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Part I

Cuntz-Krieger algebras



Cuntz-Krieger algebras

The Cuntz-Krieger algebra OA associated with a nondegenerate
n × n matrix A with entries in {0, 1} is the universal C ∗-algebra
generated by partial isometries s1, · · · , sn satisfying

s1s∗1 + · · ·+ sns∗n = 1 (1a)

s∗i si =
n∑

j=1

A(i , j)sjs
∗
j (1b)

OA is simple if and only if the matrix A is irreducible and not a
permutation matrix.



K-theory

Murray–von Neumann equivalence of projections.
If p, q are projections in a C ∗-algebra A, say that p ∼ q if and only
if p = s∗s and q = ss∗ for some s ∈ A.
Suppose that A is a purely infinite C ∗-algebra with unit. Then

General Fact: Cuntz 1981

K0(A) = {[p] : p is a nonzero projection in A}
addition : [p] + [q] = [p + q], if pq = 0 ,
zero element : [p − p′], where p ∼ p′ < p .

K1(A) = U(A)/U0(A)
where U0(A) is the connected component of 1.



Computation of K∗(OA)

The matrix A defines a homomorphism Zn → Zn.

Theorem

K0(OA) ∼= Zn/(I − At)Zn; K1(OA) ∼= ker(I − At).

Simple C-K algebras are classified up to stable isomorphism by
their K0-group.

The K-theory of a C-K algebra OA can be characterized as
follows:

K0(OA) ∼= (finite abelian group)⊕ Zk ; K1(OA) ∼= Zk .

The simple algebras OA are classified up to isomorphism by
the group K0(OA) together with the class [1] ∈ K0(OA).



Example: Boundary action of free group of
rank 2

Γ = 〈a, b〉 has a Cayley graph T , with vertex set Γ and edges

• •
x xs

s

where s ∈ S =
{

a, a−1, b, b−1
}

T is a tree

Γ acts on T (by left multiplication)



1 a a2

b

b−1

ba

a−1

b2

ba−1

• • •

•

•

• •

• •

•

•

•

•

• •

•

•



A boundary point ω ∈ ∂T is :

1 An equivalence class of semi-geodesics

•

•

ω

2 A semi-geodesic with origin 1

ω1•

3 An infinite reduced word

ω = w1w2w3 . . .

where wi ∈ S



For w = w1 . . .wk ∈ Γ− {1}, let
t(w) = wk ∈ S
Ω(w) : all infinite words beginning with w

• •1
w1

w

wk

Ω(w)

Ω(w) is a basic open set for a totally disconnected compact
topology on ∂T .
Denote by pw = 1Ω(w) ∈ C (Ω) the characteristic function of Ω(w).



The boundary is partitioned into four parts according to the four
possible initial letters of ω ∈ Ω.

Ω(a)Ω(a−1)

Ω(b)

Ω(b−1)



Γ acts on C (∂T ) :
γ(f )(ω) = f (γ−1ω)

Study the action (Γ, ∂T ) by forming the crossed product
C ∗-algebra :

AΓ = C (∂T ) o Γ = C ∗〈C (∂T ) ∪ Γ; γ(f ) = γf γ−1〉

Here
C (∂T ) ⊂ AΓ an abelian subalgebra
Γ ⊂ AΓ a group of unitaries



If u, v ∈ Γ and t(u) = t(v), define

su,v = γpv ∈ C (Ω) o Γ

where γ = uv−1.

Covariance implies that γpv = puγ, so that su,v is a partial
isometry with initial projection pv and final projection pu.
Let A = C ∗{su,v ; u, v ∈ Γ, t(u) = t(v)} ⊆ C (Ω) o Γ. Then

A = C (Ω) o Γ.

Reason: A contains C (Ω), since it contains {pw ; w ∈ Γ}, which
generates C (Ω). Also each element u ∈ Γ lies in A, since

u =
∑

|x |=|u|+1

upx =
∑

|x |=|u|+1

sux ,x .



A is a C-K algebra.

Proof. For each x ∈ S let

rx =
∑

y∈S; |xy |=2

sxy ,y =
∑

y∈S ; |xy |=2

xpy .

Then
rx r∗x =

∑
y∈S; |xy |=2

pxy = px ,

r∗x rx =
∑

y∈S; |xy |=2

py =
∑

y∈S; |xy |=2

ry r∗y .

Also ∑
x∈S

rx r∗x =
∑
x∈S

px = 1.

Therefore {rx ; x ∈ S} satisfies the C-K relations (1).



For u, v ∈ Γ with t(u) = t(v), write

ru = ru(0)ru(1) . . . rt(u) =
∑

y∈S ; |uy |=|u|+1

suy ,y .

Then rur∗v = su,v . Hence A is generated by {rx ; x ∈ S}.

It follows that C (Ω) o Γ = A = OA, where

A =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

 .



Generalization

Fact

A group which acts regularly on the vertices of a tree T has the
form Γ = Z∗m ∗ (Z2)∗n, where T has degree q = 2m + n.

Theorem

C (∂T ) o Γ is a C-K algebra.

Exercise

If Γ = Z ∗ Z2 then AΓ = C (∂T ) o Γ ∼= OA where

A =

1 0 1
0 1 1
1 1 0

 .

and K0(AΓ) = K1(AΓ) = Z, with [1] = 0.



Part II

Higher rank Cuntz-Krieger algebras



Higher rank Cuntz-Krieger algebras

Notation

Z+ is the set of nonnegative integers.

[m, n] = {m,m + 1, . . . , n}, where m ≤ n are integers.

If m, n ∈ Zr , m ≤ n if mj ≤ nj for 1 ≤ j ≤ r .

If m ≤ n, let [m, n] = [m1, n1]× · · · × [mr , nr ].

Fix a finite set A (an alphabet).

A {0, 1}-matrix is a matrix with entries in {0, 1}.



r-dimensional words

Choose nonzero {0, 1}-matrices M1,M2, . . . ,Mr with elements
Mj(b, a) ∈ {0, 1},a, b ∈ A.

If m, n ∈ Zr with m ≤ n, let

W[m,n] = {w : [m, n]→ A ; Mj(w(l+ej),w(l)) = 1, l , l+ej ∈ [m, n]}.

(ej is the standard unit basis vector.)

Let Wm = W[0,m] if m ≥ 0 = (0, 0, . . . , 0).

Identify A with W0 and define the initial and final maps
o : Wm → A and t : Wm → A

by
o(w) = w(0) and t(w) = w(m).



Representation of a two dimensional word of shape
m = (5, 2).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

o(w) = w(0, 0)

w(5, 1)

w(5, 2) = t(w)

Say that w ∈Wm has shape m, and write σ(w) = m.



Decorated and periodic words

Fix a finite or countable set of decorations D 6= ∅.

Fix a decorating map δ : D → A.

The set of decorated words of shape m is
W m = {(d ,w) ∈ D ×Wm; o(w) = δ(d)}.

Identify D with W 0 via d 7→ (d , δ(d)).

W :=
⋃

m Wm and W :=
⋃

m W m.

o(d ,w) := d , t(d ,w) = t(w) and σ((d ,w)) := σ(w).



If j ≤ k ≤ l ≤ m and w : [j ,m]→ A, define w |[k,l ] ∈Wl−k by

w |[k,l ] = w ′

where w ′(i) = w(i + k) for 0 ≤ i ≤ l − k .

If w = (d ,w) ∈W m, define

w |[k,l ] = w |[k,l ] ∈Wl−k if k 6= 0,

and w |[0,l ] = (d ,w |[0,l ]) ∈W l .

If w ∈Wl and k ∈ Zr , define τkw : [k , k + l ]→ A by

(τkw)(k + j) = w(j).

If w ∈Wl where l ≥ 0 and if p 6= 0, say that w is p-periodic
if τpw satisfies

τpw |[0,l ]∩[p,p+l ] = w |[0,l ]∩[p,p+l ].



Fundamental hypotheses

Assume that the following conditions hold.

(H0) Each Mi is a nonzero {0, 1}-matrix.

(H1) Let u ∈Wm and v ∈Wn. If t(u) = o(v) then there
exists a unique w ∈Wm+n such that

w |[0,m] = u and w |[m,m+n] = v .

Write w = uv and say that the product uv exists.

(H2) Consider the directed graph with vertex set A and a
directed edge from a to b for each i such that
Mi (b, a) = 1. This graph is irreducible.

(H3) Let p ∈ Zr , p 6= 0. There exists some w ∈W which
is not p-periodic.



Condition (H2)

For each a, b ∈ A there exists a directed path

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

a

b

•

•



Condition (H1) holds if the matrices Mi , 1 ≤ i ≤ r satisfy the
following three conditions.

(H1a) MiMj = MjMi .

(H1b) For i < j , MiMj is a {0, 1}-matrix.

(H1c) For i < j < k , MiMjMk is a {0, 1}-matrix.



The higher rank C-K algebra A

Definition

The C ∗-algebra A (or AD) is the universal C ∗-algebra generated
by a family of partial isometries {su,v ; u, v ∈W and t(u) = t(v)}
satisfying the relations

su,v
∗ = sv ,u (2a)

su,v sv ,w = su,w (2b)

su,v =
∑

w∈W ;σ(w)=ej ,
o(w)=t(u)=t(v)

suw ,vw , for 1 ≤ j ≤ r (2c)

su,usv ,v = 0, for u, v ∈W 0, u 6= v . (2d)



Example

If r = 1, M = M1, D = A and δ = id , then A ∼= OMt .

Proof.

OMt is generated by {Sa; a ∈ A} satisfying

S∗a Sa =
∑
b

M(b, a)SbS∗b .

If u ∈W , let Su = Su(0)Su(1) . . . St(u). If v ∈W with t(u) = t(v),
define Su,v = SuS∗v . The map

su,v 7→ Su,v

establishes an isomorphism of A with OMt . The inverse is given by

Sa 7→
∑

M(b,a)=1

sab,b



Example

If A1, A2 are rank one C-K algebras, then A1 ⊗A2 is the rank two
C-K algebra.

In obvious notation, the alphabet is A1 × A2 and the of matrices
are M1 ⊗ I , I ⊗M2.



Theorem

The C ∗-algebra A is purely infinite, simple and nuclear. Any
nontrivial C ∗-algebra with generators Su,v satisfying relations (2) is
isomorphic to A via a unique *-isomorphism φ such that
φ(su,v ) = Su,v .

Suppose that D is finite. Then
∑

u∈W 0
su,u is an identity for A.

Therefore A is a p.i.s.u.n. C ∗-algebra. It also satisfies the
Universal Coefficient Theorem. By the Classification Theorem of
Kirchberg-Phillips, A is classified by its K-groups and the class of
the identity in K0.



Stabilization

Lemma

Given a decoration δ : D → A, define another decoration
δ′ : D × N :→ A by δ′((d , i)) = δ(d). Then

AD×N ∼= AD ⊗K.

Proof.

If u, v ∈W , the isomorphism is given by

s((d ,i),u),((d ′,j),v) 7→ s(d ,u),(d ′,v) ⊗ eij ,

where the eij are matrix units for K.

Remark

Similarly, AD×{1,2,...,r} is isomorphic to AD ⊗Mr .



Corners

Lemma

Let D ′ ⊂ D, δ′ = δ|D′ and e =
∑

a∈D′ sa,a. Then

AD′ ∼= eADe

Proof

The generators of AD satisfy

esu,v e =

{
su,v if o(u), o(v) ∈ D ′,

0 otherwise.

The claim follows by uniqueness of AD′ .



Consequences - after considerable work

For a fixed alphabet A and fixed transition matrices Mj , the
isomorphism class of AD ⊗K is independent of D.

AD ⊗K ∼= F o Zr , where F is an AF algebra.



Decorated rank one examples

A finite connected graph X , with all vertices of degree > 2. The
universal covering tree ∆ has boundary ∂∆.

X

• •

∂∆

∆



Example

a

b

c

d

•v0 •

The alphabet A is

{a, a, b, b, c , c, d , d}

a
c

b

d

cd

b
• • •

•

•

• •

• •

•

•

•

•

• •

•

•

ṽ0



Γ = F3 acts freely on ∆ and on ∂∆.

The decorating set D is {a, b, c , d} and δ : D → A is inclusion.
M(y , x) = 1⇔ the path xy has length 2 in X (i.e. a simple loop).

Theorem

A = AD is a rank-1 CK-algebra and

K0(A) =

〈
A

∣∣∣∣∣ a =
∑
b∈A

M(a, b)b

〉

This is easily computed from the graph X .



Example: Γ = F3

generators : {a, a, b, b, c , c , d , d}

8 relations :

a = b + c + d

a = b + c + d

etc . . .

a

b

c

d

• •

Theorem

K0(A) = Zr ⊕ Zr−1, where r is the rank of Γ.

The class [1] ∈ K0(A) has order r − 1

remark

Fr can act in (many) different ways on a tree.



Acylindrical Groups

Suppose

∆ is an infinite, locally finite tree

∂∆ is infinite

Γ < Aut(∆) acts without inversion

Definition

Γ is k-acylindrical if the stabilizer of any path of length k in ∆
is trivial.

Γ is acylindrical if it is k-acylindrical for some integer k .

(Z. Sela, 1997)
The name comes from the geometry of surfaces in 3-manifolds.



Examples

Γ is 1-acylindrical if it acts freely on the set of edges.

The action of Γ1 ∗ Γ2 on its Bass-Serre tree is 1-acylindrical.

The action of Γ1 ∗Γ0 Γ2 on its Bass-Serre tree is 2-acylindrical
if Γ0 is malnormal in Γ1.

Every small splitting of a torsion free hyperbolic group Γ is
3-acylindrical.

small splitting: action of Γ on a tree in which no edge stabilizer
contains a nonabelian free group



Theorem

Suppose that Γ < Aut(∆) is acylindrical and Γ\∆ is finite. Then
AΓ = C (∂∆) o Γ is a simple (rank-1) C-K algebra.



Construction

Suppose Γ is k-acylindrical.

The alphabet A is Γ\Sk+1, where Sk+1 is the set of directed
paths of length k + 1;

If a, b ∈ A, define M(a, b) = 1 if and only if

a = Γσ, where σ = (s0, s1, . . . , sk+1);

b = Γτ , where τ = (t0, t1, . . . , tk+1);

sj+1 = tj , 0 ≤ j ≤ k.

• • • • • • • •• • • • • • • •
s0 sk+1

t0 tk+1

Otherwise M(a, b) = 0.



Let Wm = Γ\Sm+k+1 and let W =
⋃

m Wm. There is a bijection

α : Wm →Wm

defined by

α(Γ(s0, s1, . . . , sm+k+1)) = (Γ[s0, sk+1])(Γ[s1, sk+2]) . . . (Γ[sm, sm+k+1]).

Crucial Fact

• • • • • • •
•

•

s0 s1

s ′k+1

sk+1
σ

σ′

Γσ 6= Γσ′



Decoration

Fix P ∈ ∆0.

D is the set of directed segments of length k + 1 which begin
at P;

Wm is the set of directed segments of length m + k + 1 which
begin at P.

There is a natural bijection

α : Wm →W m.



Let σ, τ ∈ Sk+1 be final segments of paths beginning at P.

If σ = γτ , where γ ∈ Γ, then define

φ(sα(σ),α(τ)) = γpτ

P

•••••••

•••••••

•

σ

τ

γ

The map φ induces an isomorphism AD
∼= AΓ = C (Ω) o Γ.



Facts

AΓ depends only on Γ

K0(AΓ) = coker(I −M) =

〈
A

∣∣∣∣∣ a =
∑
b∈A

M(a, b)b

〉

Consequence

K0(AΓ) is Bowen-Franks invariant of the associated geodesic flow.



1-acylindrical example

Γ = Z`+1 ∗ Zm+1 acts on its Bass-Serre tree ∆: an
(`+ 1,m + 1)-semihomogeneous tree.

Γ acts freely and
transitively on E .

If m = n = 3 then

Γ = Z4 ∗ Z4

= 〈x , y |x4 = y 4 = 1〉

• • •

•

•

• •

• •

•

•

•

•

• •

•

•

e

xe

x2e

x3e

y 2e
ye

y 3e

Fundamental domain



Theorem

If Γ = Z`+1 ∗ Zm+1 then K0(AΓ) = Z`m−1.

Proof.

If σ ∈ S2, then σ is one of

• ••σ1 σ0
• ••σ0 σ1

This gives a partition A = Γ\S2 = A0 t A1, |A0| = `, |A1| = m.

If a = Γσ ∈ Ai then a =
∑

Γτ∈Ai+1
τi =σi

Γτ , which depends only on σi .

Γ acts transitively on edges, so all elements of Ai are equal in
K0(AΓ).
Therefore K0(AΓ) equals

〈a0, a1 | a0 = ma1, a1 = `a0 〉 = 〈a0 | a0 = `ma1 〉 = Z`m−1



Corollary

K1(AΓ) = 0 and so U(AΓ) is connected.

Proof

This is because K1(AΓ) equals the torsion free part of K0(AΓ) and
K1(A) = U(A)/U0(A).



K-theory of rank 2 Cuntz-Krieger algebras

Part III

K-theory of rank 2 Cuntz-Krieger
algebras



K-theory of rank 2 Cuntz-Krieger algebras

Let A be a rank two C-K algebra associated with an alphabet A
and matrices M1,M2. [D is irrelevant for computing K∗.]
The matrices (I −M1, I −M2) and (I −Mt

1, I −Mt
2) define

homomorphisms ZA ⊕ ZA → ZA.

Let

coker (I−M1, I−M2) = Zr ⊕ T

coker (I−Mt
1, I−Mt

2) = Zs ⊕ T ′

where T ,T ′ are torsion groups. Then

Theorem

K0(A) = Zr+s ⊕ T

K1(A) = Zr+s ⊕ T ′.



K-theory of rank 2 Cuntz-Krieger algebras

Outline of proof

K∗(A) = K∗(F o Z2), since AD ⊗K ∼= F o Zr

The Baum-Connes Conjecture with coefficients in an arbitrary
C ∗-algebra is true for the group Z2 (and much more
generally). This implies that K∗(F o Z2) coincides with its
“γ-part”.

Therefore K∗(F o Z2) may be computed as the limit of a
Kasparov spectral sequence. The initial terms of the spectral
sequence are E 2

p,q = Hp(Z2,Kq(F)), the pth homology of the
group Z2 with coefficients in the module Kq(F).

Use the fact that K1(F) = 0.



Boundary Algebras for Ã2 groups

Part IV

Boundary Algebras for Ã2 groups



Boundary Algebras for Ã2 groups

Boundary algebras provided the motivation for the general theory
of higher rank CK-algebras.

Theorem

Let ∆ be a building of type Ã2 with boundary Ω. Let Γ be a group
of type rotating automorphisms of ∆ that acts freely on the vertex
set with finitely many orbits. Then C (Ω) o Γ is isomorphic to a
rank 2 C-K algebra A.

Rigidity theorems imply that the action of Γ is unique up to
conjugacy and so the crossed product C ∗-algebra
A(Γ) = C (Ω) o Γ depends only on Γ. Write AΓ = C (Ω) o Γ.

For simplicity, assume that the action of Γ is also transitive on
the vertex set. i.e. Γ is an Ã2 group. Then decorating set is
trivial, i.e. D = A.



Boundary Algebras for Ã2 groups

The 1-skeleton of ∆ is the Cayley graph of Γ. Vertices of ∆ are
elements of Γ and a directed edge of the form e = (g , gx) is
labeled by a generator x ∈ P.

• •
g gx

x

The alphabet A is defined to be the set of Γ-equivalence classes of
basepointed parallelograms in ∆. Each a ∈ A has a unique
representative labelled parallelogram (tile) based at a fixed vertex.

•

#A = q(q + 1)(q2 + q + 1). (Exercise.)



Boundary Algebras for Ã2 groups

Mumford’s group ΓM has generators x0, x1, . . . , x6, and relators{
x0x0x6, x0x2x3, x1x2x6, x1x3x5,

x1x5x4, x2x4x5, x3x4x6.

•

x3

x2x0

x1x5

A tile for Mumford’s group



Boundary Algebras for Ã2 groups

Suppose that Γ = ΓM . The transition matrices M1, M2 are defined
as follows.

M1(b, a) = 1 if and only if there are tiles representing a, b in the
building ∆ which lie as shown.

a

b

x0 x2

x1x5 x5

x5 x2

M1(b, a) = 1

Otherwise M1(b, a) = 0.



Boundary Algebras for Ã2 groups

The diagram for M2:

a

c

x0 x2

x1
x5

x4

x6 x1

M2(c , a) = 1



Boundary Algebras for Ã2 groups

Let p be a parallelogram based at 1 in some apartment of ∆.
p is a union of tiles.

t(w)

1

Associated to p there is a two dimensional word w = w(p). The
map p 7→ w(p) is bijective, and we identify p with w(p).

If w = w(p) ∈W , the terminal letter t(w) ∈ A is represented by
the tile of p farthest from 1.



Boundary Algebras for Ã2 groups

Example

In the diagram below, the two letters a, b define a word
w ∈W(1,0), with w(0, 0) = a and w(1, 0) = b.

a

b

Let Ω(w) = {ω ∈ Ω ; p ⊂ [1, ω)}, the set of boundary points
whose representative sectors based at 1 contain p.



Boundary Algebras for Ã2 groups

We now describe the isomorphism φ : A → C (Ω) o Γ.

If w1,w2 ∈W with t(w1) = t(w2) = a ∈ A, let γ ∈ Γ be the
unique element such that γt(w1) = t(w2). Then

φ(sw2,w1) = γ1Ω(w1) = 1Ω(w2)γ. (3)

This defines a *-homomorphism of because the operators of the
form φ(sw2,w1) satisfy the relevant relations.

Exercise

Verify this.

Since A is simple, φ is injective. The proof of surjectivity is
omitted.



Boundary Algebras for Ã2 groups

A key step is the verification of the conditions (H0-H3).

(H0) is obvious.

(H1) follows from the fact that in the configuration illustrated
by the Figure below, the tiles a, b, c determine a unique tile d
lying in an apartment of ∆ containing a, b, c .

a

b

c

d

(H3) follows from thickness of the building, which allows
words to be extended so as to lack periodicities.



Boundary Algebras for Ã2 groups

The hardest condition to prove is (H2), i.e. irreducibility of the
associated directed graph. This can be done by a direct
combinatorial argument for Ã2 groups.



Boundary Algebras for Ã2 groups

K-theory

Lemma

There is a permutation matrix S : ZA → ZA such that S2 = I and
SM1S = Mt

2, SM2S = Mt
1. In particular

coker (I−M1, I−M2) = coker (I−Mt
1, I−Mt

2)

Proof

S is defined by vertical flip.

•

x3

x2x0

x1x5

S:

•

x3

x1x5

x2x0

⇒



Boundary Algebras for Ã2 groups

Let r be the rank, and T the torsion part, of the finitely generated
abelian group C (Γ) = coker (I−M1, I−M2) . Thus C (Γ) ∼= Zr ⊕ T .

C (Γ) is the abelian group with generating set A and relations

a =
∑
b∈A

Mj(b, a)b, a ∈ A, j = 1, 2.

Theorem

Let Γ be an Ã2 group. Then

K0(AΓ) = K1(AΓ) = Z2r ⊕ T . (4)

Proof.

The general K-theory result simplifies by the preceding lemma.

Conjecture

If Γ is torsion free, then r = rank H2(Γ,Z). [Known: ≥.]



Boundary Algebras for Ã2 groups

Example: Mumford’s group

For Mumford’s group Γ, C (Γ) has 7× 3× 2 = 42 generators and
2× 42 = 84 relations of the form

•

x6

x0x0

x2x1

=

•

x5

x4x2

x3x1

+

•

x5

x4x2

x1x4

•

x0

x3x2

x6x0

+ +

•

x6

x3x2

x0x0

.
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Computation gives C (ΓM) = (Z/2Z)4 ⊕ Z/3Z .

Consequence

K0(AΓM
) = (Z/2Z)4 ⊕ Z/3Z .

If Γ < PGL3(Qp) is a torsion-free lattice then Γ has Euler
characteristic

χ(Γ) =
n0

3
(p − 1)(p2 − 1).

where n0 is the number of vertex orbits of Γ acting on ∆.

There are three torsion-free lattices Γ1, Γ2, Γ3 < PGL3(Q2) with
χ(Γj) = 1. (One of them is Mumford’s group.)

Γ1, Γ2, Γ3 are distinguished from each other by K0(AΓ).
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Typical computational result

Γ < PGL3(Q7) an Ã2 group of H. Voskuil.

K0(AΓ) = Z190 ⊕ (Z/2Z)⊕ (Z/3Z)21

Note that

H1(Γ,Z) = (Z/3Z)7

H2(Γ,Z) = Z95

and [1] has order
(p − 1)

gcd(3, p − 1)
= 2 .
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There is a simple rank one C-K algebra A0 such that
K∗(A0) = (Z,Z).

Theorem

Let Γ be an Ã2 group. There is a simple rank one C-K algebra A1

such that AΓ is stably isomorphic to A0 ⊗A1.

Proof.

There is a simple rank one C-K algebra A1 such that
K∗(A1) = (Zr ⊕ T ,Zr ).
By the Künneth Theorem for tensor products,

K∗(A0 ⊗A1) == (Zr ⊕ T ,Zr )⊗ (Z,Z) = (Z2r ⊕ T ,Z2r ⊕ T ).

The result follows from the Classification Theorem.
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Triangle groups

Definition

A triangle group Γ is a group of type preserving automorphisms of
∆ which acts regularly on the set of chambers of ∆.

Example: q = 2〈
si , i ∈ Z3 | s3

i = 1, si si+1 = (si+1si )
2
〉

(5)

acts on the euclidean building ∆ of SL3(Q2).

q = 2 : 4 groups.

q = 8 : 44 groups.
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Theorem

If Γ is a triangle group then

AΓ = C (Ω) o Γ is a rank 2 Cuntz-Krieger algebra;

K0(AΓ) = K1(AΓ) = Zq2−1.

Corollary

AΓ is stably isomorphic to Oq2 ⊗Oq2 .
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The plan of the proof is similar to the case of Ã2 groups.

Tiles have the form

2-dimensional words are formed using two transition matrices, with
overlapping tiles.
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