SINGULAR MASAS OF VON NEUMANN ALGEBRAS:
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NONPOSITIVE CURVATURE
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ABSTRACT. IfT' is a group, then the von Neumann algebra VN (I")
is the convolution algebra of functions f € /5(I') which act by
convolution on #5(T") as bounded operators. Maximal abelian *-
subalgebras (masas) of von Neumann algebras have been studied
from the early days.

If T is a torsion free cocompact lattice in a semisimple Lie group
G of rank r with no centre and no compact factors then the ge-
ometry of the symmetric space X = G/K may be used to define
and study masas of VN (T'). These masas are of the form VN(T'y),
where T’y is the period group of some I'-periodic maximal flat in
X. There is a similar construction if I' is a lattice in a p-adic Lie
group G, acting on its Bruhat-Tits building.

Consider the compact locally symmetric space M = I'\X. As-
sume that 7" is a totally geodesic flat torus in M and let I'g = Z"
be the image of the fundamental group «(7") under the natural
monomorphism from 7(7T") into I' = 7(M). Then VN(T'y) is a
masa of VN(I'). If in addition diam(7™) is less than the length of
a shortest closed geodesic in M then VN(T'g) is a singular masa :
its unitary normalizer is as small as possible. This last result is
joint work with A. M. Sinclair and R. R. Smith [RSS].

1. BACKGROUND

Let I be an ICC group: each element in I' other than the identity
has infinite conjugacy class. The group von Neumann algebra is the
convolution algebra

VN{I) ={fe€PI): g fxg isin B(*I))}.

It is well known that VN(I') is a factor of type II;. This means

(a) VN(T') is a strongly closed x-subalgebra of B(¢*(T")), with trivial
centre;

(b) there is a faithful trace on VN(I") defined by tr(f) := f(1).
The group I' may be embedded as a subgroup of the unitary group of
VN(I') by identifying an element v € I" with the corresponding delta
function d,. A major result of A. Connes [Co, Corollary 3] implies:
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Theorem. (A. Connes) If I';,I'y are countable amenable ICC groups
then VN(I'y) = VN(I'y), the algebra being isomorphic to the hyperfinite
II; factor.

At the opposite extreme from amenable groups there is the

Rigidity Conjecture (A. Connes) If ICC groups I'y,I's have Property
(T) of Kazhdan, then

VN(I'y) 2 VN(Iy) = Ty & T,

Compare this with the

Rigidity Theorem (Mostow-Margulis-Prasad) For i = 1,2, let I'; be
a lattice in G;, a connected non-compact simple Lie group with trivial
centre, G7 # PSLy(R). Then

F1§F2:>G1§G2.

In Mostow’s proof of rigidity ([Mo]: the cocompact, higher rank
case), maximal flats of symmetric spaces play an important role. There
is some reason to hope that masas of von Neumann algebras might play
a similar role for Connes’ conjecture.

2. MAXIMAL ABELIAN *x-SUBALGEBRAS

Let A be a maximal abelian x-subalgebra (masa) of VN(I'). Say that
A is a singular masa if :
u € VN(I'), w unitary, udu* = A = u € A.
Singular masas ! always exist [P1], but are hard to construct explicitly.
If A= VN(Ty), where I'y is a subgroup of I', then
VN(T'y) embeds as a subalgebra of VN(I') via f — f, where

- {f(:r) it v €Iy,

0 otherwise.

Lemma 2.1. Let 'y < I'g < T', with Iy abelian. Define the commutant
VN(I'y)" to be the centralizer of VN(I'y) in VN(I'g). Suppose that, for
all z ¢ Ty, the set

Ay = {a zwy 2y € T4}
is infinite. Then VN(I'y)" = VN(T'g). In particular, VN(I'y) is a masa
of VN(I').

(This result is contained in [Di], in the case I'y = I'y.)
UIf the unitary normalizer of A generates VN(T') then A is a Cartan masa. VN(T')

may not contain a Cartan masa: e.g. I' = Fy. S. Popa [P2] has recently used Cartan
masas to construct isomorphism invariants for certain II; factors.



Proof. Let f € VN(I'1) and = ¢ T'y.

Then 0,1 % f 0, = f (for all z; € I'y)

= f is constant on A,

= f=0o0n A, (since f € (*(T") and #A, = o)

= f(x) =0 (forall z ¢ I'p)

= F € VN(Iy). 0

There is a conditional expectation E,4 : VN(I') — A onto any
masa A, which extends to an orthogonal projection on ¢*(T). If A =
VN(Ty), where I'y is an abelian subgroup of I" and if f € VN(I'), then

Ef(x) = {f(x) if x € Ty,

0 otherwise.

Definition.[SS| Say that A is a strongly singular masa of VN(T') if
[Buaur = Eallooz = [lu = Ea(u)l2

for all unitaries u € VN(T"). [Here || - |2 means: operator norm on
domain, ¢? norm on range.]

This condition implies that any unitary u € VN(I') which normalizes
A necessarily lies in A. Therefore A is a singular masa.

2.1. Construction of masas. Let I' be an ICC group and let 'y be
an abelian subgroup. Here is a condition that ensures that VN(I'y) is
a strongly singular masa of VN(T).

(SS) Ifzy,...,zmy1,...,yn € I'and
(2.1) o € | JiToy; .

/L‘?j

then some x; € I'y.

Theorem. Condition (SS) implies that VN(I'g) is a strongly singular
masa of VN(I').

The proof of this result is contained in [RSS]. It can be used to
construct strongly singular masas of VN(I'), for certain geometrically
defined groups I', acting on spaces of nonpositive curvature.

Let G be a semisimple Lie group of rank r with no centre and no
compact factors. Let I' be a torsion free cocompact lattice in G. Then I'
acts freely on the symmetric space X = G/ K and the quotient manifold
M = T'\X is a compact locally symmetric space, with fundamental
group m(M) =T.

Let T" C M be a totally geodesic embedding of a flat r-torus in
M. The inclusion ¢ : T — M induces an injective homomorphism
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iw : m(TT) — w(M). (Reason: no geodesic loop in M can be null-
homotopic.)

Let I'g = 4,m(T7) = Z" < T". Under these assumptions, the following
results hold.

Theorem A. VN(I'y) is a masa of VN(I').

Theorem B. [RSS| Let o be the length of a shortest closed geodesic
in M. If diam(T") < o then VN(I'g) is a strongly singular masa of
VN(D).

3. PROOFS

Theorem A is a consequence of a stronger result. Recall that a
geodesic L in X is regular if it lies in only one maximal flat. See the
appendix below for further details. A regular geodesic in M = I'\ X is,
by definition, the image of a regular geodesic in X under the canonical
projection. It follows from [Mo, §11] that 7" contains a closed regular
geodesic.

Theorem A’. Let x; € I'y be the class of a regular closed geodesic ¢
in T", and
) = (2;) 2 Z < T.
Then VN(I';)' = VN(I).
Consequently VN(I'g) is the unique masa containing VN(I'y).
Proof of Theorem A’.  (Using Lemma 2.1.)
Lift ¢ to a geodesic L in X through &, where p(€) = €.
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Regularity of the geodesic ¢ means that L lies in a unique maximal
flat Fy and p(Fy) =T
Now x; acts on L by translation.

Suppose that A, = {z;"za] : n € Z} is finite, and let

0 = sup{d(n, zy"wx{n) : n € [§,2:&],n € Z}.
Then o
d(x?Th Iiﬂfn) < o (77 < [57‘7315]7 n < Z)
Therefore
d(¢,z¢) < forall ¢ € L.
In other words, L is a parallel translate of L. This implies that L and
zL lie in a common maximal flat, namely Fy. In particular z€ € Fy. It
follows that p[ét , :1:5] is a closed geodesicin T". Consequently x € T'y. [

Rather than proving Theorem B in complete generality, we prove a
special case of it, which contains all the essential ideas of the general

proof [RSS].

Corollary. Let I' = w(M,), the fundamental group of a compact Rie-
mann surface My of genus g > 2. Let ¢ be a closed geodesic of minimal
length o in M,. Let v = [c] € I', and let 'y = Z be the subgroup of
[' generated by ~vo. Then VN(I'g) is a strongly singular masa of the 11;
factor VN(I').

Proof. This uses condition (SS). The universal covering of M, is the
Poincaré upper half-plane

H={z€C:3z>0}.

The boundary of $ is 99 = RU {oco}. Also I' acts isometrically on $.
The minimal closed geodesic c lifts to a geodesic A in §. Fix v € A,
and let K = [v,7v]. Then

(3.1) A=|JWK=ToK.

nezZ
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Suppose that xq,...,2Zm, y1,...,y, € I and
12
Let 0 = max{d(y;r,x);1 < j <n, k € C}. Then
y;K < K = TyyK < Lo =A

[Here the notation P - () means that d(p, Q) < 9, for all p € P]
Hence

This implies that each boundary point of A is a boundary point of
some z;A.

Now w = 7§°v is a boundary point of some x;A. We show that this
implies z; € I'g. Choose k € Z, a € A such that

d(z75v,a) < %.




T voa oV
Choose ¢ € Z such that d(a, v5v) < 5. e e,
< ---- >

Then d(7, ‘x50, v) = d(z;76v,v6v) < d(z;750,a) + d(a, y5v) < 0.
This implies v, ‘z;78 = 1. For otherwise [v, 7, @;76v] projects to a
closed geodesic in M, of length < o.

Therefore z; = 75" € Ty. 4

In the usual presentation of m(M,),

H[ai,bi] = 1>

F:<a1,...,ag,bl,...,bg

:I:I’bzl:l}.

i .

we can take v € {a;", ]

av

Fundamental
Domain

3.1. The ICC Property. Recall that VN(I') is a II; factor if and
only if the group I' is ICC. If " were a lattice in a semisimple Lie
group then the argument of [GHJ, Lemma 3.3.1] (which uses the Borel
density theorem) proves that I' is ICC. However not all the groups
of interest to us are embedded in a natural way as subgroups of linear
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groups. We therefore show how to use a geometric argument to verify
the ICC property of I'. This argument applies much more generally;
in particular to the group actions on buildings which we consider later.

Proposition. A group I' of isometries of § which acts cocompactly on

9 is ICC.

Proof. By assumption, I'C = § where K C § is compact.
Let z € T' — {1}. Suppose that C' = {y~tzy : y € T'} is finite.
Let § = max{d(k,y 'ayr): k € K,y € T'}. Then

d(yk, zyr) = d(k,y ‘oyr) <6, yel,kek.
Therefore, for all £ € §
(3.4) d(¢, 7€) < 6.

Choose 1 € § such that xn # 7,
Choose a geodesic A in $ with n € A, an ¢ A.

n
//—.\A

Tne

Now it follows from (3.4) that A - xA. This implies that A = xA.

In particular xn € A, a contradiction. O

3.2. A Free Group Analogue. If X is a finite connected graph with
fundamental group I' = 7(X) then I' is a finitely generated free group.
Also T' acts freely and cocompactly on the universal covering tree X
with boundary X. Let Ty 2 Z be the subgroup of I' generated by one
of the free generators of I'.

This setup is a combinatorial analogue of the Corollary above, where
the fundamental group I' of a Riemann surface acts on the Poincaré
upper half plane. Exactly the same proof shows that I',I'y, satisfy
condition (SS).

In the figure below, I'
generators and I'y = (a)
masa of VN(I').

Z x 7 = {a,b), the free group on two
Z. Thus VN(I'y) is a strongly singular

e |

3.3. Euclidean Buildings. More generally, suppose [" acts freely and
transitively on the vertex set of a euclidean building A and I’y is an
abelian subgroup which acts transitively on the vertex set of an apart-
ment (flat). Then VN(I'g) is a strongly singular masa of VN(I'). [The
proof is essentially the same as that of Theorem B.]

There exist many examples where I' < PGL3(K), K a nonarchimedean
local field [CMSZ].



- A A
X and 0X / \ ;

Example: K = F,((X)), the field of Laurent series with coefficients
in the field F4 with four elements. Let I be the torsion free group with
generators x;,0 < i < 20, and relations (written modulo 21):

TjTjp7i414 = TjTjp1aTipr =1 0575 <6,
TjTj43Tj—6 = 1 0 S] < 20.
For each 7, 0 < j <6,

2
Lo = (), xj47,%j414) =7

satisfies the hypotheses.

3.4. A Borel subgroup. The geometric methods outlined above ap-
ply also to other situations. Here is an example.

Proposition. Let I" be the upper triangular subgroup of PSL,(Q),
n > 2, and let 'y be the diagonal subgroup of I'. Then VN(I'y) is a
strongly singular masa of VN(I').

We illustrate the proof in the case n = 2. Here I' acts on the Poincaré
upper half plane $.

Fz{gePsm(@):goo:oo}:[; }

* 0
Foz{geF:gO:O}:[O *]
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Note that I'y stabilizes the geodesic
A = R
= [k, where I = [i, 2i].

In order to show that condition (SS) holds, proceed as in the proof of
the Corollary in Section 3. As in (3.3), suppose that

A%xlAngAU--~UxmA,

for some xy,...,2, € [, and 4 > 0. Then 0 is a boundary point of
some z;A. Now since z; € I', ;00 = oco. Therefore ;A = A and
x;0 = 0. It follows that z; € I'y. O

4. APPENDIX: SYMMETRIC SPACES

We conclude with a quick summary of some essential facts about
symmetric and locally symmetric spaces [BH].

Let G be a semisimple Lie group with no centre and no compact
factors.

The corresponding symmetric space is X = G /K where K is a max-
imal compact subgroup.

The rank r of X is the dimension of a maximal flat in X. That is,
the maximal dimension of an isometrically embedded euclidean space
in X.

A geodesic L in X is regular if it lies in only one maximal flat; it is
called singular if it is not regular.

Let F' be a maximal flat in X and let x € F. Let S, denote the
union of all the singular geodesics through z. A connected component
of FF— S, is called a Weyl chamber with origin x.

Example Consider a rank 2 example.
X = {ze€SL3(R):x is positive definite }

G acts transitively on X by z — gzg' and the stabilizer of I is SO3(R).
Therefore
X = SLy(R) /SOs (R)
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A maximal flat F'is 2-dimensional. There are six Weyl chambers in F’
with a given origin z € F.

N ’ a regular geodesic ‘

A flat through I has the form exp a, where a is a linear subspace of
Sp(R) = {x € M,,(R) : # = 2', trace(x) = 0} (the tangent space at I)

such that xy = yx for all z,y € a.
The geodesic t — exptx through I in X is regular if and only if the
eigenvalues of x € 5,(R) are all distinct. To see why this is so, consider
ag = {diag(al, as, ag) ap +as +az = 0}

Parametrize elements of ag by points on a plane through the origin in
R3, as in the figure below.

a; = a9
a9 = asg
a1 = as

If a1, a9, a3 are all distinct then a matrix in S, (R) which commutes
with a = diag(ay, ag, a3) is necessarily diagonal and so lies in ay. Thus
the geodesic t — expta lies in a unique maximal flat exp ay

4.1. Locally Symmetric Spaces. Let I be a torsion free cocompact
lattice in G.

M =T\X is a compact locally symmetric space of nonpositive cur-
vature.

X = G/K is the universal covering space of M and the fundamental
group of M is (M) =T.
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