Tiling systems and homology of lattices in tree
products

Guyan Robertson

ABSTRACT. Let I' be a torsion free cocompact lattice in Aut(71) x Aut(72),
where 77, 72 are trees whose vertices all have degree at least three. The group
H3(T',Z) is determined explicitly in terms of an associated 2-dimensional tiling
system. It follows that under appropriate conditions the crossed product C*-
algebra A associated with the action of I on the boundary of 77 x 72 satisfies
rank Ko(A) = 2 - rank H2(T', Z).

1. Introduction

This article is motivated by the problem of calculating the K-theory of certain
crossed product C*-algebras A(T",0A), where I' is a higher rank lattice acting on
an affine building A with boundary JA. Here we examine the case where A is
a product of trees. We determine the K-theory rationally, thereby proving some
conjectures in [KR].

Let 77 and 75 be locally finite trees whose vertices all have degree at least three.
Consider the direct product A = 77 X 73 as a two dimensional cell complex. Let I
be a discrete subgroup of Aut(77) x Aut(73) which acts freely and cocompactly on
A. Associated with the action (T, A) is a tiling system whose set of tiles is the set
R of “directed” 2-cells of T\A. There are vertical and horizontal adjacency rules
tHs and tV's between tiles t,s € R illustrated below. Precise definitions will be
given in Section 2.

There are homomorphisms 77,75 : ZR — ZR defined by

Tlt:ZS, TQt:ZS.

tHs tVs
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Consider the homomorphism ZR — ZR @ ZR given by

-1
(T; _I> St (Tot —t) @ (Tot —t).
The main result of this article is the following Theorem, which is formulated more
precisely in Theorem 4.1.

Theorem 1.1. There is an isomorphism
(1) Hy(T,Z) = ker (1227).

The proof of (1) is elementary, but care is needed because the right hand side
is defined in terms of “directed” 2-cells rather than geometric 2-cells. A square
complex X is VH-T if every vertex link is a complete bipartite graph and if there
is a partition of the set of edges into vertical and horizontal, which agrees with the
bipartition of the graph on every link [BM]. The universal covering space A of a
VH-T complex X is a product of trees 77 X 75 and the fundamental group I' of X
is a subgroup of Aut(77) x Aut(7z2) which acts freely and cocompactly on 77 x 5.
Conversely, every finite VH-T complex arises in this way from a free cocompact
action of a group I' on a product of trees. Recall that a discrete group which acts
freely on a CAT(0) space is necessarily torsion free.

The group I' acts on the (maximal) boundary A of A, which is the set of
chambers of the spherical building at infinity, endowed with an appropriate topology
[KR]. This boundary may be identified with a direct product of Gromov boundaries
0Ty x 0T3. The boundary action (I', 0A) gives rise to a crossed product C*-algebra
A(T,0A) = Cc(0A) x T as described in [KR].

If p is prime then PGL2(Q,) acts on its Bruhat-Tits tree 7,41, which is a homo-
geneous tree of degree p+1. If p, £ are prime then the group PGL2(Q,) x PGL2(Qy)
acts on the A = 7,11 X Ty11. Let I' be a torsion free irreducible lattice in
PGL2(Q,) x PGL2(Qg). Then A(T',0A) is a higher rank Cuntz-Krieger algebra
and fits into the general theory developed in [RS1, RS2]. In particular, it is clas-
sified up to isomorphism by its K-theory. It is a consequence of Theorem 1.1 (see
Section 5) that

(2) rank Ko(A(T, 0A)) = 2 - rank Ha(T', Z).

This proves a conjecture in [KR]. The normal subgroup theorem [Mar, IV, The-
orem (4.9)] implies that Hq(I',Z) is a finite group. Equation (2) can therefore be
expressed as

(@) =1+ %rank Ko(A(T, 0A)).

One easily calculates that x(I') = W\X% where |X°| is the number of
vertices of X. Therefore the rank of Ko(A(T,0A)) can be expressed explicitly in
terms of p, £ and | X°|. Examples are constructed in [M3, Section 3], where p, ¢ = 1
(mod 4) are two distinct primes.

2. Products of trees and their automorphisms.

If 7 is a tree, there is a type map 7 defined on the vertex set of 7, taking values
in Z/27. Two vertices have the same type if and only if the distance between them
is even. Any automorphism g of 7 preserves distances between vertices, and so
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there exists i € Z/27Z (depending on g) such that 7(gv) = 7(v) + i, for every vertex
.

Suppose that A is the 2-dimensional cell complex associated with a product
T, x Ty of trees. Let AF denote the set of k-cells in A for k = 0,1,2. The O-cells
are vertices and the 2-cells are geometric squares. Denote by u = (u1, us) a generic
vertex of A. There is a type map 7 on A® defined by

7(u) = (1(u1), 7(u2)) € Z/27 x 7.)27.

Any 2-cell 6 € A? has one vertex of each type. For every g € Aut7; x Aut7; there
exists (k,1) € Z/2Z x Z/27Z such that, for each vertex u,

(3) 7(gu) = ((w1) + k, 7(uz) +1).

Let I' < Aut7; x Aut7s be a torsion free discrete group acting cocompactly on A.
Then X = I'\A is a finite cell complex with universal covering A. Let X* denote
the set of k-cells of X for £k =0,1,2.

The first step is to formalize the notion of a directed square in X. We modify
the terminology of [BM, Section 1], in order to fit with [RS1, RS2, KR]. Let o be a
model typed square with vertices 00,01, 10,11, as illustrated in Figure 2. Assume
that the vertex ij of o has type

7(ij) = (i,§) € Z/2Z x Z.)2Z.

01 11

00 10
FI1GURE 2. The model square o.

The vertical and horizontal reflections v, h of ¢ are the involutions satisfying
v(00) = 01,v(10) = 11,~(00) = 10,h(01) = 11. An isometry r : ¢ — A is said
to be type rotating if there exists (k,1) € Z/27Z x Z/2Z such that, for each vertex ij
of o

() = (i + kyj + 1),
Let R denote the set of type rotating isometries r : 0 — A. If g € Aut7; x Aut7s
and r € R then it follows from (3) that gor € R. If 62 € A? then for each
(k,1) € Z)2Z x Z/2Z there is a unique 7 € R such that r(o) = §2 and r(00) has
type (k,1). Therefore each geometric square 6> € A? is the image of each of the
four elements of {r € R ; r(c) = 6%} under the map 7 +— r(c). The next lemma
records this observation.

Lemma 2.1. The map 7+ r(c) from R to A? is 4-to-1.

Let B = T'\R and call R the set of directed squares of X = I'\A. There is a

commutative diagram
r—r(o)
_

R A?

l l

m 1, X2
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where the vertical arrows represent quotient maps and 7 is defined by n(I'r) =
I'-r(0). The next result makes precise the fact that each geometric square in X?
corresponds to exactly four directed squares.

Lemma 2.2. The map n: R — X? is surjective and 4-to-1.
Proof. Fix 62 € R. By Lemma 2.1, the set
{reR; r(o)=06% = {ri,ro,r3,r4}
contains precisely 4 elements. Since I' acts freely on A, the set
{Tr1,Tre, Trg, Tyt CR

also contains precisely four elements, each of which maps to I'6? under 1. Now
suppose that 7(I'r) = I'§? for some r € R. Then ~r(c) = 62 for some v € I'. Thus
yr € {ry1,re,r3,74} and I'r € {T'ry,T're, I'rg, T'ry}. This proves that 7 is 4-to-1. O

The vertical and horizontal reflections v, h of the model square o act on R
and generate a group X = Z/27Z x Z/2Z of symmetries of 8. The X-orbit of
each r € R contains four elements. Choose once and for all a subset R C R
containing precisely one element from each Y-orbit. The map 7 restricts to a
1-1 correspondence between Rt and the set of geometric squares X2. For each
¢ € X — {1}, let R? denote the image of R* under ¢. Then R may be expressed
as a disjoint union

R =RTUR'UR" UR
Now we formalize the notion of horizontal and vertical directed edges in X. Con-
sider the two directed edges [00, 10],[00,01] of the model square o.

[00,01]

[00,10]

FI1GURE 3. Directed edges of the model square o.

Let A be the set of type rotating isometries r : [00,10] — A, and let B be the
set of type rotating isometries r : [00,01] — A. There is a natural 2-to-1 mapping
7+ ranger, from AU B onto Al. Let 4 =T\ A4 and B = I'\B. Call 2,B the sets
of horizontal and vertical directed edges of X = T\A. Let £ = AU B, the set of all
directed edges of X.

If a =Tr € 2, let o(a) = I'r(00) € X° and t(a) = I'r(10) € X°, the origin and
terminus of the directed edge a. Similarly, if b = I'r € 9B, let o(b) = I'r(00) € X°
and t(b) = T'r(01) € X°. Note that it is possible that o(e) = t(e).

A straightforward analogue of Lemma 2.2 shows that each geometric edge in X!
is the image of each of two directed edges. The horizontal and vertical reflections
on o induce an inversion on £, denoted by e — €, with the property that € = e and
o(e) = t(€). The pair (£, X?) is thus a graph in the sense of [Se]. Choose once and
for all an orientation of this graph: that is a subset £1 of &, with & = £t LU E+.
Write AT = AN ET and B+ = BN ET. The images of A [respectively B] in X?
are the edges the horizontal [vertical] 1-skeleton X} [X]].
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Lemma 2.3. There is a well defined injective map
t— (a(t),b(t)): R —AxB

which is surjective if X has one vertex.

a(t)

FIGURE 4. Directed edges in X.

Proof. The map r +— (7j00,10];"|[00,01]) : R — A x B is injective because each geo-
metric square of A is uniquely determined by any two edges containing a common
vertex.

If t =T'r € R then define

a(t) = I'rjoo,10,  b(t) = I'r|[00,01)-
Using the fact that T" acts freely on A it is easy to see that the map t — (a(t), b(t))
is injective.

If X has one vertex, then any two elements a € 2, b € B are represented by type
rotating isometries 71 : [00,10] — A, ry : [00,01] — A with r1(00) = r5(00). The
isometries 11,79 are restrictions of an isometry r € R, which defines an element
t=Tr € R with a = a(t) and b = b(t). O

If t = I'r € R, define directed edges a’(t) € 2, b'(t) € B opposite to a(t),b(t), as
follows.

' (t) = T(r o vlj0,10])
V' (t) = T(r o hligo,01))-

FIGURE 5. Opposite edges.

In other words

(4) d'(t)=a(t'); (1) =b(t").
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3. Some related graphs

Associated to the VH-T complex X are two graphs (in the sense of [Se]) whose
vertices are directed edges of X. Denote by G,(2() the graph whose vertex set is
2 and whose edge set is R, with origin and terminus maps defined by ¢ — a(t)
and t — a’(t) respectively. Similarly G, (9B) is the graph whose vertex set is B and
whose edge set is R, with the origin and terminus maps defined by ¢ — b(t) and
t—b(t).

FIGURE 6. Edges of G, () and G, (B).

Now define two directed graphs whose vertices are elements of 8. The “hori-
zontal” graph G, (9R) has vertex set R. A directed edge [¢, s] is defined as follows.
Consider the model rectangle H made up of two adjacent squares with vertices
{(i,j) € Z* : i =0,1,2,7 = 0,1} where the vertex (i,5) has type (i + 2Z, j + 27Z).
The model square o of Figure 2 is considered as the left hand square of H.

FIGURE 7. The model rectangle H.

An isometry r : H — A is said to be type rotating if there exists (k,1) €
Z/27 x 727 such that, for each vertex (i,7) of H, 7(r((¢,7))) = (i + k,j+1). A
directed edge of Gp(R) is I'r where r : H — A be a type rotating isometry. The
origin of T'r is t = I'ry, where ry = 7|, and the terminus of I'r is s = I'ry, where
ro : 0 — A is defined by ro(i,j) = r(i + 1,4). There is a similar definition for
the “vertical” graph G,(9R) with vertex set . Edges [t, s] of G,(R) and G,(R) are
illustrated in Figure 8, by the ranges of representative isometries. These directed
graphs are not graphs in the sense of [Se]: the existence of a directed edge ¢, s]
does not in general imply the existence of a directed edge s, t].

Since I' acts freely on A, it is easy to see that the existence of a directed edge
[t, 5] of G, (PR) with origin ¢ € R and terminus s € R is equivalent to

(5) b(s) =b'(t), s#th

Similarly the existence of a directed edge [t,s] of G,(R), with origin ¢ € & and
terminus s € R is equivalent to

(6) a(s)=d'(t), s#t".

The next Lemma will be used later. Recall that a lattice I" in PGL2(Q,) x PGL2(Qy)
is automatically cocompact [Mar, IX Proposition 3.7)].
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s
t
An edge of G, (R) An edge of G, (%R)

FIGURE 8

Lemma 3.1. Ifp, ¢ are prime and T is a torsion free irreducible lattice in PGL2(Qp) X
PGL2(Qy) acting on the corresponding product of trees, then the directed graphs
Gr(R), G, (R) are connected.

Proof. This follows from [M3, Proposition 2.15], using the topological transitivity
of an associated shift system. The proof uses the Howe-Moore theorem for p-adic
semisimple groups and is explained in [M2, Lemma 2]. ([

4. Tilings and H,(T',Z)

Throughout this section, 77 and 75 are locally finite trees whose vertices all have
degree at least three. The group I' acts freely and cocompactly on the 2 dimensional
cell complex A = 77 x 75 and we continue to use the notation introduced in the
preceding sections.

For t,s € R write tHs [respectively tV's] to mean that there is a “horizontal”
[respectively “vertical”] directed edge [t,s] in G (R) [respectively G,(2R)]. Define
homomorphisms 77,75 : ZR — ZRK by

Tlt:ZS, TQt:ZS

tHs tVs
It follows from (5),(6) that

Tyt = >ooos| -t

b(s)=b'(t)

Tt = Z s | -t

a(s)=a’(t)

Consider the homomorphism

-1\
<T2—I> . IR - IR O IR,

ts (Tyt —t) @ (Tot — t).
Define € : ZE — ZET by

z ifxe&t,
e()=9 _ | —
-z ifze&t.
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The boundary map 9 : ZRT — ZET is defined by
ot =e(a(t) +b'(t) —a'(t) — b(t))
and since X is 2-dimensional, Hy(I",Z) = ker . Define a homomorphism
09t IRT — ZR
by
oot =t —t¥V — " V"

The rest of this section is devoted to proving the following result, which is a more
precise version of Theorem 1.1.

Theorem 4.1. The homomorphism s restricts to an isomorphism from Hs(T',Z)

onto ker (%j ) .

Define a homomorphism ¢y : ZE — ZR & ZR by

p1(a) =0 Zsf Zs , ifa e,

a(s)=a a(s)=a

pr) = 3 s— > s|@0,  ifbeB.

b(s)=b b(s)=b
Note that if z € £ then ¢1(T) = —p1(x) and so ¢1(e(x)) = ¢1(z).

Lemma 4.2. The homomorphisms @1, p2 are injective and the following diagram
commutes:

7.E£+ L TRt

@ “| |

TR ® 7SR 7R
T -1
( TQ_I)
Proof. Let t € R. Then
(T, — It = s) th —t,
b(s)=b' (¢)
(M -Dt"={ > s) — v v,
b(s)=b’(t)
(M -Dt"=1| > s) —t—t"
b(s)=b(t)
(Tl _ I)tvh — S) — v — tvh-
b(s)=b(t)
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Therefore
(Ty —I) o po(t) = (Ty — I)(t —t° — th + 1)

b(s)=b'(t) b(s)=b’(t) b(s)=b(t) b(s)=b(t)
By definition of 1, this implies that
e1(b'(t) — b(t)) = (T1 — I)¢2(t) & 0.
Similarly
p1(a(t) —d'(t) = 0@ (To — I)ea(t).
Therefore
(T27) 0 @2(t) = @1(b'(t) = b(t) + a(t) — a'(t))
= p1oe(t/(t) = b(t) +a(t) —d'(t))
=1 00(t).

This shows that (7) commutes.

It is obvious that (o is injective. To verify that ¢; is injective, define ¥ :
IR O IR — ZET by (s, t) = e(b(s) —a(t)). Then 1) o p1(x) is a nonzero multiple
of z, for all z € £. It follows that 1) o 1 : ZET — ZET is injective and therefore so
is 1. a

Lemma 4.3. The homomorphism o restricts to an isomorphism from Hy(T',Z)
onto @2 (ZRT) Nker (%:f ).
Proof. Let p3(53) € ker (%j), where 8 € ZRT. Tt follows from (7) that
p100(6)=0.
But 4 is injective, so 98 = 0 i.e. § € Ho(T',Z).
Conversely, if 5 € Ho(I',Z) then (%:f) o pa(B) =0 by (7), so
w2(B) € ker (%:D i
Since o is injective, the conclusion follows. O

The next result, combined with Lemma 4.3, completes the proof of Theorem 4.1.

Lemma 4.4. There is an inclusion ker (%j) C o(ZRT).

Proof. Let a = Y, A()t € ker (7177). We show that a € o(ZRF). If s € R
then the coefficient of s in the sum representing (T — I« is

STAW =) =] D AW | =) - AsM.

R, tAs" teR
b he) b (1)=b(s)

This coeflicient is zero, since « € ker(Ty — I). Therefore
(8) A(s) + A(s") = Z A(t).

tem
b (£)=b(s)
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The right hand side of equation (8) depends only on b(s), so for any b € B we

define
pb) = 3 A0).

teER
b’ (t)=b

Thus (8) may be rewritten as
(9) A(s) + A(5") = pa(b(s)).
It follows from (8) and (4) that

(10) p(b(s)) = p(b(s")) = p(b'(s))-

FIGURE 9. pu(b(s)) = u(d'(s))

Fix an element by € B, and let C be the connected component of the graph
Gn(B) containing by. Then C is a connected graph with vertex set C° C B and
edge set C! C R. The graph C has a natural orientation C* = C! N (R URY) and
it is clear that C! = CT U {t" : t € C*}. Each vertex of C has degree at least three,
since the same is true of the tree 7;. Therefore the number of vertices of C is less
than the number of geometric edges i.e. [C°] < |CT|.

If b € CY then there is a path in C° from by to b. It follows by induction from
(10) that p(bg) = p(b). Thus

o) = S A= 3 A@.

LER tect
b (t)=b b (t)=b
Therefore
COlubo) = D~ D A =D A1)
beC? tect tect
b’ (t)=b
=D AWM FAE) = D pb(t)
teCt teCt
= Z 11(bo) = C*[ua(bo)-
teCt
Since |C%| < |C*], it follows that u(by) = 0 for all by € B. In other words, by (9),
(11) A(s) = =A(s")

for all s € . A similar argument, using o € ker(T5 — I) and interchanging the
roles of horizontal and vertical reflections, shows that

(12) A(s) = ~A(s")
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for all s € R. Combining (11) and (12) gives
(13) A(s) = A(s"M)
for all s € R. Finally,

Il
>~
—~
VA
S~—"
—
»
|
»
<
|
0
>
+
»
<
>
S~—

Il
>
=
N
N
=
m
©
N
N
=2
=

5. K-theory of the boundary C*-algebra

The (maximal) boundary OA of A is defined in [KR|. It is homeomorphic to
0T x 075, where 07} is the totally disconnected space of ends of the tree 7;. The
group I acts on OA and hence on Cc(9A) via g — «, where o, f(w) = f(9~'w), for
f € Cc(0A), g € T. The full crossed product C*-algebra A(T', 0A) = Cc(0A) xT is
the completion of the algebraic crossed product in an appropriate norm. We present
examples where the rank of the analytic K-group Ko(A(T',0A)) is determined by

Theorem 4.1.

5.1. One vertex complexes. The case where the quotient VH-T complex X has
one vertex was studied in [KR]. The group I' acts freely and transitively on the
vertices of A and A(T',0A) is isomorphic to a rank-2 Cuntz-Krieger algebra, as
described in [RS1, RS2]. The proof of this fact given in [KR, Theorem 5.1]. It
follows from [RS1] that A(T,dA) is classified by its K-theory. By the proofs of
[RS2, Proposition 4.13] and [KR, Lemma 4.3, Theorem 5.3], we have

Ko(A(T,0A)) = K1(A(T,04A))
and
rank(Ko(A(T, 0A))) = 2 - dimker (%:f) .
Together with Theorem 4.1, this proves
(14) rank Ko(A(T, 0A)) = 2 - rank Ha(T', Z).

This verifies a conjecture in [KR].

5.2. Irreducible lattices in PGL2(Qp) X PGL2(Qg). If p, ¢ are prime then the
group PGL2(Q,) x PGL2(Qy) acts on the A = 7,11 X Ty41 and on its boundary 9A,
which can be identified with a direct product of projective lines P (Q,) x P1(Qy).
Let I' be a torsion free irreducible lattice in PGL2(Q),) x PGL2(Qy). Then T acts
freely on A and A(T',0A) is a rank-2 Cuntz-Krieger algebra in the sense of [RS1].
The irreducibility condition (H2) of [RS1] follows from Lemma 3.1. The proofs of
the remaining conditions of [RS1] are exactly the same as in [KR, Lemma 4.1].
It follows that (14) is also true in this case. Since T' is irreducible, the normal
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subgroup theorem [Mar, IV, Theorem (4.9)] implies that H(I',Z) = T'/[[,T] is
finite. Equation (14) can therefore be written

(15) xI) =1+ %rankKO(A(F, 0A)).

On the other hand, one easily calculates

() = (p 1)4(4 1)
where | X°| is the number of vertices of X. Therefore the rank of Ky(A(T,0A))
can be expressed explicitly in terms of p, £ and | X°|.

Explicit examples are studied in [M3, Section 3]. If p,l =1 (mod 4) are two dis-
tinct primes, Mozes constructs an irreducible lattice I',, ; in PGL2(Q)p) X PGL2(Qy)
which acts freely and transitively on the vertex set of A. Here is how I',; is con-
structed. Let H(Z) = {a = ap + a1i + a2j + ask;a; € Z}, the ring of integer
quaternions, let i, be a square root of —1 in @, and define

¢ : H(Z) — PGLy(Q,) X PGLy(Qy)

| X°]

by

1,[}(&) - ap + alip as + a3ip ag + ali[ as + agig
—ag + a3ip ag — alip "l —as 4+ asziy ag — ayie ’

Let Tpy = {a € H(Z);a0 = 1 (mod 2),a; =0 (mod 2),j = 1,2,3,|a]? = p'l°}.
Then T, = 9(Ty). The fact that T, is irreducible follows easily from [RR,
Corollary 2.3], where it is observed that the only nontrivial direct product subgroup
of I'ppisZ X Z = Z2.

Since |X°| = 1, it follows from (15) that

rank Ko (A(T, 0A)) = W —2.

This proves an experimental observation of [KR, Example 6.2]. The construction
of Mozes has been generalized in [Rat, Chapter 3] to all pairs (p, 1) of distinct odd
primes and the same conclusion applies.
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