```
Each group has q^2 + q + 1 generators and \frac{1}{3}(q+1)(q^2+q+1) relations.
Group A.1
x0*x1*x3 = 1, x0*x2*x6 = 1, x0*x4*x5 = 1, x1*x2*x4 = 1,
x1*x5*x6 = 1, x2*x3*x5 = 1, x3*x4*x6 = 1;
Group A.2
x0*x1*x6 = 1, x0*x2*x5 = 1, x0*x4*x3 = 1, x1*x3*x3 = 1,
x1*x4*x2 = 1, x2*x6*x6 = 1, x4*x5*x5 = 1;
Group B.1
x0*x1*x2 = 1, x0*x2*x4 = 1, x0*x4*x1 = 1, x1*x6*x3 = 1,
x^{2}x^{5}x^{6} = 1, x^{3}x^{5}x^{4} = 1, x^{3}x^{6}x^{5} = 1;
Group B.2
x0*x1*x4 = 1, x0*x2*x1 = 1, x0*x4*x2 = 1, x1*x5*x5 = 1,
x^2x^3x^3 = 1, x^3x^5x^6 = 1, x^4x^6x^6 = 1;
Group C.1
x0*x0*x6 = 1, x0*x2*x3 = 1, x1*x2*x6 = 1, x1*x3*x5 = 1,
x1*x5*x4 = 1, x2*x4*x5 = 1, x3*x4*x6 = 1;
```

q = 2: Regular Group (A.1) has generators x_j , $0 \le j \le 7$, with relations $x_j x_{j+1} x_{j+3} = 1$ $(0 \le j \le 6)$.

q = 4: Regular Group has generators $x_j, 0 \le j \le 20$, with relations

$$\begin{cases} x_j x_{j+3} x_{j-6} = 1 & (0 \le j \le 20), \\ x_j x_{j+7} x_{j+14} = x_j x_{j+14} x_{j+7} = 1 & (0 \le j \le 6). \end{cases}$$

q = 5: Regular Group has generators $x_j, 0 \le j \le 30$, with relations

$$\begin{cases} x_j x_{j+1} x_{j+6} = 1 & (0 \le j \le 30), \\ x_j x_{j-7} x_{j-11} = 1 & (0 \le j \le 30). \end{cases}$$

q = 7: Regular Group has generators $x_j, 0 \le j \le 56$, with relations

$$\begin{cases} x_j x_{j+1} x_{j+8} = 1 & (0 \le j \le 56), \\ x_j x_{j+6} x_{j-9} = 1 & (0 \le j \le 56), \\ x_j x_{j+19} x_{j+38} = x_j x_{j+38} x_{j+19} = 1 & (0 \le j \le 18) \end{cases}$$

q = 8: Regular Group has generators $x_j, 0 \le j \le 72$, with relations

$$\begin{cases} x_j x_{j+1} x_{j+9} = 1 & (0 \le j \le 72), \\ x_j x_{j+2} x_{j+18} = 1 & (0 \le j \le 72), \\ x_j x_{j+4} x_{j+36} = 1 & (0 \le j \le 72). \end{cases}$$

q = 11: Regular Group has generators $x_j, 0 \le j \le 132$, with relations

$$\begin{cases} x_j x_{j+1} x_{j+12} = 1 & (0 \le j \le 132), \\ x_j x_{j+16} x_{j+59} = 1 & (0 \le j \le 132), \\ x_j x_{j+40} x_{j+81} = 1 & (0 \le j \le 132), \\ x_j x_{j+60} x_{j+55} = 1 & (0 \le j \le 132). \end{cases}$$

The K-group $K_0 = K_1$ for $\mathcal{A}(\Gamma) = C(\Omega) \rtimes \Gamma$.

Notation: [a, b, ...] means $\mathbb{Z}_a \oplus \mathbb{Z}_b \oplus ...; m [a, b, ...]$ means $\mathbb{Z}^m \oplus \mathbb{Z}_a \oplus \mathbb{Z}_b \oplus ...; (j)a$ means a, a, ..., a j times. K_0 is the K-group of the crossed product algebra (recall that $K_0 = K_1$), and $K_0 / < [1] >$ is the K-group modulo the class [1] of the identity.

	Γ	Γ_{ab}	K_0	$K_0/<[1]>$
q = 2	A.1	[(3)2,3]	0 [(6)2,3]	0 [(6)2,3]
The $\mathbb{F}_2((X))$ cases	A.2	[2,3,7]	0 [(2)2,3,(2)7]	0 [(2)2,3,(2)7]
q = 2	B.1	[3]	0 [3]	0 [3]
The \mathbb{Q}_2 cases	B.2	[(2)2,3]	0 [(2)2,3]	0 [(2)2,3]
	C.1	[(2)2,3]	0 [(4)2,3]	0 [(4)2,3]
q = 4	Regular	[(6)2,(2)3]	28 [(12)2,(6)3]	28 [(12)2,(6)3]
	Regular'	[(2)2,(2)3,7]	28 [(4)2,(6)3,(2)7]	28 [(4)2,(6)3,(2)7]
q = 5	Voskuil	[(2)2,(4)4,3]	62 [(14)2,(5)4,3]	62 [(14)2,(4)4,3]
	Regular	[3,(3)5]	62 [4,3,(6)5]	62 [3,(6)5]
q = 7	Voskuil	[(7)3]	190 [2,(21)3]	190 [(21)3]
	Regular	[(2)3,(3)7]	190 [2,(6)3,(6)7]	190 [(6)3,(6)7]
q = 8	Regular	[(9)2,3]	292 [7,(18)2,3]	292 [(18)2,3]
q = 11	Regular	[3,(3)11]	798 [10,3,(6)11]	798 [3,(6)11]
q = 13	Regular	[(2)3,(3)13]	1342 [4,(6)3,(6)13]	1342 [(6)3,(6)13]