
TRIANGLE BUILDINGS AND ACTIONS OF TYPE
III1/q2

JACQUI RAMAGGE AND GUYAN ROBERTSON

Abstract. We study certain group actions on triangle buildings
and their boundaries and some von Neumann algebras which can
be constructed from them. In particular, for buildings of order
q ≥ 3 certain natural actions on the boundary are hyperfinite of
type III1/q2 .

1. Introduction

We begin with a triangle building ∆ whose one-skeleton is the Cayley
graph of a group Γ, so that Γ acts simply-transitively on the vertices of
∆ by left multiplication. The group Γ (often referred to as an Ã2 group)
has a relatively simple combinatorial structure, yet also has Kazhdan’s
property (T) [CMS]. It is interesting to note that not all such groups Γ
can be embedded naturally as lattices in PGL (3,K) where K is a local
field [CMSZ, II §8]. As a tool in our studies we introduce the notion of a
periodic apartment in ∆ . We prove several useful facts about periodic
apartments and the periodic limit points they define on the boundary,
Ω, of ∆. The boundary Ω is a totally disconnected compact Hausdorff
space and there is a family of mutually absolutely continuous Borel
probability measures {νv} on Ω indexed by the vertices of ∆. We show
that periodic boundary points form a dense subset of the boundary of
trivial measure with respect to this class. We also prove that the only
boundary points stabilized by the action of Γ are the periodic limit
points. This enables us to deduce that the action of Γ on Ω is free. By
analogy with the tree case we show that the action of Γ on Ω is also
ergodic, thus establishing that L∞(Ω)o Γ is a factor. Since the action
of Γ is amenable, L∞(Ω) o Γ is a hyperfinite factor. In Theorem 4.9
we prove that, if q ≥ 3, L∞(Ω) o Γ is in fact the hyperfinite factor
of type III1/q2 . The corresponding result for homogeneous trees was
proved in [RR].

This research was funded by the Australian Research Council.
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In §4.2, we consider the action of some other groups G acting on
triangle buildings and we show that, under certain conditions, the ac-
tion is of type III1/q2 . In particular, Theorem 4.11 asserts that if Ω is
the boundary of the building associated to PGL (3,Fq((X))), then the
action of PGL (3,Fq(X)) is of type III1/q2 .

The work on periodic apartments was initially motivated by some
of the material in [MSZ], where the authors first met the notion of
doubly periodic apartments. In [Mo], S. Mozes had previously proved
the abundance of doubly periodic apartments in a different context. He
used them to obtain deep results on dynamical systems. We generalize
the notion of doubly periodic apartments introduced in that paper to
that of periodic apartments and prove some surprising properties these
generalizations possess. The proof of Theorem 2.3 appeared in [MSZ],
but is included for the insight it provides, and Corollary 2.7 appeared
as a lemma, without reference to a result analogous to Lemma 2.4.

1.1. Triangle Buildings. We refer the reader to [Br] and [R] for more
details of the following facts on buildings.

A triangle building is a thick affine building ∆ of type Ã2. Thus
∆ is a simplicial complex of rank 2 and consists of vertices, edges and
triangles. We call the maximal simplices, i.e. the triangles, chambers.
The vertices in ∆ have one of three types and every chamber contains
precisely one vertex of each type. Thus there is a type map τ defined
on the vertices of ∆ such that τ(v) ∈ Z/3Z for each vertex v ∈ ∆.
An automorphism g of ∆ is said to be type-rotating if there exists
i ∈ {0, 1, 2} such that τ(gv) = τ(v) + i for all vertices v ∈ ∆, and
is said to be type-preserving if i = 0. We denote by Auttr(∆) the
group of all type-rotating automorphisms of ∆. We shall assume that
each edge lies on a finite number of chambers, in which case each edge
lies on precisely q + 1 chambers for some integer q ≥ 2 and we call q
the order of ∆. There is a well-defined W -valued distance function
on the simplices of ∆ where W is the affine Coxeter group of type Ã2.
The length function | · | on W enables us to define an integer-valued
distance function d on ∆. Given a simplex σ ∈ ∆, the residue, or star
determined by σ is the set of all simplices ρ satisfying d(σ, ρ) = 1.

An apartment A in ∆ is a subcomplex isomorphic to the Coxeter
complex of type Ã2. Hence each apartment A can be realized as a
Euclidean plane tesselated by equilateral triangles. A root in ∆ is a
root in any apartment A of ∆. That is to say, a root is a half plane in
a geometric realization of A. A wall in ∆ is a wall in any apartment A
and a sector is a simplicial cone in some apartment. Two sectors are
said to be equivalent, or parallel, if they contain a common subsector.
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Given any vertex v and any chamber C in a common apartment A,
their convex hull in A must in fact be contained in every apartment
which contains both v and C. We note that given a vertex v ∈ A
we can decompose A into six sectors emanating from, or based at, v.
Consider two such sectors S1,S2 which are opposite each other, as in
Figure 1. The convex hull of S1 and S2 is all of A, so that S1 and S2

uniquely determine A.

•v
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Figure 1. Opposite sectors in an apartment.

Remark . There are an uncountable number of apartments containing
any given vertex v ∈ ∆. To see this, suppose that R is any root
containing v. Without loss of generality, suppose v is on the outside
wall W of R as in Figure 2.

Consider any edge on W , say E1. By thickness there exist at least
two distinct chambers, C1 and C2, incident on E1 which are not in R.
Adjoining either of these chambers will uniquely determine new roots
Ri which are the convex hulls of Ci and R. Note that R1 6= R2 since
they differ in at least Ci, and hence everywhere on Ri \ R. Let Wi be
the new outside wall of Ri. See Figure 3.

Now repeat the process for each root Ri. Continuing in this manner,
we obtain apartments containing the vertex v ∈ ∆. The contractability
of ∆ implies that these apartments intersect only in R. Using this
method we have constructed at least as many apartments containing v
as there are binary expansions. We therefore conclude that the number
of apartments containing v is uncountable.
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•
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Figure 2. A root R containing the vertex v.

•
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W Wi

R

Ri \ R
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Figure 3. Extending the root R to a root Ri.

1.2. The Boundary and its Topology. Let Ω be the set of equiv-
alence classes of sectors in ∆. Given any ω ∈ Ω and any fixed vertex
v there is a unique sector Sv(ω) in the equivalence class ω based at
v. The unique chamber C ∈ Sv(ω) containing v is called the base
chamber of Sv(ω). Suppose that Sv(ω) has base chamber C. For each
vertex u ∈ S, we denote the convex hull of u and C by Iu

v (ω). We
illustrate such a convex hull Iu

v (ω) as a shaded region in Figure 4.
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Sv(ω)
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Figure 4. Region Iu
v (ω) of Sv(ω).

Ω is in fact the set of chambers of the spherical building ∆∞ at
infinity associated to ∆. We shall refer to Ω as the boundary of ∆.
This boundary is a totally disconnected compact Hausdorff space with
a base for the topology consisting of sets of the form

Uu
v (ω) = {ω′ ∈ Ω : Iu

v (ω) ⊆ Sv(ω
′)}

where v is an arbitrary vertex, ω ∈ Ω and u isany vertex in Sv(ω) [CMS].
Note that Uu

v (ω′) = Uu
v (ω) whenever ω′ ∈ Uu

v (ω). The sets Uu
v (ω) form

a basis of open and closed sets for the topology on Ω. This topology is
independent of the vertex v [CMS, Lemma 2.5].

1.3. Triangle Groups. Let (P, L) be a finite projective plane of order
q. Thus there are |P | = q2 + q +1 points and |L| = q2 + q +1 lines with
each point lying on q + 1 lines and each line having q + 1 points lying
on it. Let λ : P → L be a point-line correspondence, i.e. a bijection
between the elements of P and those of L.

Let T be a set of triples {(x, y, z) : x, y, z ∈ P} satisfying the follow-
ing properties:

(1) For all x, y ∈ P , (x, y, z) ∈ T for some z ∈ P ⇔ y and λ(x) are
incident.

(2) (x, y, z) ∈ T ⇒ (y, z, x) ∈ T .
(3) For all x, y ∈ P , (x, y, z) ∈ T for at most one z ∈ P .

Such a set T is called a triangle presentation. The notion of
triangle presentations was introduced and developed in [CMSZ] and
the reader is referred to these papers for proofs of statements regarding
triangle presentations quoted below without reference.
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Let {ax : x ∈ P} be a set of q2 + q + 1 distinct letters and define a
multiplicative group Γ, whose identity shall be denoted by e, with the
following presentation:

Γ = 〈ax : axayaz = e for all (x, y, z) ∈ T 〉 .
The Cayley graph of Γ constructed via right multiplication with respect
to the generators ax, x ∈ P and their inverses is in fact the skeleton
of a triangle building ∆T whose chambers can be identified with the
sets {g, ga−1

x , gay} for g ∈ Γ and where (x, y, z) ∈ T for some z ∈ P .
Furthermore, Γ acts simply transitively by left multiplication on the
vertices of ∆T in a type-rotating manner. Henceforth we assume that
∆ = ∆T for some triangle presentation T .

Given a sector S(ω) ⊂ ∆, left multiplication of every vertex in S(ω)
by an element g ∈ Γ defines an action of Γ on Ω. We refer the reader
to [CMS] for a proof that this action is in fact well-defined.

The boundary Ω can be expressed as a union of (q2 + q + 1)(q + 1)
disjoint sets since, for any fixed vertex v,

Ω =
⋃

chambers Cwith v∈C

ΩC
v

where ΩC
v denotes the set of ω ∈ Ω whose representative sector based

at v has base chamber C.
For brevity we will denote the region Iu

e (ω) simply by Iu(ω).

1.4. Labelling Apartments with Elements of Γ. Suppose we are
given a triangle group Γ and its corresponding triangle building ∆.
Each of the edges in ∆ can be labelled by a generator or an inverse
generator of Γ. By providing each edge with an orientation, it suffices
to label the edges with generators of Γ. For each g ∈ Γ and each x ∈ P ,
we label the edge g → gax in ∆ by ax or more briefly by x if there is
no likelihood of confusion.

Suppose we are given an apartment A and a sector S ⊂ A with base
vertex v. Each sector wall of S is half of a wall in A. Each such wall
consists entirely of edges with the same orientation. Let W+ be the
wall containing the sector panel whose orientation emanates from v,
and denote the other sector wall of S by W−. The walls W+ and W−
and their translates in A form a lattice in A. Thus each vertex in A
can be given a coordinate with respect to this lattice where the sector
panels of S are taken to be in the positive direction and the coordinate
in the direction of W+ is given first. Hence A can be determined via
its vertices as A = (ai,j)i,j∈Z where each ai,j ∈ Γ. See Figure 5 for an
example.
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a1,1

a1,−1a−2,1

S
W+W−

...........................................................................................................................................................................................................................................................................................................................................................................................................................................
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Figure 5. labelling of an apartment with respect to a
sector S.

We note that this induces a labelling of S which is independent of
the particular apartment A provided that S ⊂ A.

1.5. Borel Probability Measures on Ω. We refer the reader to [CM]
and [CMS] for details of the results quoted in this section. For each
vertex v ∈ ∆, we denote by V m,n

v the set of vertices u ∈ ∆ for which
there exists a sector Sv based at v such that u = am,n with respect
to the labelling of Sv described in §1.4. Thus d(v, u) = m + n for all
u ∈ V m,n

v . The cardinalities Nm,n = |V m,n
v | are independent of v and

are given by

Nm,n =





(q2 + q + 1)(q2 + q)q2(m+n−2) if m,n ≥ 1,

(q2 + q + 1)q2(m−1) if m ≥ 1, n = 0,

(q2 + q + 1)q2(n−1) if n ≥ 1,m = 0,

1 if m = 0 = n.

For every pair of vertices v, u ∈ ∆ we define

Ωu
v = {ω ∈ Ω : u ∈ Sv(ω)} .

Thus, in terms of the open sets described in §1.2,

Ωu
v =

⋃

ω∈Ω,u∈Sv(ω)

Uu
v (ω)

although there is only ever one distinct set Uu
v (ω) contributing to this

union unless v and u lie on a common wall in ∆. If v and u lie on a
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common wall in ∆, there are precisely q + 1 distinct and disjoint sets
of the form Uu

v (ω) in the above union.
It was noted in [CMS] that, for each vertex v ∈ ∆, there exists a

natural Borel probability measure νv on Ω which assigns equal mea-
sure to each of the Nm,n disjoint sets Ωu

v for u ∈ V m,n
v . Furthermore,

given any two vertices u, v ∈ ∆, the measures νu and νv are mutually
absolutely continuous [CMS, Lemma 2.5]. We define ν = νe for brevity
and denote L∞(Ω, ν) by L∞(Ω).

For any g ∈ Γ and any vertex v ∈ ∆, νgv = gνv in the sense that
νgv(E) = νv(g

−1E) for any Borel set E ⊆ Ω. Since ν is therefore quasi-
invariant under the action of Γ, the von Neumann algebra L∞(Ω)o Γ
is well-defined.

2. Periodicity in Buildings

2.1. Periodic Apartments. Suppose that we have an apartment A
labelled with respect to some sector S ⊂ A as described in §1.4.

Definitions 2.1. We define the lattice of periodicity points, L, of
A by

L = {(r, s) ∈ Z2 : a−1
i,j ak,l = a−1

i+r,j+sak+r,l+s for all i, j, k, l ∈ Z}.
To appreciate the meaning of L, note that there is a natural action
by translation of Z2 on the apartment A given by (r, s)ai,j = ai+r,j+s.
Suppose ai,j and ak,l are adjacent vertices. The element a−1

i,j ak,l de-
fines a labelled edge from ai,j to ak,l. If (r, s) ∈ L then the element
a−1

i+r,j+sak+r,l+s defines exactly the same labelling on the edge from
ai+r,j+s to ak+r,l+s. Thus a translation by (r, s) ∈ L leaves the edge
labelling of the apartment invariant.

Note that L is a subgroup of Z2, so that we must have either L =
{(0, 0)}, L ∼= Z or L ∼= Z2. We call the elements (r, s) ∈ L the
periodicity points of A.

We say thatA is periodic if L is non-trivial. We distinguish between
the cases L ∼= Z and L ∼= Z2 by saying that A is singly periodic or
doubly periodic respectively. We say that A is (r, s)-periodic if
(r, s) ∈ L regardless of whether A is singly or doubly periodic. In
geometric terms this means that the labelling of the directed edges
of A by generators of Γ has a translational symmetry in the (r, s)
direction. For brevity we say A is {(r, s), (t, u)}-periodic if A is both
(r, s)-periodic and (t, u)-periodic.

We note that the set of periodic apartments in ∆ is Γ-invariant since
if A is periodic then gA is necessarily periodic and has the same lattice
of periodicity points for all g ∈ Γ.
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Given a periodic apartment A with periodicity lattice L, define m ∈
Z by

m = min
r,s∈L,(r,s)6=(0,0)

∣∣a−1
i,j ai+r,j+s

∣∣

for any i, j ∈ Z. Such an integer exists and is positive since the length
of a word in Γ is a positive integer and L is non-trivial since we are
assuming periodicity. We say that A has minimal period m.

2.2. Rigidly Periodic Apartments. We introduce some periodic
apartments whose behaviour is somewhat special.

Definition 2.2. Call an apartment A rigidly periodic if either

• A is doubly periodic, or
• A is (r, s)-periodic with r, s 6= 0 and s 6= −r.

Thus singly periodic apartments whose vertices ar,s, (r, s) ∈ L did
not lie entirely along a single wall in the apartment would be rigidly
periodic. In fact, it turns out that rigid and double periodicity are
equivalent notions, see Lemma 2.10.

Note that ifA is rigidly periodic then so is gA for all g ∈ Γ so that the
set of rigidly periodic apartments is Γ-invariant. Since Γ is countable,
there can only be a countable number of rigidly periodic apartments
containing a fixed vertex v ∈ ∆. Recall that there are an uncountable
number of apartments containing v by Remark . We deduce that, for
any vertex v ∈ ∆, there exist apartments containing v which are not
rigidly periodic.

The existence of rigidly periodic apartments with arbitrarily large
minimal periodicity was established initially by S. Mozes [Mo, Theo-
rem 2.2’] who showed that periodic apartments are dense in the case
where Γ embeds as a cocompact lattice in a strongly transitive group
of automorphisms of ∆. The existence of rigidly periodic apartments
in the context of Ã2 groups was established by A. M. Mantero, T.
Steger, and A. Zappa in [MSZ, Lemma 2.4 and Proposition 2.5]. We
outline their proof since it is constructive and therefore more useful
than the mere existence result and we refer the reader to [MSZ] for the
full details.

Theorem 2.3. There exist rigidly periodic apartments with arbitrarily
large minimal period.

Proof. Suppose we wish to construct a rigidly periodic apartment with
minimal period greater than a fixed positive integer m. We begin by
fixing a non-periodic apartment A containing e which is labelled with
respect to some sector S based at e. Thus A = (ai,j) with a0,0 = e.
Denote by C the base chamber of S. Let v = am,m ∈ A and denote
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by R the convex hull of C and v in A. R is a diamond with the
vertices e and v at opposite corners. Let C ′ be the unique chamber in
R containing v.

Suppose that the edge on C opposite e is labelled a, andthat the
edge on C ′ opposite v is labelled a′, see Figure 6.
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Figure 6. Convex hull R of C and v.

By altering our choice of non-periodic apartment A if necessary, we
may assume that a 6= a′ and that R is not contained in a rigidly periodic
apartment with minimal period less than m.

Results in [MSZ] prove that there exist chambers D and D′ satisfying
the following conditions:

(1) D is opposite C in the residue determined by e.
(2) D′ is opposite C ′ in the residue determined by v.
(3) D corresponds to a relation bcd = e and the edge labelled b is

opposite the vertex e.
(4) D′ corresponds to a relation bc′d′ = e and the edge labelled b is

opposite the vertex v.
(5) c 6= c′ and d 6= d′.

Thus we can extend R non-trivially at both ends by D and D′ to
construct a region R′, pictured in Figure 7, which undergoes no can-
cellation upon iteration. This enables us to construct an apartment
A′ containing the region obtained by tesselating R′ infinitely in the
directions of S and its opposite as in Figure 8.

The convex hull of the infinite tesselation of R′ uniquely determines
the entire apartment A′. Let

u = am+2,m+2 = vd′d−1 = v(c′)−1c
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Figure 7. The region R′.

as labelled on Figure 8. Note that the labelling of the edges of A′ looks
the same when viewed from each of the vertices un ∈ A′ and hence
unA′ = A′ for every n ∈ Z. Thus A′ is (m + 2,m + 2)-periodic with
minimal periodicity greater than or equal to m by construction and its
periodicity lattice will contain the elements (n(m + 2), n(m + 2)) for
all n ∈ Z. ¤

The following observation enables us to deduce some rather nice
properties of rigidly periodic apartments and the boundary points they
define.

Lemma 2.4. A rigidly periodic apartment is completely determined by
any single sector.

Proof. We begin by labelling the apartment A with respect to the
known sector S so that the set of vertices {ak,l : k, l ≥ 0} is known.
We show that in fact ai,j is then uniquely determined for all i, j ∈ Z.
Without loss of generality, we consider three separate cases.
Case 1: The doubly periodic case.

Suppose that A is an {(r, s), (t, u)}-periodic apartment with (r, s)
and (t, u) being linearly independent vectors in R2. Thus, given any
i, j ∈ Z there exist m,n ∈ Z such that mr+nt,ms+nu, i+mr+nt, and
j +ms+nu are all positive. From the properties of double periodicity,
we deduce that

ai,j = ak,la
−1
k+mr+nt,l+ms+nuai+mr+nt,j+ms+nu
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Figure 8. Infinite tesselation of the region R′.



TRIANGLE BUILDINGS AND ACTIONS OF TYPE III1/q2 13

so that if k, l ≥ 0 every term on the right hand side of the equation
is a vertex in S and is therefore known. Since i and j were arbitrary
integers, ai,j is uniquely determined for all i, j ∈ Z. We deduce that A
is completely determined.
Case 2: The (r, s)-periodic case with r, s > 0.

In this case given any i, j ∈ Z there exists a positive integer m such
that i + mr, j + ms > 0. Once again this leads to an equation of the
form

ai,j = ak,la
−1
k+mr,l+msai+mr,j+ms

where every element on the right hand side is a vertex in S and therefore
uniquely determined.
Case 3: The (r, s)-periodic case with either r > 0 but s < 0 or r < 0
but s > 0.

We note that the vertices amr,ms are determined for all m ∈ Z since

amr,ms = ak+mr,l+msa
−1
k,l a0,0

and suitably large choices of k, l ensures that all the elements on the
right hand side are vertices in S.Since r 6= 0 6= s 6= −r the vertex
amr,ms does not lie on a sector wall emanating from a0,0. Suppose that
S has base chamber C. The convex hull of C and amr,ms for all m ∈ Z
must also be contained in A . By taking arbitrarily large positive
values for m we know that a sector S ′ adjacent to S is determined.
Taking arbitrarily large negative values for m implies that the sector
S ′′ opposite S ′ is determined. Since the convex hull of S ′ and S ′′ is A
this means that A is entirely determined. Figure 9 illustrates the proof
in the case of r > 0 and s < 0 where the shaded area represents the
convex hull of C and amr,ms.

This completes the proof since all other cases are equivalent to one
of those considered. ¤
Corollary 2.5. Suppose an apartment A = (ai,j)i,j∈Z is rigidly peri-
odic. If A is (r, s)-periodic for some r, s ∈ Z with r, s 6= 0 and s 6= −r
then A is uniquely determined by ai,j, ai+r,j+s and ai,ja

−1
i+r,j+s for every

i, j ∈ Z.

Proof. Let g = a−1
i,j ai+r,j+s and C be the convex hull of ai,j and ai+r,j+s

as in Figure 10.
Then gnA = A for every n ∈ Z and the convex hull of the iter-

ates gnC, for n ∈ N determine a sector S in A. Thus A is uniquely
determined by Lemma 2.4. ¤
Corollary 2.6. A boundary point ω ∈ Ω can have representative sec-
tors in at most one rigidly periodic apartment A .
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Figure 9. Illustration of the proof of case 3 with r > 0
and s < 0.
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Figure 10. Convex hull C of ai,j and ai+r,j+s.

Proof. Suppose A and A′ are both rigidly periodic apartments which
contain representative sectors of ω; say S ⊂ A and S ′ ⊂ A′ are two
such sectors. Since S and S ′ are equivalent sectors, they must contain a
common subsector S ′′. Hence S ′′ ⊆ A∩A′, and therefore by Lemma 2.4
we must have A = A′. ¤

The following corollary is a generalization of [MSZ, Lemma 3.4].

Corollary 2.7. Let A and A′ be rigidly periodic apartments which
contain representative sectors of ω, ω′ ∈ Ω respectively. If gω = ω′
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for some g ∈ Γ then A′ = gA. In particular, if A = A′ then g must
stabilize A.

Proof. Suppose Sv(ω) ⊂ A is a representative of ω. The apartment
gA is rigidly periodic and contains gSv(ω) = Sgv(gω) = Sgv(ω

′), a
representative of ω′. By Corollary 2.6 we must have A′ = gA. ¤

Notice that it is not necessary to know a priori that A and A′ have
the same minimal period; we simply need to know that they are both
rigidly periodic.

If we know that an apartment is periodic and that it is stabilized
by a certain subset of Γ, the following result enables us to bound the
minimal periodicity of A.

Proposition 2.8. Let F ⊂ Γ \ {e} be a finite set, and suppose A is a
periodic apartment such that gA = A for all g ∈ F . Then A can have
minimal period of at most 2 max{|g| : g ∈ F}.
Proof. Given such a periodic apartment A, label its vertices with re-
spect to some sector S ∈ A and suppose that A has minimal period
m. Denote by S the group of symmetries generated by reflections in A
fixing a0,0. We begin by noting that if gA = A then gai,j = ak,l where

(k, l) = Tg(i, j) = σ(i, j) + (r, s)

for some σ ∈ S and r, s ∈ Z. This is a slight generalization of a
statement made in [MSZ] and we refer the reader to that paper for a
proof since it generalizes in a very straightforward manner.

Since Tg corresponds to a non-trivial symmetry of A, (r, s) must be
non-trivial whenever σ is; otherwise the symmetry of A would be a
reflection and would collapse A to a root. Thus each g ∈ F which
stabilizes A must either induce a translation or a glide reflection on A.
If g induces a translation on A then |g| ≥ m. On the other hand, if g
induces a glide-reflection on A then g2 must induce a translation on A
so that |g2| ≥ m. Since 2|g| ≥ |g2| the result follows. ¤
Corollary 2.9. Given a finite set F ⊂ Γ \ {e}, there exists a posi-
tive integer m(F ) such that no element of F can stabilize a periodic
apartment with minimal period greater than m(F ).

If F = {g} we denote m(F ) by m(g).
The following result is due to S. Mozes (c.f. proof of Proposition 2.13

of [Mo]) and was communicated to us by T. Steger. We include it only
for the benefit of the curious since we will not need to apply the result.

Lemma 2.10. Every rigidly periodic apartment is doubly periodic.
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Proof. We need to show that every apartment A which is (r, s)-periodic
with r, s 6= 0 and s 6= −r is in fact doubly periodic. We begin by noting
that, with a suitable relabelling of A we may assume r, s > 0.

By Corollary 2.5, the apartment A and its labelling is completely
determined by its periodicity and by the convex hull, C, of a0,0 and ar,s.
Consider the strip of the apartment between the wall W containing
the vertices am,−m, and the parallel wall W ′ containing the vertices
ar+m,s−m. This strip is depicted in Figure 11, where the shaded area
represents C. We note that C contains only a finite number of chambers.
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Figure 11. Strip between wallsW andW ′ showing con-
vex hull C of a0,0 and ar,s.

The convex hull of the vertices am,−m and am+r,−m+s will have the
same shape as C for every m ∈ Z. We consider the labelling of these
convex hulls. There are only a finite number of possible labellings for a
chamber and hence there are only a finite number of ways these convex
hulls can be labelled. However, the strip in question is of infinite length
so there must be at least two such convex hulls which share the same
labelling. Without loss of generality we may assume that one of these
is C. Suppose that the other is the convex hull C ′ of an,−n and an+r,−n+s

for some n ∈ Z.
The (r, s)-periodicity and C ′ completely determine A, as was the

case for C. Moreover the labelling of A induced by this construction
is identical to that produced by C, but shifted by (n,−n). Hence A
must be (n,−n)-periodic as well as rigidly periodic. Thus A is doubly
periodic. ¤

Lemma 2.10 therefore establishes the equivalence of rigid periodicity
and double periodicity.
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2.3. Periodic Walls, Sectors and Roots. We note that the notions
of periodic apartments and minimal periodicity can be generalized so
that they apply to walls, sectors and roots in ∆ by imposing various
conditions on the integers i, j, k, l, i+r, j +s, k+r, l+s in the equation

a−1
i,j ak,l = a−1

i+r,j+sak+r,l+s.

The set of pairs (r, s) ∈ Z2 satisfying such an equation is then no longer
necessarily a subgroup of Z2.

Without loss of generality, we may assume that the vertex a0,0 is on
the wall, or is the base vertex of the sector, or is on the boundary of
the root in question. We generalize the notions of rigid periodicity and
single periodicity to the context of sectors and roots.

It is not in general true that a periodic root extends to a periodic
apartment or that such an apartment is unique if it exists. However,
the arguments used in the proof of Lemma 2.4 show that a rigidly
periodic sector determines a unique rigidly periodic apartment. We
complete the analysis of periodic sectors with the following result.

Lemma 2.11. A periodic sector which is not rigidly periodic deter-
mines a unique periodic root.

Proof. Suppose that S is a periodic sector whose vertices are labelled
with respect to its base vertex, a0,0 in such a way that ai,j ∈ S for all
i, j ∈ N. Suppose also that S is not rigidly periodic.

If S is (r, 0)-periodic or (0, s)-periodic for some r or s ∈ Z let g =
ar,0a

−1
0,0 or g = a0,sa

−1
0,0 respectively. If S is (r,−r)-periodic for some

r ∈ N, let g = ar,−ra
−1
0,0.

The sectors gnS for n ∈ Z then lie in a common apartment since the
labelling of the directed edges in S by generators of Γ have a symmetry
in the required direction. There may be several apartments containing
the sectors gnS for n ∈ Z. However the convex hull of the sectors gnS
for n ∈ Z in any apartment containing them will determine a unique
periodic root R. In particular, the wall bounding R and its translates
in R are periodic. ¤

3. Periodic Limit Points and Their Properties

3.1. Periodic Limit Points and Their Behaviour under the Ac-
tion of Γ. We begin by using the notion of periodicity in ∆ to define
a useful subset of Ω.

Definitions 3.1. Call a boundary point ω ∈ Ω a periodic limit point
if it has a periodic representative sector S(ω), say. We refer to such a
sector S(ω) as a periodic representative of ω. Note that we do not
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assume that every periodic limit point has a periodic representative
S(ω) with e ∈ S(ω). We denote the set of periodic limit points by Π.

A most intriguing property of periodic limit points, proved forthwith,
is that they are the only boundary points which can be stable under
the action of an element of Γ.

Proposition 3.2. Suppose ω ∈ Ω satifies gω = ω for some g ∈ Γ\{e}.
Then we must have ω ∈ Π.

Proof. Suppose ω ∈ Ω satisfies gω = ω for some g ∈ Γ. Then gnω =
ω for all n ∈ Z. Let S = S(ω) be any representative sector of ω.
Thus gnS is a representative of ω for every n ∈ Z. Consider first the
representatives S and gS of ω. Note that all the vertices in gS are of
the form gv where v ∈ Γ is a vertex in S.

Since S and gS are parallel they must contain a common subsector.
Suppose Sgv = Sgv(ω) ⊆ S ∩ gS is such a common subsector. Since
Sgv(ω) ⊆ gS, we must have g−1Sgv(ω) ⊆ S, which is to say Sv(ω) ⊆ S.
Thus the sectors Sv = Sv(ω) and gSv = Sgv are both contained in S
and hence are contained in a common apartment. Since Sv and gSv are
parallel they must intersect in a sector which is a translate of each of
them. Thus the labelling of Sv must have a g-translational symmetry.
The sector Sv is therefore a periodic representative of ω and hence
ω ∈ Π, thus establishing the claim. ¤
Definitions 3.3. If ω ∈ Ω has a periodic representative S(ω) which
is in fact rigidly periodic, Lemma 2.4 and Corollary 2.6 enable us to
associate to ω a unique rigidly periodic apartment A(ω). In this case
we say that ω is a rigidly periodic limit point and we denote by Λ
the subset of Ω consisting of all rigidly periodic limit points.

Remark . Given a particular g ∈ Γ there are at most a countable
number of rigidly periodic apartments containing g. Since Γ is count-
able this means that there are at most a countable number of distinct
rigidly periodic apartments in ∆ and therefore Λ is a countable subset
of Ω. Note that Ω is uncountable by an argument analogous to that of
Remark uncountable apartments. There must therefore exist boundary
points ω ∈ Ω which are not rigidly periodic limit points.

3.2. Topological Considerations. Despite the fact that Ω \ Λ 6= ∅,
we prove that Λ, and hence Π, is a dense subset of Ω.

Proposition 3.4. Every open set Uu
v (ω) ⊆ Ω contains rigidly periodic

limit points whose periodic representatives have arbitrarily large mini-
mal period. Moreover rigidly periodic limit points can be found whose
periodic representatives are (r, s)-periodic with r, s > 0.
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Proof. Given any boundary point ω ∈ Ω, any vertex x ∈ Sv(ω), and
any m ∈ N, we can use the proof of Theorem 2.3 to construct a rigidly
periodic apartment A containing v−1Iu

v (ω) and whose minimal peri-
odicity is greater than m. The apartment A′ = vA is then a rigidly
periodic apartment and the sector Sv ⊂ A′ containing Iu

v (ω) defines a
rigidly periodic limit point ω′ satisfying the required conditions. ¤
Corollary 3.5. Λ and Π are dense Γ-invariant subsets of Ω.

Proof. The density follows immediately from Proposition 3.4. To see
that Λ and Π are both Γ-invariant, simply note that if ω ∈ Λ has a pe-
riodic representative S ⊂ A then gS ⊂ gA is a periodic representative
of gω of the same type. ¤
3.3. Measure-Theoretic Considerations. In Lemma 3.8 we show
that νv(Π) = 0 for every vertex v ∈ ∆. Before we launch into the proof
of this result we establish a necessary technical result.1

Lemma 3.6. Let W be any wall in ∆. Let ΣW ⊆ Ω be the set of
boundary points which have representative sectors in any apartment
containing W. Then

νv (ΣW) = 0

for all vertices v ∈ ∆.

Proof. Since the measures νu and νv are mutually absolutely continuous
for all vertices u, v ∈ ∆, it is sufficient to show that νv (ΣW) = 0 for
some vertex v ∈ ∆.

Fix a vertex v = a0,0 ∈ W and label W with respect to this vertex as
described in §2.3. Given any apartment A ⊃ W , a labelling of A can
be found which is compatible with this labelling of W . We consider
the two distinct cases that arise.
Case 1: The boundary points ω ∈ ΣW which have representative sectors
Sv(ω) with one sector wall contained in W.

All such boundary points are either contained in Ω
ai,i
v or Ω

a−i,−i
v for

arbitrarily large i ∈ N. Hence the set of such boundary points has
trivial measure.
Case 2: The boundary points ω ∈ ΣW which have representative sectors
Sv(ω) neither of whose sector walls is contained in W.

Geometrically we are in the situation depicted in Figure 12
The convex hull of S = Sv(ω) and W in any apartment containing

them both determines a root R which is unique in the sense that it
is independent of the particular apartment chosen. In R, denote by

1The proof of this result is not complete. It is corrected in: P. Cutting and G.
Robertson, Type III actions on boundaries of Ãn buildings.
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Figure 12. Geometric interpretation of second case.

S1 = Sv(ω1) the unique sector based at v such that ai,i ∈ S1 for all
i ∈ N. The boundary point ω1 determined by S1 satisfies the conditions
for the first case considered and hence the set of all boundary points
obtained in this manner belong to a set of measure zero.

There is a bijective map rΩ : ω 7→ ω1 which is implemented in any
apartment A containing R via a reflection in the wall separating S
from S1 (see Figure 13).
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Figure 13. Implementation of correspondence in A.

We note that

νv (Ωu
v) = νv

(
Ωr(u)

v

)

for all vertices u ∈ A since r is a distance-preserving transformation of
A. Hence rΩ is a measure-preserving map.

Since the set of all boundary points covered by the first case has
trivial measure, the same must therefore be true of the set of boundary
points covered by the second case. ¤
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We note that there are only a countable number of periodic walls in
∆. This is because Γ is countable so that we have a countable number
of choices for the base vertex a0,0 ∈ W and a countable number of
choices for the elements g ∈ Γ such that gW = W . We can therefore
deduce the following corollary of Lemma 3.6.

Corollary 3.7. Let Σ ⊆ Ω be the set of boundary points which have
representative sectors in an apartment containing a periodic wall. Then

νv (Σ) = 0

for all vertices v ∈ ∆.

We are now in a position to prove the following useful result.

Lemma 3.8. Given any vertex v ∈ ∆, νv(Π) = 0.

Proof. Since Λ is countable and points have measure zero, νv(Λ) = 0
for all vertices v ∈ ∆.

Now consider the set Π \ Λ. This consists of periodic limit points
whose periodic representatives are not rigidly periodic. By Lemma 2.11
any ω ∈ Π \ Λ has a periodic representative S(ω) which determines a
periodic root R which contains periodic walls. Hence every element
ω ∈ Π \ Λ has a representative in an apartment containing a periodic
wall. Thus Π\Λ ⊆ Σ and therefore νv (Π \ Λ) = 0 for all vertices v ∈ ∆
by Corollary 3.7.

We deduce that νv(Π) = 0 as required. ¤

Proposition 3.2 and Lemma 3.8 have some immediate consequences.

Proposition 3.9. The action of Γ on Ω is measure-theoretically free,
i.e.

νv ({ω ∈ Ω : gω = ω}) = 0

for all vertices v ∈ ∆ and elements g ∈ Γ \ {e}.
Proof. As a result of Proposition 3.2,

{ω ∈ Ω : gω = ω} ⊆ Π

for any g ∈ Γ \ {e}. Hence

νv ({ω ∈ Ω : gω = ω}) ≤ νv(Π)

and the result follows from Lemma 3.8. ¤

Proposition 3.10. The action of Γ on Ω is ergodic.
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Proof. Since the measures νv are mutually absolutely continuous, it is
enough to prove this for the measure ν = νe. We must therefore show
that any Γ-invariant function f ∈ L∞(Ω, ν) is constant a.e.

By the Lebesgue differentiation theorem (see [Z, Chapter 8,§36] and [Ru,
Theorem 8.8]), we have for almost all ω0 ∈ Ω

(1) lim
n→∞

1

ν(Ωvn
e )

∫

Ωvn
e

|f(ω)− f(ω0)| dν(ω) = 0

where vn ∈ Se(ω) ∩ V n,n
e , so that Ωvn

e is a contracting sequence of
neighbourhoods of ω0.

Choose such a point ω0 and write f(ω0) = α. For each n ∈ N, write
vn = gnzn where gn ∈ V n−1,n−1

e and zn ∈ V 1,1
e (see Figure 14).
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Figure 14. Relative positions of vn and gn.

Note that Ωvn
gn

= Ωvn
e . Now

1

ν(Ωzn
e )

∫

Ωzn
e

|f(ω)− α| dν(ω) =
1

ν(Ωzn
e )

∫

gnΩzn
e

∣∣f(g−1
n ω)− α

∣∣ dν(g−1
n ω)

=
1

ν(Ωzn
e )

∫

Ωvn
e

|f(ω)− α| dνgn(ω)(2)

since gnΩzn
e = Ωgnzn

gn
= Ωvn

gn
= Ωvn

e , and f is Γ-invariant.
Furthermore, it folows from [CMS, Lemma 2.5] that, for sufficiently

large n ∈ N, the Radon Nikodym derivative dνgn

dν
is constant almost

everywhere on Ωvn
e . Moreover,

dνgn

dν
(ω) =

νgn (Ωvn
e )

ν (Ωvn
e )

=
ν (g−1

n Ωvn
e )

ν (Ωvn
e )

=
ν (Ωzn

e )

ν (Ωvn
e )

.
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The expression labelled (2) therefore becomes

(3)
1

ν(Ωvn
e )

∫

Ωvn
e

|f(ω)− α| dν(ω)

Therefore, by (1) and (2),

1

ν(Ωzn
e )

∫

Ωzn
e

|f(ω)− α| dν(ω) → 0 as n →∞.

Now zn lies in the finite set V 1,1
e for all n ∈ N, so we can choose a

subsequence nk such that znk
= z for all k. Then∫

Ωz
e

|f(ω)− α| dν(ω) = 0.

Therefore f(ω) = α for almost all ω ∈ Ωz
e.

It follows from [RS, Lemma 3.1] that for each possible base chamber
C = {e, a−1, b} there exists an element g ∈ Γ such that gΩC

e ⊆ Ωz
e.

Hence f(ω) = α a.e.(ν) on gΩC
e . By the Γ-invariance of f , f(ω) =

α a.e.(νg) on ΩC
e . Since the measures ν, νg are mutually absolutely

continuous, f(ω) = α a.e.(ν) on each set ΩC
e and hence on all of Ω. ¤

Remark . The above proof is based on that for the case of the free
group which is contained in [PS, Proposition 3.9].

Corollary 3.11. The von Neumann algebra L∞(Ω)o Γ is a factor.

Proof. This follows directly from Proposition 3.9, Proposition 3.10 and
standard results in the theory of von Neumann algebras (see [Su, Propo-
sition 4.1.15] for example). ¤
Proposition 3.12. The action of Γ on Ω is amenable.

Proof. It is sufficient, by [A, Théorème 3.3b)], to show that there exists
a sequence {fi}i∈N of real-valued functions L∞(Γ× Ω) such that

(1)
∑
g∈Γ

|fi(g, ω)|2 = 1 for all ω ∈ Ω and i ∈ N

(2) lim
i

∑
g∈Γ

fi(g, ω)fi(h
−1g, h−1ω) = 1 ultraweakly in L∞(Ω) for

each h ∈ Γ.

For each ω ∈ Ω, let fi(·, ω) be the characteristic function of

{g ∈ Se(ω) : |g| ≤ i− 1},
normalized so that the first condition holds. Thus

fi(g, ω) =





(
i(i+1)

2

)− 1
2

if g ∈ Se(ω) and |g| ≤ i− 1,

0 otherwise
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and, for each ω ∈ Ω, there are exactly
(

i(i+1)
2

)
elements g ∈ Γ for which

fi(g, ω) 6= 0. It was proved in [RS, Proposition 4.2.1] that this sequence
of functions satisfies a stronger version of these conditions, since we
actually have uniform convergence in the second condition. ¤

Corollary 3.13. The von Neumann algebra L∞(Ω)oΓ is a hyperfinite
factor.

4. Some Algebras L∞(Ω)oG

We refer to [Su, Definition 4.1.2] for the definition of the crossed
product von Neumann algebra L∞(Ω, ν)oG associated with the action
of a group G on a measure space (Ω, ν).

In this section we investigate some von Neumann algebras which
arise in this manner where (Ω, ν) is the measure space described in
§1.5, paying particular attention to L∞(Ω)o Γ. We begin by recalling
some classical definitions.

Definition 4.1. Given a group Γ acting on a measure space Ω, we
define the full group, [Γ], of Γ by

[Γ] = {T ∈ Aut(Ω) : Tω ∈ Γω for almost every ω ∈ Ω} .

The set [Γ]0 of measure preserving maps in [Γ] is then given by

[Γ]0 = {T ∈ [Γ] : T ◦ν = ν}
Definition 4.2. Let G be a countable group of automorphisms of the
measure space (Ω, ν). Following W. Krieger, define the ratio set r(G)
to be the subset of [0,∞) such that if λ ≥ 0 then λ ∈ r(G) if and only
if for every ε > 0 and Borel set E with ν(E) > 0, there exists a g ∈ G
and a Borel set F such that ν(F) > 0, F ∪ gF ⊆ E and

∣∣∣∣
dν◦g
dν

(ω)− λ

∣∣∣∣ < ε

for all ω ∈ F .

Remark . The ratio set r(G) depends only on the quasi-equivalence
class of the measure ν, see [HO, §I-3, Lemma 14]. It also depends only
on the full group in the sense that

[H] = [G] ⇒ r(H) = r(G).

Let ∆ be an arbitrary triangle building of order q with base vertex
e and write ν = νe.
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Proposition 4.3. Let G be a countable subgroup of Auttr(∆) ⊆ Aut(Ω)
. Suppose there exist an element g ∈ G such that d(ge, e) = 1 and a
subgroup K of [G]0 whose action on Ω is ergodic. Then

r(G) =
{
q2n : n ∈ Z} ∪ {0} .

Proof. By Remark , it is sufficient to prove the statement for some
group H such that [H] = [G]. In particular, since [G] = [〈G,K〉] for
any subgroup K of [G]0, we may assume without loss of generality that
K ≤ G.

By [CMS, Lemma 2.5], for each g ∈ G, ω ∈ Ω we have

dν◦g
dν

(ω) ∈ {
q2n : n ∈ Z} ∪ {0} .

Since G acts ergodically on Ω, r(G) \ {0} is a group. It is therefore
enough to show that q2 ∈ r(G). Write x = ge and note that νx = ν◦g−1.
By [CMS, Lemmas 2.2 and 2.5] we have

(4)
dνx

dν
(ω) = q2, for all ω ∈ Ωx

e .

Let E ⊆ Ω be a Borel set with ν(E) > 0. By the ergodicity of K, there
exist k1, k2 ∈ K such that the set

F = {ω ∈ E : k1ω ∈ Ωx
e and k2g

−1k1ω ∈ E}
has positive measure.

Finally, let t = k2g
−1k1 ∈ G. By construction, F ∪ tF ⊆ E . More-

over, since K is measure-preserving,

dν◦t
dν

(ω) =
dν◦g−1

dν
(k1ω) =

dνx

dν
(k1ω) = q2 for all ω ∈ F

by (4), since k1 ∈ Ωx
e . This proves q2 ∈ r(G), as required. ¤

By definition (e.g. [HO, §I-3]), the conclusion of Proposition 4.3 says
that the action of G is of type III1/q2 .

Corollary 4.4. If, in addition to the hypotheses for Proposition 4.3,
the action of G is free, then L∞(Ω)oG is a factor of type III1/q2.

Proof. Having determined the ratio set, this is immediate from [C,
Corollaire 3.3.4]. ¤

Thus, if we can find a countable subgroup K ≤ [G]0 whose action
on Ω is ergodic we will have shown that L∞(Ω) o G is a factor of
type III1/q2 . To this end, we prove the following sufficiency condition
for ergodicity.
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Lemma 4.5. Let K be group which acts on Ω. If K acts transitively on
the collection of sets {Ωx

e : x ∈ V m,n
e } for every pair (m,n) ∈ (N× N),

then K acts ergodically on Ω.

Proof. Suppose now that X0 ⊆ Ω is a Borel set which is invariant under
K and such that ν(X0) > 0. We show ν(Ω \X0) = 0, thus establishing
the ergodicity of the action.

Define a new measure µ by µ(X) = ν(X ∩ X0) for each Borel set
X ⊆ Ω. Now, for each g ∈ K,

µ(gX) = ν(gX ∩X0) = ν(X ∩ g−1X0)

≤ ν(X ∩X0) + ν(X ∩ (g−1X0 \X0))

= ν(X ∩X0)

= µ(X),

and therefore µ is K-invariant.
For each u, v ∈ V m,n

e there exists a g ∈ K such that gΩu
e = Ωv

e by
transitivity. Thus µ(Ωu

e ) = µ(Ωv
e). Since Ω is the union of Nm,n disjoint

sets Ωu
e , u ∈ V m,n

e each of which has equal measure we deduce that

µ(Ωu
e ) =

c

Nm,n

, for each u ∈ V m,n
e ,

where c = µ(X0) = ν(X0) > 0. Thus µ(Ωu
e ) = cν(Ωu

e ) for every vertex
u ∈ ∆.

Since the sets Ωu
e generate the Borel σ-algebra, we deduce that

µ(X) = cν(X) for each Borel set X. Therefore

ν(Ω \X0) = c−1µ(Ω \X0)

= c−1ν((Ω \X0) ∩X0) = 0,

thus proving ergodicity. ¤
The following result shows that we can assume the group K ≤

Aut(Ω) is countable without any loss of generality.

Lemma 4.6. Assume that K ≤ Aut(Ω) acts transitively on the collec-
tion of sets

{Ωx
e : x ∈ V m,n

e }
for every pair (m,n) ∈ N×N. Then there is a countable subgroup K0 of
K which also acts transitively on the collection of sets {Ωx

e : x ∈ V m,n
e }

for every pair (m,n) ∈ N× N.

Proof. For each pair v, w ∈ V m,n
e , there exists an element k ∈ K such

that kΩu
e = Ωv

e. Choose one such element k ∈ K and label it kv,w.
Since V m,n

e is finite, there are a finite number of elements kv,w ∈ K



TRIANGLE BUILDINGS AND ACTIONS OF TYPE III1/q2 27

for each V m,n
e . There are countably many sets V m,n

e , so the set {kv,w :
v, w ∈ V m,n

e ,m, n ≥ 0} is countable. Hence the group

K0 = 〈kv,w : v, w ∈ V m,n
e ,m, n ≥ 0〉 ≤ K

is countable and satisfies the required condition. ¤

4.1. The Algebra L∞(Ω)o Γ. We aim to construct a subgroup K ≤
[Γ]0 which acts ergodically on Ω and use Proposition 4.3 and Lemma 4.5
to prove that L∞(Ω) o Γ is a factor of type III1/q2 . We begin with a
technical remark.

Lemma 4.7. Given a fixed vertex x ∈ ∆T and a fixed chamber C with
x ∈ C, there are precisely q3 chambers D with the property that x ∈ D
and for every ω ∈ ΩD

x , Sx(ω) is opposite Sx($) for every $ ∈ ΩC
x .

Proof. Since the neighbours of any vertex can be identified with the
projective plane of order q introduced in §1.3 we may use properties of
projective planes to prove this result.

The chambers incident on x correspond to point line pairs {p, l}.
Suppose C corresponds to {p1, l1}. Then the chambers D will corre-
spond to point line pairs {p2, l2} for which there exists an incidence
diagram of the type shown in Figure 4.1. for some point p3 and some

• •
• •
• •

l1 p1

l2 p2

p3 l3

.........
.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.........
.........
........ ................................................................................................................................................

Figure 14. Incidence diagram for point line pairs
{p2, l2} corresponding to chambers D

line l3.
Having fixed the pair {l1, p1} we can choose any point p2 6∈ l1, so

there are (q2 + q + 1)− (q + 1) = q2 choices for p2. Having chosen p2,
the line l3 is then uniquely determined.

The number of possible choices for the line l2 is then determined by
the number of possible choices for the point p3. The only restrictions
on p3 are that p3 ∈ l1 but p3 6= p1. So there are (q + 1)− 1 = q choices
for p3, and hence for l2.

Hence there are q2q = q3 possible pairs {p2, l2} satisfying the neces-
sary conditions. ¤
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We can now construct the ergodic subgroup of [Γ]0 provided q ≥ 3.

Proposition 4.8. If q ≥ 3 there is a countable ergodic group K ≤
Aut(Ω) such that K ≤ [Γ]0.

Proof. Let x, y ∈ V m,n
e . We construct a measure preserving automor-

phism kx,y of Ω such that

(1) kx,y is almost everywhere a bijection from Ωx onto Ωy,
(2) kx,y is the identity on Ω \ (Ωx ∪ Ωy).

It then follows from Lemma 4.5 that the group

K = 〈kx,y : {x, y} ⊆ V m,n
e ,m, n ∈ N〉

acts ergodically on Ω and the construction will show explicitly that
K ≤ [Γ]0.

Recall from §1.5 that the Borel σ-algebra is generated by sets of the
form Ωu

v and that such a set is the disjoint union of open sets of the from
ΩC

v for some chamber C with v ∈ C. It is therefore enough to show
that, for every x, y ∈ V m,n

e and chambers C and D satisfying x ∈ C,
y ∈ D, ΩC

x = ΩC
e and ΩD

y = ΩD
e , there exists an almost everywhere

bijection
k : ΩC

x −→ ΩD
y

which is measure preserving and is pointwise approximable by the ac-
tion of Γ almost everywhere on ΩC

x .
As depicted in Figure 15 the set ΩC

x is a disjoint union of sets of the
form ΩC1

x1
where x1 ∈ V m+1,n+1

e and ΩC1
x1

= ΩC1
e . Similarly the set ΩD

y

is a disjoint union of sets of the form ΩD1
y1

where y1 ∈ V m+1,n+1
e and

ΩD1
y1

= ΩD1
e .

Fix two such vertices x1, y1. By Lemma 4.7 there are q3 possible
choices for each of the chambers C1 and D1.

Now x−1
1 C1 and y−1

1 D1 are each one of the α = (q + 1)(q2 + q + 1)
chambers based at e. Therefore, since 2q3 > α for q ≥ 3, we can
choose chambers C1 and D1 such that x−1

1 C1 = y−1
1 D1, i.e. such that

y1x
−1
1 C1 = D1. Define k from ΩC1

x1
onto ΩD1

y1
by

kω = y1x
−1
1 ω for ω ∈ ΩC1

x1
.

Thus the action of k is measure preserving and pointwise approximable
by Γ on ΩC1

x1
. Therefore k remains undefined on a proportion α−1

α
of

ΩC
x .
Now repeat the process on each of the pairs of sets ΩC1

x1
, ΩD1

y1
for which

k has not been defined. As before, k can be defined everywhere except
on a proportion α−1

α
of each such set, and k can therefore be defined

everywhere except on a proportion
(

α−1
α

)2
of the original set ΩC

x .



TRIANGLE BUILDINGS AND ACTIONS OF TYPE III1/q2 29
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Figure 15. Relative positions of x, x1, C and C1.

Continuing in this manner we find that at the nth step, k has been
defined everywhere except on a proportion

(
α−1

α

)n
of ΩC

x . Since
(

α− 1

α

)n

→ 0 as n →∞,

k is defined almost everywhere on ΩC
x and satisfies the required prop-

erties. ¤
The above considerations lead us to the following conclusion.

Theorem 4.9. The von Neumann algebra L∞(Ω)o Γ is a hyperfinite
factor.

Moreover, if q ≥ 3 the action of Γ on Ω is of type III1/q2 and so
L∞(Ω)o Γ is the hyperfinite factor of type III1/q2.

Proof. The von Neumann algebra L∞(Ω)oΓ is a hyperfinite factor by
Corollary factor and Corollary hyperfinite.

If q ≥ 3, then Propositions 4.5 and 4.8 prove that the factor is of
type III1/q2 . ¤
Remark . We believe that the result is also true when q = 2, but the
proof of Proposition 4.8 in that case appears to be harder.

4.2. Algebras From Classical Groups. We now restrict our atten-
tion to the triangle buildings associated to certain linear groups. Hence-
forth, let G = PGL(3,F) for F a local field with a discrete valuation and
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let K = PGL(3,O) where O is the valuation ring of F. Let ∆ be the tri-
angle building associated to G [R, Chapter 9] and Ω its boundary. Then
K satisfies the conditions of Lemma 4.5 by the remark following [CMS,
Proposition 4.2].

Proposition 4.10. G acts freely on Ω.

Proof. Denote by P ≤ G the group of upper triangular matrices in G.
By [Br, Proposition VI.9F], Ω is isomorphic to G/P as a topological G-
space. Moreover, ν corresponds to the unique quasi-invariant measure
on G/P .

Note that if F is a closed subgroup of G then the quasi-invariant
measure µG/F on G/F has the property that µG/F(Y ) = 0 if and only
if µG(π−1(Y )) = 0 where µG denotes left Haar measure on G and π
denotes the quotient map G → G/F (see [B, VII, §2, Théorème 1]).

Let g ∈ G\{0}. We must show that ν ({ω ∈ Ω : gω = ω}) = 0. That
is to say we must show

µG/P{hP : h−1gh ∈ P} = 0,

or, equivalently, that

µG{h ∈ G : h−1gh ∈ P} = 0.

The condition h−1gh ∈ P means that any representative of h in GL(3,F)
lies in the zero set of some nonzero polynomial ψ ∈ F[X1, . . . , Xq]. The
zero set of ψ in Fq has measure zero, relative to the usual Haar mea-
sure [B, VII, Lemme 9]. The assertion follows from the explicit expres-
sion for the Haar measure in GL(3,F) [B, VII, §3 no1, Exemple 1]. ¤
Theorem 4.11. (1) Let q be a prime power and let Ω be the bound-

ary of the building associated to PGL (3,Fq ((X))). Then L∞(Ω)o
PGL (3,Fq(X)) is a factor of type III1/q2.

(2) Let p be a prime and Ω the boundary of the building associated

to PGL(3,Qp). Let R denote either Z
[

1
p

]
or Q. Then L∞(Ω)o

PGL (3,R) is a factor of type III1/p2.

Proof. (1) We apply Proposition 4.3 with G = PGL (3,Fq(X)) and
K = PGL (3,Fq[X]). The action of G is free by Proposition 4.10. We
must check that the action of K is ergodic. Let K ′ = PGL (3,Fq [[X]]).
Then K ′ acts transitively on each set V m,n

e by [CMS, remark following
Proposition 4.2]. Also K is dense in K ′ and the action of K ′ on Ω is
continuous. It follows from the definition of the topology on Ω that
K also acts transitively on each V m,n

e . Thus Lemma 4.5 ensures that
K acts ergodically on Ω. Since the action of G is free and ergodic the
crossed product L∞(Ω)oG is therefore a factor.
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In order to verify the remaining hypothesis of Proposition 4.3 , sup-
pose that the base vertex e of ∆ is represented by the lattice class of
< e1, e2, e3 >. Then the lattice class of < Xe1, e2, e3 > represents a
neighbouring vertex, so the element g ∈ G represented by the matrix


X 0 0
0 1 0
0 0 1


 satisfies d(ge, e) = 1.

The result now follows from Proposition 4.3.
(2) The proof is analogous to that given for the first statement but

with K = PGL(3,Z) and G = PGL (3,R). ¤
Remarks . (1) We note that since the action of PGL(3,Z) in The-

orem 4.11 is measure-preserving, it follows that L∞(Ω)oPGL (3,Z)
is a factor of type II1.

(2) The real analogue of Theorem 4.11 is known. Take G = PGL(n,R)
with n > 1 and Ω = G/P where P is the group of upper trian-
gular matrices in G. It then follows from a result of D. Sullivan
and R. Zimmer (see [S]) that L∞(Ω)oPGL (n,Q) is a factor of
type III1.

(3) The building associated to PGL (2,Fq ((X))) is a homogeneous
tree of degree q + 1. In this case the corresponding factor is of
type III1/q. The building associated to PGL (n,Fq ((X))) is a
simplicial complex of rank n− 1 and degree q + 1. Preliminary
investigations indicate that a similar construction will yield a
factor of type III1/q if n is odd and III1/q2 if n is even.
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