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Abstract. Let n be a positive integer. We introduce a concept,
which we call the n-filling property, for an action of a group on
a separable unital C∗-algebra A. If A = C(Ω) is a commutative
unital C∗-algebra and the action is induced by a group of homeo-
morphisms of Ω then the n-filling property reduces to a weak ver-
sion of hyperbolicity. The n-filling property is used to prove that
certain crossed product C∗-algebras are purely infinite and simple.
A variety of group actions on boundaries of symmetric spaces and
buildings have the n-filling property. An explicit example is the
action of Γ = SLn(Z) on the projective n-space.

Introduction

Consider a C∗-dynamical system (A, α, Γ) where A is a separable
unital C∗-algebra on which a discrete group Γ acts by ∗-automorphisms.

Definition 0.1. Let n ≥ 2 be a positive integer. We say that an
action α : g 7→ αg of Γ on A is n-filling if, for all b1, b2, . . . , bn ∈ A+,
with ‖bj‖ = 1, 1 ≤ j ≤ n, and for all ε > 0, there exist g1, g2, . . . , gn ∈ Γ
such that

∑n
j=1 αgj

(bj) ≥ 1− ε.

If A is a commutative unital C∗-algebra and α is induced by a group
of homeomorphisms of the spectrum Ω of A, then the n-filling property
is equivalent to a generalized global version of hyperbolicity (Proposi-
tion 0.3 below). In this setting, the definition was motivated by ideas
from [A-D1, LS] and [BCH]. The present article applies the n-filling
property to give a proof that certain crossed product C∗-algebras are
purely infinite and simple (Theorem 1.2). In the commutative case,
similar results were obtained in [A-D1, LS] using local properties of
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the action. The paper [A-D1] also considers more general groupoid
C∗-algebras. Simple crossed product algebras have been constructed
using the related concept of a strongly hyperbolic action in [H, Appen-
dix 2].

Remark 0.2. In order to prove the n-filling condition as stated in
Definition 0.1 it is sufficient to verify it for all b1, b2, . . . , bn in a dense
subset C of A+. For then if b1, b2, . . . , bn ∈ A+, with ‖bj‖ = 1, 1 ≤ j ≤
n, and if ε > 0, choose c1, c2, . . . , cn ∈ C such that ‖bj − cj‖ < ε

2n
for

all j and
∑n

j=1 αgj
(cj) ≥ 1− ε/2. Write

n∑
j=1

αgj
(bj − cj) = x = x+ − x−

where x+, x− ∈ A+ and x+x− = 0. We have x ≥ −ε/2 and therefore
n∑

j=1

αgj
(bj) =

n∑
j=1

αgj
(cj) + x ≥ 1− ε/2− ε/2 = 1− ε.

Suppose that A = C(Ω), the algebra of continuous complex valued
functions on a compact Hausdorff space Ω. If the action arises from an
action of Γ on Ω by homeomorphisms, then the n-filling condition can
be expressed in the following way, which explains its name.

Proposition 0.3. Let Ω be an infinite compact Hausdorff space and
let Γ be a group which acts on Ω by homeomorphisms. The induced
action α of Γ on C(Ω) is n-filling if and only if the following condition
is satisfied: for any nonempty open subsets U1, . . . , Un of Ω, there exist
g1, . . . , gn ∈ Γ such that g1U1 ∪ · · · ∪ gnUn = Ω.

Proof. If the action is n-filling, let U1, . . . , Un be nonempty open subsets
of Ω. There exist elements b1, b2, . . . , bn ∈ A+, with ‖bj‖ = 1, such that
supp(bj) ⊂ Uj, 1 ≤ j ≤ n. By hypothesis there exist g1, g2, . . . , gn ∈
Γ such that

∑n
j=1 αgj

(bj) ≥ 1/2. Then if ω ∈ Ω there exists i ∈
{1, 2, . . . , n} such that αgi

(bi)(ω) > 0. Therefore g−1
i ω ∈ Ui, i.e. ω ∈

giUi. Thus g1U1 ∪ · · · ∪ gnUn = Ω.
Conversely, suppose the stated assertion holds. Fix b1, b2, . . . , bn ∈

A+, with ‖bj‖ = 1, 1 ≤ j ≤ n, and let ε > 0. For each j, the set Uj =
{ω ∈ Ω ; bj(ω) > 1−ε} is a nonempty and open. Choose g1, . . . , gn ∈ Γ
such that g1U1 ∪ · · · ∪ gnUn = Ω. If ω ∈ Ω, then g−1

i ω ∈ Ui for some i
and so αgi

(bi)(ω) > 1− ε. Therefore
∑n

j=1 αgj
(bj) ≥ 1− ε. ¤

Remark 0.4. If the action of the group Γ on the space Ω is topo-
logically transitive (in particular, if it is minimal) then the n-filling
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condition is equivalent to the following apparently weaker condition:
for each nonempty open subset U of Ω, there exist t1, . . . , tn ∈ Γ such
that t1U ∪ · · · ∪ tnU = Ω.

In order to see this, suppose that U1, . . . , Un are nonempty open
subsets of Ω. There exists g2 ∈ Γ such that U1 ∩ g2U2 6= ∅. Then there
exists g3 ∈ Γ such that U1∩g2U2∩g3U3 6= ∅. Finally, there exists gn ∈ Γ
such that U = U1∩ g2U2 · · ·∩ gnUn 6= ∅. Then there exist t1, . . . , tn ∈ Γ
such that t1U ∪ · · · ∪ tnU = Ω and so t1U1 ∪ t2g2U2 · · · ∪ tngnUn = Ω.

Definition 0.5. Let φ(Γ, Ω) be the smallest integer n for which the
conclusion of Proposition 0.3 holds. Set φ(Γ, Ω) = ∞ if no such n
exists; that is, if the action is not n-filling for any integer n.

Topologically conjugate actions have the same value of φ(Γ, Ω). It is
easy to see that the notion of a 2-filling action is equivalent to what is
called a strong boundary action in [LS] and an extremely proximal flow
in [G]. The action of a word hyperbolic group on its Gromov boundary
is 2-filling [LS, Example 2.1]. In our first example below (Example 2.1)
we show that the canonical action of Γ = SLn(Z) on the projective
space Π = Pn−1(R) satisfies φ(Γ, Π) = n.

The final part of the paper is devoted to estimating φ(Γ, Ω) for some
group actions on the boundaries of affine buildings. These estimates
show that φ(Γ, Ω) is not a stable isomorphism invariant for the algebra
C(Ω)or Γ (Example 4.3).

1. Purely infinite C∗-algebras from n-filling actions

Definition 1.1. An automorphism α of a C∗-algebra A is said to be
properly outer if for each nonzero α-invariant ideal I of A and for each
inner automorphism β of I we have ‖α|I − β‖ = 2.

We shall say that an action α : g 7→ αg is properly outer if for all
g ∈ Γ\{e}, αg is properly outer.

The purpose of this section is to prove the following result.

Theorem 1.2. Let (A,α, Γ) be a C∗-dynamical system, where Γ is a
discrete group and A is a separable unital C∗-algebra. Suppose that
for every nonzero projection e ∈ A the hereditary C∗-subalgebra eAe
is infinite dimensional. Suppose also that the action α is n-filling and
properly outer. Then the reduced crossed product algebra B = Aoα,r Γ
is a purely infinite simple C∗-algebra.

Remark 1.3. If A = C(Ω), with Ω a compact Hausdorff space, the
condition that eAe is infinite dimensional for every nonzero projection
e ∈ A says simply that the space Ω has no isolated points.
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It was shown in [AS, Proposition 1] that if the action α is topologically
free then α is properly outer.

Proof. (Inspired by [LS, Theorem 5].) Denote by E : B → A the
canonical conditional expectation. Fix x ∈ B, x 6= 0. In order to
prove the result it is enough to show that there exist y, z ∈ B such
that yxz = 1. Put a = x∗x

‖E(x∗x)‖ . Let 0 < ε < 1
2(2n+1)

. There exists

b ∈ Cc(Γ, A)+ such that ‖a− b‖ < ε. Write b = be +
∑

g∈F bgug, where

be = E(b) ≥ 0 and F ⊂ Γ \ {e} is finite. Note that ε > ‖E(a − b)‖ =
‖E(a)− be‖ ≥

∣∣1− ‖be‖
∣∣, and so ‖be‖−1 < 1 + 2ε. It follows that

∥∥a− b

‖be‖
∥∥ = ‖be‖−1

∥∥(‖be‖−1)a+a−b
∥∥ < (1+2ε)(ε‖a‖+ε) = ε(1+2ε)(1+‖a‖).

Choosing b so that ‖a − b‖ < ε
3(1+‖a‖) then replacing b by b

‖be‖ shows

that we can assume that ‖be‖ = 1.
Since αg is properly outer for each g ∈ F , it follows from [OP, Lemma

7.1] that there exists y ∈ A+, ‖y‖ = 1 such that ‖be‖ ≥ ‖ybey‖ >
‖be‖ − ε/|F | and ‖ybgαg(y)‖ < ε/|F | for all g ∈ F . Using Lemma
1.5 below, we see that there exists c ∈ B such that ‖c‖ ≤ √

n and
c∗ybeyc ≥ 1− 3ε.

Then
‖c∗yayc− c∗ybeyc‖ ≤ ‖c∗yayc− c∗ybyc‖+ ‖c∗ybyc− c∗ybeyc‖

≤ n‖a− b‖+ n‖yby − ybey‖
≤ nε + n

∑
g∈F

‖ybgugyu−1
g ug‖ ≤ 2nε

Therefore c∗yayc is invertible since ‖(c∗ybeyc)−1‖ ≤ 1
1−3ε

and

‖1− (c∗ybeyc)−1(c∗yayc)‖ ≤ 2nε

1− 3ε
<

n

2n− 1
< 1.

Setting z = (c∗yayc)−1 we have ‖E(x∗x)‖−1c∗yx∗ · x · ycz = 1. ¤
It remains to prove Lemma 1.5. A preliminary observation is neces-

sary.

Lemma 1.4. Let A be a unital C∗-algebra such that for every nonzero
projection e ∈ A the hereditary C∗-subalgebra eAe is infinite dimen-
sional. Let b ∈ A+, ‖b‖ = 1 and let ε > 0. For every integer n ≥ 1
there exist elements b1, b2, . . . , bn ∈ A+, with ‖bj‖ = 1, bbj = bjb,
‖bbj‖ ≥ 1− ε and bibj = 0, for i 6= j.

Proof. There are two cases to consider.
Case 1. Suppose that 1 is not an isolated point of Sp(b). Then
there exist pairwise disjoint nonempty open sets U1, . . . , Un contained
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in Sp(b) ∩ [1 − ε, 1]. Let C be the C∗-subalgebra of A generated by
{b, 1}. By functional calculus, there exist b1, b2, . . . , bn ∈ C+, ‖bj‖ =
1 (1 ≤ j ≤ n) with ‖bbj‖ ≥ 1− ε and bibj = 0, i 6= j.
Case 2. Suppose that 1 is an isolated point of Sp(b). Then there exists
a nonzero projection e ∈ A such that be = eb = e. By hypothesis the
hereditary C∗-subalgebra eAe is infinite dimensional. Therefore every
masa of eAe is infinite dimensional [KR, p. 288]. Inside such an infinite
dimensional masa of eAe we can find positive elements b1, b2, . . . , bn,
‖bj‖ = 1 (1 ≤ j ≤ n) with bibj = 0, i 6= j. Then bbj = b(ebj) = ebj =
bj = bjb and ‖bbj‖ = ‖bj‖ = 1 for 1 ≤ j ≤ n. ¤
Lemma 1.5. Let (A,α, Γ) be as in the statement of Theorem 1.2, let
0 < ε < 1/3 and let b ∈ A+, with 1 − ε ≤ ‖b‖ ≤ 1. Then there exists
c ∈ B such that ‖c‖ ≤ √

n and c∗bc ≥ 1− 3ε.

Proof. By Lemma 1.4, there exist b1, b2, . . . , bn ∈ A+, with ‖bj‖ = 1,
bbj = bjb, bibj = 0 for i 6= j, and ‖bbj‖ ≥ 1 − 2ε. Since the action
is n-filling, there exist g1, g2, . . . , gn ∈ Γ such that

∑n
i=1

1
‖bbi‖αgi

(bbi) ≥
1 − ε. Therefore

∑n
i=1 αgi

(bbi) ≥ (1 − ε)(1 − 2ε) ≥ 1 − 3ε. Put c =∑n
j=1

√
bju

−1
gj
∈ B.

Now c∗c =
∑

i,j ugi

√
bi

√
bju

−1
gj

=
∑n

i=1 αgi
(bi) ≤ n and so ‖c‖ ≤ √

n.

Finally, we have c∗bc =
∑

i,j ugi

√
bib
√

bju
−1
gj

=
∑n

i=1 αgi
(bbi) ≥ 1 −

3ε. ¤

2. examples

We now give some explicit examples of n-filling actions.

Example 2.1. For the canonical action of Γ = SLn(Z) on the projec-
tive space Π = Pn−1(R), we have φ(Γ, Π) = n.

Proof. Denote by u 7→ [u] the canonical map from Rn onto Π.
We first show that the action of Γ on Π is not (n−1)-filling. Choose

a linear subspace E of Rn of dimension n− 1. Let U = Π \ [E], which
is a nonempty open subset of Π. If tj ∈ Γ (1 ≤ j ≤ n − 1) then
t1U ∪ · · · ∪ tn−1U 6= Π. For the subspace t1E ∩ · · · ∩ tn−1E of Rn

has dimension at least one, and so contains a nonzero vector v. Then
[v] /∈ ⋃n−1

j=1 tjU . Thus the action(Γ, Π) is not (n− 1)-filling. It remains

to show that it is n-filling. For this we use ideas from [BCH, Example
1].

We claim that there exists a basis {u1, u2, . . . , un} for Rn, elements
g1, g2, . . . , gn ∈ Γ, and (compact) sets K1, K2, . . . , Kn ⊂ Π with K1 ∪
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K2 ∪ · · · ∪ Kn = Π, and with the following property: for any open
neighbourhood Uj of [uj] (1 ≤ j ≤ n) there exists a positive integer
Nj such that gn

j Kj ⊂ Uj for all n ≥ Nj. It follows that the action is
n-filling. For let U1, . . . , Un be nonempty open subsets of Π. Since the
action of Γ on Π is minimal, we may assume that [uj] ∈ Uj (1 ≤ j ≤ n).

Let tj = g
−Nj

j , so that Kj ⊂ tjUj (1 ≤ j ≤ n). Then t1U1∪· · ·∪ tnUn =
Π.

It remains to verify our claim. Fix a positive integer k ≥ 4 and let

a = 2√
k2+4k+k

, b =
√

k2+4k−k
2

. Consider the matrices A =
(

k+1 k
1 1

)
and

B =
(

1 1
k k+1

)
in SL2(Z). These matrices have eigenvalues λ+ = 1 + 1

a
,

λ− = 1 − b, which satisfy 0 < λ− < 1 < λ+. The corresponding
eigenvectors for A are

(
1
a

)
and

( −b
1

)
; for B they are

(
a
1

)
and

(
1
−b

)
. If

1 ≤ j ≤ n− 1 let

gj =




1 0 . . . 0
0 1 . . . 0

A

0 0 . . . 1




, uj =




0
0

1
a

0




, vj =




0
0

−b
1

0




where A occupies the j and j + 1 rows and columns and the nonzero
entries of the vectors are in rows j and j + 1. Also let

gn =




1 0 . . . 0
0 1 . . . 0

B




, un =




0
0

a
1




, vn =




0
0

1
−b




.

Let R = max(1+a
1−b

, 1+ab
1−b

) = 1+a
1−b

. For 1 ≤ j ≤ n− 1 let

Kj = {[ξjuj+ηjvj+
∑

l 6=j,j+1

ξlel] ; ξj 6= 0,
∣∣ηj

ξj

∣∣ ≤ R,
∣∣ ξl

ξj

∣∣ ≤ R, l 6= j, j+1},

Kn = {[ξnun+ηnvn+
∑

l 6=n−1,n

ξlel] ; ξn 6= 0,
∣∣ηn

ξn

∣∣ ≤ R,
∣∣ ξl

ξn

∣∣ ≤ R, l 6= n−1, n}.

Direct computation shows if [x] ∈ Π then [x] ∈ Kj, where |xj| =
max1≤l≤n|xl|. Therefore Π =

⋃n
j=1 Kj.
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Let ε > 0 and consider the basic open neighborhood Uj of [uj] defined
by

Uj = {[ξjuj + ηjvj +
∑

l 6=j,j+1

ξlel]; ξj 6= 0,
∣∣ηj

ξj

∣∣ < ε,
∣∣ ξl

ξj

∣∣ < ε, l 6= j, j + 1}.

Let N > log(R/ε)
log(λ+)

. Recall that 0 < λ− < 1 < λ+. Therefore R
λN
+

< ε.

For m ≥ N and [ξjuj + ηjvj +
∑

l 6=j,j+1 ξlel] ∈ Kj, we have

gm[ξjuj + ηjvj +
∑

l 6=j,j+1

ξlel] = [λm
+ξjuj + λm

−ηjvj +
∑

l 6=j,j+1

ξlel].

Now
∣∣λm
− ηj

λm
+ ξj

∣∣ ≤ 1
λm
+

∣∣ηj

ξj

∣∣ ≤ R
λm
+

< ε, and for l 6= j, j + 1,
∣∣ ξl

λm
+ ξj

∣∣ ≤ 1
λm
+

∣∣ ξl

ξj

∣∣ ≤
R

λm
+

< ε.

This means that gm
j Kj ⊂ Uj for all m ≥ N . ¤

Remark 2.2. The fact that the action of SL3(Z) on the projective
plane P2(R) is not 2-filling can also be seen in a different way. More
generally the action of a group Γ on a non-orientable compact surface
Ω cannot be 2-filling. For let M be a closed subset of Ω homeomorphic
to a Möbius band, let U1 = M c and let U2 ⊂ Ω be homeomorphic to
an open disc in R2. Then it is impossible to have t1U1 ∪ t2U2 = Ω for
t1, t2 ∈ Γ. For t−1

2 t1(M) would be a homeomorphic copy of a Möbius
band embedded in the disc U2. To see that this is impossible note that
a Mobius band is not disconnected by its centre circle, and apply the
Jordan curve theorem.

Definition 2.3. Let the group Γ act on the topological space Ω. An
element g ∈ Γ is said to have an attracting fixed point x ∈ Ω if gx = x
and there exists a neighbourhood Vx of x such that lim

n→∞
gn(Vx) = {x}.

Remark 2.4. Let G be a noncompact semisimple real algebraic group
and let Γ be a Zariski-dense subgroup of G. Consider the action of
G on its Furstenberg boundary G/P , where P is a minimal parabolic
subgroup of G. It follows from [BeL, Appendice] that there exist ele-
ments g ∈ Γ which have attracting fixed points in G/P . In fact the set
H of all such elements g ∈ Γ is Zariski-dense in G: the elements of H
are called h-regular in [BeL] and maximally hyperbolic in [BCH].

It follows from a result of H. Furstenberg [Fur, Theorem 5.5,
Corollary] that if G is a semisimple group with finite centre which acts
minimally on a locally compact Hausdorff space Ω with an attracting
fixed point, then Ω is necessarily a compact homogeneous space of G.

The following result shows that many of the actions considered in
[A-D1, LS] are n-filling for some integer n.
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Proposition 2.5. Let Ω be a compact Hausdorff space and let (Ω, Γ)
be a minimal action. Suppose that there exists an element g ∈ Γ which
has an attracting fixed point in Ω. Then the action (Ω, Γ) is n-filling
for some integer n.

Proof. Choose x ∈ Ω with gx = x and an open neighbourhood Vx of
x such that limn→∞ gn(Vx) = {x}. Since the action is minimal, the
family {hVx; h ∈ Γ} forms an open covering of Ω. By compactness,
there exists a finite subcovering {h1Vx, h2Vx, . . . , hnVx}.

Let U1, . . . , Un be nonempty open subsets of Ω. Since the action of Γ
on Ω is minimal, we may choose elements sj ∈ Γ such that hjx ∈ sjUj

(1 ≤ j ≤ n). For 1 ≤ j ≤ n, choose an integer Nj such that gNjVx ⊂
h−1

j sjUj. Then hjVx ⊂ tjUj, where tj = hjg
−Njh−1

j sj. Therefore t1U1∪
· · · ∪ tnUn = Ω. ¤
Remark 2.6. Consider the action of a noncompact semisimple real al-
gebraic group G on its Furstenberg boundary G/P . Let Γ be a Zariski-
dense subgroup of G and let n(W ) be the order of the Weyl group. In
this case one can be more precise: the action (G/P, Γ) is n(W )-filling.
The proof follows from the remarks in [BCH, page 127]. In the next
section we prove an analogue of this result for groups acting on affine
buildings.

Recall that an action (Ω′, Γ) is said to be a factor of the action (Ω, Γ)
if there is a continuous equivariant surjection from Ω onto Ω′.

Proposition 2.7. Suppose that the action (Ω, Γ) is n-filling and that
(Ω′, Γ) is a factor of (Ω, Γ). Then (Ω′, Γ) is an n-filling action.

Proof. This is an easy consequence of the definitions. ¤

3. Group actions on boundaries of affine buildings

We now turn to some examples which motivated our definition of
an n-filling action. They are discrete analogues of those referred to
Remark 2.6. We show that if a group Γ acts properly and cocompactly
on an affine building ∆ with boundary Ω, then the induced action on Ω
is a n-filling, where n is the number of boundary points of an apartment
in ∆. If ∆ is the affine Bruhat-Tits building of a linear group then n
is the order of the associated spherical Weyl group.

An apartment in ∆ is a subcomplex of 4 isomorphic to an affine
Coxeter complex. Each apartment inherits a natural metric from the
Coxeter complex, which gives rise to a well-defined metric on the whole
building [Br, Chapter IV.3]. Every geodesic of ∆ is a straight line in
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some apartment. A sector (or Weyl chamber) is a sector based at a
special vertex in some apartment [Ron]. Two sectors are equivalent
(or parallel) if their intersection contains a sector. The boundary Ω
is defined to be the set of equivalence classes of sectors in 4. Fix a
special vertex x. For any ω ∈ Ω there is a unique sector [x, ω) in
the class ω having base vertex x [Ron, Theorem 9.6, Lemma 9.7]. In
the terminology of [Br, Chapter VI.9] Ω is the set of chambers of the
building at infinity 4∞. Topologically, Ω is a totally disconnected
compact Hausdorff space and a basis for the topology is given by sets
of the form

Ωx(v) = {ω ∈ Ω : [x, ω) contains v}
where v is a vertex of 4. See [CMS, §2] for the Ã2 case, which gener-
alizes directly.

We will need to use the fact that Ω also has the structure of a spher-
ical building [Ron, Theorem 9.6], and its apartments are topological
spheres.

Definition 3.1. Two boundary points ω, $ in Ω are said to be opposite
[Br, IV.5] if the distance between them is the diameter of the spherical
building Ω. Opposite boundary points are opposite in a spherical apart-
ment of Ω which contains them; this apartment is necessarily unique.
Two subsets of Ω are opposite if each point in one set is opposite each
point in the other.

We define O(ω) to be the set of all ω′ ∈ Ω such that ω′ is opposite
to ω. It is easy to see that O(ω) is an open set.

Lemma 3.2. If ω ∈ Ω and A is an apartment in ∆, then there exists
a boundary point $ of A such that $ is opposite ω.

Proof: Consider the geometric realization of the spherical building
Ω. By [Ron, Theorem (A.19)], the subcomplex Ω′ obtained from Ω by
deleting all chambers opposite ω is geodesically contractible. However
this is impossible if Ω′ contains the spherical apartment of Ω made up
of the boundary points of A. ¤
Corollary 3.3. If ω1, . . . , ωn are the boundary points of an apartment
then

Ω = O(ω1) ∪ · · · ∪ O(ωn)

Remark 3.4. The union is not disjoint in general, as is seen by con-
sidering the example of a tree.

Lemma 3.5. Two chambers ω1, ω2 in Ω are opposite if and only if they
are represented by opposite sectors S1, S2 with the same base vertex in
some apartment of4. Moreover if two sectors S1, S2 in an apartment A
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with the same base vertex represent opposite elements ω1, ω2 in Ω, then
S1, S2 are opposite sectors and A is the unique apartment containing
them.

Proof: Suppose that ω1, ω2 in Ω are opposite. There exists an
apartment A containing sectors S1, S2 representing ω1, ω2 respectively
[Ron, Proposition 9.5] or [Br, VI.8,Theorem]. By taking parallel sec-
tors, we may assume that S1, S2 have the same base vertex x ∈ A. The
sectors of A based at x correspond to the chambers of an apartment in
Ω containing ω1, ω2 [Ron, Theorem 9.8]. Therefore S1, S2 are opposite
sectors. The converse is clear.

The final assertion follows from [Br, VI.9, Lemma 2 and IV.5 Theo-
rem 1]. ¤
Remark 3.6.
(a) It is not necessarily true that if ω1, ω2 in Ω are opposite then the
sectors [z, ω1), [z, ω2) based at any vertex z are opposite sectors in some
apartment.
(b) If C1, C2 are opposite chambers with a common vertex x in an
apartment, then Ωx(C1) and Ωx(C2) are opposite sets in Ω.

Suppose that a group Γ acts properly and cocompactly on an affine
building ∆ of dimension n. An apartment A in ∆ is said to be pe-
riodic if there is a subgroup Γ0 < Γ preserving A such that Γ0\A is
compact [Gr, 6.B3]. Note that Γ0 is commensurable with Zn, and this
concept coincides with the notion of periodicity described in [MZ],[RR]
for buildings of type Ã2. In [BB], a periodic apartment is called Γ-
closed. This terminology makes it clear that periodicity depends upon
the choice of the group Γ acting on the building.

It is important to observe that there are many periodic apartments.
In fact, according to [BB, Theorem 8.9], any compact subset of an
apartment is contained in some periodic apartment

Now let A0 be a periodic apartment, and fix a special vertex z in
A0. Choose a pair of opposite sectors W+, W− in A0 based at z.
Denote by ω± the boundary points represented by W±, respectively.
By periodicity of the apartment there is a periodic direction represented
by a line L in any of the sector directions of A0. For definiteness choose
this direction to be that of the sector W+. This means that there is an
element u ∈ Γ which leaves L invariant and translates the apartment
A0 in the direction of L. (In the terminology of [BB, Moz], L is said to
be an axis of u.) Then unω+ = ω+, unω− = ω− for all n ∈ Z. Moreover
unz is in the interior of W+ for n > 0 and in the interior of W− for
n < 0. (See Figure 1. Here and in what follows, the figures illustrate
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the case of a building ∆ of type Ã2, where each apartment contains
precisely six sectors based at a given vertex.) The element u above is
the analogue of the maximally hyperbolic elements in [BCH].

•

•

•

z

unz

u−nz

W+

W−
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Figure 1. The periodic apartment A0.

The following crucial result shows that ω− is an attracting fixed point
for u−1.

Proposition 3.7. Let A0 be a periodic apartment and choose a pair of
opposite boundary points ω±. Let u ∈ Γ be an element which translates
the apartment A0 in the direction of ω+. Then u−1 attracts O(ω+)
towards ω−, that is: for each compact subset G of O(ω+) we have
limn→∞ u−n(G) = {ω−}.

Proof: We use the notation introduced above. Let ω ∈ O(ω+). By
considering a retraction of4 centered at ω+ [Br, p.170, VI.8, Theorem],
we see that 4 is a union of apartments which contain a subsector of
W+. Moreover for any sector W representing ω there are subsectors
V + ⊂ W+ and V ⊂ W which lie in a common apartment A. Replacing
V + by a subsector, we may assume that V + has base vertex uNz for
some N , that is V + = [uNz, ω+). Replacing V by a parallel sector in
A we may also assume that V has base vertex uNz. By Lemma 3.5, V
lies in the apartment A as shown in Figure 2.

For each N ≥ 0 let GN denote the set of all boundary points ω ∈
O(ω+) such that [uNz, ω) and [uNz, ω+) are opposite sectors in some
apartment A(N). Then G0 ⊂ G1 ⊂ G2 ⊂ . . . is an increasing family
of compact open sets and we have observed above that

⋃∞
N=0 GN =
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•uNz

V +

[uNz, ω+)

[uNz, ω)

V
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Figure 2. The apartment A.

O(ω+). The result will follow if we show that limn→∞ u−n(GN) = {ω−}
for each N ≥ 0. It is clearly enough to consider the case N = 0.

Consider a basic open neighbourhood of ω− of the form Ωz(v), where
v ∈ [z, ω−) ⊂ A0. Choose an integer p ≥ 0 such that unv ∈ [z, ω+) for
all n ≥ p. If ω ∈ G0 then unv ∈ [unz, ω) (that is v ∈ [z, u−nω)) for all
n ≥ p. (See Figure 3.) This means that u−nω ∈ Ωz(v) for all n ≥ p.
Thus u−n(G0) ⊂ Ωz(v) for all n ≥ p. This proves the result. ¤

•v

•
u−nz

•z
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[z, u−nω)
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Figure 3. Sectors in the apartment u−nA(0).
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Theorem 3.8. Suppose that a group Γ acts properly and cocompactly
on the vertices of an affine building ∆ with boundary Ω. Let k denote
the number of boundary points of an apartment of ∆. Then the action
(Ω, Γ) is k-filling.

Proof: Let U1, . . . , Uk be nonempty open subsets of Ω. Let A0 be a
periodic apartment with boundary points ωj, 1 ≤ j ≤ k. By minimality
of the action we can assume that ωj ∈ Uj, 1 ≤ j ≤ k. By Corollary 3.3,
we have Ω = O(ω1) ∪ · · · ∪ O(ωn). It follows from the existence of a
partition of unity that there exist compact sets Kj ⊂ O(ωj), 1 ≤ j ≤ k
such that Ω = K1 ∪ · · · ∪Kk.

Let uj ∈ Γ translate the apartment A0 in the direction of ωj, 1 ≤ j ≤
k. Then by Proposition 3.7, there exists Nj ≥ 0 such that u−n

j Kj ⊂ Uj

whenever n ≥ Nj, 1 ≤ j ≤ k. In other words, Kj ⊂ un
j Uj whenever

n ≥ Nj, 1 ≤ j ≤ k. Let tj = u
Nj

j . Then

Ω = K1 ∪ · · · ∪Kk ⊂ t1U1 ∪ · · · ∪ tkUk

as required. ¤

Remark 3.9. The action of an Ã2 group Γ on the boundary Ω of
the associated building is 6-filling. We do not know the precise value
of φ(Γ, Ω), but it is certainly greater than 2. To see this, fix a point
ω0 ∈ Ω and choose U to be a nonempty open set opposite ω0. If
t1, t2 ∈ Γ then t1U and t2U are opposite the boundary points t1ω0 and
t2ω0 respectively and therefore cannot cover Ω. To see this, choose a
hexagonal apartment of Ω which contains t1ω0 and t2ω0 and choose a
chamber $ in this apartment which is not opposite t1ω0 or t2ω0. Then
$ cannot lie in t1U ∪ t2U . Therefore 2 < φ(Γ, Ω) ≤ 6.

4. Purely infinite simple C∗-algebras

Throughout this section we consider only affine buildings of type Ã2.

The Ã2 buildings are a particularly natural setting for our investiga-
tion. They are the simplest two-dimensional buildings, but they do
not necessarily arise from linear groups. Crossed product C∗-algebras
associated with them have been studied in [RS1, RS2]. In this case the
building 4 is a simplicial complex whose maximal simplices (cham-
bers) are triangles. An apartment of 4 is a subcomplex isomorphic to
the Euclidean plane tessellated by equilateral triangles.

The boundary Ω may be identified with the flag complex of a pro-
jective plane (P, L) [Br, page 81]. Flags will be denoted (x1, x2) where
x1 ∈ x2. If we identify chambers of Ω with sectors based at a fixed



14 PAUL JOLISSAINT AND GUYAN ROBERTSON

vertex v0 of type 0, then a sector wall whose base panel is of type 1
corresponds to an element of P and a sector wall whose base panel is
of type 2 corresponds to an element of L [Ron, Section 9.3]. P is the
minimal boundary of 4 and has been studied in [CMS], where it is
denoted Ωl. The topology on P comes from the natural quotient map
Ω → P . Moreover the action of Γ on Ω induces an action on P . Similar
statements apply to L, and there is a homeomorphism P ∼= L.

• v0 w1

w2

w3

......................................................................................................................................................................................................................
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Figure 4. Sector walls w1,w2,w3 corresponding to
points in P .

From now on assume that the group Γ is an Ã2 group: that is Γ
acts simply transitively in a type rotating manner on the vertices of an

affine building ∆ of type Ã2.

Proposition 4.1. The actions (Ω, Γ), (P, Γ) are topologically free.
That is, if g ∈ Γ\{e} then

Int{ω ∈ Ω : gω = ω} = ∅
Int{w ∈ P : gw = w} = ∅

Proof: The statement for the action on Ω is proved in [RS1, The-
orem 4.3.2].

Suppose that the result fails for the action on P . Then there exists

an open set V ⊂ P such that gw = w for all w ∈ V . Let Ṽ = π−1(V ),

where π : Ω → P is the quotient map. Then Ṽ is a nonempty open

subset of Ω. By [RS1, Proposition 4.3.1], Ṽ contains all six boundary
points of some apartment A of 4. These boundary points are the six
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chambers of an apartment A0 in Ω, as illustrated in Figure 5. The
apartment A0 contains three points w1, w2, w3 ∈ P . These three points
lie in V and hence are fixed by g. It follows that the lines l1, l2, l3 ∈ L
are also fixed by g. Therefore each boundary point of A0 is fixed by
g. By the proof of [RS1, Theorem 4.3.2], it follows that gA = A and g
acts by translation on A. The same is true for all nearby apartments
A′, since the corresponding walls w′

1, w
′
2, w

′
3 ∈ P will also be fixed by g,

if they belong to V . The argument of [RS1, Theorem 4.3.2] now gives
a contradiction. ¤

•

•

•

•
••

l3

l2w3

w2

w1l1

................................................................................................................................................

................................................................................................................................................

Figure 5. The apartment A0

Proposition 4.2. If Γ is an Ã2 group, then the algebras C(Ω) o Γ,
C(P )o Γ are simple purely infinite C∗-algebras.

Proof: The actions are topologically free by Proposition 4.1 and
hence properly outer [AS, Proposition 1]. Moreover they are 6-filling
by Theorem 3.8. The result follows from Theorem 1.2. ¤

We now give examples of properly outer actions (Ωi, Γi), i = 1, 2,
with φ(Γ1, Ω1) = 2 and φ(Γ2, Ω2) > 2 but for which C(Ω1) o Γ1 is
stably isomorphic to C(Ω2)o Γ2.

Example 4.3. Let Γ1 ⊂ PSL(2,R) be a non-cocompact Fuchsian
group isomorphic to F3, the free group on three generators. Consider
the action of Γ1 on the boundary S1 of the Poincaré disc. This ac-
tion is 2-filling and the algebra A1 = C(S1) o Γ1 is p.i.s.u.n. with
K-theory given by K0(A1) = K1(A1) = Z4, [1] = (1, 0, 0, 0) [A-D2].
(The K-theory is independent of the embedding Γ1 ⊂ PSL(2,R).)

Let Γ2 be the Ã2 group B.3 of [CMSZ]. This group is a lattice sub-
group of PGL3(Q2) and acts naturally on the corresponding building

of type Ã2 and its boundary Ω. By Remark 3.9, 2 < φ(Γ, Ω) ≤ 6.
By [RS2], the algebra A2 = C(Ω) o Γ2 is p.i.s.u.n. and satisfies the
Universal Coefficient Theorem. By [RS3] the K-theory of A2 is given
by K0(A2) = K1(A2) = Z4, [1] = 0.

It follows from the classification theorem of [Kir] that A1, A2 are
stably isomorphic (but not isomorphic, since the classes [1] do not
correspond).
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