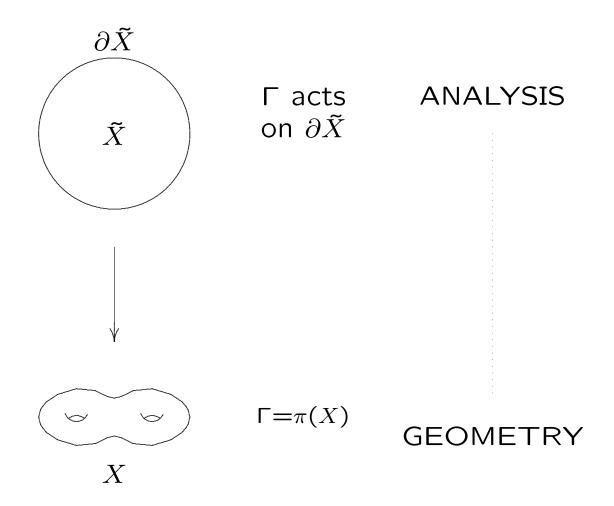
Trees, Buildings and Boundaries

Guyan Robertson University of Newcastle

MOTIVATION



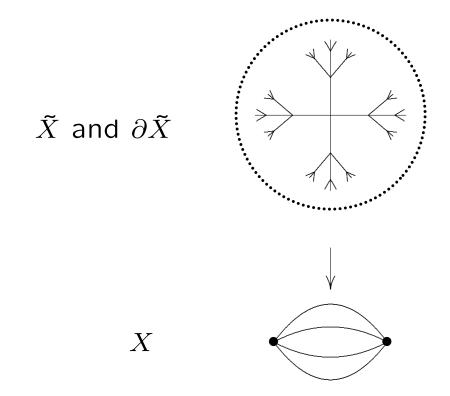
What does $(\Gamma, \partial \tilde{X})$ reveal about X?

Example

X: A finite connected graph.

 \tilde{X} : The universal covering space (a tree).

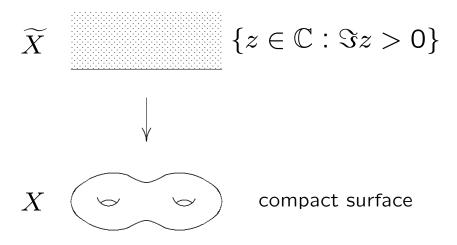
 $\partial \tilde{X}$: The boundary of \tilde{X} .



The fundamental group Γ of X is a free group which acts on \widetilde{X} and

$$\Gamma \backslash \widetilde{X} = X.$$

Continuous Analogue



 $\mathsf{PSL}_2(\mathbb{R})$ acts on \widetilde{X} via

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} : z \mapsto \frac{\alpha z + \beta}{\gamma z + \delta}.$$

The fundamental group Γ of X embeds as a **lattice** in $\mathsf{PSL}_2(\mathbb{R})$: a discrete subgroup of finite covolume.

Replace \mathbb{R} by a **local field** ...

For p prime, \mathbb{Q}_p is the field of formal sums

$$x = a_j p^j + \dots + a_0 + a_1 p + a_2 p^2 + \dots,$$

where each $a_i \in \{0, 1, \dots, p-1\}$ and $a_j \neq 0$.

$$\begin{aligned} |x| &= p^{-j} & \text{if } x \neq 0 \,, \\ |0| &= 0 \end{aligned}$$

The p-adic integers

$$\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x| \le 1\}$$

$$= \text{ set of sums with } j \ge 0$$

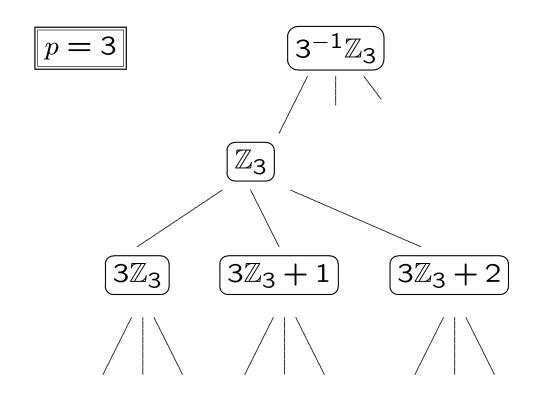
$$= \overline{\mathbb{Z}} \qquad \text{a compact subring}$$

Ultrametric Property:

$$|x+y| \le \max(|x|,|y|)$$

Two balls are either disjoint or one is contained in the other

Tree structure on the set of balls in \mathbb{Q}_p



...a (p+1)-regular tree Δ .

The tree of $PGL_2(\mathbb{Q}_p)$

The group $PGL_2(\mathbb{Q}_p)$ acts on its **building** Δ , which is a homogeneous tree of degree p+1.

A **vertex** is a maximal compact subgroup K of $PGL_2(\mathbb{Q}_p)$.

e.g.
$$K = PGL_2(\mathbb{Z}_p)$$
.

An **edge** is (K, K') where $K \cap K'$ is a maximal proper subgroup of K and K'.

 $\mathsf{PGL}_2(\mathbb{Q}_p)$ acts on Δ via

$$K \mapsto g^{-1}Kg$$

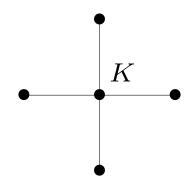
Example

In $PGL_2(\mathbb{Q}_3)$, a vertex K has four neighbours

$$g^{-1}Kg$$

where

$$g = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 3^{-1} & 0 \\ 0 & 1 \end{pmatrix}.$$



Non-rigidity

 $PGL_2(\mathbb{Q}_3)$ contains lattices

$$\Gamma_X \cong \Gamma_Y \cong F_5$$

with

$$\Delta/\Gamma_X = X$$

$$\Delta/\Gamma_Y = \bigvee_{Y}$$

where
$$\Delta =$$

 Γ_X , Γ_Y are not conjugate in $PGL_2(\mathbb{Q}_3)$.

The boundary action

The action of Γ on Δ extends to $\partial \Delta$.

Let $\Gamma < \mathsf{PGL}_2(\mathbb{Q}_p)$ be a torsion free lattice.

Then

$$\Gamma \cong F_r$$

a free group of rank r.

Study the action of Γ on $\partial \Delta$ by forming the crossed product C^* -algebra

$$\mathcal{A} = C(\partial \Delta) \rtimes \Gamma$$

generated by

such that

$$C(\partial \Delta) \subset \mathcal{A}(\Gamma)$$

 $\Gamma \subset \mathcal{A}(\Gamma)$

 $C(\partial \Delta) \subset \mathcal{A}(\Gamma)$ an abelian subalgebra a group of unitaries

$$f(\gamma^{-1}t) = (\gamma f \gamma^{-1})(t),$$
$$\gamma \in \Gamma, f \in C(\partial \Delta).$$

 \mathcal{A} is classified by the group $K_0(\mathcal{A})$.

Theorem.
$$K_0(A) = \mathbb{Z}^r \oplus \mathbb{Z}/(r-1)\mathbb{Z}$$

... depends only on Γ (weak rigidity).

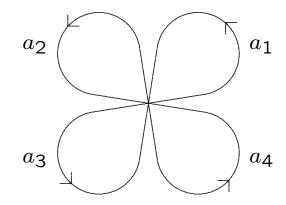
$$K_0(A) = \{ [e] : e \neq 0, e^2 = e = e^* \in A \}$$

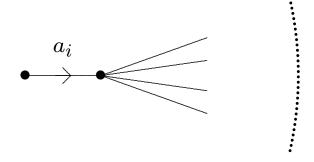
where $e_1 \sim e_2 \iff e_1 = x^*x, e_2 = xx^*$.

Note. $K_0(A)$ determines Γ .

In this case:

- ullet the class of 1 generates $\mathbb{Z}/(r-1)\mathbb{Z}$;
- ullet each factor of \mathbb{Z}^r corresponds to a generator a_i of F_r .





The building of $PGL_3(\mathbb{Q}_p)$

... a simply connected simplicial complex Δ , with dim $\Delta = 2$.

A **vertex** is a maximal compact subgroup K of $PGL_3(\mathbb{Q}_p)$.

e.g.
$$K = PGL_3(\mathbb{Z}_p)$$
.

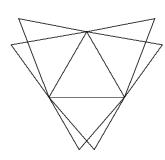
An **edge** is (K, K') where $K \cap K'$ is a maximal proper subgroup of K and K'.

 $\mathsf{PGL}_3(\mathbb{Q}_p)$ acts on Δ via

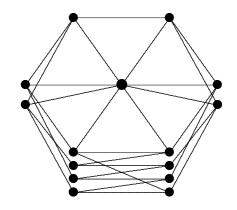
$$K \mapsto g^{-1}Kg$$

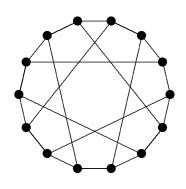
Each edge lies on p+1 triangles.

$$p = 2$$
:



Neighbours of a vertex (p = 2)



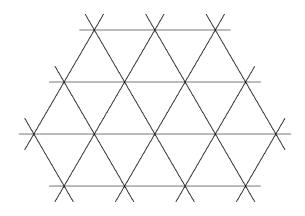


7 point projective plane

On the left: a ball of radius one.

On the right: a sphere of radius one.

 Δ is a union of apartments : flat subcomplexes isomorphic to a tessellation of \mathbb{R}^2 by equilateral triangles.



 \widetilde{A}_2 Coxeter complex

The boundary $\partial \Delta$

The boundary of Δ is

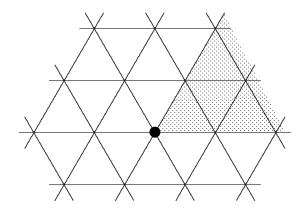
$$\partial \Delta \cong G/B$$

where $G = PGL_3(\mathbb{Q}_p)$ and

$$B = \begin{pmatrix} \star & \star & \star \\ 0 & \star & \star \\ 0 & 0 & \star \end{pmatrix} \cap G.$$

 $\partial \Delta$ is compact and totally disconnected.

Points of $\partial \Delta$ correspond to sectors based at a fixed vertex of Δ .



Rigidity

Let $\Gamma < \mathsf{PGL}_3(\mathbb{Q}_p)$ be a lattice.

The embedding of Γ in $PGL_3(\mathbb{Q}_p)$ is unique. (.... up to conjugacy)

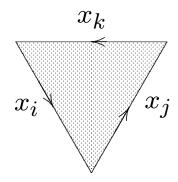
Also Γ does not embed as a lattice in any other $PGL_n(\mathbb{F})$, where \mathbb{F} is a local field, $n \geq 2$.

Example (D. Mumford 1979)

 $\Gamma < \mathsf{PGL}_3(\mathbb{Q}_2)$, with generators x_0, x_1, \ldots, x_6 , and relators

$$\begin{cases} x_0 x_0 x_6, x_0 x_2 x_3, x_1 x_2 x_6, x_1 x_3 x_5, \\ x_1 x_5 x_4, x_2 x_4 x_5, x_3 x_4 x_6. \end{cases}$$

 $X = \Delta/\Gamma$ is obtained by glueing 7 triangles



where $x_i x_j x_k$ is a relator.

X has Euler Characteristic $\chi(\Gamma) = 1$.

There are **three** torsion-free lattices $\Gamma < \text{PGL}_3(\mathbb{Q}_2)$ with $\chi(\Gamma) = 1$.

The boundary action

Let $\Gamma < \mathsf{PGL}_3(\mathbb{Q}_p)$ be a torsion-free lattice.

The crossed product C^* -algebra

$$\mathcal{A} = C(\partial \Delta) \rtimes \Gamma$$

is classified by $K_0(A)$.

Example. For Mumford's group,

$$K_0(\mathcal{A}) = (\mathbb{Z}/2\mathbb{Z})^4 \oplus \mathbb{Z}/3\mathbb{Z}$$
.

The torsion-free lattices $\Gamma < \operatorname{PGL}_3(\mathbb{Q}_2)$ with $\chi(\Gamma) = 1$ are distinguished from each other by $K_0(\mathcal{A})$.

How is $K_0(A)$ related to Γ ?

Theorem. $\chi(\Gamma) = 1 + \frac{1}{2} \operatorname{rank} K_0(A)$.

Remark: If p > 2 then $\chi(\Gamma) > 1$.

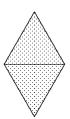
Consequence: $K_0(\mathcal{A})$ distinguishes Mumford's group from **all** other torsion free lattices

$$\Gamma < \mathsf{PGL}_3(\mathbb{Q}_p), \quad p > 1.$$

How to compute $K_0(A)$

Consider

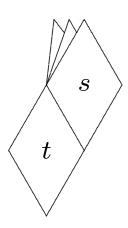
 ${\mathfrak D}$: the set of Γ -orbits of oriented tiles in Δ



 $\mathfrak C$: the abelian group with generating set $\mathfrak D$ and relations

$$t = \sum_{s} s, \qquad t = \sum_{s} s.$$

Geometrically:

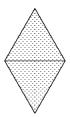


each tile t is a formal sum of tiles s.

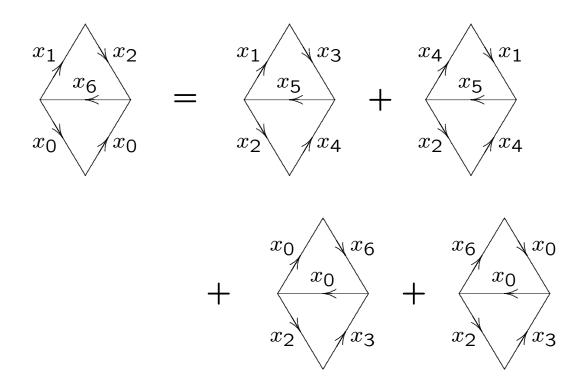
Theorem. $K_0(A) = \mathfrak{C} \oplus \mathbb{Z}^{\operatorname{rank}(\mathfrak{C})}$.

Example (Mumford's group)

 \mathfrak{C} has $7 \times 3 \times 2 = 42$ generators



and $2 \times 42 = 84$ relations of the form



giving

$$\mathfrak{C} = (\mathbb{Z}/2\mathbb{Z})^4 \oplus \mathbb{Z}/3\mathbb{Z}.$$

Typical computation

 $\Gamma < \mathsf{PGL}_3(\mathbb{Q}_7)$, the lattice of H. Voskuil satisfying

$$H_1(\Gamma, \mathbb{Z}) = (\mathbb{Z}/3\mathbb{Z})^7$$

 $H_2(\Gamma, \mathbb{Z}) = \mathbb{Z}^{95}$

Direct computation gives

$$K_0(\mathcal{A}) = \mathbb{Z}^{190} \oplus (\mathbb{Z}/2\mathbb{Z}) \oplus (\mathbb{Z}/3\mathbb{Z})^{21}$$

and
$$[1] = \sum_{s \in \mathfrak{D}} s$$
 has order

$$\frac{(p-1)}{\gcd(3,p-1)}\cdot \operatorname{vol}(G/\Gamma)=2.$$

Strong numerical evidence suggests that the order of [1] is always given by this formula.

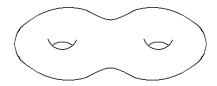
Continuous analogue

The tree is a combinatorial analogue of the Poincaré disc \mathbb{D} .

A torsion free cocompact Fuchsian group

$$\Gamma < \mathsf{PSL}_2(\mathbb{R})$$

acts on $\mathbb D$ and is the fundamental group of the Riemann surface of genus g.



 Γ act on $\partial \mathbb{D} = \mathbb{S}^1$ and the boundary algebra \mathcal{A} satisfies

$$K_0(\mathcal{A}) = \mathbb{Z}^{2g+1} \oplus \mathbb{Z}/(2g-2)\mathbb{Z}$$
.