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Abstract. Let Γ be a torsion free cocompact lattice in Aut(T1) × Aut(T2),
where T1, T2 are trees whose vertices all have degree at least three. The group

H2(Γ, Z) is determined explicitly in terms of an associated 2-dimensional tiling

system. It follows that under appropriate conditions the crossed product C∗-
algebra A associated with the action of Γ on the boundary of T1 ×T2 satisfies

rank K0(A) = 2 · rank H2(Γ, Z).

1. Introduction

This article is motivated by the problem of calculating the K-theory of certain
crossed product C∗-algebras A(Γ, ∂∆), where Γ is a higher rank lattice acting on
an affine building ∆ with boundary ∂∆. Here we examine the case where ∆ is
a product of trees. We determine the K-theory rationally, thereby proving some
conjectures in [KR].

Let T1 and T2 be locally finite trees whose vertices all have degree at least three.
Consider the direct product ∆ = T1 × T2 as a two dimensional cell complex. Let Γ
be a discrete subgroup of Aut(T1)×Aut(T2) which acts freely and cocompactly on
∆. Associated with the action (Γ,∆) is a tiling system whose set of tiles is the set
R of “directed” 2-cells of Γ\∆. There are vertical and horizontal adjacency rules
tHs and tV s between tiles t, s ∈ R illustrated below. Precise definitions will be
given in Section 2.

t s t

s

There are homomorphisms T1, T2 : ZR→ ZR defined by

T1t =
∑
tHs

s, T2t =
∑
tV s

s .

2000 Mathematics Subject Classification. 22E40, 22D25.

Key words and phrases. tree products, lattices, homology, K-theory, operator algebra.

1
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Consider the homomorphism ZR→ ZR⊕ ZR given by(
T1 − I
T2 − I

)
: t 7→ (T1t− t)⊕ (T2t− t).

The main result of this article is the following Theorem, which is formulated more
precisely in Theorem 4.1.

Theorem 1.1. There is an isomorphism

(1) H2(Γ,Z) ∼= ker
(

T1−I
T2−I

)
.

The proof of (1) is elementary, but care is needed because the right hand side
is defined in terms of “directed” 2-cells rather than geometric 2-cells. A square
complex X is VH-T if every vertex link is a complete bipartite graph and if there
is a partition of the set of edges into vertical and horizontal, which agrees with the
bipartition of the graph on every link [BM]. The universal covering space ∆ of a
VH-T complex X is a product of trees T1 × T2 and the fundamental group Γ of X
is a subgroup of Aut(T1)×Aut(T2) which acts freely and cocompactly on T1 × T2.
Conversely, every finite VH-T complex arises in this way from a free cocompact
action of a group Γ on a product of trees. Recall that a discrete group which acts
freely on a CAT(0) space is necessarily torsion free.

The group Γ acts on the (maximal) boundary ∂∆ of ∆, which is the set of
chambers of the spherical building at infinity, endowed with an appropriate topology
[KR]. This boundary may be identified with a direct product of Gromov boundaries
∂T1×∂T2. The boundary action (Γ, ∂∆) gives rise to a crossed product C∗-algebra
A(Γ, ∂∆) = CC(∂∆) o Γ as described in [KR].

If p is prime then PGL2(Qp) acts on its Bruhat-Tits tree Tp+1, which is a homo-
geneous tree of degree p+1. If p, ` are prime then the group PGL2(Qp)×PGL2(Q`)
acts on the ∆ = Tp+1 × T`+1. Let Γ be a torsion free irreducible lattice in
PGL2(Qp) × PGL2(Q`). Then A(Γ, ∂∆) is a higher rank Cuntz-Krieger algebra
and fits into the general theory developed in [RS1, RS2]. In particular, it is clas-
sified up to isomorphism by its K-theory. It is a consequence of Theorem 1.1 (see
Section 5) that

(2) rankK0(A(Γ, ∂∆)) = 2 · rankH2(Γ,Z).

This proves a conjecture in [KR]. The normal subgroup theorem [Mar, IV, The-
orem (4.9)] implies that H1(Γ,Z) is a finite group. Equation (2) can therefore be
expressed as

χ(Γ) = 1 +
1
2

rankK0(A(Γ, ∂∆)).

One easily calculates that χ(Γ) = (p−1)(`−1)
4 |X0|, where |X0| is the number of

vertices of X. Therefore the rank of K0(A(Γ, ∂∆)) can be expressed explicitly in
terms of p, ` and |X0|. Examples are constructed in [M3, Section 3], where p, ` ≡ 1
(mod 4) are two distinct primes.

2. Products of trees and their automorphisms.

If T is a tree, there is a type map τ defined on the vertex set of T , taking values
in Z/2Z. Two vertices have the same type if and only if the distance between them
is even. Any automorphism g of T preserves distances between vertices, and so
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there exists i ∈ Z/2Z (depending on g) such that τ(gv) = τ(v) + i, for every vertex
v.

Suppose that ∆ is the 2-dimensional cell complex associated with a product
T1 × T2 of trees. Let ∆k denote the set of k-cells in ∆ for k = 0, 1, 2. The 0-cells
are vertices and the 2-cells are geometric squares. Denote by u = (u1, u2) a generic
vertex of ∆. There is a type map τ on ∆0 defined by

τ(u) = (τ(u1), τ(u2)) ∈ Z/2Z× Z/2Z.
Any 2-cell δ ∈ ∆2 has one vertex of each type. For every g ∈ AutT1 ×AutT2 there
exists (k, l) ∈ Z/2Z× Z/2Z such that, for each vertex u,

(3) τ(gu) = (τ(u1) + k, τ(u2) + l).

Let Γ < AutT1 × AutT2 be a torsion free discrete group acting cocompactly on ∆.
Then X = Γ\∆ is a finite cell complex with universal covering ∆. Let Xk denote
the set of k-cells of X for k = 0, 1, 2.

The first step is to formalize the notion of a directed square in X. We modify
the terminology of [BM, Section 1], in order to fit with [RS1, RS2, KR]. Let σ be a
model typed square with vertices 00,01,10,11, as illustrated in Figure 2. Assume
that the vertex ij of σ has type

τ(ij) = (i, j) ∈ Z/2Z× Z/2Z.

•

•

•

• 10

01

00

11

Figure 2. The model square σ.

The vertical and horizontal reflections v, h of σ are the involutions satisfying
v(00) = 01, v(10) = 11, h(00) = 10, h(01) = 11. An isometry r : σ → ∆ is said
to be type rotating if there exists (k, l) ∈ Z/2Z×Z/2Z such that, for each vertex ij
of σ

τ(r(ij)) = (i+ k, j + l).
Let R denote the set of type rotating isometries r : σ → ∆. If g ∈ AutT1 × AutT2
and r ∈ R then it follows from (3) that g ◦ r ∈ R. If δ2 ∈ ∆2 then for each
(k, l) ∈ Z/2Z × Z/2Z there is a unique r ∈ R such that r(σ) = δ2 and r(00) has
type (k, l). Therefore each geometric square δ2 ∈ ∆2 is the image of each of the
four elements of {r ∈ R ; r(σ) = δ2} under the map r 7→ r(σ). The next lemma
records this observation.

Lemma 2.1. The map r 7→ r(σ) from R to ∆2 is 4-to-1.

Let R = Γ\R and call R the set of directed squares of X = Γ\∆. There is a
commutative diagram

R
r 7→r(σ)−−−−−→ ∆2y y

R
η−−−−→ X2
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where the vertical arrows represent quotient maps and η is defined by η(Γr) =
Γ · r(σ). The next result makes precise the fact that each geometric square in X2

corresponds to exactly four directed squares.

Lemma 2.2. The map η : R→ X2 is surjective and 4-to-1.

Proof. Fix δ2 ∈ R. By Lemma 2.1, the set

{r ∈ R ; r(σ) = δ2} = {r1, r2, r3, r4}
contains precisely 4 elements. Since Γ acts freely on ∆, the set

{Γr1,Γr2,Γr3,Γr4} ⊂ R

also contains precisely four elements, each of which maps to Γδ2 under η. Now
suppose that η(Γr) = Γδ2 for some r ∈ R. Then γr(σ) = δ2 for some γ ∈ Γ. Thus
γr ∈ {r1, r2, r3, r4} and Γr ∈ {Γr1,Γr2,Γr3,Γr4}. This proves that η is 4-to-1. �

The vertical and horizontal reflections v, h of the model square σ act on R
and generate a group Σ ∼= Z/2Z × Z/2Z of symmetries of R. The Σ-orbit of
each r ∈ R contains four elements. Choose once and for all a subset R+ ⊂ R
containing precisely one element from each Σ-orbit. The map η restricts to a
1-1 correspondence between R+ and the set of geometric squares X2. For each
φ ∈ Σ − {1}, let Rφ denote the image of R+ under φ. Then R may be expressed
as a disjoint union

R = R+ ∪Rv ∪Rh ∪Rvh.

Now we formalize the notion of horizontal and vertical directed edges in X. Con-
sider the two directed edges [00,10], [00,01] of the model square σ.

[00,01]

[00,10]

.......................... ................

.......

...................

................

Figure 3. Directed edges of the model square σ.

Let A be the set of type rotating isometries r : [00,10] → ∆, and let B be the
set of type rotating isometries r : [00,01]→ ∆. There is a natural 2-to-1 mapping
r 7→ range r, from A ∪B onto ∆1. Let A = Γ\A and B = Γ\B. Call A,B the sets
of horizontal and vertical directed edges of X = Γ\∆. Let E = A∪B, the set of all
directed edges of X.

If a = Γr ∈ A, let o(a) = Γr(00) ∈ X0 and t(a) = Γr(10) ∈ X0, the origin and
terminus of the directed edge a. Similarly, if b = Γr ∈ B, let o(b) = Γr(00) ∈ X0

and t(b) = Γr(01) ∈ X0. Note that it is possible that o(e) = t(e).
A straightforward analogue of Lemma 2.2 shows that each geometric edge in X1

is the image of each of two directed edges. The horizontal and vertical reflections
on σ induce an inversion on E , denoted by e 7→ e, with the property that e = e and
o(e) = t(e). The pair (E , X0) is thus a graph in the sense of [Se]. Choose once and
for all an orientation of this graph: that is a subset E+ of E , with E = E+ t E+.
Write A+ = A ∩ E+ and B+ = B ∩ E+. The images of A [respectively B] in X1

are the edges the horizontal [vertical] 1-skeleton X1
h [X1

v ].
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Lemma 2.3. There is a well defined injective map

t 7→ (a(t), b(t)) : R→ A×B

which is surjective if X has one vertex.

b(t)

a(t)

t

.......................... ................

.......

...................

................

Figure 4. Directed edges in X.

Proof. The map r 7→ (r|[00,10], r|[00,01]) : R→ A×B is injective because each geo-
metric square of ∆ is uniquely determined by any two edges containing a common
vertex.

If t = Γr ∈ R then define

a(t) = Γr|[00,10], b(t) = Γr|[00,01].

Using the fact that Γ acts freely on ∆ it is easy to see that the map t 7→ (a(t), b(t))
is injective.

If X has one vertex, then any two elements a ∈ A, b ∈ B are represented by type
rotating isometries r1 : [00,10]→ ∆, r2 : [00,01]→ ∆ with r1(00) = r2(00). The
isometries r1, r2 are restrictions of an isometry r ∈ R, which defines an element
t = Γr ∈ R with a = a(t) and b = b(t). �

If t = Γr ∈ R, define directed edges a′(t) ∈ A, b′(t) ∈ B opposite to a(t), b(t), as
follows.

a′(t) = Γ(r ◦ v|[00,10]),

b′(t) = Γ(r ◦ h|[00,01]).

b(t) b′(t)

a(t)

a′(t)

t

.......................... ................

.......................... ................
.......
...................
................ .......

...................

................

Figure 5. Opposite edges.

In other words

(4) a′(t) = a(tv); b′(t) = b(th).
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3. Some related graphs

Associated to the VH-T complex X are two graphs (in the sense of [Se]) whose
vertices are directed edges of X. Denote by Gv(A) the graph whose vertex set is
A and whose edge set is R, with origin and terminus maps defined by t 7→ a(t)
and t 7→ a′(t) respectively. Similarly Gh(B) is the graph whose vertex set is B and
whose edge set is R, with the origin and terminus maps defined by t 7→ b(t) and
t 7→ b′(t).

a′(t)

a(t)

t

.......................... ................

.......................... ................

b(t) b′(t)t

.......

...................

.......................
...................
................

Figure 6. Edges of Gv(A) and Gh(B).

Now define two directed graphs whose vertices are elements of R. The “hori-
zontal” graph Gh(R) has vertex set R. A directed edge [t, s] is defined as follows.
Consider the model rectangle H made up of two adjacent squares with vertices
{(i, j) ∈ Z2 : i = 0, 1, 2, j = 0, 1} where the vertex (i, j) has type (i + 2Z, j + 2Z).
The model square σ of Figure 2 is considered as the left hand square of H.

σ

Figure 7. The model rectangle H.

An isometry r : H → ∆ is said to be type rotating if there exists (k, l) ∈
Z/2Z × Z/2Z such that, for each vertex (i, j) of H, τ(r((i, j))) = (i + k, j + l). A
directed edge of Gh(R) is Γr where r : H → ∆ be a type rotating isometry. The
origin of Γr is t = Γr1, where r1 = r|σ and the terminus of Γr is s = Γr2, where
r2 : σ → ∆ is defined by r2(i, j) = r(i + 1, j). There is a similar definition for
the “vertical” graph Gv(R) with vertex set R. Edges [t, s] of Gh(R) and Gv(R) are
illustrated in Figure 8, by the ranges of representative isometries. These directed
graphs are not graphs in the sense of [Se]: the existence of a directed edge [t, s]
does not in general imply the existence of a directed edge [s, t].

Since Γ acts freely on ∆, it is easy to see that the existence of a directed edge
[t, s] of Gh(R) with origin t ∈ R and terminus s ∈ R is equivalent to

(5) b(s) = b′(t), s 6= th.

Similarly the existence of a directed edge [t, s] of Gv(R), with origin t ∈ R and
terminus s ∈ R is equivalent to

(6) a(s) = a′(t), s 6= tv.

The next Lemma will be used later. Recall that a lattice Γ in PGL2(Qp)×PGL2(Q`)
is automatically cocompact [Mar, IX Proposition 3.7)].
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An edge of Gh(R) An edge of Gv(R)

t s t

s

Figure 8

Lemma 3.1. If p, ` are prime and Γ is a torsion free irreducible lattice in PGL2(Qp)×
PGL2(Q`) acting on the corresponding product of trees, then the directed graphs
Gh(R), Gv(R) are connected.

Proof. This follows from [M3, Proposition 2.15], using the topological transitivity
of an associated shift system. The proof uses the Howe-Moore theorem for p-adic
semisimple groups and is explained in [M2, Lemma 2]. �

4. Tilings and H2(Γ, Z)

Throughout this section, T1 and T2 are locally finite trees whose vertices all have
degree at least three. The group Γ acts freely and cocompactly on the 2 dimensional
cell complex ∆ = T1 × T2 and we continue to use the notation introduced in the
preceding sections.

For t, s ∈ R write tHs [respectively tV s] to mean that there is a “horizontal”
[respectively “vertical”] directed edge [t, s] in Gh(R) [respectively Gv(R)]. Define
homomorphisms T1, T2 : ZR→ ZR by

T1t =
∑
tHs

s, T2t =
∑
tV s

s.

It follows from (5),(6) that

T1t =

 ∑
b(s)=b′(t)

s

− th,
T2t =

 ∑
a(s)=a′(t)

s

− tv.
Consider the homomorphism(

T1 − I
T2 − I

)
: ZR→ ZR⊕ ZR,

t 7→ (T1t− t)⊕ (T2t− t).

Define ε : ZE → ZE+ by

ε(x) =

{
x if x ∈ E+,

−x if x ∈ E+.
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The boundary map ∂ : ZR+ → ZE+ is defined by

∂t = ε(a(t) + b′(t)− a′(t)− b(t))

and since X is 2-dimensional, H2(Γ,Z) = ker ∂. Define a homomorphism

ϕ2 : ZR+ → ZR

by
ϕ2t = t− tv − th + tvh.

The rest of this section is devoted to proving the following result, which is a more
precise version of Theorem 1.1.

Theorem 4.1. The homomorphism ϕ2 restricts to an isomorphism from H2(Γ,Z)
onto ker

(
T1−I
T2−I

)
.

Define a homomorphism ϕ1 : ZE → ZR⊕ ZR by

ϕ1(a) = 0⊕

 ∑
a(s)=a

s−
∑

a(s)=a

s

 , if a ∈ A,

ϕ1(b) =

 ∑
b(s)=b

s−
∑

b(s)=b

s

⊕ 0, if b ∈ B.

Note that if x ∈ E then ϕ1(x) = −ϕ1(x) and so ϕ1(ε(x)) = ϕ1(x).

Lemma 4.2. The homomorphisms ϕ1, ϕ2 are injective and the following diagram
commutes:

(7)

ZE+ ∂←−−−− ZR+

ϕ1

y yϕ2

ZR⊕ ZR ←−−−−−−(
T1−I
T2−I

) ZR

Proof. Let t ∈ R. Then

(T1 − I)t =

 ∑
b(s)=b′(t)

s

− th − t,
(T1 − I)tv =

 ∑
b(s)=b′(t)

s

− tvh − tv,

(T1 − I)th =

 ∑
b(s)=b(t)

s

− t− th,
(T1 − I)tvh =

 ∑
b(s)=b(t)

s

− tv − tvh.
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Therefore
(T1 − I) ◦ ϕ2(t) = (T1 − I)(t− tv − th + tvh)

=

 ∑
b(s)=b′(t)

s−
∑

b(s)=b′(t)

s

−
 ∑

b(s)=b(t)

s−
∑

b(s)=b(t)

s

 .

By definition of ϕ1, this implies that

ϕ1(b′(t)− b(t)) = (T1 − I)ϕ2(t)⊕ 0.

Similarly
ϕ1(a(t)− a′(t)) = 0⊕ (T2 − I)ϕ2(t).

Therefore (
T1−I
T2−I

)
◦ ϕ2(t) = ϕ1(b′(t)− b(t) + a(t)− a′(t))

= ϕ1 ◦ ε(b′(t)− b(t) + a(t)− a′(t))
= ϕ1 ◦ ∂(t).

This shows that (7) commutes.
It is obvious that ϕ2 is injective. To verify that ϕ1 is injective, define ψ :

ZR⊕ZR→ ZE+ by ψ(s, t) = ε(b(s)− a(t)). Then ψ ◦ ϕ1(x) is a nonzero multiple
of x, for all x ∈ E . It follows that ψ ◦ϕ1 : ZE+ → ZE+ is injective and therefore so
is ϕ1. �

Lemma 4.3. The homomorphism ϕ2 restricts to an isomorphism from H2(Γ,Z)
onto ϕ2(ZR+) ∩ ker

(
T1−I
T2−I

)
.

Proof. Let ϕ2(β) ∈ ker
(

T1−I
T2−I

)
, where β ∈ ZR+. It follows from (7) that

ϕ1 ◦ ∂(β) = 0 .

But ϕ1 is injective, so ∂β = 0 i.e. β ∈ H2(Γ,Z).
Conversely, if β ∈ H2(Γ,Z) then

(
T1−I
T2−I

)
◦ ϕ2(β) = 0 by (7), so

ϕ2(β) ∈ ker
(

T1−I
T2−I

)
.

Since ϕ2 is injective, the conclusion follows. �

The next result, combined with Lemma 4.3, completes the proof of Theorem 4.1.

Lemma 4.4. There is an inclusion ker
(

T1−I
T2−I

)
⊂ ϕ2(ZR+).

Proof. Let α =
∑

t∈R λ(t)t ∈ ker
(

T1−I
T2−I

)
. We show that α ∈ ϕ2(ZR+). If s ∈ R

then the coefficient of s in the sum representing (T1 − I)α is ∑
t∈R,t6=sh

b′(t)=b(s)

λ(t)

− λ(s) =

 ∑
t∈R

b′(t)=b(s)

λ(t)

− λ(s)− λ(sh).

This coefficient is zero, since α ∈ ker(T1 − I). Therefore

(8) λ(s) + λ(sh) =
∑
t∈R

b′(t)=b(s)

λ(t).
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The right hand side of equation (8) depends only on b(s), so for any b ∈ B we
define

µ(b) =
∑
t∈R

b′(t)=b

λ(t).

Thus (8) may be rewritten as

(9) λ(s) + λ(sh) = µ(b(s)).

It follows from (8) and (4) that

(10) µ(b(s)) = µ(b(sh)) = µ(b′(s)).

b(s) b′(s)s

.......

...................

................ .......
...................
................

Figure 9. µ(b(s)) = µ(b′(s))

Fix an element b0 ∈ B, and let C be the connected component of the graph
Gh(B) containing b0. Then C is a connected graph with vertex set C0 ⊂ B and
edge set C1 ⊂ R. The graph C has a natural orientation C+ = C1 ∩ (R+ ∪Rv) and
it is clear that C1 = C+ ∪ {th : t ∈ C+}. Each vertex of C has degree at least three,
since the same is true of the tree T1. Therefore the number of vertices of C is less
than the number of geometric edges i.e. |C0| < |C+|.

If b ∈ C0 then there is a path in C0 from b0 to b. It follows by induction from
(10) that µ(b0) = µ(b). Thus

µ(b0) =
∑
t∈R

b′(t)=b

λ(t) =
∑
t∈C1

b′(t)=b

λ(t).

Therefore

|C0|µ(b0) =
∑
b∈C0

∑
t∈C1

b′(t)=b

λ(t) =
∑
t∈C1

λ(t)

=
∑
t∈C+

(λ(t) + λ(th)) =
∑
t∈C+

µ(b(t))

=
∑
t∈C+

µ(b0) = |C+|µ(b0).

Since |C0| < |C+|, it follows that µ(b0) = 0 for all b0 ∈ B. In other words, by (9),

(11) λ(s) = −λ(sh)

for all s ∈ R. A similar argument, using α ∈ ker(T2 − I) and interchanging the
roles of horizontal and vertical reflections, shows that

(12) λ(s) = −λ(sv)



Tree Product Lattices 11

for all s ∈ R. Combining (11) and (12) gives

(13) λ(s) = λ(svh)

for all s ∈ R. Finally,

α =
∑

t∈R+

(
λ(s)s+ λ(sv)sv + λ(sh)sh + λ(svh)svh

)
=

∑
t∈R+

λ(s)
(
s− sv − sh + svh

)
=

∑
t∈R+

λ(s)ϕ2(s) ∈ ϕ2(ZR+).

�

5. K-theory of the boundary C∗-algebra

The (maximal) boundary ∂∆ of ∆ is defined in [KR]. It is homeomorphic to
∂T1 × ∂T2, where ∂Tj is the totally disconnected space of ends of the tree Tj . The
group Γ acts on ∂∆ and hence on CC(∂∆) via g 7→ αg, where αgf(ω) = f(g−1ω), for
f ∈ CC(∂∆), g ∈ Γ. The full crossed product C∗-algebra A(Γ, ∂∆) = CC(∂∆)oΓ is
the completion of the algebraic crossed product in an appropriate norm. We present
examples where the rank of the analytic K-group K0(A(Γ, ∂∆)) is determined by
Theorem 4.1.

5.1. One vertex complexes. The case where the quotient VH-T complex X has
one vertex was studied in [KR]. The group Γ acts freely and transitively on the
vertices of ∆ and A(Γ, ∂∆) is isomorphic to a rank-2 Cuntz-Krieger algebra, as
described in [RS1, RS2]. The proof of this fact given in [KR, Theorem 5.1]. It
follows from [RS1] that A(Γ, ∂∆) is classified by its K-theory. By the proofs of
[RS2, Proposition 4.13] and [KR, Lemma 4.3, Theorem 5.3], we have

K0(A(Γ, ∂∆)) = K1(A(Γ, ∂∆))

and
rank(K0(A(Γ, ∂∆))) = 2 · dim ker

(
T1−I
T2−I

)
.

Together with Theorem 4.1, this proves

(14) rankK0(A(Γ, ∂∆)) = 2 · rankH2(Γ,Z).

This verifies a conjecture in [KR].

5.2. Irreducible lattices in PGL2(Qp) × PGL2(Q`). If p, ` are prime then the
group PGL2(Qp)×PGL2(Q`) acts on the ∆ = Tp+1×T`+1 and on its boundary ∂∆,
which can be identified with a direct product of projective lines P1(Qp) × P1(Q`).
Let Γ be a torsion free irreducible lattice in PGL2(Qp) × PGL2(Q`). Then Γ acts
freely on ∆ and A(Γ, ∂∆) is a rank-2 Cuntz-Krieger algebra in the sense of [RS1].
The irreducibility condition (H2) of [RS1] follows from Lemma 3.1. The proofs of
the remaining conditions of [RS1] are exactly the same as in [KR, Lemma 4.1].
It follows that (14) is also true in this case. Since Γ is irreducible, the normal
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subgroup theorem [Mar, IV, Theorem (4.9)] implies that H1(Γ,Z) = Γ/[Γ,Γ] is
finite. Equation (14) can therefore be written

(15) χ(Γ) = 1 +
1
2

rankK0(A(Γ, ∂∆)).

On the other hand, one easily calculates

χ(Γ) =
(p− 1)(`− 1)

4
|X0|

where |X0| is the number of vertices of X. Therefore the rank of K0(A(Γ, ∂∆))
can be expressed explicitly in terms of p, ` and |X0|.

Explicit examples are studied in [M3, Section 3]. If p, l ≡ 1 (mod 4) are two dis-
tinct primes, Mozes constructs an irreducible lattice Γp,` in PGL2(Qp)×PGL2(Ql)
which acts freely and transitively on the vertex set of ∆. Here is how Γp,l is con-
structed. Let H(Z) = {a = a0 + a1i + a2j + a3k; aj ∈ Z}, the ring of integer
quaternions, let ip be a square root of −1 in Qp and define

ψ : H(Z)→ PGL2(Qp)× PGL2(Q`)

by

ψ(a) =
([

a0 + a1ip a2 + a3ip
−a2 + a3ip a0 − a1ip

]
,

[
a0 + a1i` a2 + a3i`
−a2 + a3i` a0 − a1i`

])
.

Let Γ̃p,` = {a ∈ H(Z); a0 ≡ 1 (mod 2), aj ≡ 0 (mod 2), j = 1, 2, 3, |a|2 = prls}.
Then Γp,` = ψ(Γ̃p,`). The fact that Γp,` is irreducible follows easily from [RR,
Corollary 2.3], where it is observed that the only nontrivial direct product subgroup
of Γp,` is Z× Z = Z2.

Since |X0| = 1, it follows from (15) that

rankK0(A(Γ, ∂∆)) =
(p− 1)(`− 1)

2
− 2.

This proves an experimental observation of [KR, Example 6.2]. The construction
of Mozes has been generalized in [Rat, Chapter 3] to all pairs (p, l) of distinct odd
primes and the same conclusion applies.
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