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MOTIVATION I

[T acts ANALYSIS
on 60X

GEOMETRY
X

What does (I',0X) reveal about X7



Examplel

X . A finite connected graph.
X : The universal covering space (a tree).

OX : The boundary of X.
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The fundamental group I of X is a
free group which acts on X and

MNX = X.



Continuous Analoguel

%{26C23z>0}

X @ compact surface

PSL,(R) acts on X via

a py.  aztf
vy &) " vz + 6

The fundamental group ' of X embeds as a
lattice in PSL>(R): a discrete subgroup of
finite covolume.



Replace R by a local field ...

For p prime, Q, is the field of formal sums
_ ' 2
z=ajp) +---+ag+aip+ap+---,
where each a; € {0,1,--- ,p—1} and a; # 0.

x| =p~7 ifz#0,
0] =0

The p-adic integers

Zp=A{x € Qp:lz] <1}
set of sums withj > 0

-7 a compact subring

Ultrametric Property:

lz 4 y| < max(|z|, [y])



Two balls are either disjoint or
one is contained in the other

Y

Tree structure on the set of balls in Qp
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.a (p+ 1)-regular tree A.
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The tree of PGLQ(Qp)I

The group PGL>(Qp) acts on its building A,
which is a homogeneous tree of degree p+ 1.

A vertex is a maximal compact subgroup K

An edge is (K,K’) where KN K’ is a
maximal proper subgroup of K and K’.

PGL>(Qp) acts on A via

K — g_lKg



Examplel

In PGL»>(Q3), a vertex K has four neighbours

g 1Kg

where

=(32)-6 2600 %)




Non-rigidity l

PGL->(Q3) contains lattices

[y =Ty = Fy

with

AT x =
X

orv- (]
Y
N\

where A\ = > <

AN

[y, My are not conjugate in PGL»>(Q3).



The boundary action l

The action of ' on A extends to 0A.
Let ' < PGL2(Qp) be a torsion free lattice.

Then
= Fi

a free group of rank r.

Study the action of ' on 0A by forming the
crossed product C*-algebra

A=COA) xT
generated by

c(oA) c A(IN) an abelian subalgebra
rc A(IN) a group of unitaries
such that

FOr ) = (v H,

~vyel,feC(A).



A is classified by the group Kp(A).

Theorem. Kqg(A)=Z"&®Z/(r—1)Z

.. .depends only on ' (weak rigidity).

Ko(A) ={[e] : e#0, e2=e=¢* € A}

where e; ~ ex <= e1 = x*x, eo = xx™.

Note. Kp(A) determines I'.



In this case:

e the class of 1 generates Z/(r — 1)7Z,;

e cach factor of Z" corresponds to a
generator a; of Fi.

a ai

a3 aq



T he building of PGL3(Qp)I

...a simply connected simplicial complex A,
with dim A = 2.

A vertex is a maximal compact subgroup K

An edge is (K,K’) where KNK' is a
maximal proper subgroup of K and K’.

PGL3(Qp) acts on A via

K — g_lKg

Each edge lies on p 4+ 1 triangles.



Neighbours of a vertex (p = 2)

7 point
projective plane

On the left: a ball of radius one.

On the right: a sphere of radius one.

A IS a union of apartments : flat subcom-
plexes isomorphic to a tessellation of R2 by
equilateral triangles.
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A, Coxeter complex




The boundary 0A l

The boundary of A is
oA = G/B
where G = PGL3(Qp) and

B =

O O x

O x*

b o P o
)
)

OA is compact and totally disconnected.

Points of OA correspond to sectors based at
a fixed vertex of A.




Rigidityl
Let ' < PGL3(Qp) be a lattice.

The embedding of I' in PGL3(Qp) is unique.
(.... up to conjugacy)

Also [ does not embed as a lattice in any
other PGL,(F), where F is a local field, n > 2.



Example (D. Mumford 1979)'

I < PGL3(Q»), with generators xqg, z1, ..., g,
and relators

{3505’303367 LOQL2X3, L1LRXLG, L1L3LH,

T1T5T4, T2TL4L5, TITL4LE.

X = A/I" is obtained by glueing 7 triangles

where x;x;x; IS a relator.
X has Euler Characteristic x(IN) = 1.

There are three torsion-free lattices
[ < PGL3(Q5) with x(I') = 1.



The boundary action l

Let ' < PGL3(Qp) be a torsion-free lattice.

The crossed product C*-algebra
A=C(OA) xT
is classified by Kg(A).

Example. For Mumford's group,

Ko(A) = (Z/22)* & Z/3Z.

The torsion-free lattices ' < PGL3(Q») with
x(IM) = 1 are distinguished from each other

by KO(.A)



How is Kg(A) related to I'?

Theorem. () =1+ rank Kg(A).

Remark: If p > 2 then x(IM) > 1.

Consequence: Kg(A) distinguishes
Mumford's group from all other
torsion free lattices

M < PGL3(Qp), p>1.



How to compute KO(A)I

Consider

D : the set of M-orbits of oriented tiles in A

¢ : the abelian group with generating set ®
and relations

t=Zs, ZZS.

Boow



Geometrically :

each tile t is a formal sum of tiles s.

Theorem. Kg(A) = €@ zrank(©),



Example (Mumford’s group)I

¢ has 7 x 3 x 2 = 42 generators

and 2 x 42 = 84 relations of the form

1 3 T4 1

0 0 o T4 o T4

O

giving
¢ = (2/22)* o 7/37.



Typical computation l

[ < PGL3(Q7), the lattice of H. Voskuil
satisfying

H1(r,2) = (2/3Z2)"
Ho(I,7Z) = 7.2°

Direct computation gives

Ko(A) =2 @ (2/272) & (Z/372)?!

and [1] = ) s has order

sED
(r—1) _
gcd(3.p 1) -vol(G/IM) = 2.

Strong numerical evidence suggests that the order of

[1] is always given by this formula.



Continuous analoguel

The tree is a combinatorial analogue of the
Poincaré disc D.

A torsion free cocompact Fuchsian group

M < PSLQ(R)

acts on D and is the fundamental group of
the Riemann surface of genus g.

(o <)
N~

[ act on 8D = S and the boundary algebra
A satisfies

Ko(A) =229 @ z/(2¢ —2)Z.



