BOUNDARY C*-ALGEBRAS OF TRIANGLE GEOMETRIES
GUYAN ROBERTSON

ABSTRACT. Let A be a building of type Ay and order g, with maximal bound-
ary . Let I be a group of type preserving automorphisms of A which acts
regularly on the chambers of A. Then the crossed product C*-algebra C'(2) xT"
is isomorphic to Mz(411) ® Og2 ® Og2, where On denotes the Cuntz algebra
generated by n isometries whose range projections sum to the identity opera-
tor.

1. INTRODUCTION

The boundary at infinity plays an important role in studying the action of groups
on euclidean buildings and other spaces of non-positive curvature. The motivation
of this article is to determine what information about a group may be recovered from
the K-theory of the boundary crossed product C*-algebra. The focus is on groups
of automorphisms of euclidean buildings. Groups of automorphisms of A, buildings
which act regularly on the set of chambers have been studied by several authors
[7, 8, 13, 15]. The existence of groups which act regularly on the set of chambers
(i.e. the existence of “tight triangle geometries”) is proved in [13, Theorem 3.3].

The main result is the following, where M,, denotes the algebra of complex n xn
matrices and O, is the Cuntz C*-algebra which is generated by n isometries on a
Hilbert space whose range projections sum to I.

Theorem 1.1. Let A be a building of type AVQ and order q, with mazimal boundary
Q. Let T be a group of type preserving automorphisms of A which acts reqularly
on the chambers of A. Then the crossed product C*-algebra Ar = C(Q) x T is
isomorphic to M3zg41) ® Og2 @ Ope.

The theorem is proved by giving an explicit representation of r as a rank two
Cuntz-Krieger algebra in the sense of [11]. The K-theory of 2 is then determined
explicitly as Ko(r) = K1 (Ar)) = Zg2_q with the class [1] in Ko () corresponding
to 3(¢+1) € Zs2—1. The classification theorem of E. Kirchberg and N.C. Phillips for
p.i.s.un C* algebras [1] completes the proof. It is notable that, for these groups,
C(92) x T depends only on the order ¢ of the building and not on the group T
This is the first class of higher rank groups for which the boundary C*-algebra
has been computed exactly. There is a sharp contrast with the class of groups
which act regularly on the vertex set of an Ay building, where the boundary C*-
algebra 2r frequently appears to determine the group I', according to explicit
computations derived from [12]. For example, the three torsion-free groups I' <
PGL3(Q2) which act regularly on the vertex set of the corresponding building A
are distinguished from each other by Ky(2(r). On the other hand, for ¢ = 2, there
are four different groups satisfying the hypotheses of Theorem 1.1, and hence having
the same boundary C*-algebra.
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2. TRIANGLE GEOMETRIES

A locally finite euclidean building whose boundary at infinity is a spherical build-
ing of rank 2 is of type A, By or G3. This article is concerned with buildings of
type ﬁg, also called triangle buildings. There is a close connection to projective
geometry: the link of each vertex of an A, building A is the incidence graph of a
finite projective plane of order ¢q. The maximal simplices of A are triangles, which
are called chambers. Each vertex of A has a type j € Zs3, and each chamber has
exactly one vertex of each type. Each edge of A lies on ¢ + 1 chambers. Orient
each edge of A from its vertex of type ¢ to its vertex of type ¢ + 1. In the link

2 1

FIGURE 1. A chamber showing vertex types and edge orientations.

of the vertex v of type 4, the vertices of type i + 1 [type ¢ 4+ 2] correspond to the
points [lines] of a projective plane of order q. The chambers of A which contain v
correspond to incident point-line pairs. The number of such chambers is therefore
(¢+1)(¢* +q+1). B

Suppose that A is a building of type As and that I" is a group of type preserving
automorphisms of A which acts regularly (i.e. freely and transitively) on the cham-
bers of A. Then A/T is called a tight triangle geometry. M. Ronan [13, Theorem
3.3] showed how to construct examples for all values of the prime power ¢. If ¢ = 2
then interesting examples arise from groups generated by three elements of order
3 such that any pair generate a Frobenius group of order 21 [13, 7, 8]. These give
rise to four non-isomorphic groups, the simplest of which has presentation
(1) <Sl,l € Zs |S? =1, SiSit1 = (Si+187;)2>
and acts on the euclidean building A of SL3(Q2). If ¢ = 8 there are 44 non-
isomorphic groups of this type [15].

From now on A will denote a building of type As. Any two vertices u,v € A
belong to a common apartment. The convex hull, in the sense of buildings, between
two vertices u and v is illustrated in Figure 2. Fundamental properties of buildings
imply that any apartment containing v and v must also contain their convex hull.
Except in degenerate cases, the convex hull conv{u, v} is a parallelogram, with base
vertex u. Define the distance, d(u,v), between vertices u and v to be the graph
theoretic distance on the one-skeleton of A. Any path from u to v of length d(u,v)
lies in their convex hull, and the union of the vertices in such paths is exactly the
set of vertices in the convex hull.

Define the shape o(u, v) of an ordered pair of vertices (u, v) to be the pair (m,n) €
Z, X Z4 as indicated in Figure 2. Note that d(u,v) = m+n. The arrows in Figure 2
point in the direction of cyclically increasing vertex type,i.e. {...,0,1,2,0,1,...}. If
the parallelogram 7 is the convex hull conv{u, v} of an ordered pair of vertices then
the vertex v;; = v;;(m) is the vertex of = such that o(u,v;;) = (4, j). Parallelograms
will always be parametrized in this way relative the initial vertex u = wvgo(m).
Denote by II,, ,, the set of parametrized parallelograms of shape (m,n).

A sector is a F-angled sector made up of chambers in some apartment (Figure
3). Two sectors are parallel if their intersection contains a sector. Parallelism is an
equivalence relation and the (maximal) boundary € of A is defined to be the set of
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FIGURE 2. Convex hull of two vertices, with o(u,v) = (m,n).

equivalence classes of sectors in A. For any vertex v of A and any w € € there is a
unique sector [v,w) in the class w having base vertex v [14, Section 9.3]. Fix some
vertex O in A. The boundary of A is a totally disconnected compact Hausdorff
space with a base for the topology given by sets of the form

Q) ={w € Q:][0,w) contains v}

where v is a vertex of A.

0

FIGURE 3. The sector [O,w), where w € Q(v).

A tile 7 in A is defined to be the convex hull conv{u,v} of an ordered pair of
vertices with shape o(u,v) = (2,2), as illustrated in Figure 4. The initial vertex is
u = vgo(7) and the final vertex is v = voa (7).

Let 7 be a parallelogram with shape (m,n), where m,n > 2. The terminal tile
t(m) is the tile 7 contained in the parallelogram 7 and containing its terminal vertex
Um n(m) (Figure 5). Let

Q(m) ={weQ : 7w C [vg(m),w)},

the set of boundary points whose representative sectors based at vgo(7) contain .

3. ALGEBRAS ARISING FROM BOUNDARY ACTIONS ON A, BUILDINGS

Let A be a building of type Ay and order q, with boundary . Let I" be a group
of type preserving automorphisms of A which acts regularly on the chambers of A.
The group I" acts on 2, and one can form the crossed product C*-algebra C'(2) xT.
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FIGURE 4. A tile 7 in an apartment.

’Uoo(ﬂ)

FIGURE 5. A parallelogram 7 and its terminal tile ¢(7).

This is the universal C*-algebra generated by the commutative C*-algebra C'(2)
and the image of a unitary representation 7 of I, satisfying the covariance relation

(2) fw)y =a(y) - fom(y) " Hw)

for f € C(Q), v € and w € Q. Tt is convenient to denote 7(y) simply by . We
show that the crossed product algebra A = C(Q) x I' is generated by an explicit
set of partial isometries, described as follows. Fix a vertex O with type 0 in A.
Denote by Ilp the set of all (parametrized) parallelograms in A with base vertex
O. If w1, my € o with T't(m) = T't(ma), then there is a unique element v € T such
that ~t(m1) = t(ms), since T acts freely on the chambers of A. Let

(3) Sy = Yo = Lla@)7-
Then Sr, r, is a partial isometry with initial projection 1g(,,) and final projection
Lo(r)-
Lemma 3.1. The set of partial isometries
{Srym, : M1, € o, Tt(m) = Tt(m2)}
generates C(Q) x T'.

Proof. Let & denote the C*-subalgebra of Ar generated by {Sr,n, : 71,72 €

Mo, Tt(m) = Tt(m2)}. Since the sets of the form Q(7), 7 € Ilp, form a basis for

the topology of €, the linear span of the Q(r) is dense in C'(2). It follows that &

contains C(£2). To show that & contains dr, it suffices to show that it contains T
Fix v € T'. Choose my,my > 2 such that d(O,y~10) < my, my. Note that

(4) v = Zﬂn(w)
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where the sum is over all parallelograms 7 based at O with o(7) = (mq, mz). Fix
such a parallelogram 7. Let 7" = conv{y~1O, z}. Since o(t(7)) = (2,2), it follows
from [11, Lemma 7.5] that t(7") = t(n).

v~ 'o

@)

FIGURE 6

Let n' = yn”. Then 7’ = conv{O, vz} and t(n’) = yt(w). Therefore y1lg(r =
Sy r € Ap. The result follows from equation (4). O

4. CUuNTZ-KRIEGER ALGEBRAS OF RANK 2

This section recalls the principal facts about these algebras from [11]. Fix a
finite set A which we refer to as an “alphabet”. A {0,1}-matriz is a matrix with
entries in {0,1}. Choose nonzero {0, 1}-matrices My, Ms and denote their elements
by M;(b,a) € {0,1} for a,b € A.

If (m,n) € Zy X Z4, a word of shape o(w) = (m,n) in the alphabet A is a map-
ping (4, 5) — w; ; from {0,1,...,m}x{0,1,...,n} to A such that M; (w415, w; ;) =
1 and My (w; j41,w; ;) = 1. Denote by Wy, , the set of words w of shape (m,n).
The set Wy o is identified with A.

Define initial and final maps o : W, ,, = A and ¢ : W, ,, — A by o(w) = wo o
and t(w) = Wy .

U}572 = t(w)

Ws 1

o(w) = wo,0

FIGURE 7. Representation of a two dimensional word of shape (5,2).

Fix a nonempty finite or countable set D (whose elements are decorations),
and a map § : D — A. Let W,,,, = {(d,w) € D x Wy, : o(w) = 5(d)},
the set of decorated words of shape m,n, and identify D with W, via the map
d = (d,6(d)). Let W =U,, , Winn and W = U, , Wn.n, the sets of all words
and all decorated words respectively. Define o : Wy, ,, =+ D and t : W, ,, — A by
o(d,w) = d and t(d,w) = t(w). Likewise extend the definition of shape to W by
setting o((d, w)) = o(w).

If MiMy; = MyM, and My Ms is a {0,1}-matrix then by [12, Lemma 1.4] the
following condition holds.
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(H1): Let u € Wy, , and v € W, 5. If t(u) = o(v) then there exists a unique
word w € Wi, 4y nts such that

Wi = Ui 0<i<m,0<j<mn
Wi = Vmintj 0<i<r0<j<s.
We write w = uv and say that the product uv exists.
o v
|
|
u |
|
[ |

FIGURE 8. The word uv

Assume that condition (H1) is satisfied, as well as the following two conditions.

(H2): Consider the directed graph which has a vertex for each a € A and a
directed edge from a to b for each i such that M;(b,a) = 1. This graph is
irreducible.

(H3): If (p1,p2) € Z? — {(0,0)}, then there exists some w € W which is not
(p1, p2)-periodic, in the sense of [11].

Under the above assumptions, define a C*-algebra, which depends on D, as follows.

Definition 4.1. The C*-algebra Ap is the universal C*-algebra generated by a
family of partial isometries {s,,, : u,v € W and ¢(u) = t(v)} satisfying the relations

(5&) Su,v}k = Svu
(5b) Su,vSv,w = Su,w
(5(3) Su, v = Z Suw,vw for €€ {(1a0)7 (Oa 1)}

weW;o(w)=e,

o(w)=t(u)=t(v)
(5d) SuuSvw = 0, for u,v € Wo,u #v.
Theorem 4.2. [11] The C*-algebra Ap is purely infinite, simple and nuclear. Any

nontrivial C*-algebra with generators S, satisfying relations (5) is isomorphic to

Ap.

Remark 4.3. Two decorations 6; : D; — A and 62 : Dy — A are said to be
equivalent [10, Section 5] if there is a bijection 1 : D; — Ds such that 61 = da1.
Equivalent decorations d1, d2 give rise to isomorphic algebras Ap,, Ap,.

Lemma 4.4. Given a decoration 6 : D — A, and r € N, define another decoration
6+ D x{1,2,...,r} = A by §'((d,i)) = 6(d). The C*-algebra Apyqi2,.. 1 18
isomorphic to M, @ Ap.

Proof. (c.t. [11, Lemma 5.12].) If u,v € W, the isomorphism is given by
S((d.i)w),(d.9).0) 7 S(da).(d0) © Eig

where the e;; are matrix units for M,.. The fact that this is an isomorphism follows
from [11, Corollary 5.10]. O
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5. Ar = C(Q) xT' As A RANK 2 CUNTZ-KRIEGER ALGEBRA

We now show how the set of partial isometries {Sr, », : m1,m2 € o, T't(m) =
T't(m2)} defined by (3) allows one to express Ur as a rank 2 Cuntz-Krieger algebra.
The alphabet A is the set of I'-orbits of tiles. That is A = {I't : 7 € II3 2 }. Since I'
is type preserving, A = Ag U A; Ll Ay, where A; denotes the set of I't such that 7
has base vertex of type i. The decorating set D is the set of tiles 7 with fixed base
vertex O, and the decorating map § : D — A is defined by 6(7) = I'r. From now
on, D will always denote this particular decorating set.

The matrices My, My with entries in {0,1} are defined as follows. If a,b € A,
say that M7(b,a) = 1 if and only if @ = I'ry, b = 'y, for some tiles 71, 72, where the
union of the representative tiles 71 U7, is a parallelogram of shape (3, 2) as illustrated
on the right of Figure 9, with 7 shaded. The definition of Mj is illustrated on the
left of Figure 9, where o/ = I'r{, b’ = 't} and 7] U 74 is a parallelogram of shape

(2,3).
A
AV AV
D AL
et . VAR v, v

// \

a =T7] a=1In
Mz(b/,a/) =1 M1(b, a) =1

FIGURE 9. Transition matrices.

Proposition 5.1. The matrices My, Ms satisfy conditions (H1),(H2), and (H3)
of Section 4.

Proof. The verification of conditions (H1) and (H2) is a minor modification of [11,
Proposition 7.9], since I' acts freely on the chambers of A, but the verification of
(H2) requires a new argument.

Consider the directed graph G which has vertex set A and a directed edge from
a € Atobe Aforeach i = 1,2 such that M;(b,a) = 1. Condition (H2) of [11] is
the assertion that this graph is irreducible. In order to prove this, fix tiles 7y, 7
such that a« = I'ry,b = I'rp. Fix a sector & containing 71, with base point vgo(71),
as in Figure 10. Choose from among the shaded chambers in Figure 10 the chamber
¢ whose initial vertex has the same type as the initial vertex of 75. Since I' acts
transitively on the chambers of A, we may choose v € I' such that v~ !c is the
initial chamber of 75. Then conv{r; U~y72} is contained in a sector & with initial
tile ;. Figure 11 illustrates one of the three possible relative positions. This shows
that there is a directed path of length 3 in the graph G from I'ry to I'm. O

The proof that {Sr, r, : 71,72 € Illp, T't(m1) = T't(m2)} is the set of generators for
a rank 2 Cuntz-Krieger algebra Ap, associated with the alphabet A and decorating
map 0 : D — A defined above, is a minor modification of the argument in Section
7 of [11]. Let Wy, n, = I'Tly42 n12, the set of T-orbits of parallelograms of shape
(m+2,n+2). The elements of 20, ,, are in bijective correspondence with the words
of shape (m,n) in the alphabet A. See Section 4, and compare with [11, Lemma
7.1]. Thus the large parallelograms on the right and left of Figure 9 represent words
ab and a'b’ of shape (1,0) and (0,1) respectively.
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Voo (7'1)

FI1GURE 10. The sector G containing 7.

FIGURE 11. The sector &' containing 7y and y73.

Remark 5.2. The overlap in the tiles used to define the transition matrices M;
and My is needed in order to establish the bijection from W, ,, onto 20, . It is
not possible to use the more straightforward definition of the transition matrices,
in terms of contiguous, but not overlapping, tiles.

In view of Lemma 3.1, we now have the following result.
Proposition 5.3. If Ar = C(Q) x T, then there is an isomorphism Ar = Ap.
The next result will be used later.

Lemma 5.4. Let i € {0,1,2} and j € {0,1}. Ifa € A; then M;(b,a) = 1 only
if b € Aitj. Moreover, and each row or column of the matriz M; has precisely ¢*
nonzero entries.

Proof. The first statement is clear from the definition of the transition matrices.
We prove the second statement in the case j = 1. Choose b = I't € A and refer
to Figure 12, where 7 is shaded. There are precisely ¢? parallelograms 7 of shape
(3,2) such that ¢(7) = 7. For once 7 is chosen, there are ¢ choices for the chamber
d1. Once §; is chosen, there are ¢ choices for 5 and the whole parallelogram of
shape (3,2) is then completely determined. It follows that there are ¢> possibilities,
as claimed. This proves that for each b € A, there are ¢? choices for a € A such
that M (b,a) = 1. That is, each column of the matrix M; has precisely ¢® nonzero
entries. A similar argument applies to rows. O

6. K-THEORY

The main result of [12], later extended to a more general class of C*-algebras
in [4], is that the K-theory of a rank 2 Cuntz-Krieger algebra can be expressed
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FIGURE 12

in terms of the transition matrices M7, Ms. The matrix (I-Mi, I-M:) defines a
homomorphism Z4 @ Z4 — ZA. Let r be the rank, and T the torsion part, of the
finitely generated abelian group C(T") = coker (I-Mi, I-Ms). Thus C(T') 2 Z" @ T.

Theorem 6.1. Let A be a building of type zzlvg and order q, with maximal boundary
Q. Let T be a group of type preserving automorphisms of A which acts reqularly on
the chambers of A. Then

(6) Ko(r) = K, (Ap) = 2> & T.

Proof. The equation (6) is the result of combining [12, Proposition 4.13] with the
analogue of [12, Lemma 5.1], whose proof carries over without change to the larger
tiles considered in the present article. O

In order to compute the K-theory of 2 it is convenient to reduce the size of the
tiles. A ball of radius one in an apartment is a hexagon containing six chambers.
A reduced tile is a hexagon together with a choice of one of its six chambers, which
determines the direction “up”. The reduced tile ¢ is said to be of type i € Zg, if
its central vertex v11(§) is of type i. Denote by X, the set of reduced tiles of type
i. If £ € X; then its chambers are denoted &, &, k € Z3 as in Figure 13, with the
“up” chamber denoted by &;. The vertices vg;(€) of type k — [+ i are labelled as in
Figure 13. This is consistent with previous notation, in the sense that if 7 is any
tile containing the hexagon & then vy (§) = vi(7) whenever both sides are defined.
Note that there are ¢ tiles 7 containing &, since once the hexagon is fixed there
are q choices of vgo(7) and ¢ choices of vaa (7).

Remark 6.2. The link of a vertex v in A is the spherical building of a projective
plane of order q. The hexagonal boundary of a reduced tile £ with central vertex v
is an apartment in this spherical building. The vertex v;;(£) is a point [line| in the
projective plane if i —j =1 [i — j = 2].

Define a new alphabet A to be the set of I'-orbits of reduced tiles. Since the action
of T' is type preserving, we may write A = A; U Ax U Az where A; = {T°¢: £ € X;}.
For each fixed chamber 6, there are ¢ reduced tiles ¢ € X; such that & = 6 [9,
Lemma 4.7]. Since I' acts regularly on the set of chambers of A, #A; = ¢ and
#A = 3¢>. Each reduced tile is contained in ¢? tiles, and so #A4 = 3¢°.

The new transition matrices N1, Ny are defined by the diagrams in Figure 14.
In each of the diagrams, the region is a union of two hexagons (one shaded, one
partly shaded), which are representatives of the elements a, b respectively. Once
the shaded hexagon is chosen, there are ¢ choices for the hexagon at the higher
level which contains two shaded triangles. For there are ¢ choices for the unshaded
triangle meeting the shaded hexagon in its upper horizontal edge. Once this un-
shaded triangle is chosen there are ¢ choices for the unshaded triangle adjacent to
it. The remaining two unshaded triangles are then completely determined, since



10 GUYAN ROBERTSON

v12(&) v21(§)

§i+1

§i+2

Uoz(f)

Uzo(f)

Eivo &iv1
vo1(§) v10(§)

FIGURE 13. A reduced tile of type i.

VAVA AVAV
VV VV

Naz(b,a) Ni(b,a)

FIGURE 14. New transition matrices.
they lie in the convex hull of the region consisting of the shaded hexagon and the
two chosen triangles.
Lemma 6.3. C(T') = coker (I-Ni, I-N3) .

Proof. This follows by applying successively parts (i) and (ii) of [12, Lemma 6.1] as
indicated in Figure 15. The resulting {0, 1} matrices are precisely Ny and Ny. O

%N % N
| NN, | NN ]\
V%V Y LV

FIGURE 15. Two-step reduction of a tile to a hexagon

Remark 6.4. The {0,1}-matrices N1, No cannot be used to define the rank 2
Cuntz-Krieger algebra, although they can be used to compute its K-theory. This
is because the analogue of [11, Lemma 7.4] would fail.

Proposition 6.5. Fori= 1,2, we have K;(r) = Z,2_
Proof. Lemma 6.3 implies that, as a finitely presented abelian group, we have

(7) C(T) =(Ala=> Nj(b,a)b, acAh,j=12).
beA
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Fix i € Z3 and € X;, so that a = I'§ € A;. Then Ni(b,a) = 1 if and only if
b=Tn where n € X;y1, 7; = & and 7,1 = £;, 5. Since I' acts regularly on the set
of chambers,

(8) a= Z I'n.

neXit1
ni=8&;
Mit1=€it2

Similarly

(9) a= > TIC

CEXit2
_ Gi=E
Ci+2:§i+1

Equation (8) implies that a depends only on the chambers ¢; and &, 49 of &
Equation (9) implies that a depends only on the chambers ¢; and &, 11 of & There-
fore a depends only on ;. More precisely, if ¥ € X; is any hexagon with 9¥; = &;,
then T = T'¢ in C(T'). To see this, choose a hexagon ¢ € X; with ¢, = &,
vo2(¢) = vo2(9) and vop(p) = v29(§). Then T'p = T¢, by (8), and T'p = T, by (9),
so that I'Y = T'¢, as claimed. However, I' acts transitively on chambers. Therefore

all elements of A; are equal, to a;, say. Thus

()

2 2 .
ag,a1,a2 | G; = ¢“Qit1,0; = q°a;—1,1 € L3)

=

= (ag|ao = q4a0, ap = q6ao>

= (ag |ap = ¢°ap) = Zyp2> 1.

In particular, since C(I") is finite, it follows from Theorem 6.1 that for i = 0,1,
(10) Ki(Ar) =Zg_4.

O

Recall that the classical Cuntz algebra O,, is generated by n isometries whose
range projections sum to the identity operator.

Corollary 6.6. The algebra r is stably isomorphic to Ogp @ Og.

Proof. Ko(Oy) = Zp—1 and K;(O,) = 0 [3]. The Kiinneth Theorem for tensor
products [2, Theorem 23.1.3] shows that K;(Op ® Op) = Zg2_1, i = 0,1. Since
the algebras involved are p.i.s.un. and satisfy the U.C.T. [11, Remark 6.5], the
result follows from the classification theorem for such algebras [6]. O

Remark 6.7. In order to determine the isomorphism class of 2Ap = C(2) x T
we need to use that fact that it is classified (in the class of p.i.s.u.n. C*-algebras
satisfying the U.C.T.) by the invariants (Ko(2r),[1], K1(2(r)) as abelian groups
with distinguished element in Ky [6]. It turns out that Ap is not isomorphic to
Op @ Op, but to M, ® Op2 ® Oy, for some r. In order to determine r, we use the
fact that, for any C*-algebra €, the identity matrix Ips, ge is a direct sum of r copies
of I¢, so that the class of the identity element in Ky satisfies [1p,.9¢] = 7 - [1e].
Now, for any decorating set E, the C*-algebra Ag is stably isomorphic to Ap [11,
Corollary 5.15] and so K;(Ag) = Zg_;. Since ¢ - [1] = [1] in Ky, it follows from
the classification theorem that M2 ® Ap = Ag.

Lemma 6.8. Let k = (q + 1)(¢> + ¢ + 1), the number of chambers of A which
contain the vertex O.
e The decoration § : D — A, defined by 6(7) = I't, is equivalent to the
decoration 0 : Ag x {1,2,...,k} = A, defined by §'((ap,i)) = ag.
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Proof. Let c1,...,cp be the chambers in A based at O. For each 4, let D; denote the
set of tiles 7 € D which have initial chamber ¢;. Since I' acts freely and transitively
on the set of chambers of A, the restriction §; of § to D; is a bijection onto Aj.
Define n : D — Ag x {1,2,...,k} by n(1) = (6;(7),4) for 7 € D;, i = 1,2,... k.
Then 7 is bijective and §jn = 6. Thus ¢ and J(, are equivalent decorations.

The fact that Ap = Ap,x{1,2,... k) follows immediately from Remark 4.3. O

Lemma 6.9. RAr = M3(441) @ Aa,.
Proof. By Proposition 5.3, Lemma 6.8, Lemma 4.4, and Remark 6.7,
Ar 2 Ap = Apgx(1,2,..0) = M @ Aay = Mzgy1) ® Aag,
since k = 3(¢ + 1) (mod ¢* —1). O
Lemma 6.10. A4 = M3 ® Ay,

Proof. For i = 0,1,2, let ¢; = ZaeAi Sa,a, SO that eg +e1 +ex = 1. It is an
immediate consequence of relations (5b), (5d) that the generators of A4 satisfy

e es — Su,v if O(u), O(U) (S Ai;
Bk 0 otherwise.

It follows immediately from the uniqueness statement of Theorem 4.2 that

(11) 6i¢4A6i = AAi.
The relations (5) show that if A;(b,a) = 1 then the partial isometry s q has
initial projection sg4p,qp and final projection spp. Thus [sepas] = [sp,p]. It follows

from (5c) and Lemma 5.4 that, if a € A; then [sq.a] = > pea,,, M1(b,a)[sp)]-

Therefore
el = > [saal = > D> Mi(b,a)[spe]

a€A; a€A; bEA; 11
- 5 (S w00 =
bEA;+1 \a€A;

since Y, 4. Mi(b,a) = ¢* for each b € A;yy, by Lemma 5.4. Similarly (replacing
M by M), [e;] = ¢*[ei_1]. Tt follows that [e;] = ¢*[e;] = ¢%[e;]. Therefore
[ei] = ¢*[e;] and [e;] = [ei11], for all i € Z/3Z. Thus [e1] = [ea] = [e3] in Ko(Aa).
In view of the description of the K-theory of purely infinite C*-algebras in [3, Section
1], this implies that the projections eg, e1, ea are Murray-von Neumann equivalent
in As. It follows from (11) that Aa, = A, = Ay, and that Ay = M3 Ay,. O

Lemma 6.11. (Ky(Aa),[1]) = (Zs2—1,3q).

Proof. Since A, is stably isomorphic to 2, it follows from Proposition 6.5 that
Ko(Ax) =2 Ko(RIr) = C(I') = Zg_q. By the proof of [12, Proposition 8.3], the
isomorphism between Ky(A4) and the group

(12) (Ala=> " M;b,a)b, acAj=12).

beA
maps [1] to the element Y ., a. However #A = 3¢° = 3¢ (mod ¢*> — 1). The
result follows. O

Theorem 6.12. (Ko(2r), [1], K1(Ar)) = (Zyz_1,3(q + 1), Zgz_1).
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Proof. By Lemmas 6.9 and 6.10,
Ap = Mzg1) @ Any = My @ Mz @ Ag, = My @ Aa.
It follows from Lemma 6.11 that [1r] = (¢+1) -3¢ =3(¢+ 1) in Zgp_;. O

In view of the classification theorem [6] and Remark 6.7, this completes the proof
of Theorem 1.1.

Remark 6.13. The order of [1] in K(2r) is
q2 —1 _oq—1
(- 1.3(g+1)  (¢-1,3)
g—1 ifg#1 (mod 3),
qg—l ifg=1 (mod 3).

Compare this with the conjecture in [12, Remark 8.4].

There are other ways of expressing 2 in terms of rank-1 Cuntz-Krieger algebras,
in addition to that of Theorem 1.1. Here is an example. Let Ay = O 4, where

1 01
A=10 1 1
1 10

Then Ay is a simple rank-1 Cuntz-Krieger algebra such that K, (Ag) = (Z,Z).

Proposition 6.14. Under the hypotheses of Theorem 1.1, Ar is stably isomorphic
to Ay ® Oqz.

Proof. The Kiinneth Theorem for tensor products [2, Theorem 23.1.3] shows that
K.(A1 ® A2) = (Zg2_1,Z42_1). Since the algebras involved are all p.i.s.u.n. and
satisfy the U.C.T., the result follows from the Classification Theorem [1]. O
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