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Abstract. Consider a compact locally symmetric space M of
rank r, with fundamental group Γ. The von Neumann algebra
VN(Γ) is the convolution algebra of functions f ∈ `2(Γ) which
act by left convolution on `2(Γ). Let T r be a totally geodesic flat
torus of dimension r in M and let Γ0

∼= Zr be the image of the
fundamental group of T r in Γ. Then VN(Γ0) is a maximal abelian
?-subalgebra of VN(Γ) and its unitary normalizer is as small as pos-
sible. If M has constant negative curvature then the Pukánszky
invariant of VN(Γ0) is ∞.

1. Introduction

If Γ is a group, then the von Neumann algebra VN(Γ) is the convo-
lution algebra

VN(Γ) = {f ∈ `2(Γ) : f ? `2(Γ) ⊆ `2(Γ)} .

It is well known that if Γ is an infinite conjugacy class [ICC] group then
VN(Γ) is a factor of type II1. If Γ0 is a subgroup of Γ, then VN(Γ0)
embeds as a subalgebra of VN(Γ) via f 7→ f , where

f(x) =

{
f(x) if x ∈ Γ0,

0 otherwise.

This article is concerned with examples where Γ0 is an abelian subgroup
of Γ and VN(Γ0) is a maximal abelian ?-subalgebra (masa) of VN(Γ).

If A is a von Neumann subalgebra of a von Neumann algebra M
then the unitary normalizer N(A) is the set of unitaries u in M such
that uAu−1 = A. The subalgebra A is said to be singular if N(A) ⊆ A,
so that the only normalizing unitaries already belong to A.

Let Γ be a torsion free cocompact lattice in a semisimple Lie group
G of rank r with no centre and no compact factors. Consider the
Riemannian symmetric space X = G/K and the compact locally sym-
metric space M = Γ\X. A flat in X is an isometrically embedded
euclidean space in X. The rank r of X is the dimension of a maximal
flat in X.
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Suppose that T r is a totally geodesic flat torus of dimension r in
M . Let Γ0

∼= Zr be the image of the fundamental group π(T r) under
the natural monomorphism from π(T r) into Γ = π(M). We show that
VN(Γ0) is a singular masa of VN(Γ). In fact we prove two stronger
results : Theorems 1.1 and 3.5 below. Fix g1 ∈ Γ0 and let Γ1

∼= Z be
the subgroup of Γ0 generated by g1. Then we have inclusions

VN(Γ1) ⊆ VN(Γ0) ⊆ VN(Γ).

The result below implies that if g1 is the homotopy class of a regular
geodesic (as defined subsequently) then VN(Γ0) is the unique masa of
VN(Γ) containing VN(Γ1).

Theorem 1.1. Let g1 ∈ Γ0 be the class of a regular closed geodesic c
in T r, and let Γ1

∼= Z be the subgroup of Γ0 generated by g1. Let u
be a unitary operator in M such that uVN(Γ1)u−1 ⊆ VN(Γ0). Then
u ∈ VN(Γ0).

The second main result (Theorem 3.5) implies that VN(Γ0) is a
strongly singular masa in the sense of [SS]. This improves a result
of [RSS, Theorem 4.9], which proved strong singularity under the ad-
ditional hypothesis that the diameter of T r is small. The two new
ideas leading to this improvement are the use of the Amenable Sub-
group Theorem (Lemma 2.1) and the replacement of the Furstenberg
Boundary by the Tits Boundary in the subsequent arguments.

If M has constant negative curvature then it is proved in Theorem
4.6 that the Pukánszky invariant of VN(Γ0) is ∞.

2. Preliminaries

We first recall some concepts which are needed for the statements and
proofs of the results. Let G be a semisimple Lie group with no centre
and no compact factors. Let X = G/K be the associated symmetric
space, where K is a maximal compact subgroup of G. Then X is a
contractible space of nonpositive curvature. A geodesic L in X is called
regular if it lies in only one maximal flat; it is called singular if it is not
regular. Let F be a maximal flat in X and let p ∈ F . Let Sp denote the
union of all the singular geodesics through p. Then F −Sp has finitely
many connected components, called Weyl chambers with origin p.

If A, B are subsets of X, and δ > 0, then the notation A⊂
δ
B means

that d(a,B) ≤ δ, for all a ∈ A. Define the Hausdorff distance between
A and B to be

(1) hd(A,B) = inf{δ ≤ ∞ : A ⊂
δ
B and B ⊂

δ
A} .

Any complete geodesic L in X is the union of two geodesic rays which
intersect at their common origin. Define an equivalence relation ∼ on
the set of geodesic rays in X by

(2) L1 ∼ L2 ⇐⇒ hd(L1, L2) <∞ .
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The sphere at infinity X(∞) is the set of equivalence classes of geo-
desic rays in X [GJT, Chapter III]. Denote by L(∞) the class in X(∞)
of a geodesic ray L. The set X(∞) may be given the structure of a
spherical building whose maximal simplices are called Weyl chambers
at infinity, and there is a natural action of G on X(∞). The parabolic
subgroups of G are the stabilizers Gz = {x ∈ G : x(z) = z}, for some
z ∈ X(∞) [GJT, Proposition 3.8]. Moreover, Gz is a minimal para-
bolic subgroup of G if and only if z = L(∞), where L is a geodesic
ray in a Weyl chamber [BGS, pp 248–9]. Two such minimal parabolic
subgroups Gz1 , Gz2 coincide if and only if z1, z2 belong to the same
Weyl chamber at infinity [GJT, Proposition 3.16].

If F is a maximal flat in X, then the restriction of the equivalence
relation ∼ to rays in F allows one to define the sphere at infinity F (∞).
There is a natural embedding of F (∞) into X(∞), and it is convenient
to identify F (∞) with its image in X(∞).

Now let Γ be a torsion free cocompact lattice in G. Then Γ acts freely
on the symmetric space X = G/K and the quotient manifold M =
Γ\X has universal covering space X. The manifold M is a compact
locally symmetric space of nonpositive curvature, with fundamental
group Γ, and Γ acts freely on X.

Let T r ⊂ M be a totally geodesic embedding of a flat r-torus in
M . Choose and fix a point ξ ∈ T r. Consider the fundamental groups
Γ = π(M, ξ) and Γ0 = π(T r, ξ) ∼= Zr. Since no geodesic loop in
M is null-homotopic, the inclusion i : T r → M induces an injective
homomorphism i∗ : Γ0 → Γ. We identify Γ0 with its image in Γ. There
is a maximal flat F0

∼= Rr in X such that Γ0 acts cocompactly by
translations upon F0, and p(F0) = T r [BH, Theorem II.7.1].

The flat F0 is the unique Γ0-invariant flat in X. For if F1 is another
such, then since Γ0 acts isometrically and the action on F0 is cocompact,
we have F0 ⊂

δ
F1, for some δ > 0. Therefore F0 = F1, by [Mos, Lemma

7.3 (iv)], applied to a maximal flat containing F1.

Choose ξ̃ ∈ F0 such that p(ξ̃) = ξ. For any element x ∈ Γ, there is a
unique geodesic loop based at ξ which represents x. This is the loop c
of shortest length in the class x and it is the projection of the geodesic
segment [ξ̃, xξ̃] in X.

The following technical lemma will play a crucial role later, in our
improvement to [RSS, Theorem 4.9].

Lemma 2.1. Let z ∈ F0(∞) lie in a Weyl chamber at infinity. Then

Gz ∩ Γ = Γ0.

Proof. The group Gz = {x ∈ G : x(z) = z} is a minimal parabolic
subgroup of G, and so has a cocompact solvable normal subgroup.
Therefore Gz is amenable, as is the discrete subgroup Γz = Gz ∩ Γ.
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Also Γz ⊇ Γ0, since Γ0 acts by translation upon F0 and so stabilizes
each point of F0(∞).

By the Amenable Subgroup Theorem [AB, Corollary B], there is a
Γz-invariant flat Fz in X. Since Γz ⊇ Γ0, Fz is Γ0-invariant and so
Fz = F0, by the remarks preceding this lemma. Thus ΓzF0 = F0.

If x ∈ Γz then xξ̃ ∈ F0, since ξ̃ ∈ F0. Therefore the geodesic segment
[ξ̃, xξ̃] in F0 projects to a closed geodesic in T r, whose class in Γ is
precisely x. Therefore x ∈ Γ0. �

3. Singularity results for abelian subalgebras

The terminology and notation introduced in the previous section
will be used without further comment. A regular geodesic in M is, by
definition, the image of a regular geodesic under the covering projection
p : X → M . It follows from [Mos, §11] that T r contains a closed
regular geodesic. We now prove Theorem 1.1, which we restate here,
for convenience.

Theorem 3.1. Let g1 ∈ Γ0 be the class of a regular closed geodesic c
in T r, and let Γ1

∼= Z be the subgroup of Γ0 generated by g1. Let u
be a unitary operator in M such that uVN(Γ1)u−1 ⊆ VN(Γ0). Then
u ∈ VN(Γ0).

Proof. Suppose that x0 ∈ supp u. We must prove that x0 ∈ Γ0.
Since u ∈ `2(Γ), there are only a finite number of cosets Γ0y, with

y ∈ Γ, such that ‖u|Γ0y‖2 ≥ |u(x0)|. Call these cosets Γ0y1, . . . ,Γ0yn.
We claim that

(3) x0Γ1 ⊂ Γ0y1 ∪ · · · ∪ Γ0yn.

To prove this, note that if z ∈ Γ1 then u ? δz ? u
−1 = f is a unitary

operator which lies in VN(Γ0), by hypothesis. Therefore

|u(x0)| = |(u ? δz)(x0z)|
= |(f ? u)(x0z)|

=

∣∣∣∣∣∑
t∈Γ0

f(t)u(t−1x0z)

∣∣∣∣∣ (since supp f ⊆ Γ0)

≤ ‖u|Γ0x0z‖2 (since f is unitary).

This shows that x0z ∈ Γ0y1 ∪ · · · ∪ Γ0yn, which proves (3).
We now show that (3) implies that x0 ∈ Γ0. Lift c to a regular

geodesic L in X through a point ξ̃ ∈ X. Regularity means that L
lies in a unique maximal flat F0 and p(F0) = T r. The diagram below
illustrates the case X = SL3(R)/SO3(R), where r = 2 and there are

six Weyl chambers in the flat F0 with origin ξ̃.
Let P = [ξ̃, g1ξ̃] ⊆ F0, so that Γ1P = L, since g1 acts on L by

translation. Let δ = max{d(yjp, p) : 1 ≤ j ≤ n, p ∈ P}. Then for
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1 ≤ j ≤ n, we have yjP ⊂
δ
P , and so

(4) Γ0yjP ⊂
δ

Γ0P ⊂ F0 .

It follows from (3) that

(5) x0L = x0Γ1P ⊂
δ
F0 .

Since x0L is a regular geodesic, [Mos, Lemma 7.3(iii)] implies that
d(x0L, F0) = 0. Consequently x0L ⊂ F0, by [Mos, Lemma 3.7]. In

particular, x0ξ̃ ∈ F0. Therefore the geodesic segment [ξ̃, x0ξ̃] projects
to a closed geodesic in T r whose class in Γ is precisely x0. Hence
x0 ∈ Γ0. �

Remark 3.2. Theorem 3.1 implies that VN(Γ0) is a singular masa
of VN(Γ) and that it is also the unique masa of VN(Γ) containing
VN(Γ1). Since closed geodesics are dense in the set of all geodesics
of T r, we can choose regular geodesics c1, c2, . . . , cr in T r which lift to
regular geodesics in linearly independent directions in F0. Applying
Theorem 3.1 to each of the geodesics cj shows that VN(Γ) contains a
masa A = VN(Γ0) with the following property :
A contains abelian subalgebras Bj, 1 ≤ j ≤ r such that

(a) A is the unique masa containing Bj ;
(b) A is generated by B1 ∪ B2 ∪ · · · ∪ Br ;
(c) Bi, Bj are orthogonal for i 6= j, in the sense that Tr(bibj) = 0

whenever Tr(bi) = Tr(bj) = 0 [Po1, Definition 2.2].
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This construction shows how one can see something of the rank of the
locally symmetric space M in the group von Neumann algebra of the
fundamental group Γ = π(M). This is of interest in connection with a
conjecture of A. Connes.

Rigidity Conjecture. If ICC groups Γ1,Γ2 have Property (T) of
Kazhdan, then

VN(Γ1) ∼= VN(Γ2)⇒ Γ1
∼= Γ2.

In our setup, one consequence of the truth of Connes’ conjecture
would be that the rank of M is determined by VN(Γ).

Now we define a relative version of the notion of a strongly singular
masa defined in [SS]. Let A ⊆ C ⊆ M be von Neumann subalgebras
of a type II1 factor M, and let EN denote the unique trace preserving
conditional expectation onto any von Neumann subalgebra N of M.
Say that A ⊆ C is a strongly singular pair of von Neumann subalgebras
of M if for all von Neumann subalgebras B with A ⊆ B ⊆ C the
inequality

(6) ‖EB − EuBu∗‖∞,2 ≥ ‖(I − EC)(u)‖2

holds for all unitaries u ∈M. [As in [RSS], the notation ‖ T‖∞,2 means
that the norm of the linear map T is taken relative to operator norm
on its domain and the `2 norm on its range. If A = C then this reduces
to the definition of a strongly singular subalgebra given in [SS].

The next two results are mild generalizations of [RSS, Lemma 2.1]
and [RSS, Lemma 4.1]. The proofs are included for completeness.

Lemma 3.3. Let A ⊆ C ⊆ M be von Neumann subalgebras of a type
II1 factorM. Suppose that, given ε > 0 and a unitary operator u ∈M,
there exists a unitary v ∈ A, such that

(7) ‖EC(u∗vu)− EC(u∗)vEC(u)‖2 < ε.

Then A ⊆ C is a strongly singular pair. That is, (6) holds, whenever
A ⊆ B ⊆ C.

Proof. We have

‖EB − EuBu∗‖2
∞,2 ≥ ‖v − EuBu∗(v)‖2

2 since v ∈ B(8)

= ‖v − uEB(u∗vu)u∗‖2
2

= ‖u∗vu− EB(u∗vu)‖2
2

= 1− ‖EB(u∗vu)‖2
2 by orthogonality

≥ 1− ‖EC(u∗vu)‖2
2

≥ 1− (‖EC(u∗)vEC(u)‖2 + ε)2 by (7)

≥ 1− (‖EC(u)‖2 + ε)2

= ‖(I − EC)(u)‖2
2 − ε2 − 2ε‖EC(u)‖2 .(9)

Since ε > 0 was arbitrary, the result follows. �
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Lemma 3.4. Let Γ1 < Γ0 < Γ be subgroups of a discrete I.C.C. group.
The following condition implies that VN(Γ1) ⊆ VN(Γ0) is a strongly
singular pair.
If x1, . . . , xm ∈ Γ and

(10) Γ1 ⊆
⋃
i,j

xiΓ0xj ,

then xi ∈ Γ0 for some i.

Proof. The condition in question is equivalent to the following:
If x1, . . . , xn, y1, . . . , yn ∈ Γ\Γ0, then there exists γ0 ∈ Γ1 such that

(11) xiγ0yj /∈ Γ0, 1 ≤ i, j ≤ n.

To see this replace xi by x−1
i , replace yj by y−1

j and replace each of
the sets {x1, . . . , xn}, {y1, . . . , yn} by their union, which is renamed
{x1, . . . , xm}.

Let A = VN(Γ1) and C = VN(Γ0). Given ε > 0 and a unitary
operator u ∈ VN(Γ), we must show that there exists a unitary v ∈ A,
such that (7) is satisfied. To do this, approximate u by a finite linear
combination of group elements y1, . . . yn, yn+1, . . . , yp, where y1, . . . yn 6∈
Γ0 and yn+1, . . . , yp ∈ Γ0. Let xi = y−1

i , 1 ≤ i ≤ p and choose γ0 ∈ Γ1

satisfying (11). Now

EC(xiγ0yj) = EC(xi)γ0EC(yj), 1 ≤ i, j ≤ n,

both sides being zero if i ≤ n or j ≤ n, since xiγ0yj is then orthogonal
to B. The equation (7) follows by taking a close enough approximation.

�

The next result implies that VN(Γ0) is a strongly singular masa
of VN(Γ) in the sense of [SS]. It improves [RSS, Theorem 4.9], by
removing a superfluous hypothesis on the diameter of the embedded
torus T r.

Theorem 3.5. Let g1 be the class of a regular closed geodesic c in T r,
and let Γ1

∼= Z be the subgroup of Γ0 = π(T r) generated by g1. Then
VN(Γ1) ⊆ VN(Γ0) is a strongly singular pair.

Remark 3.6. Theorem 3.5 is clearly closely related to Theorem 3.1,
but neither result appears to contain the other.

Proof. Lift c to a regular geodesic L in X through ξ̃, where p(ξ̃) = ξ

and L = L+∪L− is a union of two geodesic rays with common origin ξ̃.
Regularity means that L lies in a unique maximal flat F0 and p(F0) =
T r.

Suppose that (10) holds. That is, we have elements x1, . . . , xm ∈ Γ
such that

(12) Γ1 ⊆
⋃
i,j

xiΓ0xj .
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Now g1 acts on L by translation. Let P = [ξ̃, g1ξ̃], so that L = Γ1P .
Let δ = max{d(xjp, p) : 1 ≤ j ≤ n, p ∈ P}. For 1 ≤ j ≤ n, this
implies that xjP ⊂

δ
P and so

(13) Γ0xjP ⊂
δ

Γ0P ⊂ F0 .

Hence, for each i, j, we have xiΓ0xjP ⊂
δ
xiF0. It follows from (12) that

(14) L = Γ1P ⊂
δ
x1F0 ∪ x2F0 ∪ · · · ∪ xmF0 .

Let z = L(∞) ∈ F0(∞). Now for 1 ≤ j ≤ m, the element xjg1x
−1
j acts

by translation upon the maximal flat xjF0 and hence preserves each
boundary point of xjF0. Express each xjF0 as a (finite) union of Weyl

chambers Wα,j with base vertex xj ξ̃. Thus

(15) L+ ⊂
δ

⋃
α,j

Wα,j .

Now for each α, j the function p 7→ d(p,Wα,j) is convex on L by [Mos,
Lemma 3.6]. According to (15), we have

(16) min
α,j

d(p,Wα,j) ≤ δ

for all p ∈ L. This implies that for some α, j, the function p 7→
d(p,Wα,j) is monotonically decreasing on L+. Choose such α, j. Then

L+ ⊂
ε
Wα,j

for some ε > 0. By [Mos, Lemma 7.3(i)], there is a geodesic ray L′ ∈
xjF0 which is asymptotic to L. Thus z = L+(∞) = L′(∞) ∈ xjF0(∞)
and xjg1x

−1
j z = z.

Since L is a regular geodesic, z lies in a Weyl chamber at infinity and
it follows from Lemma 2.1 that xjg1x

−1
j = h0 ∈ Γ0. Since xjg

n
1x
−1
j = hn0 ,

we have xjg
n
1 = hn0xj. Therefore

d(xjg
n
1 ξ̃, h

n
0 ξ̃) = d(hn0xj ξ̃, h

n
0 ξ̃) = d(xj ξ̃, ξ̃) .

Thus d(xjL, F0) < ∞, from which it follows that xjL ⊂ F0, by [Mos,

Lemma 7.3(iii) and Lemma 3.7], applied to xjL
±. In particular, xj ξ̃ ∈

F0. Hence the geodesic segment [ξ̃, xj ξ̃] projects to a closed geodesic
in T r whose class in Γ is precisely xj. It follows that xj ∈ Γ0. �

4. The Pukánszky invariant in constant negative
curvature

Let Γ0 be an abelian subgroup of a countable group Γ such that A =
VN(Γ0) is a masa of M = VN(Γ). Recall that A is the von Neumann
subalgebra of B(`2(Γ)) defined by the left convolution operators

λ(f) : φ 7→ f ? φ
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where f ∈ `2(Γ0) and f ? `2(Γ) ⊆ `2(Γ). The algebra A also acts on
`2(Γ) by right convolution

ρ(f) : φ 7→ φ ? f,

where f ∈ A. Let Aopp be the von Neumann subalgebra of B(`2(Γ))
defined by this right action of A.

Let B be the von Neumann algebra generated by A ∪ Aopp and let
p denote the orthogonal projection of `2(Γ) onto the closed subspace
generated by A. Then p is in the centre of B′ and B′p is abelian.
The von Neumann algebra B′(1 − p) is of type I and may therefore
be expressed as a direct sum Bn1 ⊕ Bn2 ⊕ . . . of algebras Bni

of type
Ini

, where 1 ≤ n1 < n2 < · · · ≤ ∞. The Pukánszky invariant [Po2] is
the set {n1, n2, . . . }. It is an isomorphism invariant of the pair (A,M),
since any automorphism ofM is implemented by a unitary in B(`2(Γ)).
It has been shown [NS, Corollary 3.3] that all subsets of the natural
numbers can be realized as the Pukánszky invariant of some masa of
the hyperfinite II1 factor.

A subgroup Γ0 of a group Γ is malnormal if g−1Γ0g ∩ Γ0 = {1} for
all g ∈ Γ − Γ0. Recall the following result from [RS, Proposition 3.6],
which we shall apply in proving Theorem 4.6.

Proposition 4.1. Suppose that Γ0 is an abelian subgroup of a countable
group Γ such that A = VN(Γ0) is a masa of VN(Γ). If Γ0 is malnormal
then the Pukánszky invariant of A is n = #(Γ0\Γ/Γ0 − {Γ0}).

Return now to the setup of Theorem 3.1. Thus T r is a totally geo-
desic flat torus of dimension r in the compact locally symmetric space
M and Γ0

∼= Zr is the image of the fundamental group π(T r, ξ) in Γ.

The maximal flat F0 in X covers T r and the element ξ̃ ∈ F0 projects
to ξ ∈M .

It is not always true that Γ0 is malnormal in Γ. Nevertheless, there
is a weaker result.

Lemma 4.2. Suppose that g ∈ Γ and that g−1Γ0g ∩ Γ0 contains an
element x0 6= 1 which is the class of a regular closed geodesic c in T r.
Then g ∈ Γ0.

Proof. This follows immediately from Theorem 3.1. �

Corollary 4.3. Suppose that g ∈ Γ and that g−1Γ0g ∩ Γ0 contains a
free abelian group of rank r. Then g ∈ Γ0.

Proof. Combine Lemma 4.2 and [Mos, Lemma 11.1]. �

Corollary 4.4. Suppose that M has strictly negative curvature and
that x0 is the class of a simple closed geodesic in M . Then Γ0 = 〈x0〉
is malnormal in Γ.
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In order to apply Proposition 4.1 to find the Pukánszky invariant of
VN(Γ0), we must determine the size of Γ0\Γ/Γ0. This is done geomet-
rically by considering the diagonal action of Γ on the set

F = {(g1F0, g2F0) : g1, g2 ∈ Γ} .

Lemma 4.5. There is a bijection between Γ0\Γ/Γ0 and the set of Γ-
orbits of elements of F , under the diagonal action.

Proof. The required bijection is the composition of the bijections :

Γ(F0, gF0) 7→ Γ(Γ0ξ̃, gΓ0ξ̃) = Γ(ξ̃,Γ0gΓ0ξ̃) 7→ Γ0gΓ0 ,

where g ∈ Γ. The verification of bijectivity is easy, given that Γ acts
freely on X and that the stabilizer of F0 in Γ is Γ0. �

Theorem 4.6. Suppose that M has constant negative curvature and
that x0 is the class of a simple closed geodesic in M . If Γ0 = 〈x0〉, then

(a) #(Γ0\Γ/Γ0) =∞ ;
(b) the Pukánszky invariant of VN(Γ0) is ∞.

Proof. Assuming the curvature is −1, the symmetric space X which
covers M is a real hyperbolic space of dimension n ≥ 2, and the
maximal flats in X are geodesics. By Proposition 4.1 and Corollary
4.4, it suffices to prove part (a). By Lemma 4.5, this is equivalent
to the existence of infinitely many Γ-orbits of pairs of geodesics in
F = {(g1F0, g2F0) : g1, g2 ∈ Γ}, where the geodesic F0 is the axis of
x0. Now the distance in X between the geodesics gg1F0 and gg2F0 is
independent of g ∈ Γ. It is therefore enough to prove that there are
elements g ∈ Γ for which d(F0, gF0) is arbitrarily large.

The unit ball {x ∈ Rn : |x| < 1}, with the appropriate metric will
be used as a model for X [Ni, 1.1], and its boundary sphere S will have
its usual metric. Choose g ∈ Γ\Γ0. We show that d(F0, g

mF0) → ∞
as m→∞. The element g is hyperbolic [BH, II.6.3]. For it cannot be
elliptic (Γ is torsion free) and it cannot be parabolic (Γ is co-compact).
Therefore g has attracting and repelling fixed points z+, z− ∈ S. See,
for example [Ba, Lemma III.3.3]. Now {z+, z−} ∩ {z1, z2} = ∅, by
Lemma 2.1. It follows that, for j = 1, 2, gmzj → z+ as m→∞.

Let K = min{|z+ − a| : a ∈ F0} > 0, where | · | is the euclidean
norm on Rn. If 0 < ε < K, there exists an integer m such that
|gmzj − z+| < ε, j = 1, 2. There is a unique point am ∈ F0 which is
closest (in the hyperbolic metric) to gmF0. Let

s = d(am, g
mF0) = d(F0, g

mF0) .

The explicit formula in [Ni, Theorem 1.2.1] gives
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z1 z2•
am

........

........

........

........

........
........
........
.........
.........
.........
.........
.........
..........
..........

..........
...........

............
.............

..............
................

...................
..........................


.......................

.................
...............

.............
............
...........
...........
..........
..........
..........
.........
.........
.........
.........
.........
........
........
........
........
........
........
.......

......................................................................................................................................................................................................................................................................................................................................................................

z+

z−

............................................................................................................
............
........

gmz1

gmz2

cosh s =
2|gmz1 − am||gmz2 − am|
|gmz1 − gmz2|(1− |am|2)

≥ 2(|z+ − am| − ε)2

2ε

≥ (K − ε)2

ε
.

Letting ε→ 0 proves the result. �
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