TORSION IN K-THEORY FOR BOUNDARY ACTIONS
ON AFFINE BUILDINGS OF TYPE A4,

GUYAN ROBERTSON

ABSTRACT. Let I' be a torsion free lattice in G = PGL(n + 1,F),
where n > 1 and F is a non-archimedean local field. Then I" acts on
the Furstenberg boundary G/P, where P is a minimal parabolic
subgroup of GG. The identity element I in the crossed product
C*-algebra C(G/P) x T' generates a class [I] in the Ky group of
C(G/P) x T'. It is shown that [I] is a torsion element of K and
there is an explicit bound for the order of [I]. The result is proved
more generally for groups acting on affine buildings of type A,.
For n = 1,2 the Euler-Poincaré characteristic x(I") annihilates the
class [I].

INTRODUCTION

A. Connes [Col, Corollary 6.7] proved that if I' is a torsion free
cocompact lattice in PSL(2,R) then the class of the identity [I] in
Ko(C(Py(R)) % I') has torsion. See also [N, Co2, HN, A-D]. More
precisely, the order of [I] is —x(I"), where x(I') is the Euler-Poincaré
characteristic of the corresponding Riemann surface [A-D, Proposition
2.9], [HN, Section 10]. If I' is a torsion free non-cocompact lattice
in PSL(2,R), which means that I' is a free group, then [I] = 0 in
Ko(C(Py(R))xTI") [A-D, Theorem 2.1]. Moreover, Connes proved [Col,
Corollary 5.9] that if T" is any countable subgroup of PSL(2,C) then
the canonical map Ko(C(P1(C))) — Ko(C(P1(C)) x T') is injective and
so in this case [I] is a non-torsion element in K. There is therefore a
dramatic difference between the Fuchsian and the Kleinian cases.

Now let F be a non-archimedean local field and let I' be a torsion
free (cocompact) lattice in G = PGL(2,F). As in the Fuchsian case,
X(I).[I] = 0in Ko(C(Py(IF)) xI"). This assertion has a simple geometric
proof, which is presented in Section 1 below. The Bruhat-Tits building
associated with PGL(2, F) is a regular tree A whose boundary A may
be identified with the projective line P (F). The result is proved in the
more general situation where I' is a discrete group acting freely with
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compact quotient on a tree A. Such a group I' is necessarily a free
group [S2, Chapitre 1.3.3].

A tree is an affine building of type A;. The principal object of this
paper is to prove corresponding results for group actions on buildings
of type A,,, where n > 2. These buildings are in some respects higher
dimensional analogues of trees, but have a very much more rigid struc-
ture. _

Let A be a building of type A,,. Then the link of any fixed vertex in
A is the flag complex of a finite projective geometry. The order ¢ of this
projective geometry is independent of the vertex, and is referred to as
the order of the building A. The case n = 2 is particularly interesting
because then the link of a vertex is a projective plane, which is possibly
non-Desarguesian, and A need not be the Bruhat-Tits building of a
linear group. The boundary 0A is the set of chambers of the spherical
building at infinity [Ron, Chapter 9], endowed with a natural totally
disconnected compact Hausdorff topology [Ca2, Section 4]. Denote by
Aut(A) the automorphism group of A, equipped with the compact
open topology. Then Aut(A) acts in a natural way on JA.

Given an gn building A with vertex set A% there is a type map
7: A% — Z/(n + 1)Z such that each maximal simplex (chamber) has
exactly one vertex of each type. An automorphism « of A is said to be
type-rotating if there exists i € Z/(n + 1)Z such that 7(av) = 7(v) +1
for all vertices v € A°.

The main result is the following.

Theorem 1. Let I' be a torsion free discrete group of type rotating
automorphisms of a locally finite affine building A of type A,. Suppose
that I" acts cocompactly on A with a finite number ng of vertex orbits.
In the group Ko(C(0A) x T'), let [I] denote the class of the identity
element.
(1) If n = 1or2, then x(I').I] = 0, where x(I') is the Euler-
Poincaré characteristic of the group I'.
(2) If n > 2, then the order of A is a prime power ¢ and m.[I] = 0,
where
no(q —1) if nis odd,
"= no(q*> — 1) if n is even.

If n = 2 then both parts of Theorem 1 apply and can be combined
to sharpen the result. This is done in Section 4.

The condition in Theorem 1 that the building A is locally finite
is an easy consequence of the other hypotheses, by Lemma 2.1 below.
Also the finite cell complex I'\A is a K(T', 1) space and the group I" has
finite cohomological dimension [S1, I.1.5]. It follows that x(I") coincides
with the usual Euler-Poincaré characteristic of the cell complex '\ A
[S1, 1.1.5, Proposition 9]. Moreover ng is the number of vertices of

D\A.
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Let F be a non-archimedean local field with residue field of order
q. The Bruhat-Tits building A of G = PGL(n + 1,F) is a building of
type A,, and the action of G on A is type rotating [St]. The vertex set
of A may be identified with the homogeneous space G /K, where K is
an open maximal compact subgroup of G. Then ng is the number of
double cosets in I'\G /K. The boundary A may be identified with the
Furstenberg boundary G/P, where P is a minimal parabolic subgroup
of G. A torsion free lattice I' in G = PGL(n + 1,F) is automatically
cocompact [S2, Chapitre I1.1.5, p. 116]. The result therefore applies
to such lattices, acting on the Furstenberg boundary and shows that
the class [I] in Ko(C(G/P) x I') has torsion. If the Haar measure p on
G is normalized so that pu(K) = 1, then ng is the covolume of I" in G.
It follows from Theorem 1 that there is a bound for the order of [I],
which depends only on the covolume of I' in G.

The tree result is proved in Section 1, followed by the higher dimen-
sional cases in Sections 2 and 3. Section 4 is concerned with lattices in
PGL(n + 1,FF) and computation of the Euler-Poincaré characteristic.

It is natural to ask if there is a similar result for lattices in the group
PGL(n + 1,R). The methods used here do not throw any light on this
question.

It is worth remarking that the crossed product C*-algebras consid-
ered here are purely infinite, simple, separable, unital, nuclear and
satisfy the Universal Coefficient Theorem. This was proved in [RS1]
for buildings of type ZQ, and follows from [JR] in higher dimensions.
These algebras are therefore classified up to isomorphism by their two
K-groups together with the class of [I] in K, [K1]. Properties of the
class [I] are therefore particularly significant.

The author is grateful to the referees of this article for their helpful
comments.

1. THE A; RESULT

The tree case is treated first, since the proof is relatively simple
and motivates the harder A, case. Two vertices of a tree have the
same type if and only if the graph distance between them is even. Any
automorphism of a tree is type rotating, so the type rotating hypothesis
in Theorem 1 is vacuous in the A; case.

Let A be a locally finite tree whose vertices all have degree at least
three. The terminology of [S2] will be used where possible. In par-
ticular the edges of A are directed edges. Each geometric edge of A
corresponds to two directed edges d and d. Let A° denote the set of
vertices and A! the set of directed edges of A.

Let T" be a torsion free discrete subgroup of Aut(A) which acts co-
compactly on A. Then I' acts freely (c.f. Lemma 2.1 below), and so is
a free group [S2, 1.3.3]. In particular I" acts without inversion, which
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means that no element v € I'\ {1} stabilizes a geometric edge of A. It
follows that there is an orientation on the edges which is invariant under
I' [S2, 1.3.1]. Choose such an orientation. This orientation consists of
a partition A' = Al WAL and a bijective involution d — d : A — Al
which interchanges the two components of Al. Each directed edge d
has an origin o(d) € A° and a terminal vertex t(d) € A® such that
o(d) = t(d). The quotient X = I'\A is a finite connected graph with
vertex set V = I'\A° and directed edge set £ = E, LI E,, where
E; =T\A!} and F. =T'\Al. The graph X has an induced involution
e+ €: F — FE and there are maps o,t: E — V with o(€) = t(e). The
Euler-Poincaré characteristic of the graph is x(X) = ng — n; where
no = #(V) and ny = #(E,).

The boundary 0A of the tree A can be identified with the set of
equivalence classes of infinite semi-geodesics in A, where equivalent
semi-geodesics contain a common sub-semi-geodesic. Also JA has a
natural compact totally disconnected topology [S2, 1.2.2].

The group I' acts on OA and hence on C'(0A) via v +— ., where
a, fw) = f(yv'w), for f € C(OA), v € T. The algebraic crossed
product relative to this action is the x-algebra k(I', C(9A)) of functions
¢ : I' — C(OA) of finite support, with multiplication and involution
given by

$xV(10) =Y d(Vay(¥(y ') and  ¢*(7) = ay(¢(v 1))

yel’

The full crossed product algebra C'(0A) x I is the completion of the
algebraic crossed product in an appropriate norm [Ped]. There is a
natural embedding of C'(0A) into C'(0A) x I which maps f € C(0A)
to the function taking the value f at the identity of [' and 0 elsewhere.
The identity element I of C'(OA) %I is then identified with the constant
function I(w) = 1, w € A. There is a natural unitary representation
m: ' — C(0A) xT', where m(7) is the function taking the value I at ~y
and 0 otherwise. It is convenient to denote m(vy) simply by . Thus a
typical element of the dense x-algebra k(I', C(OA)) can be written as
a finite sum > f,v, where f, € C(9A), v € I'. The definition of the
multiplication implies the covariance relation

ay(f)=~fy"" for feC(dA),yeT.

If d € A', let Q(d) denote the clopen subset of A corresponding to
the set of all semi-geodesics with initial edge d and initial vertex o(d).
The indicator function py of the set €(d) is continuous and so lies in
C(0A) C C(0A) x T

For each d € A, the element pg is a projection in C'(0A) x ' and
therefore defines an equivalence class [pg] in Ko(C(0A) x T'). (The
standard reference for the K-theory of C*-algebras is [Bl].) It is im-
portant to observe that edges di, ds lying in the same I'-orbit give rise



5

to equivalent projections pg,, p4,, because of the covariance relations
in the crossed product algebra (c.f. Lemma 2.4 below). Therefore the
equivalence class [pg] depends only on the directed edge e = I'd € E.
Write [e] = [pg]. In this way, each edge e € E gives rise to an element
le] € Ko(C(OA) x T).

The projections py satisfy the following relations as functions in
C(0A), as illustrated in Figure 1.

(1.1a) Z pa = 1 for a € A;
deA?!
o(d)=a

(1.1b) pat+p; = 1 for d € A'.

The relations (1.1) project to the following relations in Ko(C'(0A) x T').

a Q(d) : Q(d)

FIGURE 1. The geometric meaning of relations (1.1).

(1.2a) Z le] = [1], for v e V;

eck

o(e)=v
(1.2b) le] +[e] = [1], for e € E.
Since the map e — o(e) : E — V is surjective, the relations (1.2) imply
that
noll] =Y Y el =) [
veEV e€E ecE
o(e)=v
= > ([d+E)= > [
ecE ecE

Therefore (ng — ny).[I] = 0. This proves Theorem 1(1) in the A; case.

The basic idea of this proof will be generalized to buildings of type A,
in Section 3.
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Remark 1.1. If the tree A is homogeneous of degree g+ 1, with ¢ > 2,

then x(I') = %2 (1 — ¢) # 0 and so the element [I] is torsion.

2. THE gn RESULT

Let A be a locally finite affine building of type gn, where n > 2.
Thus A is an n-dimensional simplicial complex whose n-simplices are
called chambers. Let AF denote the set of k-simplices in A for k =
0,1,...,n. Recall that each vertex §° € A is labelled with a type
7(6°) € Z/(n+1)Z, and any chamber 6" € A™ has precisely one vertex
of each type. An apartment in A is a subcomplex which is isomorphic
to a Coxeter complex of type A,,. The building A is the union of its
apartments.

FIGURE 2. Part of an apartment in a building of type
A,, showing vertex types.

A sector is a simplicial cone made up of chambers in some apartment
and containing a unique base chamber [Ron, Chapter 9]. Two sectors
are equivalent if their intersection contains a sector. The boundary 0A
of A is by definition the set of equivalence classes of sectors in A. For
any w € OA and ¢ € A there is a unique sector [§°,w) in the class w
having base vertex 6° [Ron, Theorem 9.6]. The boundary is a totally
disconnected compact Hausdorff space [CMS, Section 2], [Ca2, Section
4].

Let " be a torsion free discrete group acting cocompactly on A by
type rotating automorphisms. Then X = I"\A is a cell complex with
universal covering A. Let X* denote the set of k-cells in X for k =
0,1,...,n. There is a natural induced action of I' on 9A, and we can
form the universal crossed product C*-algebra C'(0A) x T

Lemma 2.1. The group I acts freely without inversion on A. That is,
no element v € T'\ {1} stabilizes a nonempty simplex of A.

Proof. Let 6§ be a nonempty simplex of A and define
Gs ={g € Aut(A); gd = d}.
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Then Gy is a compact subgroup of the locally compact group Aut(A).
(See, for example, the proof of Theorem 4.1 of [GS].) Since I' is a
discrete subgroup of the automorphism group of A, it follows that 'NG}
is a finite subgroup of I'. Since I is torsion free, ' N G5 = {1}. O

The first step is to formalize the notion of a directed cell in X. Let
o™ be a model typed n-simplex with vertices 0,1,2,...,n. Assume
that the vertex p of o™ has type 7(p) =p € Z/(n+ 1)Z.

0

1 2

FIGURE 3. The case n = 2: the model simplex o2.

An isometry r : o™ — A is said to be type rotating if there exists
j € Z/(n + 1)Z such that, for each vertex p of o™, 7(r(p)) = 7(p) + Jj
(mod n 4+ 1) . That is, 7(r(p)) = p+ 7(r(0)) (mod n + 1). Let D"
denote the set of type rotating isometries r : 6™ — A. Recall that any
chamber 6" € A™ has precisely one vertex of each type. Therefore, for
each j € Z/(n+1)Z there is a unique r € D™ such that r(c™) = ¢" and
r(0) has type j. An element r € D" is therefore uniquely determined by
the pair (r(c™),7(0)). We therefore identify D™ with the set of directed
chambers of A. Each geometric chamber §” € A" is the image of each
of the (n+1) directed chambers {r € D" ; r(c™) = 6"} under the map
r—r(c").

r(0)

FIGURE 4. The image of a directed chamber 7.

The next lemma records this observation.
Lemma 2.2. The map v+ r(c") from D" to A™ is (n + 1)-to-1.
Let ®" = I'\D". Call D" the set of directed n-cells of X = T'\A.

There is a commutative diagram

r—r(o™)

D A"

! |

En

@TL LN X’I’L
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where the vertical arrows represent quotient maps and ¢,, is defined by
en(I'r) =Tr(a™).

The next result makes precise the fact that each geometric n-cell in
X™ corresponds to exactly n + 1 directed n-cells.
Lemma 2.3. The map €, : ®" — X" is surjective and (n + 1)-to-1.
Proof. Fix 6" € A" By Lemma 2.2, {r € D" ; r(c") = "} =
{ro,m1,...,7ma}, a set containing precisely n + 1 elements. Since I" acts
freely without inversion (Lemma 2.1), the set {T'rg,T'ry,...,I'r,} C D"
also contains precisely n+ 1 elements, each of which maps to I'd" under
En.

Now suppose that &, (I'r) = I'6" for some r € D"™. Then yr(c™) = §"
for some v € I'. Thus yr € {rg,r1,...,7,} and so

Tr € {Tro,Iry,...,Try}.
This proves that ¢, is (n + 1)-to-1. O

Let r € D"; that is, suppose that r : ¢ — A is a type rotating
isometry. Let

Qr) ={w e dA; r(c”) C [r(0),w)},
the set of boundary points represented by sectors which originate at
r(0) and contain r(0"). (Figure 5 illustrates the case n = 2.)

r(0)

[r(0).w)

FIGURE 5. The sector [r(0),w), for w € Q(r).

Clearly Q(yr) = 7Q(r). Let p, € C(0A) be the characteristic func-
tion of 2(r) and let I be the constant function I(w) = 1, for w € JA.

The discussion in [CMS, Section 2], [Ca2, Section 4] shows that for
each vertex 6° € A°,

(2.1) I= > p.

reD"
r(0)=4"

The essential point is that each w € A corresponds to a unique sector
(0% w). Tt follows from (2.1) that in Ko(C(9A) x T),

=3 nh

reD™
r(0)=8°
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As in the El case, it is important that the class [p,] in Ky depends only
on the orbit I'r.

Lemma 2.4. Ifr,s € D" with I'r = I's then [p,] = [ps]-

Proof. If r = s with v € I" then the covariance condition for the action
of T on C(Q) implies that p, = yp,y~!. The result now follows because
equivalent idempotents belong to the same class in K. O

In view of Lemma 2.4, the following notation makes sense.
Definition 2.5. If d =T'r € @, let [d] = [p,] € Ko(C(0A) xT'). Also
let d(p) =T'r(p) € X° for p € {0,1,...,n}, and let d(c™) =T'r(c") €
X"

Using this notation, for 2° = T'§° € X0,

{lp,] ; € D",7(0) =°} = {[d] ; d € D",d(0) = 2°}.

Therefore in Ko(C(0A) x T'),

(2.2) M= ) [d, ford®eA’
de@™
d(0)=z°

Since the building A is of type gn, where n > 2, it has additional
structure. The link of any fixed vertex §° € A is the flag complex
of a finite projective geometry I1(§°) of dimension n and order g > 2
[Ron, Theorem 3.5 and p. 95]. Denote by star(d°) the set of vertices
at distance 1 from 6° € A. There is a bijective correspondence be-
tween the vertices in star(6°) and subspaces of the projective geometry
I1(6°). Two elements in star(6°) are incident in T1(6°) if they lie in a
common chamber of A. If n > 3 then I1(§°) is a Desarguesian pro-
jective geometry PG(n,q) [St, (4.9)] and ¢ is a prime power. On the
other hand if n = 2, then II(6°) is a (possibly non-Desarguesian) pro-
jective plane. In either case, the order ¢ of TI(6°) is independent of
6% and each (n — 1)-dimensional simplex of A lies in ¢ + 1 chambers.
The dimension dim(z) of a subspace z € T1(6°) is the maximum & for
which there is a flag of subspaces 1 C 2o C -+ C xp = x. Thus a
point of T1(6°) has dimension one and a line has dimension 2. This
terminology has the unfortunate consequence that a maximal proper
subspace of n-dimensional projective space has dimension n. Note that
if z € star(6°) then 7(x) = 7(6°) + dim(z).

Let r € D" and fix k € {1,2,...,n}. Define, for each r € D",

Si(r) ={s e D" ; Q(s) C Qr) and s(0) = r(k)}.

The set &, (r) contains ¢*™*1=*) elements s € D". In fact, a more

general result is contained in [Ca2]. See in particular Lemma 2.1 and
the proof of Lemma 2.4 of that article. We sketch the proof.

Consider the set of chambers C' such that some sector based at 7(0)
contains a subsector, based at r(k), whose initial chamber is C'. The



10 GUYAN ROBERTSON

r(0)

FIGURE 6. The condition s € Gy (r).

set of such chambers C' is exactly the preimage of a certain chamber
with respect to the retraction from r(c™). As such, the number of
possible C' is ¢! where [ is the number of transitions in any stretched
gallery between 7(¢") and any such chamber C.

As both of those chambers contain the vertex r(k), one can calcu-
late the number of transitions working inside the spherical building
star(r(k)). In that spherical building, the chambers of an apartment
can be parameterized by the elements of the Weyl group, which is just
the symmetric group on {1,2,...,n + 1}. Fixing specific coordinates
one can identify r(c™) with the identity permutation and C' with the
permutation

(k+1 k+2 ... n+1 1 2 ... k)

The number of transitions in the stretched gallery we are considering
is equal to the length of this element in the Weyl group (relative to the
standard Coxeter basis, (12), (23), etc.), which in turn is equal to the
number of pairs whose order is inverted. This last is easily seen to be
k(n+1—k).

Thus & (r) contains ¢*™+1=%) elements s € D™ and Q(r) may be
expressed as a disjoint union

$€G(r)
Therefore
(2.3) Dr = Z Ds-
$€G(r)

Moreover a dual argument shows that each s € D" lies in precisely
¢* 1R of the sets Gy (r), with r € D™,
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Define as follows a {0, 1}-matrix My, with entries indexed by @™ X
D" If ¢,d € D", then My(d,c) = 1 if and only if there are representa-
tive isometries r, s € D", with ¢ = I'r; d = I's and s € G(r); otherwise
M;.(d, c) = 0. Each row or column of M, has precisely ¢*"+1=*) nonzero
entries and equation (2.3) implies that, for each ¢ € ©,

(2.4) ] = > My(d,c)d]
dedn

Recall that ny denotes the number of vertices of X = I'\A, that is the
number of I'-orbits of vertices of A. It follows from equations (2.2),

(2.4) that
nolll = Y el =Y > M(d,c)[d]
=3 S Md = Y I

= nog" IR
Therefore, for each k € {1,2,...,n},
(2.5) no(g"" =R — D[I) = 0.
In particular, setting k = 1,2 gives
no(¢" — 1[I =0 and  ng(¢*" Y — D[]
If n is odd then ged(n,2(n — 1)) = 1 and so no(q — 1)[I] =
)

If n is even then ged(n,2(n — 1)) = 2 and so ng(q* — 1)[I
This completes the proof of Theorem 1(2). O

Remark 2.6. The same argument, greatly simplified, applies in the
case of a homogeneous tree A of degree g + 1, where ¢ > 2, and shows
that ng(¢—1)[I] = 0. This is weaker than the result obtained in Section
1, Remark 1.1.

||OO

3. THE A RESULT

This section will be concerned with buildings of type Ay. The pre-
vious results all apply, with n = 2. The terminology and results from
Section 2 will therefore be used without further comment.

Let 0¢ denote the face {1,2} of 0% = {0,1,2}. We regard ¢ as a
model 1-simplex. An isometry r : 0¢ — A is said to be type rotating
if there exists j € Z/3Z such that, for each vertex p of o2, 7(r(p)) =
7(p)+j (mod 3) for each vertex p of 0. That is, 7(r(p)) = p+7(r(0))
(mod 3). Let D¢ denote the set of type rotating isometries r : ¢ — A.

Any 1-simplex §' € A! has two vertices of two different types. The
type rotating condition implies that there is a unique r € D€ such
that r(c¢) = 6. That is, r € D¢ is uniquely determined by its image
r(o¢). We use D° to choose a preferred orientation for each edge of
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A. By a directed edge, we mean an edge with its preferred orientation.
We therefore identify D¢ with the set of directed edges of A. Each
geometric edge ' € Al is the image of a unique directed edge r € D¢
under the map r — r(c¢). That is, each edge of A has a unique
direction determined by the typing of the vertex set of A. See Figure 7.
This is only superficially different from the A; case in Section 1, where
each geometric edge corresponds to two directed edges. In the tree case
an edge is a maximal simplex.

r(0)

r(1) r(2)
FIGURE 7. Directed edges of a 2-simplex in A.

Lemma 3.1. The map r — r(c®) from D¢ to Al is bijective.
Let ©¢ = I'\D°. Call ©° the set of directed edges of X = I'\A.

There is a commutative diagram

r—r(c®)
—5

D¢ Al

| |

e & X1
where the vertical arrows represent quotient maps and £ is defined by
e (I'r) =Tr(o°).
The next result makes precise the fact that each geometric edge in X!
corresponds to exactly one directed edge (i.e. has a unique direction).
It is an easy consequence of the previous lemma.

Lemma 3.2. The map ¢, : ¢ — X! is bijective.

If r € D? let Q(r) denote the set of w € A such that 7(0) is in
the interior of the convex hull conv(r(c™) U [r(0),w)) as illustrated in
Figure 8. It is easy to see that (r) is a clopen set.

[r(0).w)
r(0)

FIGURE 8

Let p, € C(OA) be the characteristic function of Q(r). We have the
following analogue of Lemma 2.4, which has the same proof.



13

Lemma 3.3. Ifr,s € D? with I'r = T's then [p,] = [D,].
In view of Lemma 3.3, the following notation makes sense.
Definition 3.4. If d = I'r € D2, let [d] = [p,] € Ko(C(0A) x T).
Recall now the following result.
Lemma 3.5. [Ron, Lemma 9.4] Given any chamber §* € A? and any
sector S in A, there exists a sector Sy C S such that Sy and 6 lie in
a common apartment.

It follows by considering parallel sectors in an appropriate apartment
that if 6> € A? and if w € JA, then w has a representative sector S
that lies relative to 62 in one of the two positions in Figure 9, in some
apartment containing them both.

S S

\/ /N

F1GURE 9. Relative positions of a chamber and a repre-
sentative sector.

Therefore
I= > »n+t > B
reD? reD?
r(o?)=62 r(0?)=62

where there are three terms in each sum.
Now for 22 = T'6? € X?,

{[p,] ; € D*r(0?) =8} ={[d] ; d € D d(0?) = 2*}.
Therefore in Ko(C'(0A) x T'),

(3.1) M= > [d+ > [

deD? deD?
d(0?)=x2 d(0?)=x2

If r € D then any w € OA has a representative sector S which
lies relative to r(c€) in one of the three positions in Figure 10, in
some apartment containing them both. This is an easy consequence of
Lemma 3.5. X

Let Q(r), Q(r), Q(r) denote the corresponding clopen subsets of A,
and let ¢,,q,, g respectively denote the corresponding characteristic
functions. These functions are idempotents in C'(0A) x I' and the
equivalence classes [q,], [¢,],[¢-] in Ko depend only on I'r. If §1 € Al
then there is a unique r € D¢ such that r(c¢) = §' and we have

IIQr+qr+dr-
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S

(1)

r(2)

FiGURE 10. Relative positions of an edge and a repre-
sentative sector.

Definition 3.6. If e = I'r € ©¢, where r € D°, let [e] = [¢,], [€] = [G,]
and [¢] = [g]

We now have
(3:2) 1= 6]+ [ + 2
Definition 3.7. If e = I'r € ©¢ and p € {1,2}, let e(p) = I'r(p) €
X0,
Think of e(1) as the initial vertex and e(2) as the final vertex of the

directed edge e.
For each vertex 6 € AY,

I= Y ¢=> 7.

reD¢ reD*
r(1)=4° r(2)=4°

It follows that if 2° = '6° € XY then

(3.3) = > [d= > [

e€®® e€®®
e(1)=2° e(2)=2°

Given r € D® and any chamber 6* € A? containing r(c®), r can be ex-
tended uniquely to an element s € D? such that s(0?) = 2. Therefore
Q(r) may be expressed as a disjoint union

Q(r) =] {Q(s); s € D?, slpe =71}

It follows that ¢, = >_P,, where the sum is over s € D? such that
S|ge = r. Choose one r from each I'-orbit in D®. Summing over these

T gives
ZQT = Z Z Ps

T s|lge=r

where the double sum on the right contains precisely one s from each
[-orbit in D?, because I' acts freely without inversion on A. Taking
equivalence classes in K gives

(3.4) S =[]

e€De de®?
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Proof of Theorem 1 in the A, case.

For k = 0,1, 2, let nj, denote the number of k-cells in X*. By Lemma
3.2, ny = #(D°) and by Lemma 2.3, 3ny = #(D?). It follows from
equation (2.2) with n = 2, that

nolll= Y > [d=) ld

29eX0 de®? deD?
d(0)=x"

Equation (3.1) implies that

35) meM= ) | > @+ Y [d|=> M+ [

r2eX? de®? de®? de®? de®?

d(o?)=x? d(0?)=x2
Therefore
(3.6) (n2 —no)[I] = > _[d].

de®?
Now by (3.3),
(3.7) no[l] = > el = > [el.
ecDe ec®e

Using equations (3.2),(3.7),(3.4) and (3.6) successively yields

m (I} = Z@e[e] + Z@e[é] + Z@e[é]
= ;eno 1] + % é] )
:mmn+§:@
= 2no[I] + C(l;?— no)[1]
= no[T] + na[T].

This proves Theorem 1(1) in the A, case. O

Note that the above proof has nowhere used the fact that the ZQ
building A has order gq.

4. EULER-POINCARE CHARACTERISTIC AND THE A, CASE

In this section we sharpen the result of Theorem 1 in the A, case.
We assume throughout that A is a building of type A, and order g,
and that I' is a torsion free discrete subgroup of Aut(A) which acts
cocompactly on A.

The first step is to obtain an explicit expression for x(I'). Recall
that x(I') coincides with the usual Euler-Poincaré characteristic of cell
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complex X = I'\A [S1, I.1.5, Proposition 9]. That is x(I') = no —ny +
ns, where n; denotes the number~of k-cells in X*.

Since the building A is of type As, the link of any fixed vertex 6° € A
is the flag complex of a finite projective plane T1(6°) of order ¢. The
vertices in star(d°) are the points and lines of TI(6"). A point and a line
in star(4°) are incident in T1(8°) if they lie in a common chamber of A.
Now I1(6°) contains ¢ + ¢ + 1 points and ¢* + ¢ + 1 lines. Moreover,
each point is incident with ¢ + 1 lines. Therefore the vertex §° € A lies
on 2(¢*> + ¢+ 1) edges in A! and on (¢ + 1)(¢> + ¢ + 1) chambers in
A?. Since there are ng vertex orbits in A% #(D') = 2no(¢*> +q + 1)
and #(D?) = no(q + 1)(¢*> + ¢ + 1). Tt follows from Lemma 2.3 that
ny =no(¢* + ¢+ 1) and ny = no(q+ 1)(¢> + ¢ + 1)/3. Therefore

(4.1) WD) = 2(g - 1)(e* - 1).

Remark 4.1. Let F be a non-archimedean local field with residue field
of order q. Let I" be a torsion free lattice in G = PGL(3, F). Recall that
such a lattice is necessarily cocompact. The group G acts in a type
rotating manner on its Bruhat-Tits building A [St]. The building A is
of type A, and Theorem 1 therefore applies to any torsion free lattice
['in G. By [S1, 3.3], G has a unique invariant measure p¢ (called the
canonical measure of G) which is an FEuler-Poincaré measure. That is
uc(G/T') = x(T'), for each torsion free lattice I' in G.

In the present situation it is not hard to determine uqg directly. Let
O denote the valuation ring of F. Then K = PGL(3,0) is an open
maximal compact subgroup of G and the vertex set of A may be iden-
tified with the homogeneous space G/K. Then arguing as in [S1, p.
150, Théoreme 7] shows that pe is the Haar measure on G normalized
so that pe(K) = (¢ — 1)(¢*> — 1), in agreement with (4.1).

The statement of Theorem 1 can now be improved in the A, case.

Corollary 4.2. Let I' be a torsion free discrete group of type rotating
automorphisms of a locally finite affine building A of type Ay and order
q. Suppose that T acts cocompactly on A with a finite number ng of
vertex orbits. Then m.[I] = 0 in the group Ko(C(0A) x T'), where

m = M(g*—1) ifg#1 (mod 3),
no(¢* —1) if¢g=1 (mod 3).

Moreover, if ¢ =0 (mod 3), then ng is a multiple of 3.
Proof. Theorem 1 implies that m.[I] = 0, where m is the greatest
r

common divisor of ng(q> — 1) and x(T"). There are different outcomes,
depending on the value of ¢ (mod 3).
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(1) If ¢ = 0 (mod 3), then ng is a multiple of 3, since x(I') is an
integer. Using the fact that (3, — 1) = 1 gives

m=(33(¢* ~ 1), (4 - V(@ ~ 1) = (¢ — D).

(2) If g =1 (mod 3) then x(I') = qg—lno(q2 —1) and so m = ng(q*—
1). This does not improve Theorem 1(2).
(3) If ¢ =2 (mod 3) then again the fact that (3,¢—1) = 1 implies

that

(> —1) (°=1)y _no,

m = (3ng (g —1)ng 5

n

Example 4.3. Suppose that I is a discrete subgroup of Aut(A) which
acts freely and fransitively in a type rotating manner on the vertex set
of A. That is, ng = 1. We refer to such a group I' as an Ay group
[CMSZ]. An A, group may have 3-torsion and stabilize a chamber of
A. In fact this always happens if ¢ =0 (mod 3).

Let T" is a torsion free A, group. If ¢ = 2 then there are five possible
such groups T, denoted A1, A2, B1, B2, C1 in [CMSZ]. These groups
are lattices in PGL(3,F), where F = Fy((X)) (the groups Al, A2) or
F = Q. (the groups B1, B2, C1). Corollary 4.2 implies that [I] = 0 in
these cases, a fact confirmed by the computations in [RS2].

Other examples of torsion free A, groups are the reqular groups for
q=2,4,5,7,8, 11, constructed in [CMSZ, I, Section 4]. These groups
are lattices in PGL(3,F), where F = F,((X)). In particular, if I is the

regular gz group with ¢ = 5, then (‘IQT*D = 8 whereas direct calculation

[RS2] gives 4.[I] = 0. Therefore the estimates for the order of [I] given
by Corollary 4.2 are not best possible.

Remark 4.4. In [RS2, RS3], T. Steger and the author performed ex-
tensive computations which determined the order of [I] for many A,
groups with ¢ < 11. The computations were done for all the A, groups
in the cases ¢ = 2,3 and for several representative groups for each of
the other values of ¢ < 11. If ¢ = 2 there are precisely eight A, groups
I, all of which embed as lattices in a linear group PGL(3,F) where
F = Fy((X)) or F = Q,. If ¢ = 3 there are 89 possible Ay groups, of
which 65 do not embed naturally in linear groups.

The results of the computations are indicated in the table below.

q 23 45 78 9 11
orderof [I] 1 2 1 4 2 7 8 10

This experimental evidence suggests that for boundary crossed prod-

uct algebras associated with Ay groups it is always true that [I] has or-
der ¢—1 for ¢ # 1 (mod 3) and has order (¢—1)/3 for ¢ =1 (mod 3).
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It was proved in [RS2, Proposition 8.3] that the order of [I] cannot be
smaller than these conjectured values.

It is striking that the order of [I] appears to depend only on the
parameter ¢. Moreover the order is the same whether or not the group
is torsion free. It is tempting to conjecture that under the general
hypotheses of Theorem 1, where I' need not act transitively on the
vertices of A, the order of [I] depends only on ¢ and the covolume ny.

Remark 4.5. If the building A is of type Avn, where n > 3, then
according to a well known Theorem of J. Tits [Ron, p. 137], A is the
building of PGL(n + 1,F), where F is a (possibly non-commutative)
non-archimedean local field.
Let I' be a torsion free lattice in PGL(n + 1,F), where n > 1 and
F is a non-archimedean local field with residue field of order g. Then
arguing as in [S1, p. 150, Théoreme 7] gives
(=D"

(4.2) x(T) = ano(q—l)(qz—l)---(qn—1),

where, as usual, ng is the number of vertices of X = T'\A. If n > 3,
the second part of Theorem 1 does not imply that x(I').[I] = 0. For
example, if ¢ = n = 4 then x(I') is not divisible by (¢* — 1). It seems
likely however that in general, x(I").[I] = 0. Note that it follows from
[BW, XIII Theorem 2.6] that the Betti numbers of I' satisfy b;(I") = 0
for ¢ # 0,n and therefore x(I') = 1+ (—1)"b,(I").
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