} = \sum_{\hat{a} \in \hat{A}_k} \hat{a} \right\rangle.$$

The relations on the right side of (5.4) show that \hat{b}_{jk} depends only on k. Therefore, for each i, all the generators in \hat{A}_i are equal. It follows that

(5.5)
$$K_0(\mathcal{A}_{\Gamma}) = \langle \hat{a}_i \mid \hat{a}_i = \sum_{j \neq i} \gamma_j \hat{a}_j \rangle.$$

It is easy to see from (5.5) that $K_0(\mathcal{A}_{\Gamma})$ is a torsion group and therefore that $K_1(\mathcal{A}_{\Gamma}) = 0$. In other words, the unitary group of \mathcal{A}_{Γ} is connected [C2]. If all the

groups Γ_i have the same order, say $\gamma + 1$, and $\delta = \gamma(n-1) - 1$, then (5.5) simplifies to

$$K_0(\mathcal{A}_{\Gamma}) = \mathbb{Z}_{(\gamma+1)\delta} \oplus (\mathbb{Z}_{\gamma+1})^{n-2}$$

with canonical generators $\hat{a}_1, \hat{a}_2 - \hat{a}_1, \hat{a}_3 - \hat{a}_1, \dots, \hat{a}_{n-1} - \hat{a}_1$.

References

- [AD] C. Anantharaman-Delaroche, Systèmes dynamiques non commutatifs et moyennabilité, Math. Ann. 279 (1987), 297-315.
- [BP] A. Broise-Alamichel and F. Paulin, *Sur le codage du flot géodésique dans un arbre*, Annales de la Faculté des Sciences de Toulouse **16** (2007), 477–527.
- [C1] J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173– 185.

[C2] J. Cuntz, K-theory for certain C*-algebras, Ann. of Math. 113 (1981), 181–197.

[C3] J. Cuntz, A class of C*-algebras and topological Markov chains: Reducible chains and the Ext-functor for C*-algebras, Invent. Math. 63 (1981), 23–50.

[CK] J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268.

[Ch] S-S. Chen, *Limit sets of automorphism groups of a tree*, Proc. Amer. Math. Soc. **83** (1981), 437–441.

- [Ha] P. de la Harpe, *Topics in Geometric Group Theory*, University of Chicago Press, Chicago, 2000.
- [K] E. Kirchberg, Exact C^{*}-algebras, tensor products, and the classification of purely infinite algebras, Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 2, 943–954, Birkhäuser, Basel, 1995.
- [R1] G. Robertson, Boundary actions for affine buildings and higher rank Cuntz-Krieger algebras. C*-algebras: Proceedings of the SFB Workshop on C*-algebras (Münster, March 8–12, 1999), 182–202, Springer-Verlag, 2000.
- [R2] G. Robertson, Boundary operator algebras for free uniform tree lattices, Houston J. Math. 31 (2005), 913–935.
- [RS] G. Robertson and T. Steger, Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras, J. Reine Angew. Math. 513 (1999), 115–144.
- [Sel] Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), 527–565.
- [Ser] J-P. Serre, *Trees*, Springer-Verlag, Berlin, 1980.

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEWCASTLE, NE1 7RU, U.K. *E-mail address*: a.g.robertson@newcastle.ac.uk