SINGULAR MASAS OF VON NEUMANN ALGEBRAS: EXAMPLES FROM THE GEOMETRY OF SPACES OF NONPOSITIVE CURVATURE

GUYAN ROBERTSON

ABSTRACT. If Γ is a group, then the von Neumann algebra $VN(\Gamma)$ is the convolution algebra of functions $f \in \ell_2(\Gamma)$ which act by convolution on $\ell_2(\Gamma)$ as bounded operators. Maximal abelian \star -subalgebras (massa) of von Neumann algebras have been studied from the early days.

If Γ is a torsion free cocompact lattice in a semisimple Lie group G of rank r with no centre and no compact factors then the geometry of the symmetric space X = G/K may be used to define and study masas of $VN(\Gamma)$. These masas are of the form $VN(\Gamma_0)$, where Γ_0 is the period group of some Γ -periodic maximal flat in X. There is a similar construction if Γ is a lattice in a p-adic Lie group G, acting on its Bruhat-Tits building.

Consider the compact locally symmetric space $M = \Gamma \backslash X$. Assume that T^r is a totally geodesic flat torus in M and let $\Gamma_0 \cong \mathbb{Z}^r$ be the image of the fundamental group $\pi(T^r)$ under the natural monomorphism from $\pi(T^r)$ into $\Gamma = \pi(M)$. Then $\mathrm{VN}(\Gamma_0)$ is a masa of $\mathrm{VN}(\Gamma)$. If in addition $\mathrm{diam}(T^r)$ is less than the length of a shortest closed geodesic in M then $\mathrm{VN}(\Gamma_0)$ is a singular masa: its unitary normalizer is as small as possible. This last result is joint work with A. M. Sinclair and R. R. Smith [RSS].

1. Background

Let Γ be an ICC group: each element in Γ other than the identity has infinite conjugacy class. The group von Neumann algebra is the convolution algebra

$$\operatorname{VN}(\Gamma) = \left\{ f \in \ell^2(\Gamma) : g \mapsto f \star g \text{ is in } B(\ell^2(\Gamma)) \right\}.$$

It is well known that $VN(\Gamma)$ is a **factor of type** II₁. This means

- (a) VN(Γ) is a strongly closed \star -subalgebra of $B(\ell^2(\Gamma))$, with trivial centre;
- (b) there is a faithful trace on $VN(\Gamma)$ defined by tr(f) := f(1). The group Γ may be embedded as a subgroup of the unitary group of $VN(\Gamma)$ by identifying an element $\gamma \in \Gamma$ with the corresponding delta function δ_{γ} . A major result of A. Connes [Co, Corollary 3] implies:

This research was supported by the Australian Research Council. It is based on the text of a talk given to the conference on Harmonic Analysis, at the Centre Universitaire, Luxembourg, September 9–12, 2002.

Theorem. (A. Connes) If Γ_1, Γ_2 are countable amenable ICC groups then $VN(\Gamma_1) \cong VN(\Gamma_2)$, the algebra being isomorphic to the hyperfinite II_1 factor.

At the opposite extreme from amenable groups there is the

Rigidity Conjecture (A. Connes) If ICC groups Γ_1, Γ_2 have Property (T) of Kazhdan, then

$$VN(\Gamma_1) \cong VN(\Gamma_2) \Rightarrow \Gamma_1 \cong \Gamma_2.$$

Compare this with the

Rigidity Theorem (Mostow-Margulis-Prasad) For i = 1, 2, let Γ_i be a lattice in G_i , a connected non-compact simple Lie group with trivial centre, $G_1 \neq \mathrm{PSL}_2(\mathbb{R})$. Then

$$\Gamma_1 \cong \Gamma_2 \Rightarrow G_1 \cong G_2$$
.

In Mostow's proof of rigidity ([Mo]: the cocompact, higher rank case), maximal flats of symmetric spaces play an important role. There is some reason to hope that masas of von Neumann algebras might play a similar role for Connes' conjecture.

2. Maximal abelian *-subalgebras

Let \mathcal{A} be a maximal abelian \star -subalgebra (masa) of $VN(\Gamma)$. Say that \mathcal{A} is a **singular masa** if :

$$u \in VN(\Gamma)$$
, u unitary, $uAu^* = A \Rightarrow u \in A$.

Singular masas ¹ always exist [P1], but are hard to construct explicitly.

If $\mathcal{A} = VN(\Gamma_0)$, where Γ_0 is a subgroup of Γ , then

 $VN(\Gamma_0)$ embeds as a subalgebra of $VN(\Gamma)$ via $f \mapsto \overline{f}$, where

$$\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \Gamma_0, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 2.1. Let $\Gamma_1 < \Gamma_0 < \Gamma$, with Γ_0 abelian. Define the commutant $VN(\Gamma_1)'$ to be the centralizer of $VN(\Gamma_1)$ in $VN(\Gamma_0)$. Suppose that, for all $x \notin \Gamma_0$, the set

$$A_x = \{x_1^{-1} x x_1 : x_1 \in \Gamma_1\}$$

is infinite. Then $VN(\Gamma_1)' = VN(\Gamma_0)$. In particular, $VN(\Gamma_0)$ is a masa of $VN(\Gamma)$.

(This result is contained in [Di], in the case $\Gamma_1 = \Gamma_0$.)

¹If the unitary normalizer of \mathcal{A} generates $VN(\Gamma)$ then \mathcal{A} is a Cartan masa. $VN(\Gamma)$ may not contain a Cartan masa: e.g. $\Gamma = \mathbb{F}_2$. S. Popa [P2] has recently used Cartan masas to construct isomorphism invariants for certain II₁ factors.

Proof. Let
$$f \in \text{VN}(\Gamma_1)'$$
 and $x \notin \Gamma_0$.
Then $\delta_{x_1^{-1}} * f * \delta_{x_1} = f$ (for all $x_1 \in \Gamma_1$)
 $\Rightarrow f$ is constant on A_x
 $\Rightarrow f = 0$ on A_x (since $f \in \ell^2(\Gamma)$ and $\#A_x = \infty$)
 $\Rightarrow f(x) = 0$ (for all $x \notin \Gamma_0$)
 $\Rightarrow f \in \text{VN}(\Gamma_0)$.

There is a **conditional expectation** $\mathbb{E}_{\mathcal{A}}: VN(\Gamma) \to \mathcal{A}$ onto any masa \mathcal{A} , which extends to an orthogonal projection on $\ell^2(\Gamma)$. If $\mathcal{A} = VN(\Gamma_0)$, where Γ_0 is an abelian subgroup of Γ and if $f \in VN(\Gamma)$, then

$$\mathbb{E}_{\mathcal{A}}f(x) = \begin{cases} f(x) & \text{if } x \in \Gamma_0, \\ 0 & \text{otherwise.} \end{cases}$$

Definition. [SS] Say that \mathcal{A} is a strongly singular masa of VN(Γ) if

$$\|\mathbb{E}_{u\mathcal{A}u^*} - \mathbb{E}_{\mathcal{A}}\|_{\infty,2} \ge \|u - \mathbb{E}_{\mathcal{A}}(u)\|_2$$

for all unitaries $u \in \text{VN}(\Gamma)$. [Here $\|\cdot\|_{\infty,2}$ means: operator norm on domain, ℓ^2 norm on range.]

This condition implies that any unitary $u \in VN(\Gamma)$ which normalizes \mathcal{A} necessarily lies in \mathcal{A} . Therefore \mathcal{A} is a singular masa.

- 2.1. Construction of masas. Let Γ be an ICC group and let Γ_0 be an abelian subgroup. Here is a condition that ensures that $VN(\Gamma_0)$ is a strongly singular masa of $VN(\Gamma)$.
 - (SS) If $x_1, \ldots, x_m, y_1, \ldots, y_n \in \Gamma$ and

(2.1)
$$\Gamma_0 \subseteq \bigcup_{i,j} x_i \Gamma_0 y_j,$$

then some $x_i \in \Gamma_0$.

Theorem. Condition (SS) implies that $VN(\Gamma_0)$ is a strongly singular masa of $VN(\Gamma)$.

The proof of this result is contained in [RSS]. It can be used to construct strongly singular mass of $VN(\Gamma)$, for certain geometrically defined groups Γ , acting on spaces of nonpositive curvature.

Let G be a semisimple Lie group of rank r with no centre and no compact factors. Let Γ be a torsion free cocompact lattice in G. Then Γ acts freely on the symmetric space X = G/K and the quotient manifold $M = \Gamma \backslash X$ is a compact locally symmetric space, with fundamental group $\pi(M) = \Gamma$.

Let $T^r \subset M$ be a totally geodesic embedding of a flat r-torus in M. The inclusion $i: T^r \to M$ induces an injective homomorphism

 $i_*:\pi(T^r)\to\pi(M).$ (Reason: no geodesic loop in M can be null-homotopic.)

Let $\Gamma_0 = i_*\pi(T^r) \cong \mathbb{Z}^r < \Gamma$. Under these assumptions, the following results hold.

Theorem A. $VN(\Gamma_0)$ is a masa of $VN(\Gamma)$.

Theorem B. [RSS] Let σ be the length of a shortest closed geodesic in M. If diam $(T^r) < \sigma$ then $VN(\Gamma_0)$ is a strongly singular masa of $VN(\Gamma)$.

3. Proofs

Theorem A is a consequence of a stronger result. Recall that a geodesic L in X is regular if it lies in only one maximal flat. See the appendix below for further details. A regular geodesic in $M = \Gamma \setminus X$ is, by definition, the image of a regular geodesic in X under the canonical projection. It follows from [Mo, §11] that T^r contains a closed regular geodesic.

Theorem A'. Let $x_1 \in \Gamma_0$ be the class of a regular closed geodesic c in T^r , and

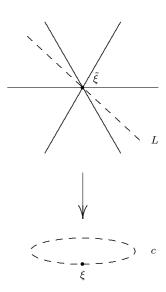
$$\Gamma_1 = \langle x_1 \rangle \cong \mathbb{Z} < \Gamma_0.$$

Then $VN(\Gamma_1)' = VN(\Gamma_0)$.

Consequently $VN(\Gamma_0)$ is the unique masa containing $VN(\Gamma_1)$.

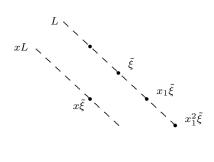
Proof of Theorem A'. (Using Lemma 2.1.)

Lift c to a geodesic L in X through $\tilde{\xi}$, where $p(\tilde{\xi}) = \xi$.



Regularity of the geodesic c means that L lies in a unique maximal flat F_0 and $p(F_0) = T^r$.

Now x_1 acts on L by translation.



Suppose that $A_x = \{x_1^{-n}xx_1^n : n \in \mathbb{Z}\}$ is finite, and let

$$\delta = \sup\{d(\eta, x_1^{-n} x x_1^n \eta) : \eta \in [\tilde{\xi}, x_1 \tilde{\xi}], n \in \mathbb{Z}\}.$$

Then

$$d(x_1^n \eta, x x_1^n \eta) \le \delta \quad (\eta \in [\tilde{\xi}, x_1 \tilde{\xi}], n \in \mathbb{Z}).$$

Therefore

$$d(\zeta, x\zeta) \leq \delta$$
 for all $\zeta \in L$.

In other words, L is a parallel translate of xL. This implies that L and xL lie in a common maximal flat, namely F_0 . In particular $x\tilde{\xi} \in F_0$. It follows that $p[\tilde{\xi}, x\tilde{\xi}]$ is a closed geodesic in T^r . Consequently $x \in \Gamma_0$. \square

Rather than proving Theorem B in complete generality, we prove a special case of it, which contains all the essential ideas of the general proof [RSS].

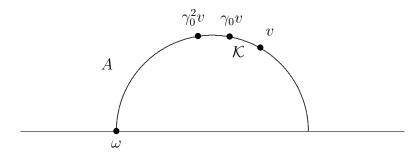
Corollary. Let $\Gamma = \pi(M_g)$, the fundamental group of a compact Riemann surface M_g of genus $g \geq 2$. Let c be a closed geodesic of minimal length σ in M_g . Let $\gamma_0 = [c] \in \Gamma$, and let $\Gamma_0 \cong \mathbb{Z}$ be the subgroup of Γ generated by γ_0 . Then $VN(\Gamma_0)$ is a strongly singular masa of the II_1 factor $VN(\Gamma)$.

Proof. This uses condition (SS). The universal covering of M_g is the Poincaré upper half-plane

$$\mathfrak{H} = \{ z \in \mathbb{C} : \Im z > 0 \}.$$

The boundary of \mathfrak{H} is $\partial \mathfrak{H} = \mathbb{R} \cup \{\infty\}$. Also Γ acts isometrically on \mathfrak{H} . The minimal closed geodesic c lifts to a geodesic A in \mathfrak{H} . Fix $v \in A$, and let $\mathcal{K} = [v, \gamma_0 v]$. Then

(3.1)
$$A = \bigcup_{n \in \mathbb{Z}} \gamma_0^n \mathcal{K} = \Gamma_0 \mathcal{K}.$$



Suppose that $x_1, \ldots, x_m, y_1, \ldots, y_n \in \Gamma$ and

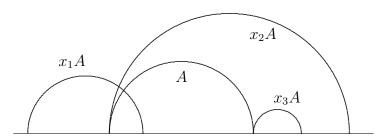
(3.2)
$$\Gamma_0 \subseteq \bigcup_{i,j} x_i \Gamma_0 y_j.$$

Let
$$\delta = \max\{d(y_j \kappa, \kappa); 1 \leq j \leq n, \ \kappa \in \mathcal{K}\}$$
. Then
$$y_j \mathcal{K} \subset_{\delta} \mathcal{K} \implies \Gamma_0 y_j \mathcal{K} \subset_{\delta} \Gamma_0 \mathcal{K} = A$$
$$\Rightarrow x_i \Gamma_0 y_j \mathcal{K} \subset_{\delta} x_i A$$

[Here the notation $P \subset Q$ means that $d(p,Q) \leq \delta$, for all $p \in P$.] Hence

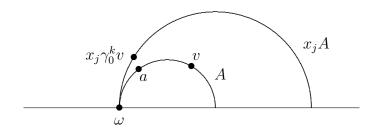
(3.3)
$$A = \Gamma_0 \mathcal{K} \subset x_1 A \cup x_2 A \cup \cdots \cup x_m A.$$

This implies that each boundary point of A is a boundary point of some x_jA .



Now $\omega = \gamma_0^{\infty} v$ is a boundary point of some $x_j A$. We show that this implies $x_j \in \Gamma_0$. Choose $k \in \mathbb{Z}$, $a \in A$ such that

$$d(x_j \gamma_0^k v, a) < \frac{\sigma}{2} .$$



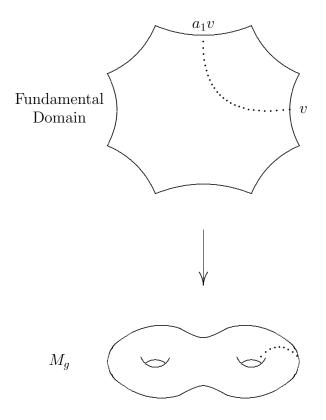
Then $d(\gamma_0^{-\ell}x_j\gamma_0^kv,v)=d(x_j\gamma_0^kv,\gamma_0^\ell v)\leq d(x_j\gamma_0^kv,a)+d(a,\gamma_0^\ell v)<\sigma.$ This implies $\gamma_0^{-\ell}x_j\gamma_0^k=1$. For otherwise $[v,\gamma_0^{-\ell}x_j\gamma_0^kv]$ projects to a closed geodesic in M_g of length $<\sigma.$ Therefore $x_j=\gamma_0^{\ell-k}\in\Gamma_0.$

Therefore
$$x_i = \gamma_0^{\ell-k} \in \Gamma_0$$
.

In the usual presentation of $\pi(M_q)$,

$$\Gamma = \left\langle a_1, \dots, a_g, b_1, \dots, b_g \middle| \prod_{i=1}^g [a_i, b_i] = 1 \right\rangle$$

we can take $\gamma_0 \in \{a_i^{\pm 1}, b_i^{\pm 1}\}.$



3.1. The ICC Property. Recall that $VN(\Gamma)$ is a II_1 factor if and only if the group Γ is ICC. If Γ were a lattice in a semisimple Lie group then the argument of [GHJ, Lemma 3.3.1] (which uses the Borel density theorem) proves that Γ is ICC. However not all the groups of interest to us are embedded in a natural way as subgroups of linear groups. We therefore show how to use a geometric argument to verify the ICC property of Γ . This argument applies much more generally; in particular to the group actions on buildings which we consider later.

Proposition. A group Γ of isometries of \mathfrak{H} which acts cocompactly on \mathfrak{H} is ICC.

Proof. By assumption, $\Gamma \mathcal{K} = \mathfrak{H}$ where $\mathcal{K} \subset \mathfrak{H}$ is compact.

Let $x \in \Gamma - \{1\}$. Suppose that $C = \{y^{-1}xy : y \in \Gamma\}$ is finite.

Let $\delta = \max\{d(\kappa, y^{-1}xy\kappa) : \kappa \in \mathcal{K}, y \in \Gamma\}$. Then

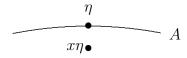
$$d(y\kappa, xy\kappa) = d(\kappa, y^{-1}xy\kappa) \le \delta, \qquad y \in \Gamma, \kappa \in \mathcal{K}.$$

Therefore, for all $\xi \in \mathfrak{H}$

$$(3.4) d(\xi, x\xi) \le \delta.$$

Choose $\eta \in \mathfrak{H}$ such that $x\eta \neq \eta$

Choose a geodesic A in \mathfrak{H} with $\eta \in A$, $x\eta \notin A$.



Now it follows from (3.4) that $A \subset xA$. This implies that A = xA. In particular $x\eta \in A$, a contradiction.

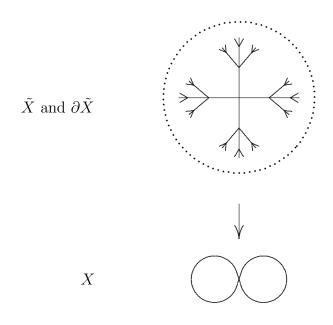
3.2. A Free Group Analogue. If X is a finite connected graph with fundamental group $\Gamma = \pi(X)$ then Γ is a finitely generated free group. Also Γ acts freely and cocompactly on the universal covering tree \tilde{X} with boundary $\partial \tilde{X}$. Let $\Gamma_0 \cong \mathbb{Z}$ be the subgroup of Γ generated by one of the free generators of Γ .

This setup is a combinatorial analogue of the Corollary above, where the fundamental group Γ of a Riemann surface acts on the Poincaré upper half plane. Exactly the same proof shows that Γ, Γ_0 , satisfy condition (SS).

In the figure below, $\Gamma = \mathbb{Z} \star \mathbb{Z} = \langle a, b \rangle$, the free group on two generators and $\Gamma_0 = \langle a \rangle \cong \mathbb{Z}$. Thus $VN(\Gamma_0)$ is a strongly singular masa of $VN(\Gamma)$.

3.3. **Euclidean Buildings.** More generally, suppose Γ acts freely and transitively on the vertex set of a euclidean building Δ and Γ_0 is an abelian subgroup which acts transitively on the vertex set of an apartment (flat). Then $VN(\Gamma_0)$ is a strongly singular mass of $VN(\Gamma)$. [The proof is essentially the same as that of Theorem B.]

There exist many examples where $\Gamma < \operatorname{PGL}_3(\mathbb{K})$, \mathbb{K} a nonarchimedean local field [CMSZ].



Example: $\mathbb{K} = \mathbf{F}_4((X))$, the field of Laurent series with coefficients in the field \mathbf{F}_4 with four elements. Let Γ be the torsion free group with generators $x_i, 0 \le i \le 20$, and relations (written modulo 21):

$$\begin{cases} x_j x_{j+7} x_{j+14} = x_j x_{j+14} x_{j+7} = 1 & 0 \le j \le 6, \\ x_j x_{j+3} x_{j-6} = 1 & 0 \le j \le 20. \end{cases}$$

For each j, $0 \le j \le 6$,

$$\Gamma_0 = \langle x_j, x_{j+7}, x_{j+14} \rangle \cong \mathbb{Z}^2$$

satisfies the hypotheses.

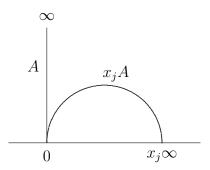
3.4. **A Borel subgroup.** The geometric methods outlined above apply also to other situations. Here is an example.

Proposition. Let Γ be the upper triangular subgroup of $\mathrm{PSL}_n(\mathbb{Q})$, $n \geq 2$, and let Γ_0 be the diagonal subgroup of Γ . Then $\mathrm{VN}(\Gamma_0)$ is a strongly singular masa of $\mathrm{VN}(\Gamma)$.

We illustrate the proof in the case n=2. Here Γ acts on the Poincaré upper half plane \mathfrak{H} .

$$\Gamma = \{g \in \mathrm{PSL}_2(\mathbb{Q}) : g\infty = \infty\} = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix}.$$

$$\Gamma_0 = \{g \in \Gamma : g0 = 0\} = \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}.$$



Note that Γ_0 stabilizes the geodesic

$$A = \mathbb{R}^+ i$$

= $\Gamma_0 \mathcal{K}$, where $\mathcal{K} = [i, 2i]$.

In order to show that condition (SS) holds, proceed as in the proof of the Corollary in Section 3. As in (3.3), suppose that

$$A \subset x_1 A \cup x_2 A \cup \cdots \cup x_m A$$
,

for some $x_1, \ldots, x_m \in \Gamma$, and $\delta > 0$. Then 0 is a boundary point of some x_jA . Now since $x_j \in \Gamma$, $x_j\infty = \infty$. Therefore $x_jA = A$ and $x_j0 = 0$. It follows that $x_j \in \Gamma_0$.

4. APPENDIX: SYMMETRIC SPACES

We conclude with a quick summary of some essential facts about symmetric and locally symmetric spaces [BH].

Let G be a semisimple Lie group with no centre and no compact factors.

The corresponding symmetric space is X = G/K where K is a maximal compact subgroup.

The rank r of X is the dimension of a maximal flat in X. That is, the maximal dimension of an isometrically embedded euclidean space in X.

A geodesic L in X is regular if it lies in only one maximal flat; it is called singular if it is not regular.

Let F be a maximal flat in X and let $x \in F$. Let S_x denote the union of all the singular geodesics through x. A connected component of $F - S_x$ is called a Weyl chamber with origin x.

Example Consider a rank 2 example.

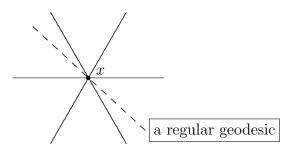
$$G = \operatorname{SL}_3(\mathbb{R})$$

 $X = \{x \in \operatorname{SL}_3(\mathbb{R}) : x \text{ is positive definite } \}$

G acts transitively on X by $x \mapsto gxg^t$ and the stabilizer of I is $SO_3(\mathbb{R})$. Therefore

$$X = \mathrm{SL}_3(\mathbb{R})/\mathrm{SO}_3(\mathbb{R})$$

A maximal flat F is 2-dimensional. There are six Weyl chambers in F with a given origin $x \in F$.

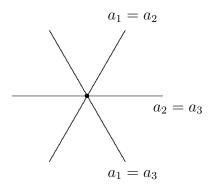


A flat through I has the form $\exp \mathfrak{a}$, where \mathfrak{a} is a linear subspace of $S_n(\mathbb{R}) = \{x \in \mathrm{M}_n(\mathbb{R}) : x = x^t, \, \mathrm{trace}(x) = 0\}$ (the tangent space at I) such that xy = yx for all $x, y \in \mathfrak{a}$.

The geodesic $t \mapsto \exp tx$ through I in X is regular if and only if the eigenvalues of $x \in S_n(\mathbb{R})$ are all distinct. To see why this is so, consider

$$\mathfrak{a}_0 = \{ \operatorname{diag}(a_1, a_2, a_3) : a_1 + a_2 + a_3 = 0 \}.$$

Parametrize elements of \mathfrak{a}_0 by points on a plane through the origin in \mathbb{R}^3 , as in the figure below.



If a_1, a_2, a_3 are all distinct then a matrix in $S_n(\mathbb{R})$ which commutes with $a = \operatorname{diag}(a_1, a_2, a_3)$ is necessarily diagonal and so lies in \mathfrak{a}_0 . Thus the geodesic $t \mapsto \exp ta$ lies in a unique maximal flat $\exp \mathfrak{a}_0$

4.1. Locally Symmetric Spaces. Let Γ be a torsion free cocompact lattice in G.

 $M = \Gamma \backslash X$ is a compact locally symmetric space of nonpositive curvature.

X = G/K is the universal covering space of M and the fundamental group of M is $\pi(M) = \Gamma$.

References

- [BH] M. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*, Springer-Verlag, Berlin, 1999.
- [CMSZ] D. I. Cartwright, A. M. Mantero, T. Steger, and A. Zappa, Groups acting simply transitively on the vertices of a building of type \tilde{A}_2 , I & II, Geom. Ded. 47 (1993), 143–166 and 167–226.
- [Co] A. Connes, Classification of injective factors, Ann. of Math. 104 (1976), 73– 115.
- [Di] J. Diximer, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. Math. 59 (1954), 279–286
- [Ga] P. Garrett, Buildings and Classical Groups, Chapman and Hall, London, 1997.
- [GHJ] F. Goodman, P. de la Harpe and V. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications 14, Springer-Verlag, New York, 1989.
- [Ha] P. de la Harpe, Topics in Geometric Group Theory, Chicago, 2000.
- [LY] H. B. Lawson and S. T. Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972), 211–228.
- [Mo] G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Princeton, New Jersey, 1973.
- [P1] S. Popa, Singular maximal abelian *-subalgebras in continuous von Neumann algebras, J. Funct. Anal., **50** (1983), 151–166.
- [P2] S. Popa, On a class of II_1 factors with Betti number invariants, preprint, U.C.L.A..
- [RS] G. Robertson and T. Steger, Maximal subalgebras of the group factor of an \tilde{A}_2 group, J. Operator Theory, **36** (1996), 317–334.
- [RSS] G. Robertson, A. M. Sinclair and R. R. Smith, Strongly singularity for subalgebras of finite factors, *Int. J. Math.*, **14** (2003), 235–258.
- [SS] A. M. Sinclair and R. R. Smith, Strongly singular masas in type II₁ factors, Geom. and Funct. Anal., 12 (2002), 199–216.

School of Mathematics and Statistics, University of Newcastle, NE1 $7\mathrm{RU},\,\mathrm{U.K.}$

 $E ext{-}mail\ address: A.G. Robertson@newcastle.ac.uk}$