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Abstract. To an r-dimensional subshift of finite type satisfying certain special properties we
associate a C∗-algebra A. This algebra is a higher rank version of a Cuntz-Krieger algebra. In
particular, it is simple, purely infinite and nuclear. We study an example: if Γ is a group acting
freely on the vertices of an Ã2 building, with finitely many orbits, and if Ω is the boundary of that
building, then C(Ω) o Γ is the algebra associated to a certain two dimensional subshift.

Introduction

This paper falls into two parts. The self-contained first part develops the theory of a class of
C∗-algebras which are higher rank generalizations of the Cuntz-Krieger algebras [CK, C1, C2].
We start with a set of r-dimensional words, based on an alphabet A, we define transition matrices
Mj in each of r directions, satisfying certain conditions (H0)-(H3). The C∗-algebra A is then
the unique C∗-algebra generated by a family of partial isometries su,v indexed by compatible r-
dimensional words u, v and satisfying relations (0.1) below. If r = 1 then A is a Cuntz–Krieger
algebra. We prove that the algebra A is simple, purely infinite and stably isomorphic to the
crossed product of an AF-algebra by a Zr-action.

The last part of the paper (Section 7) studies in detail one particularly interesting example.
This example was the authors’ motivation for introducing these algebras. Let B be an affine

building of type Ã2. Let Γ be a group of type rotating automorphisms of B which acts freely on
the vertex set with finitely many orbits. There is a natural action of Γ on the boundary Ω of
B, and we can form the universal crossed product algebra C(Ω) o Γ. This algebra is isomorphic
to an algebra of the form A obtained by the preceding construction. In the case where Γ also
acts transitively on the vertices of B the algebra C(Ω) o Γ was previously studied in [RS1], where
simplicity was proved. In a sequel to this paper [RS2] we explicitly compute the K-theory of some
of these algebras.

In [Sp] J. Spielberg treated an analogous example in rank 1: Γ is a free group, the building
is a tree, and C(Ω) o Γ is isomorphic to an ordinary Cuntz-Krieger algebra. In fact [Sp] deals
more generally with the case where Γ is a free product of cyclic groups. The generalizations in
this paper are motivated by Spielberg’s work.

We now introduce some basic notation and terminology. Let Z+ denote the set of nonnegative
integers. Let [m,n] denote {m,m + 1, . . . , n}, where m ≤ n are integers. If m,n ∈ Zr, say that
m ≤ n if mj ≤ nj for 1 ≤ j ≤ r, and when m ≤ n, let [m,n] = [m1, n1]× · · · × [mr, nr]. In Zr, let
0 denote the zero vector and let ej denote the jth standard unit basis vector. We fix a finite set
A (an “alphabet”).

A {0, 1}-matrix is a matrix with entries in {0, 1}. Choose nonzero {0, 1}-matricesM1,M2, . . . ,Mr

and denote their elements by Mj(b, a) ∈ {0, 1} for a, b ∈ A. If m,n ∈ Zr with m ≤ n, let

W[m,n] = {w : [m,n]→ A; Mj(w(l + ej), w(l)) = 1 whenever l, l + ej ∈ [m,n]}.
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Put Wm = W[0,m] if m ≥ 0. Say that an element w ∈ Wm has shape m, and write σ(w) = m.
Thus Wm is the set of words of shape m, and we identify A with W0 in the natural way. Define
the initial and final maps o : Wm → A and t : Wm → A by o(w) = w(0) and t(w) = w(m). Fix a
nonempty finite or countable set D (whose elements are “decorations”), and a map δ : D → A.
Let Wm = {(d, w) ∈ D×Wm; o(w) = δ(d)}, the set of “decorated words” of shape m, and identify
D with W 0 via the map d 7→ (d, δ(d)). Let W =

⋃
mWm and W =

⋃
mWm, the sets of all words

and all decorated words respectively. Define o : Wm → D and t : Wm → A by o(d, w) = d and
t(d, w) = t(w). Likewise extend the definition of shape to W by setting σ((d, w)) = σ(w).

Given j ≤ k ≤ l ≤ m and a function w : [j,m] → A, define w|[k,l] ∈ Wl−k by w|[k,l] = w′ where

w′(i) = w(i+ k) for 0 ≤ i ≤ l − k. If w = (d, w) ∈ Wm, define

w|[k,l] = w|[k,l] ∈ Wl−k if k 6= 0,

and w|[0,l] = (d, w|[0,l]) ∈ W l.

If w ∈ Wl and k ∈ Zr, define τkw : [k, k + l]→ A by (τkw)(k + j) = w(j). If w ∈ Wl where l ≥ 0
and if p 6= 0, say that w is p-periodic if its p-translate, τpw, satisfies τpw|[0,l]∩[p,p+l] = w|[0,l]∩[p,p+l].

Assume that the matrices Mi have been chosen so that the following conditions hold.

(H0): Each Mi is a nonzero {0, 1}-matrix.
(H1): Let u ∈ Wm and v ∈ Wn. If t(u) = o(v) then there exists a unique w ∈ Wm+n such

that

w|[0,m] = u and w|[m,m+n] = v.

(H2): Consider the directed graph which has a vertex for each a ∈ A and a directed edge
from a to b for each i such that Mi(b, a) = 1. This graph is irreducible.

(H3): Let p ∈ Zr, p 6= 0. There exists some w ∈ W which is not p-periodic.

Definition 0.1. In the situation of (H1) we write w = uv and say that the product uv exists.
This product is clearly associative.

The C∗-algebra A is defined as the universal C∗-algebra generated by a family of partial isome-
tries {su,v; u, v ∈ W and t(u) = t(v)} satisfying the relations

su,v
∗ = sv,u(0.1a)

su,vsv,w = su,w(0.1b)

su,v =
∑

w∈W ;σ(w)=ej ,
o(w)=t(u)=t(v)

suw,vw, for 1 ≤ j ≤ r(0.1c)

su,usv,v = 0, for u, v ∈ W 0, u 6= v.(0.1d)

1. Products of higher rank words

Condition (H1) is fundamental to all that follows. How then, does one verify (H1)? Given
{0, 1}-matrices Mi, 1 ≤ i ≤ r, the following three simple conditions will be seen to be sufficient.

(H1a): MiMj = MjMi.
(H1b): For i < j, MiMj is a {0, 1}-matrix.
(H1c): For i < j < k, MiMjMk is a {0, 1}-matrix.

Indeed, the first two conditions are also necessary.

Lemma 1.1. Fix {0, 1}-matrices Mi, 1 ≤ i ≤ r. Then (H1) implies (H1a) and (H1b).

Proof. Suppose (MiMj)(b, a) > 0. Then there exists c ∈ A so that Mj(c, a) = 1 = Mi(b, c). Let
u ∈ Wej

and v ∈ Wei
be given by

u(0) = a u(ej) = c v(0) = c v(ei) = b.
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According to (H1) there is a unique w ∈ Wei+ej
with w(0) = a, w(ej) = c, w(ei + ej) = b. There

must then be a unique d ∈ A which can be used for the missing value of w, w(ei). That is, there
must be a unique d ∈ A satisfying Mi(d, a) = 1 = Mj(b, d). Hence (MjMi)(b, a) = 1.

We have seen that if (MiMj)(b, a) > 0, then (MjMi)(b, a) = 1. Likewise, if (MjMi)(b, a) > 0,
then (MiMj)(b, a) = 1. It follows that MiMj and MjMi are equal and have entries in {0, 1}. �

Lemma 1.2. Fix {0, 1}-matrices Mi satisfying (H1a),(H1b), and (H1c). Let 1 ≤ j ≤ r. Let
w ∈ Wm and choose a ∈ A so that Mj(a, t(w)) = 1. Then there exists a unique word v ∈ Wm+ej

such that v|[0,m] = w and t(v) = a.

Proof. In the case r = 2 this follows from conditions (H1a) and (H1b) alone. The situation is
illustrated in Figure 1, for j = 2. The assertion is that there is a unique word v defined on
the outer rectangle [0,m + e2] with final letter v(m + e2) = a. The hypothesis is that there is
a transition from w(m) to a, in the sense that M2(a, w(m)) = 1. Define v(m + e2) = a. For
notational convenience, let n = m − e1. We have M1(w(m), w(n)) = 1, and the product matrix
M2M1 defines a transition w(n) → w(m) → a. The conditions (H1a) and (H1b) assert that the
product M1M2 defines a unique transition w(n) → b → a, for some b ∈ A. Define v(n + e2) = b.
Continue the process inductively until v is defined uniquely on the whole of [0,m + e2]. This
completes the proof if r = 2.

[0,m]

m

0

m+ e2

n

n+ e2

•

•

•

•
↑

Figure 1. The case r = 2.

Now consider the case r = 3. Proceeding by induction as in the case r = 2, the extension
problem reduces to that for a single cube. Consider therefore without loss of generality the unit
cube based at 0 with m = e1 + e2 and j = 3, as illustrated in Figure 2. Then w is defined on the
base of the cube [0,m] and it is required to extend w to a function v on the whole cube taking the
value a at m+ e3, under the assumption that there is a valid transition from w(m) to a. Now use
the case r = 2 on successive faces of the cube. Working on the right hand face there is a unique
possible value b for v(e1 + e3). Then, using this value for v(e1 + e3) on the near face we obtain
the value c for v(e3). Similarly, working respectively on the back and left faces we obtain a value
v(e2 + e3) = d and a second value, c′, for v(e3).

Now suppose that c 6= c′. Working on the top face and using the values a, d, and c′, we
obtain another value, b′ for v(e1 + e3). There are two possible transitions along the directed path
0→ e3 → e1 + e3 → m+ e3, namely

w(0)→ c′ → b′ → a and w(0)→ c→ b→ a.

This contradicts the assumption that (M2M1M3)(a, w(0)) ∈ {0, 1}.
The proof for general r now follows by induction. The uniqueness of the extension follows

from the two dimensional considerations embodied in Figure 1. All the compatibility conditions
required for existence follow from the three dimensional considerations of Figure 2. �

The next result follows by induction from Lemma 1.2.

Lemma 1.3. Fix {0, 1}-matrices Mi, 1 ≤ i ≤ r, satisfying (H1a), (H1b), and (H1c). Let 1 ≤
j1, . . . , jp ≤ r, let a0, . . . , ap ∈ A and suppose that Mji(ai, ai−1) = 1 for 1 ≤ i ≤ p. Then there exists
a unique word w ∈ W with σ(w) = ej1 + · · ·+ ejp, such that w(0) = a0 and w(ej1 + · · ·+ eji) = ai
for 1 ≤ i ≤ p.
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Figure 2. The case r = 3.

As a consequence we have

Lemma 1.4. Fix {0, 1}-matrices Mi, 1 ≤ i ≤ r. If (H1a), (H1b), and (H1c) hold, then (H1)
holds.

Proof. Let u ∈ Wm and v ∈ Wn. Suppose t(u) = o(v). Choose j1, . . . , jp as in Lemma 1.3 so that

ej1 + · · ·+ ejq = m ejq+1 + · · ·+ ejp = n

for some q, 0 ≤ q ≤ p. Choose ai, 0 ≤ i ≤ q so as to force the w of Lemma 1.3 to satisfy
w|[0,m] = u. Thus aq = t(u) = o(v). Choose ai, q ≤ i ≤ p so as to force w to satisfy w|[m,m+n] = v.
The existence and uniqueness in (H1) follow from the existence and uniqueness in Lemma 1.3. �

Corollary 1.5. If u = (d, u) ∈ Wm and v ∈ Wn with t(u) = o(v), then there exists a unique
w ∈ Wm+n such that

w|[0,m] = u and w|[m,m+n] = v.

In these circumstances we write w = uv, and say that the product uv exists.

Proof. This is immediate, with uv = (d, uv). �

For the next two lemmas, and for the rest of the paper, suppose that matrices Mi have been
chosen so that (H0)–(H2) hold.

Lemma 1.6. Let a, b ∈ A and n ∈ Zr
+. There exists w ∈ W with σ(w) ≥ n such that o(w) = a

and t(w) = b.

Proof. By condition (H0), the matrix Mj is nonzero, so there exists at least one word of shape
ej. Using this, choose words w1, . . . , wq so that σ(w1) + · · · + σ(wq) ≥ n. Using conditions (H1)
and (H2), one can always find a word with a given origin and terminus. So choose s0 ∈ W with
o(s0) = a, t(s0) = o(w1), choose sk ∈ W with o(sk) = t(wk), t(sk) = o(wk+1) for 1 ≤ k ≤ q − 1,
and choose sq ∈ W with o(sq) = t(wq), t(sq) = b. Let w = s0w1s1w2 . . . wq−1sq−1wqsq. �

Lemma 1.7. Given u ∈ W and b ∈ A, there exists v ∈ W such that uv exists, σ(v) 6= 0 and

t(v) = t(uv) = b.

Proof. This follows immediately Lemma 1.6. �

2. nonperiodicity

Assume that Mi, 1 ≤ i ≤ r, have been chosen and that (H0)–(H2) hold. In the large class
of examples associated to affine buildings it is fairly easy to verify the nonperiodicity condition,
(H3). However, in general it is hard to see how one can start with the matrices Mi and check (H3).
In this section we present a condition which implies (H3), and show how it can in principle be
checked. This material is not used in the remainder of the paper.

(H3*): Fix j, 1 ≤ j ≤ r. Let m ∈ Zr
+ with mj = 0. Let w ∈ Wm. Then there exist

u, u′ ∈ Wm+ej
such that u|[0,m] = u′|[0,m] = w but u(ej) 6= u′(ej).
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For l,m ∈ Zr, define
l ∧m = (l1 ∧m1, . . . , lr ∧mr),

l ∨m = (l1 ∨m1, . . . , lr ∨mr),

|l| = l ∨ (−l).
If w ∈ Wl where l ≥ 0 and if p 6= 0, recall that w is p-periodic if its p-translate, τpw, satisfies
τpw|[0,l]∩[p,p+l] = w|[0,l]∩[p,p+l].

. . . . . . .
. . . . . . .
. . . . . . .

. . . . . . .
. . . . . . .

. . . . . . .
. . . . . . .

0

l

p

p+ l

Figure 3. The region [0, l] ∩ [p, p+ l].

Lemma 2.1. Conditions (H0)–(H2) and (H3*) imply condition (H3).

Proof. Observe that p-periodicity is invariant under replacement of p by −p. We may therefore
assume that p has at least one positive component which we may take to be p1. Let p+ = p∨0 and
p− = (−p) ∨ 0. We will construct w ∈ W|p|. In this case w is defined on [0, |p|], τpw is defined on
[p, |p|+p], and τpw and w are both defined on [p∨0, |p|∧(|p|+p)] = [p+, p+], a single point. The word
w is p-periodic if and only if w(p+) = (τpw)(p+) = w(p+−p) = w(p−). The situation is illustrated
in Figure 4. Choose any v in W|p|−e1 and let u = v|[p+−e1,|p|−e1] ∈ Wp− . By condition (H3*), there
exist two different words x, x′ ∈ Wp−+e1 such that x|[0,p−] = x′|[0,p−] but x(e1) 6= x′(e1). At least
one of x(e1) and x′(e1) differs from v(p−); we may assume that x(e1) 6= v(p−). Let w be defined by
w|[0,|p|−e1] = u, w|[p+−e1,|p|] = x. Then w(p+) = x(e1) 6= v(p−) = w(p−), so w is not p-periodic. �

•

p−

0

|p|

p+

p

p+ |p|

|p| − e1

p+ − e1

v x

Figure 4. Proof of Lemma 2.1 in the case r = 2.

Now we discuss the checkability of (H3*). Fix j, 1 ≤ j ≤ r. For w ∈ Wm with σ(w)j = 0 let

A(j, w) = {u(ej);u ∈ Wm+ej
and u|[0,m] = w}.

Given w, one can calculate A(j, w) by considering, one at a time, the possible values of u(m+ ej),
and working back to find the possible values of u(ej) as in the proof of Lemma 1.2. The assertion
of (H3*) is that #A(j, w) ≥ 2 for any w with σ(w)j = 0.

Let v, w ∈ W with σ(v) = ek, k 6= j, σ(w)j = 0, and suppose that vw is defined. Then

A(j, vw) = {a ∈ A;Mj(a, o(v)) = 1 and Mk(b, a) = 1 for some b ∈ A(j, w)}.
Thus one can calculate A(j, vw) from the knowledge of v and A(j, w).

To check (H3*) for the fixed value of j, one proceeds to construct, for each c ∈ A a complete
list of possibilities for A(j, w) with o(w) = c. The first step in the algorithm is to insert in the
lists all A(j, w) for w ∈ W0. Then proceeding cyclically through all words v with σ(v) = ek, for
all k 6= j, the algorithm adds to the lists all possible values of A(j, vw) corresponding to values
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A(j, w) already on the lists. The algorithm terminates when a complete cycle through the words
v generates no new possible values for A(j, w). The algorithm works because any w ∈ W can be
written w = v1v2 . . . vq, with σ(vi) = eki

.
Is this algorithm practical for hand computation? for electronic computation? The authors

have done no experiments, but they suspect that the lists of subsets of A will get out of hand
rapidly as the cardinality of A increases. The situation is not entirely satisfactory.

3. The C∗-algebra

Assume conditions (H0)-(H3) hold. Define an abstract untopologized algebra A0 over C which
depends on A, (Mj)

r
j=1, D, and δ. The generators of A0 are {s0

u,v;u, v ∈ W and t(u) = t(v)}. The
relations defining A0 are

s0
u,vs

0
v,w = s0

u,w

s0
u,v =

∑
w∈W ;σ(w)=ej ,
o(w)=t(u)=t(v)

s0
uw,vw, for 1 ≤ j ≤ r

s0
u,us

0
v,v = 0 for u, v ∈ W 0, u 6= v.

It is trivial to verify that A0 has an antilinear antiautomorphism defined on the generators by

s0
u,v
∗

= s0
v,u.

This makes A0 a ∗-algebra. Let A be the corresponding enveloping C∗-algebra (c.f. [CK, p.256])
and let su,v be the image of s0

u,v in A. The generators of A are therefore

{su,v; u, v ∈ W and t(u) = t(v)}
and the defining relations are

su,v
∗ = sv,u(3.1a)

su,vsv,w = su,w(3.1b)

su,v =
∑

w∈W ;σ(w)=ej ,
o(w)=t(u)=t(v)

suw,vw, for 1 ≤ j ≤ r(3.1c)

su,usv,v = 0 for u, v ∈ W 0, u 6= v.(3.1d)

Remark 3.1. Suppose that u, v ∈ W and t(u) = t(v). Then su,v is a partial isometry with initial
projection su,v

∗su,v = sv,v and final projection su,vsu,v
∗ = su,u.

Lemma 3.2. Fix m ∈ Zr
+ and let u, v ∈ W with t(u) = t(v). Then

su,v =
∑

w∈W ;σ(w)=m
o(w)=t(u)=t(v)

suw,vw.

Proof. Using (H1), this follows by induction from (3.1c). �

Lemma 3.3. su,usv,v = 0 if σ(u) = σ(v) and u 6= v.

Proof. The case σ(u) = σ(v) = 0 is exactly the relation (3.1d). Assume that the assertion is
true whenever σ(u) = σ(v) = m. Let σ(u′) = σ(v′) = m + ej and let u = u′|[0,m], v = v′|[0,m].
By relation (3.1c), we have that su,u =

∑
w suw,uw where the sum is over w ∈ Wej

such that
o(w) = t(u). Since su′,u′ is one of the terms of the preceding sum we have su,u ≥ su′,u′ . Similarly
sv,v ≥ sv′,v′ . If u 6= v, this proves that su′,u′sv′,v′ = 0, since by induction su,usv,v = 0. On the
other hand, if u = v then su′,u′ , sv′,v′ are distinct terms in the sum

∑
a suw,uw and are therefore

orthogonal. �
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Remark 3.4. If W 0 = D is finite then it follows from (3.1d) that
∑

u∈W 0
su,u is an idempotent.

From Lemma 3.2 it follows that for any m,
∑

u∈Wm
su,u =

∑
u∈W 0

su,u. Hence from (3.1b) and
Lemma 3.3 it follows that

∑
u∈W 0

su,u is an identity for A.

The next lemma is an immediate consequence of the definition of an enveloping C∗-algebra.

Lemma 3.5. Let H be a Hilbert space and for each u, v ∈ W with t(u) = t(v) let Su,v ∈ B(H).
If the Su,v satisfy the relations (3.1), then there is a unique *-homomorphism φ : A → B(H) such
that φ(su,v) = Su,v. �

Lemma 3.6. Any product su1,v1su2,v2 can be written as a finite sum of the generators su,v.

Proof. Choose m ∈ Zr with m ≥ σ(v1) and m ≥ σ(u2). Use Lemma 3.2 to write su1,v1 as a sum of
terms su3,v3 with σ(v3) = m. Likewise, write su2,v2 as a sum of terms su4,v4 with σ(u4) = m. Now
in the product su1,v1su2,v2 each term has the form

su3,v3su4,v4 =

{
su3,v4 if v3 = u4,

su3,v3sv3,v3su4,u4su4,v4 = 0 if v3 6= u4

by Lemma 3.3. The result follows immediately. �

Corollary 3.7. The C∗-algebra A is the closed linear span of the set

{su,v;u, v ∈ W and t(u) = t(v)}.
�

Lemma 3.8. The algebra A is nonzero.

Proof. We must construct a nonzero *-homomorphism from A into B(H) for some Hilbert space
H. Consider the set of infinite words

W∞ = {w : Zr
+ → A;Mj(w(l + ej), w(l)) = 1 whenever l ≥ 0},

and define the product uv for u ∈ W and v ∈ W∞ exactly as in Definition 0.1. Let H = l2(W∞)
and define

(φ(su,v))(δw) =

{
δuw1 if w = vw1 for some w1 ∈ W∞,

0 otherwise.

It is easy to check that the operators {φ(su,v); u, v ∈ W and t(u) = t(v)} satisfy the relations 3.1
and it follows from Lemma 3.5 that φ extends to a *-homomorphism of A. �

Remark 3.9. The Hilbert space H = l2(W∞) is not separable. However, since the algebra A is
countably generated, there exist nonzero separable, A-stable subspaces of H, and in particular,
there exist nontrivial representations of A on separable Hilbert space.

Lemma 3.10. If φ is a nontrivial representation of A, and if u ∈ W then φ(su,u) 6= 0. In
particular su,u 6= 0.

Proof. Suppose φ(su,u) = 0. Choose any v ∈ W . Use Lemma 1.6 to find w ∈ W such that
o(w) = t(u) and t(w) = t(v). By Lemma 3.2, we have 0 = φ(su,u) =

∑
φ(suw′,uw′), the sum

being taken over all w′ ∈ W such that σ(w′) = σ(w) and o(w′) = t(u). Thus φ(suw,uw) = 0.
By Remark 3.1 it follows that that φ(suw,v) = 0, that φ(sv,v) = 0, and finally that φ(sv,v′) = 0
whenever t(v) = t(v′). Hence φ is trivial. �

Remark 3.11. When r = 1, the algebra A is a simple Cuntz-Krieger algebra. More precisely, if
we write M = M t

1, then the Cuntz-Krieger algebra OM is generated by a set of partial isometries
{Sa; a ∈ A} satisfying the relations S∗aSa =

∑
bM(a, b)SbS

∗
b . If u ∈ W , let Su = Su(0)Su(1) . . . St(u)

and if v ∈ W with t(u) = t(v), define Su,v = SuS
∗
v (c.f. [CK, Lemma 2.2]). The map su,v 7→ Su,v

establishes an isomorphism of A with OM . Tensor products of ordinary Cuntz-Krieger algebras
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can be identified as higher rank Cuntz-Krieger algebras A. If A1,A2 are simple rank one Cuntz-
Krieger algebras, with corresponding matrices M1,M2 and alphabets A1, A2 then A1 ⊗A2 is the
algebra A arising from the pair of matrices M1 ⊗ I, I ⊗ M2 and the alphabet A1 × A2. More
interesting examples arise from group actions on affine buildings. The details for some r = 2
algebras arising in this way are given in Section 7.

4. The AF subalgebra

If m ∈ Zr
+, let Fm denote the subalgebra of A generated by the elements su,v for u, v ∈ Wm.

Lemma 4.1. There exists an isomorphism Fm ∼=
⊕

a∈AK(l2({w ∈ W ;σ(w) = m, t(w) = a})).

Proof. Let u, v ∈ Wm with t(u) = t(v) = a. Consider the map Ea
δu,δv
7→ su,v, where Ea

δu,δv
denotes

a standard matrix unit in K(l2({w ∈ W ;σ(w) = m, t(w) = a})). This extends to a map which is
an isomorphism according to equations (3.1a), (3.1b) and Lemma 3.3. �

The relations (3.1c) show that there is a natural embedding of Fm into Fm+ej
. The C∗-algebras

{Fm : m ∈ Zr
+} form a directed system of C∗-algebras in the sense of [KR, p. 864]. By [KR,

Proposition 11.4.1] there is an essentially unique C∗-algebra F in which the union of the algebras
Fm is dense, namely the direct limit of these algebras. We have the following commuting diagram
of inclusions.

Fm+ek
−−−→ Fm+ej+ekx x

Fm −−−→ Fm+ej

We may equally well regard F as the closure of
⋃∞
j=1Fjp, where p = (1, 1, . . . , 1). In particular

F is an AF -algebra.

Proposition 4.2. Let φ be a nonzero homomorphism from A into some C∗-algebra. Then the
restriction of φ to F is an isomorphism.

Proof. Suppose that φ is not an isomorphism on F . Then φ is not an isomorphism on some Fm.
Since

⊕
a∈AK(l2({w ∈ W ;σ(w) = m, t(w) = a})) ∼= Fm (Lemma 4.1), it follows from simplicity

of the algebra of compact operators that φ(su,u) = 0 for some u, contradicting Lemma 3.10. �

Define an action α of the r-torus Tr on A as follows. If σ(u) − σ(v) = m ∈ Zr and t =
(t1, . . . , tr) ∈ Tr, let αt(su,v) = tmsu,v, where tm = tm1

1 tm2
2 . . . tmr

r . The elements αt(su,v) satisfy
the relations (3.1) and generate the C∗-algebra A. By the universal property of A it follows that
αt extends to an automorphism of A. It is easy to see that that t 7→ αt is an action. It is also
clear that αt fixes all elements su,v with σ(u) = σ(v) and so fixes F pointwise. We now show that
F = Aα, the fixed point subalgebra of A. Consider the linear map on A defined by

(4.1) π(x) =

∫
Tr

αt(x)dt, for x ∈ A

where dt denotes normalized Haar measure on Tr.

Lemma 4.3. Let π, F be as above.

(1) The map π is a faithful conditional expectation from A onto F .
(2) F = Aα, the fixed point subalgebra of A.

Proof. Since the action α is continuous, it is easy to see that π is a conditional expectation from
A onto Aα, and that it is faithful. Since αt fixes F pointwise, F ⊂ Aα. To complete the proof
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we show that the range of π is contained in (and hence equal to) F . By continuity of π and
Corollary 3.7, it is enough to show that π(su,v) ∈ F for all u, v ∈ W . This is so because

(4.2) π(su,v) = su,v

∫
Tr

tσ(u)−σ(v)dt =

{
0 if σ(u) 6= σ(v),

su,v if σ(u) = σ(v).

�

5. Simplicity

We show that the C∗-algebra A is simple. Consequently any nontrivial C∗-algebra with gener-
ators Su,v satisfying relations (3.1) is isomorphic to A. Several preliminary lemmas are necessary.
Consequences of (H3), their theme is the existence of words lacking certain periodicities. Recall
that for m ∈ Zr, |m| = (|m1|, . . . , |mr|).

Lemma 5.1. Let m ∈ Zr with m ≥ 0 and let a ∈ A. There exists some l ≥ 0 and some w ∈ Wl

satisfying

(1) If |p| ≤ m and p 6= 0 then τpw|[0,l]∩[p,p+l] 6= w|[0,l]∩[p,p+l],
(2) o(w) = a.

Proof. Note that if w = uwpv, and if wp is not p-periodic, then neither is w. Apply (H3) to obtain
for each nonzero p, |p| ≤ m, a word wp which is not p-periodic. The final word w is obtained
by concatenating these words in some order using “spacers” whose existence is guaranteed by
Lemma 1.6. The construction is illustrated in Figure 5, where the spacer sp,q is chosen so that
o(sp,q) = t(wp) and t(sp,q) = o(wq). �

wp

sp,q

wq

Figure 5. Part of the word w; a word sp,q is used to concatenate wp and wq.

Lemma 5.2. One can find u, u′ ∈ W with σ(u) = σ(u′), o(u) = o(u′), but u 6= u′.

Proof. Assume the contrary. Considering words of shape e1, we see that for fixed a, no more than
one b ∈ A satisfies M1(b, a) = 1. By Lemma 1.6, at least one b ∈ A satisfies M1(b, a) = 1 and at
least one c ∈ A satisfies M1(c, a) = 1. Consequently the directed graph associated to M1 must be
a union of closed cycles. If g is the g.c.d of the cycle lengths, then every w ∈ W is ge1-periodic,
contradicting (H3). �

Lemma 5.3. Let p ∈ Zr. Let w1, w2 ∈ Wl. There exist l′ ≥ l and w′1, w
′
2 ∈ Wl′ such that

w′1|[0,l] = w1, w′2|[0,l] = w2,

and
τpw

′
1|[0,l′]∩[p,p+l′] 6= w′2|[0,l′]∩[p,p+l′].
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Proof. Find two different words u, v with σ(u) = σ(v) and o(u) = o(v). Choose s so that p +
σ(w1) + σ(s) ≥ 0, o(s) = t(w1) and t(s) = o(u) = o(v). Choose w′′2 so that w′′2 |[0,l] = w2 and
σ(w′′2) ≥ p + σ(w1) + σ(s) + σ(u). Consider w′′2 |[p+σ(w1)+σ(s),p+σ(w1)+σ(s)+σ(u)]. If this is equal
to u, let w′′1 = w1sv, otherwise, let w′′1 = w1su. (This is illustrated in Figure 6.) Finally, let
l′ = σ(w′′1) ∨ σ(w′′2) and extend w′′1 and w′′2 to words w′1 and w′2 in Wl′ . �

w1

s

u or v

Figure 6. The word w′′1 .

Lemma 5.4. Fix m ∈ Zr with m ≥ 0. For some l ≥ 0 there exists a subset S = {wa; a ∈ A} of
Wl satisfying the two properties below.

(1) For each a ∈ A, o(wa) = a.
(2) Let a, b ∈ A. Let p 6= 0 be in Zr with |p| ≤ m. Then wa|[0,l]∩[p,p+l] 6= τpwb|[0,l]∩[p,p+l].

Proof. The elements of S are chosen as follows. For each a ∈ A, let wa ∈ W satisfy the conclusions
of Lemma 5.1. By extending the words wa as necessary we may suppose that wa ∈ Wl for some
l ≥ 0. If a, b ∈ A, a 6= b and p ∈ Zr with |p| ≤ m, we can apply Lemma 5.3 and extend wa and
wb to w′a and w′b where τpw

′
a and w′b do not agree on their common domain. Then one can extend

all the other wc to w′c of the same shape as w′a and w′b. Apply this procedure once for each of the
finitely many triples (a, b, p) ∈ A× A× Zr with |p| ≤ m and a 6= b, and the proof is done. �

Fix m ∈ Zr
+. Choose l and S satisfying the conditions of Lemma 5.4. Define

(5.1) Q =
∑

w∈W ;σ(w)=m+l
w|[m,m+l]∈S

sw,w.

Lemma 5.5. If l′ ≥ l, then

(5.2) Q =
∑

w∈W ;σ(w)=m+l′

w|[m,m+l]∈S

sw,w.

Proof. By (H1) and Lemma 3.2,∑
w∈W ;σ(w)=m+l′

w|[m,m+l]∈S

sw,w =
∑

w1∈W,w2∈W
σ(w1)=m+l,σ(w2)=l′−l
w1|[m,m+l]∈S,t(w1)=o(w2)

sw1w2,w1w2 = Q.

�

Lemma 5.6. Suppose σ(u), σ(v) ≤ m and t(u) = t(v) = a. If σ(u) 6= σ(v), then Qsu,vQ = 0.

Proof. Using Lemma 3.2, write

su,v =
∑

v1;σ(v1)=m+l
o(v1)=a

suv1,vv1 .
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Apply Lemma 5.5 with l′ = l + σ(v) so that for each word w in the sum (5.2) σ(w) = m + l +
σ(v) = σ(vv1). By Lemma 3.3, suv1,vv1sw,w = 0 unless vv1 = w. Consequently suv1,vv1Q = 0
unless vv1|[m,m+l] ∈ S, which is to say v1|[m−σ(v),m−σ(v)+l] ∈ S. Similarly, Qsuv1,vv1 = 0 unless
v1|[m−σ(u),m−σ(u)+l] ∈ S. But if w1 = v1|[m−σ(v),m−σ(v)+l] ∈ S and w2 = v1|[m−σ(u),m−σ(u)+l] ∈ S, then
w1 and w2 would fail condition (2) of Lemma 5.4, with p = σ(u)− σ(v). �

Remark 5.7. If x =
∑

i cisui,vi
is a finite linear combination of the generators of A with

σ(ui), σ(vi) ≤ m then QxQ =
∑

σ(ui)=σ(vi)

ciQsui,vi
Q = Qπ(x)Q, by Lemma 5.6 and equation (4.2).

Lemma 5.8. The map x 7→ QxQ is an isometric *-algebra map from Fm into A.

Proof. If σ(u) = σ(v) = m and t(u) = t(v) = a, then, with the notation of Lemma 5.4, we have
Qsu,vQ = suwa,vwa . With the notation of Lemma 4.1, consider the map⊕

a∈A

K(l2({w ∈ W ;σ(w) = m, t(w) = a}))→ A

given by

Ea
δu,δv 7→ suwa,vwa ,

when t(u) = t(v) = a. This is easily checked to be an injective *-algebra map, hence an isom-
etry. The map in the statement of the Lemma is the composition of this isometry with that of
Lemma 4.1. �

Theorem 5.9. The C∗-algebra A is simple.

Proof. Let φ be a nonzero *-homomorphism from A to some C∗-algebra. It is enough to show
that φ is an isometry. Let x =

∑
i cisui,vi

be a finite linear combination of the generators of
A. Choose m ∈ Zr

+ so that σ(ui), σ(vi) ≤ m for all i. Choose l and S as in Lemma 5.4 and
let Q be as in equation (5.1). By Remark 5.7, QxQ = Qπ(x)Q. Observe that π(x) ∈ F and
so by Lemma 5.8, ‖Qπ(x)Q‖ = ‖π(x)‖. Moreover Qπ(x)Q ∈ Fm+l, so by Proposition 4.2,
‖φ(Qπ(x)Q)‖ = ‖Qπ(x)Q‖. Thus

‖φ(x)‖ ≥ ‖φ(Q)φ(x)φ(Q)‖ = ‖φ(QxQ)‖ = ‖φ(Qπ(x)Q)‖ = ‖Qπ(x)Q‖ = ‖π(x)‖.
The inequality extends by continuity to all x ∈ A. It follows that φ is faithful since if φ(y) = 0
then 0 = ‖φ(y∗y)‖ ≥ ‖π(y∗y)‖. Therefore y = 0, by Lemma 4.3. �

Corollary 5.10. Let H be a Hilbert space and for each u, v ∈ W with t(u) = t(v) let Su,v ∈ B(H)

be a nonzero partial isometry. If the Su,v satisfy the relations (3.1) and Â denotes the C∗-algebra

which they generate, then there is a unique *-isomorphism φ from A onto Â such that φ(su,v) =
Su,v.

Proof. This follows immediately from Lemma 3.5 and Theorem 5.9. �

Proposition 5.11. The C∗-algebra A is purely infinite.

Proof. Note first that by Lemma 3.2, suw,uw is a subprojection of su,u. By Lemma 1.7, this implies
that su,u is an infinite projection for any u. Any rank one projection in any Fl is equivalent to
su,u for some u ∈ Wl, and hence is infinite.

We must show that for every nonzero h ∈ A+, the C∗-algebra hAh contains an infinite pro-
jection. Since π is faithful, we may assume ‖π(h2)‖ = 1. Let 0 < ε < 1. Approximate h by
self-adjoint finite linear combinations of generators. The square of this approximation gives an
element y =

∑
i cisui,vi

with y ≥ 0 and ‖y − h2‖ ≤ ε. Fix m so that σ(ui), σ(vi) ≤ m for all i and
then construct Q by Lemma 5.4 and equation (5.1). We have QyQ = Qπ(y)Q ∈ Fl for some l,
QyQ ≥ 0 and ‖QyQ‖ = ‖Qπ(y)Q‖ = ‖π(y)‖ ≥ ‖π(h2)‖ − ε = 1 − ε. Since Fl is a direct sum
of (finite or infinite dimensional) algebras of compact operators, there exists a rank one positive
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operator R1 ∈ Fl with ‖R1‖ ≤ (1− ε)−1/2 so that R1QyQR1 = P is a rank one projection in Fl.
Hence P is an infinite projection.

It follows that ‖R1Qh
2QR1−P‖ ≤ ‖R2

1‖‖Q‖2‖y− h2‖ ≤ ε/(1− ε). By functional calculus, one
obtains R2 ∈ A+ so that R2R1Qh

2QR1R2 is a projection and ‖R2R1Qh
2QR1R2−P‖ ≤ 2ε/(1−ε).

For small ε one can then find an element R3 in A so that R3R2R1Qh
2QR1R2R

∗
3 = P .

Let R = R3R2R1Q, so that Rh2R∗ = P . Consequently, Rh is a partial isometry, whose initial
projection hR∗Rh is a projection in hAh and whose final projection is P . Moreover, if V is a
partial isometry in A such that V ∗V = P and V V ∗ < P , then (hR∗)V (Rh) is a partial isometry
in hAh with initial projection hR∗Rh and final projection strictly less than hR∗Rh. �

We can now explain one of the reasons for introducing the set D of decorations. Recall that
D is a countable or finite set. Denote by AD the algebra A corresponding to a given D. One
special case of interest is when D = A and δ is the identity map. Then the algebra AA is a direct
generalization of a Cuntz-Krieger algebra [CK]. There is an obvious notion of equivalence for
decorations: two decorations δ1 : D1 → A and δ2 : D2 → A are equivalent if there is a bijection
η : D1 → D2 such that δ1 = δ2η. Equivalent decorations give rise to isomorphic algebras. Given
any set D of decorations we can obtain another set of decorations D×N, with the decorating map
δ′ : D × N→ A defined by δ′((d, i)) = δ(d).

Lemma 5.12. There exists an isomorphism of C∗-algebras AD×N ∼= AD ⊗K.

Proof. If u, v ∈ W , the isomorphism is given by s((d,i),u),((d′,j),v) 7→ s(d,u),(d′,v) ⊗Ei,j, where the Ei,j
are matrix units for B(l2(N)). The fact that this is an isomorphism follows from Corollary 5.10. �

This procedure is useful, because it provides a routine method of passing from A to A⊗ K, a
technique that is necessary to obtain the results of [CK].

Lemma 5.13. Let l : D → Zr
+ be any map. Define D′ = {(d, w) ∈ W ; σ(w) = l(d)} and define

δ′ : D′ → A by δ′(w) = t(w). Then AD′ ∼= AD.

Proof. Define φ : AD′ → AD by φ(s(w1,u1),(w2,u2)) = sw1u1,w2u2 , for w1, w2 ∈ D′, u1, u2 ∈ W , o(ui) =
δ′(wi) = t(wi), and t(u1) = t(u2). Relations (3.1) (for AD′) are satisfied for φ(s(w1,u1),(w2,u2)). By
Corollary 5.10 the homomorphism φ exists and is injective. Relation (3.1c) for AD shows that
each generator of AD is in the image of φ. Hence φ is an isomorphism. �

Corollary 5.14. For any (D, δ), AD is isomorphic to AD′ for some (D′, δ′) with δ′ : D′ → A
surjective.

Proof. By general hypothesis, D is nonempty and A is finite. Use Lemma 5.13 once to replace D
with D′′ so that #(D′′) ≥ #(A), and use it again, in conjunction with Lemma 1.6, to construct
the pair (D′, δ′). �

Corollary 5.15. For a fixed alphabet A and fixed transition matrices Mj, the isomorphism class
of AD ⊗K is independent of D.

Proof. By Corollary 5.14, AD ∼= AD′ for some (D′, δ′) with δ′ : D′ → A surjective. By Lemma 5.12,
AD′×N ∼= AD′ ⊗K. Since δ′ is surjective, the decorating set D′×N is equivalent to the decorating
set A× N: the inverse image of each a ∈ A is countable. Thus AD ⊗K ∼= AA×N. �

Decorating sets other than A and A × N arise naturally in the examples associated to affine
buildings.

6. Construction of the algebra A⊗K as a crossed product

A vital tool in [CK] was the expression of OA ⊗K as the crossed product of an AF algebra by
a Z-action [CK, Theorem 3.8]. The present section is devoted to an analogous result. In view of
Lemma 5.12, this is done by establishing an isomorphism from AA×N onto the crossed product of
an AF-algebra by a Zr-action. The AF-algebra will be isomorphic to the algebra F of Section 4,
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relative to the decorating set A×N, and the action of an element k ∈ Zr will map the subalgebra
Fm onto Fm+k for each m ≥ 0.

Let a C∗-algebra A′ be defined just as A is, with D = A and with generators {s′u,v;u, v ∈
W and o(u) = o(v)}. The relations are the same as those in (3.1) except that in the sum (3.1c),
words are extended from the beginning. The full relations are

s′u,v
∗

= s′v,u(6.1a)

s′u,vs
′
v,w = s′u,w(6.1b)

s′u,v =
∑

w∈W ;σ(w)=ej ,
t(w)=o(u)=o(v)

s′wu,wv(6.1c)

s′u,us
′
v,v = 0 for u, v ∈ W0, u 6= v.(6.1d)

This may be thought of as using words with extension in the negative direction. Alternatively,
replacing Mj by the transpose matrix M t

j for each j in the definition of A results in an algebra
isomorphic to A′. Conditions (H0)–(H3) for the M t

j follow from the corresponding conditions for
the Mj. Consequently all the preceding results are valid for the algebra A′.

By Theorem 5.9, A′ is a simple separable C∗-algebra. Let ψ : A′ → B(H) be a nondegenerate
representation of A′ on a separable Hilbert space H. For a ∈ A, let Ha be the range of the
projection ψ(s′a,a). Then H =

⊕
a∈AHa. By Lemmas 3.2 and 3.10, each Ha is infinite dimensional.

Let C =
⊕

a∈AK(Ha) ⊂ K(H).
For each l ∈ Zr

+ define a map αl : C → C by

(6.2) αl(x) =
∑
w∈Wl

ψ(s′w,o(w))xψ(s′o(w),w).

Note that ψ(s′w,o(w)) is a partial isometry with initial space Ho(w) and final space lying inside Ht(w).

Lemma 6.1. Let αl be as above.

(1) αl has image in C.
(2) αl is a C∗-algebra inclusion.
(3) For k, l ∈ Zr

+, αkαl = αk+l.

Proof. 1. Clearly αl(x) ∈ K(H). Moreover for fixed w ∈ W with t(w) = a, ψ(s′w,o(w))xψ(s′o(w),w) ∈
K(Ha).

2. Fix w ∈ Wl with o(w) = a. Observe that s′w,a is a partial isometry with initial projection
sa,a. Moreover for two different words w1, w2 ∈ Wl, the range projections of s′w1,o(w1) and s′w2,o(w2)

are orthogonal. The result is now clear.
3. If w1 ∈ Wk and w2 ∈ Wl then according to Lemmas 3.2 and 3.3,

(6.3) s′w1,o(w1)s
′
w2,o(w2) =

∑
w3∈Wl

t(w3)=o(w1)

s′w3w1,w3
s′w2,o(w2) =

{
0 if t(w2) 6= o(w1)

s′w2w1,o(w2) if t(w2) = o(w1).

Therefore

αkαl(x) =
∑

w1∈Wk
w2∈Wl

ψ(s′w1,o(w1))ψ(s′w2,o(w2))xψ(s′o(w2),w2
)ψ(s′o(w1),w1

)

=
∑

w1∈Wk
w2∈Wl

t(w2)=o(w1)

ψ(s′w2w1,o(w2))xψ(s′o(w2),w2w1
)

= αk+l(x).

�
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For each m ∈ Zr let C(m) be an isomorphic copy of C, and for each l ∈ Zr
+, let

α
(m)
l : C(m) → C(m+l)

be a copy of αl. Let E = lim−→C
(m) be the direct limit of the category of C∗-algebras with objects

C(m) and morphisms αl ([KR, Proposition 11.4.1]). Then E is an AF algebra. (See the discussion
preceding Proposition 4.2.)

If x ∈ C, let x(m) be the corresponding element of C(m). Then x(m) is identified with (αlx)(m+l)

for all l ∈ Zr
+. Define an action ρ of Zr on E by ρ(l)(x(m)) = x(m+l). Since Zr is amenable, the

full crossed product of E by this action coincides with the reduced crossed product [Ped, Theorem
7.7.7], and we denote it simply by E o Zr. The defining property of the crossed product says that
there is a unitary representation m 7→ Um of Zr into the multiplier algebra of E o Zr such that
ρ(l)(x(m)) = U lx(m)U−l, that is

(6.4) U lx(m) = x(m+l)U l.

Theorem 6.2. There exists an isomorphism φ : AA×N → E o Zr where, moreover φ(F) = E.

Proof. Let D = A × N and δ(a, n) = a. Fix a map β : D → H so that {β(d); δ(d) = a}
is an orthonormal basis of Ha. For w = (d, w) ∈ Wm define β(w) = ψ(s′w,o(w))β(d), in this

way extending β to a map β : W → H. Observe that for a fixed w ∈ W with o(w) = a,
{β(d, w); d ∈ D, δ(d) = a} is an orthonormal basis for the range of s′w,w. Since, moreover the ranges

of {s′w,w;w ∈ Wm} are pairwise orthogonal and sum to all of H, we see that {β(w);w ∈ Wm} is
an orthonormal basis for H.

For w ∈ W and u = (d, u) ∈ W , we have

ψ(s′w,o(w))β(u) = ψ(s′w,o(w))ψ(s′u,o(u))β(d) =

{
0 if o(w) 6= t(u)

ψ(s′uw,o(u))β(d) if o(w) = t(u),

by equation (6.3). That is

ψ(s′w,o(w))β(u) =

{
0 if o(w) 6= t(u)

β(uw) if o(w) = t(u).

We will now define the map φ : AD → E o Zr. For u, v ∈ W with t(u) = t(v) and σ(u) = l and
σ(v) = m define

(6.5) φ(sv,u) = Um−l
(
β(v)⊗ β(u)

)(l)

.

We use the notation ξ ⊗ η to denote the rank one operator on a Hilbert space defined by
ζ 7→ 〈ζ, η〉ξ, so that when ξ,η have norm one, ξ ⊗ η is a partial isometry with initial projection
η⊗η and final projection ξ⊗ξ. If the vectors ξ, η vary through an orthonormal basis for a Hilbert
space then the operators ξ ⊗ η form a system of matrix units for the compact operators on that
Hilbert space. By equation (6.4) we have

(6.6) φ(sv,u) =
(
β(v)⊗ β(u)

)(m)

Um−l.

We show that the partial isometries φ(sv,u) satisfy the relations (3.1). Relation (3.1d) is imme-

diate from the definition of β(w), since if w ∈ W 0 then φ(sw,w) =
(
β(w)⊗ β(w)

)(0)

.

Relation (3.1a) is satisfied since, by (6.6),

φ(sv,u)
∗ =

((
β(v)⊗ β(u)

)(m)

Um−l
)∗

= U l−m
(
β(u)⊗ β(v)

)(m)

= φ(su,v).
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If t(w) = t(v) and σ(w) = n, then

φ(sw,v)φ(sv,u) = Un−m
(
β(w)⊗ β(v)

)(m)

Um−l
(
β(v)⊗ β(u)

)(l)

= Un−mUm−l
(
β(w)⊗ β(v)

)(l) (
β(v)⊗ β(u)

)(l)

= Un−l
(
β(w)⊗ β(u)

)(l)

= φ(sw,u).

(6.7)

Thus (3.1b) is satisfied. Finally (3.1c) is a consequence of the following calculation.

φ(sv,u) = Um−l
(
β(v)⊗ β(u)

)(l)

= Um−l
(
αk(β(v)⊗ β(u))

)(l+k)

= Um−l
∑
w∈Wk

(
ψ(s′w,o(w))β(v)⊗ ψ(s′w,o(w))β(u)

)(l+k)

= Um−l
∑
w∈Wk

o(w)=t(u)

(
β(vw)⊗ β(uw)

)(l+k)

=
∑
w∈Wk

o(w)=t(u)

φ(svw,uw).

All the relations (3.1) are satisfied by the partial isometries φ(sv,u). Therefore by Lemma 3.5, φ
defines a *-homomorphism. Clearly φ is not the zero map; hence it is an isometry, by Theorem 5.9.
It only remains to show that φ is onto.

Fix m,n ∈ Zr so that m,m+n ≥ 0. For u ∈ Wm and v ∈ Wm+n with t(u) = t(v) = a, we have

(6.8) φ(sv,u) = Un
(
β(v)⊗ β(u)

)(m)

.

As the sets {β(v); v ∈ Wm+n, t(v) = a} and {β(u); u ∈ Wm, t(u) = a} are bases for Ha,

the image of φ contains a dense subset of Un (K(Ha))
(m). Therefore the image of φ contains

Un (K(Ha))
(m), for each a ∈ A. It therefore contains UnC(m).

Also, for any k ≥ 0,

φ(AA×N) ⊇ UnC(m) ⊇ Unα
(m−k)
k C(m−k) = UnC(m−k).

It follows that φ(AA×N) = E o Zr. It is clear from the definitions that φ(Fm) = C(m) and that
φ(F) = E . �

Corollary 6.3. A⊗K ∼= E o Zr.

Proof. This follows immediately from Theorem 6.2, Lemma 5.12 and Corollary 5.15. �

Corollary 6.4. A is nuclear.

Proof. This follows because the class of nuclear C∗-algebras is closed under stable isomorphism
and crossed products by amenable groups, and contains the AF algebras. �

Remark 6.5. Suppose that D is finite, so that A is unital by Remark 3.4. Then it has been
established that the separable unital C∗-algebra A is simple (Theorem 5.9), nuclear (Corollary 6.4)
and purely infinite (Proposition 5.11). Corollary 6.3 also shows that A belongs to the bootstrap
class N , which contains the AF-algebras and is closed under stable isomorphism and crossed
products by Z. Thus A satisfies the Universal Coefficient Theorem [Bl, Theorem 23.1.1]. The
work of E. Kirchberg and C. Phillips [K1, K2],[Ph] therefore shows that A is classified by its
K-groups.
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7. Boundary actions on affine buildings of type Ã2

Let B be a locally finite thick affine building of type Ã2. This means that B is a chamber
system consisting of vertices, edges and triangles (chambers). An apartment is a subcomplex of B
isomorphic to the Euclidean plane tesselated by equilateral triangles. A sector (or Weyl chamber)
is a π

3
-angled sector made up of chambers in some apartment. Two sectors are equivalent (or

parallel) if their intersection contains a sector. We refer to [Br1, G, Ron] for the theory of
buildings. Shorter introductions to the theory are provided by [Br2, Ca, St].

The boundary Ω is defined to be the set of equivalence classes of sectors in B. In B we fix
some vertex O, which we assume to have type 0. For any ω ∈ Ω there is a unique sector [O,ω) in
the class ω having base vertex O [Ron, Theorem 9.6]. The boundary Ω is a totally disconnected
compact Hausdorff space with a base for the topology given by sets of the form

Ω(v) = {ω ∈ Ω : [O,ω) contains v}
where v is a vertex of B [CMS, Section 2]. We note that if [O,ω) contains v then [O,ω) contains
the parallelogram conv(O, v).

Let Γ be a group of type rotating automorphisms of B that acts freely on the vertex set with
finitely many orbits. See [CMSZ] for a discussion and examples in the case where Γ acts transitively
on the vertex set. There is a natural induced action of Γ on the boundary Ω and we can form
the universal crossed product algebra C(Ω) o Γ [Ped]. The purpose of this section is to identify
C(Ω) o Γ with an algebra of the form A.

Let a be a Coxeter complex of type Ã2, which we shall use as a model for the apartments of
B. Each vertex of a has type 0,1, or 2. Fix as the origin in a a vertex of type 0. Coordinatize
the vertices by Z2 by choosing a fixed sector in a based at the origin and defining the positive
coordinate axes to be the corresponding sector panels (cloisons de quartier). The coordinate axes
are therefore given by two of the three walls of a passing through the origin. Let t be a model tile
in a and let pm be a model parallelogram in a of shape m = (m1,m2), as illustrated in Figure 7.
As per Figure 7, assume that t and pm are both based at (0, 0). Thus t is the model parallelogram
of shape (0, 0).

(0,0)

(m1+1,m2+1)

(m1+1,0)

(0,m2+1)
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A model parallelogram pm.

(0,0)

(1,1)

(0,1) (1,0).................................................................................
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The model tile t.

Figure 7

Let T denote the set of type rotating isometries i : t → B, and let A = Γ\T. We will use the
set A as an alphabet to define an algebra A. Let Pm denote the set of type rotating isometries
p : pm → B, and let Wm = Γ\Pm. Let P =

⋃
m Pm and W =

⋃
m Wm.

If p ∈ Pm, then define t(p) : t→ B by t(p)(l) = p(m+ l). Then t(p) is a type rotating isometry
such that t(p)(t) lies in p(pm) with t(p)(1, 1) = p(m1 + 1,m2 + 1), as illustrated in Figure 8. Thus
t(p) ∈ T. Similarly o(p) : t→ B is defined by o(p) = p|t.
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p(0, 0)

p(pm)

t(p)(t)

o(p)(t)
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Figure 8. The initial and terminal tiles.

The matrices M1, M2 with entries in {0, 1} are defined as follows. If a, b ∈ A, say that M1(b, a) =
1 if and only if there exists p ∈ P(1,0) such that a = Γo(p) and b = Γt(p). Similarly, if c ∈ A
then M2(c, a) = 1 if and only if there exists p ∈ P(0,1) such that a = Γo(p) and c = Γt(p). The
definitions are illustrated in Figure 9, for suitable representative isometries ia,ib,ic in T.

ib(t)
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M1(b, a) = 1
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Figure 9. Definition of the transition matrices.

In order to apply the general results we need to verify that conditions (H0)-(H3) are satisfied.
We address this question in the subsection 7.1. Until further notice we simply impose the following

ASSUMPTION: Conditions (H0)-(H3) are satisfied.

We can now define the set of words Wm of shape m ∈ Z+ based on the alphabet A and the
transition matrices M1,M2, as in Section 1. There is also a natural map α : P → W , defined as
follows. Given p ∈ Pm, construct α(p) = w according to the following procedure. For each n ∈ Z2

+

with 0 ≤ n ≤ m, let w(n) = Γpn where pn ∈ T is defined by pn(l) = p(n+ l), for (0, 0) ≤ l ≤ (1, 1).
Since the translation l 7→ n+ l is a type-rotating isometry of a, it follows that pn is type rotating,
hence an element of T. Passing to the quotient by Γ gives a well defined map α : Wm → Wm and
hence a map α : W → W . The use of α for the different maps should not cause confusion. If
a = Γi ∈ A = W0 then α(a) = a, so it is clear that o(α(p)) = Γo(p) and t(α(p)) = Γt(p).

Lemma 7.1. The map α is a bijection from Wm to Wm for each m ∈ Z2
+.

Proof. Suppose that α(p) = α(p′). Then Γpn = Γp′n for 0 ≤ n ≤ m. For each n there exists γn
so that γnpn = p′n. Since Γ acts freely on the vertices, each γn is uniquely determined. Moreover,
since pn and pn+ej

share a pair of vertices in their image, it must be true that γn = γn+ej
. By

induction, the γn have a common value, γ, and γp = p′. Thus Γp = Γp′.
It remains to show that α is surjective. Let w ∈ Wm. Choose a path (n0, . . . , nk) of points in

Z2 so that n0 = 0, nk = m, and each difference nj+1 − nj is either e1 or e2. Choose representative
type rotating isometries i0, i1, . . . , ik from t into B with Γir = w(nr) so that ir(t) and ir+1(t)
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are adjacent tiles in B, according to the two possibilities in Figure 9. This defines a gallery
G = {i0(t), i1(t), . . . , ik(t)}. Let G0 = {C0, C1, . . . , Ck} be the corresponding gallery in pm with
C0 = t. It is clear from Figure 10 that G0 is a minimal gallery in a. (The elements of G and
G0 are tiles rather than chambers, but this is immaterial.) The obvious map p : G0 → G is a
strong isometry (preserves generalized distance). Therefore G is contained in an apartment and
p extends to a strong isometry p from the convex hull conv(G0) = pm into that apartment. See
[Br1, p. 90, Theorem] and [Br2, Appendix B]. Thus p ∈ Pm and since α(p) agrees with w at
n0, n1, . . . , nk, (H1) implies that α(p) = w. �
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Figure 10. A minimal gallery in in a.

Let Wm denote the set of type rotating isometries p : pm → B such that p(0, 0) = O and let
W =

⋃
m Wm. Let D denote the set of type-rotating isometries d : t → B such that d(0, 0) = O.

Let δ : D → A be given by δ(d) = Γd. The map δ is injective since Γ acts freely on the vertices of
B. Moreover δ is surjective if and only if Γ acts transitively on the vertices. Define α : W → W
by α(p) = (o(p), α(Γp)). (Recall that o(p) = p|t.)

Lemma 7.2. The map α is a bijection from Wm onto Wm for each m ∈ Z2
+.

Proof. If α(p1) = α(p2) then o(p1) = o(p2); moreover Γp1 = Γp2, by Lemma 7.1. Since Γ acts
freely on the vertices, it follows that p1 = p2. Therefore α is injective.

To see that it is surjective, let w = (d, w) ∈ Wm, where w ∈ Wm and d ∈ D. By Lemma 7.1,
there exists p ∈ Pm such that α(Γp) = w. Then

Γd = δ(d) = o(w) = o(α(Γp)) = Γo(p).

Replacing p by γp for suitable γ ∈ Γ ensures that o(p) = d and hence p ∈Wm and α(p) = w. �

If p ∈W then conv(O, t(p)(t)) = conv(O, p(m1 + 1,m2 + 1)) and we introduce the notation

Ω(p) = Ω(p(m1 + 1,m2 + 1)) = {ω ∈ Ω; t(p) ⊂ [O,ω)} = {ω ∈ Ω; p(pm) ⊂ [O,ω)} .

Let i ∈ T, that is, suppose that i : t→ B is a type rotating isometry. Let

Ω(i) = {ω ∈ Ω; i(t) ⊂ [i(0, 0), ω)} ,

those boundary points represented by sectors which originate at i(0, 0) and contain i(t). Clearly
Ω(γi) = γΩ(i). For p ∈Wm we have Ω(p) = Ω(t(p)). Indeed, any sector originating at t(p)(0, 0)
and containing t(p)(t) extends to a sector originating at O and containing p(pm).
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Fix w1, w2 ∈ W with t(w1) = t(w2) = a ∈ A. Let p1 = α−1(w1) and p2 = α−1(w2). Let γ ∈ Γ
be the unique element such that γt(p1) = t(p2). Define a homomorphism φ : A → C(Ω) o Γ by

(7.1) φ(sw2,w1) = γ1Ω(p1) = 1Ω(p2)γ.

Note that by Lemma 3.5 this does indeed define a *-homomorphism of A because the operators
of the form φ(sw2,w1) are easily seen to satisfy the relations (3.1). We now prove that φ is an
isomorphism fromA onto C(Ω)oΓ (Theorem 7.7 below). For this some preliminaries are necessary.

Lemma 7.3. For any m ∈ Z2
+, 1 =

∑
p∈Wm

1Ω(p).

Proof. This follows from the discussion in [CMS, Section 2]. �

Lemma 7.4. The linear span of {1Ω(p); p ∈W} is dense in C(Ω).

Proof. This follows because the sets Ω(p) for p ∈ W form a basis for the topology of Ω [CMS,
Section 2]. �

Lemma 7.5. Let p ∈ Pm where m = (m1,m2) ∈ Z2
+. Let x = p(0, 0) and y = p(m1 + 1,m2 + 1).

Let y′ be another vertex of B whose graph distance to y in the 1-skeleton of B equals n. Suppose
that n ≤ m1,m2. Then conv(x, y′) contains p(p(m1−n,m2−n)).

Proof. Induction reduces us to the case n = 1. There is some apartment containing x and the
edge from y to y′. In Figure 11 we show one of the six possible positions for y′.
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Figure 11. Relative positions of x,y and y′ in an apartment.

Now conv(x, y′) is the image of some p′ ∈ P(m1+1,m2−1). It is evident in this case (and in the
other five cases) that p′(p(m1−1,m2−1)) = p(p(m1−1,m2−1)). �

Corollary 7.6. Let p ∈ Pm for m = (m1,m2). Let x = p(m1 + 1,m2 + 1) and y = p(0, 0). Let y′

be a third vertex of B at distance n to y. Suppose n ≤ m1,m2. Then conv(x, y′) is the image of
some p′ ∈ P, where p′(0, 0) = y′ and t(p′) = t(p).

Proof. See Figure 12. According to Lemma 7.5, the convex hull conv(x, y′) contains t(p)(t). Be-
cause conv(x, y′) contains a chamber, it must be the image of a unique p′ ∈ P with p′(0, 0) = y′.
Since t(p)(t) lies in the image of p′, namely conv(x, y′), and t(p)(1, 1) = x, it follows that
t(p′) = t(p). �

Theorem 7.7. The map φ is an isomorphism from A onto C(Ω) o Γ.
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Figure 12

Proof. Since A is simple, φ is injective. If p ∈ W then 1Ω(p) = φ(sw,w), where w = α(p) and so
Lemma 7.4 shows that the range of φ contains C(Ω). It remains to show that it contains Γ. Fix

γ ∈ Γ. Choose m = (m1,m2) so that d(O, γ−1O) ≤ m1,m2. Now γ = γ1 =
∑
p∈Wm

γ1Ω(p). For

p ∈ Wm we claim that γt(p) = t(p′) for some p′ ∈ W. Hence γ1Ω(p) = φ
(
sα(p′),α(p)

)
. This shows

the range of φ contains Γ and hence is surjective.
To prove the claim above, apply Corollary 7.6 to find p′′ ∈ P with p′′(0, 0) = γ−1(O) and

t(p′′) = t(p). Let p′ = γp′′. Then p′(0, 0) = O, so p′ ∈W and t(p′) = γt(p′′) = γt(p). �

Remark 7.8. It follows from Theorem 7.7 and Remark 6.5 that C(Ω) o Γ is simple, nuclear and
purely infinite. Simplicity and nuclearity had previously been proved in [RS1] under the additional
assumption that Γ acts transitively and in a type rotating manner on the vertices of B. From
simplicity it follows that C(Ω) o Γ is isomorphic to the reduced crossed product C(Ω) or Γ. See
also [An, QS] for general conditions under which the full and reduced crossed products coincide.
Their results apply, for example when Γ is a lattice in a linear group.

7.1. Conditions (H0)-(H3) for affine buildings of type Ã2. Continue the notation and termi-
nology used above, assuming throughout that Γ acts on B via type rotating automorphisms. We
prove that conditions (H0), (H1), and (H3) are satisfied so long as Γ acts freely and with finitely
many orbits on the vertices of B. Moreover, if B is the building of G = PGL3(K), where K is
a nonarchimedean local field of characteristic zero and Γ is a lattice in PGL3(K) we prove that
(H2) holds as well. There are several concrete examples in [CMSZ] where all these hypotheses are
satisfied.

Proposition 7.9. Suppose that Γ acts freely and with finitely many orbits on the vertices of B.
Then the matrices M1, M2 of the previous section satisfy conditions (H0),(H1), and (H3).

Proof. By definition M1 and M2 are {0, 1}-matrices. To say that they are nonzero is to say that
P(1,0) and P(0,1) are nonempty, which the are. This proves (H0).

Fix any nonzero j ∈ Z2. We will construct w ∈ W which is not j-periodic. Choose m ∈ Z2

large enough so that inside pm one can find a minimal gallery of chambers, (C0, C1, . . . , Cl) so
that Cl is the j-translate of C0. Write τ : C0 → Cl for the identification by translation of the two
chambers.

Construct an isometry p from this minimal gallery to B by defining successively p|C0 , p|C1 , etc.
Since the building is thick, one has at least two choices at each step. Once p|Cl−1

is fixed, no two of
the choices for p|Cl

can be in the same Γ-orbit, since Γ acts freely on the vertices of B. Therefore,
one may choose p so that p|C0 and p ◦ τ are in different Γ-orbits. Now extend p to an isometry
p : pm → B. The element of W associated to p, that is α(Γp), is not j-periodic. This proves (H3).
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Condition (H1c) is vacuous for r = 2. Consider the configuration of Figure 13. Given the tiles
a, b, and c, there is exactly one tile d which completes the picture. Since a, b, and c make up
a minimal gallery, this follows by the same argument used in proving Lemma 7.1. Translating
this fact to matrix terms, we have that if (M2M1)(c, a) > 0 then (M1M2)(c, a) = 1. Likewise, if
(M1M2)(c, a) > 0, then (M2M1)(c, a) = 1. Conditions (H1a) and (H1b) follow, and by Lemma 1.4,
so does condition (H1). �
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Figure 13. Uniqueness of extension.

It is not much harder to prove (H1) directly, bypassing conditions (H1a)-(H1c). It remains to
prove condition (H2). The next result and its corollary prove a strong version of condition (H2).

Theorem 7.10. Let B be the building of G = SL3(K), where K is a local field of characteristic
zero. Let Γ be a lattice in SL3(K) which acts freely on the vertices of B with finitely many orbits.
Let the alphabet A = Γ\T and the transition matrices M1,M2 be defined as at the beginning of
Section 7. Then for each i = 1, 2, the directed graph with vertices a ∈ A and directed edges (a, b)
whenever Mi(b, a) = 1 is irreducible.

Proof. We use an idea due to S. Mozes [M2, Proposition 3]. Fix a model half-infinite strip s of
tiles in a based at (0, 0) and let sk = p(k,0) be the initial segment consisting of k + 1 tiles.

........................................................................
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........................................................................

........................................................................

........................................................................

Figure 14. The strip s.

Let S0 [respectively Sk, k ≥ 1] be the set of type-preserving isometric embeddings s of s
[respectively sk] into the building B. Thus Sk is the subset of type-preserving maps in P(k,0)

and if s ∈ Sk, then o(s) and t(s) are defined as before. Also, if s ∈ S define o(s) = s|t and let
sk = t(s|sk

) for k ≥ 0.
It is desired to prove that given a, b ∈ A, there exists k ∈ Z+ and s ∈ Sk such that a = Γo(s)

and b = Γt(s). The group G acts transitively on the set of apartments of B [St, Section 5].
Moreover the stabilizer of an apartment acts transitively on the set of sectors of the apartment.
It follows that G acts transitively on S0. Therefore S0 = G/H0 for some subgroup H0. In fact

H0 = {

a1 b2 b3

0 a2 c
0 d a3

 ∈ G; |aj| = 1, |bj|, |c| ≤ 1, and |d| < 1}.

Say that two elements of S0 are equivalent if, beyond a certain point dependent on the two
elements, they agree on all tiles of s. Let S be the space of equivalence classes. Since G acts
transitively on S0, a fortiori it acts transitively on S. Thus S = G/H for some H. In fact

H = {

a1 b2 b3

0 a2 c
0 d a3

 ∈ G; |aj| = 1, |c| ≤ 1, and |d| < 1}.
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The only relevant facts about H are that it is closed and noncompact. On S0 and S we put the
topologies and measures obtained from the isomorphisms with G/H0 and G/H.

The Howe–Moore Theorem [Z, Theorems 10.1.4 and 2.2.6] shows that Γ acts ergodically on S.
Suppose that there exist a, b ∈ A which cannot occur as a = Γo(s) and b = Γt(s) with s ∈ Sk,
for any k. Let S′0 = {s ∈ S0; Γo(s) = a} and let S′ be the projection of S′0 to S. The sets S′0
and S′ are clearly Γ-invariant. The set S′ is open, since S′0 is open. Therefore S′ is not of null
measure. By the ergodicity of the Γ-action S′ has full measure. Also of full measure will be the
inverse image of S′ in S0, which consists of all those s′ ∈ S0 which are equivalent to some s ∈ S0

with Γo(s) = a. A fortiori

{s ∈ S0; there exists K ≥ 0 such that b 6= Γsk for all k ≥ K}
is of full measure in S0. Now, in Γ\S0 the set

{Γs ∈ Γ\S0; there exists K ≥ 0 such that b 6= Γsk for all k ≥ K}
will also be of full measure.

On Γ\S0 use the measure obtained in the usual way from the unique (up to positive constant)
positive G-invariant measure on S0. The following condition defines the new measure, dṡ, in
terms of the old measure, ds: ∫

Γ\S0

∑
γ∈Γ

F (γ(s)) dṡ =

∫
S0

F (s) ds

for any F ∈ Cc(S0). Since Γ\G is of finite total measure, it follows that Γ\S0 is too. Assume
that this total measure is one. One can easily verify that relative to dṡ the distribution of Γsk is
independent of k. In fact, |{Γs ∈ Γ\S0; Γsk = b}| = 1

#A
for all k ≥ 0.

Let 0 < ε < 1
#A

. The monotone convergence theorem implies that there exists K such that

|{Γs ∈ Γ\S0; b 6= Γsk for all k ≥ K}| > 1− ε.
But this means that

|{Γs ∈ Γ\S0; ΓsK = b}| ≤ ε.

This contradicts |{Γs ∈ Γ\S0; ΓsK = b}| = 1
#A

, and so proves the result. �

Corollary 7.11. Let B be the building of G = PGL3(K), where K is a local field of characteristic
zero. Let Γ be a lattice in PGL3(K) which acts freely on the vertices of B. Then the conclusions
of Theorem 7.10 hold.

Proof. The image of SL3(K) in PGL3(K) has finite index. Let Γ′ be the pullback to SL3(K) of
Γ. Then Γ′\SL3(K) also has finite volume and the proof of Theorem 7.10 applies. Moreover, the
Γ-orbits of tiles of B are made up of unions of Γ′-orbits. So if we wish to construct s ∈ Sk having
first and last tiles in certain Γ-orbits, we just pick Γ′-orbits contained in the two Γ-orbits and
thereafter work with Γ′. �

Remark 7.12. We needed to use an indirect argument in the previous Corollary because the
Howe–Moore theorem does not apply in its simplest form to PGL3(K).

Remark 7.13. In work which will appear elsewhere, it will be shown how to extend the methods of
the proof of the Howe–Moore theorem so as to prove the necessary ergodicity in greater generality.
It is enough to suppose that Γ acts freely and with finitely many orbits on the vertices of a thick

building of type Ã2. Since ergodicity implies (H2), and since (H0), (H1), and (H3) always hold,
Theorem 7.7 is likewise true in this generality.

Not only does this allow one to work with the buildings associated to PGL3(K) when K has

positive characteristic, but it also makes available those buildings of type Ã2 which are associated
to no linear group. Note finally that direct combinatorial proofs of (H2) can be constructed for

the Ã2 groups listed in [CMSZ].
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7.2. Examples of type Ã1 × Ã1. Analogous results hold for groups acting on buildings of type

Ã1×Ã1. Consider by way of illustration a specific example studied in [M1] and generalized in [BM].
In [M1, Section 3], there is constructed a certain lattice subgroup Γ of G = PGL2(Qp)×PGL2(Qq),
where p, q ≡ 1 (mod 4) are two distinct primes. The building ∆ of G is a product of two
homogeneous trees T1, T2, so that the chambers of ∆ are squares and the apartments are copies
of the euclidean plane tesselated by squares. If a ∈ Γ then there are automorphisms a1, a2 of T1,
T2, respectively such that a(u, v) = (a1u, a2v) for each vertex (u, v) of ∆. However, even though
each a ∈ Γ is a direct product of automorphisms, the group Γ is not a direct product of groups
Γ1 and Γ2.

The group Γ acts freely and transitively on the vertices of ∆. The preceding results all extend
to this situation. The tiles are now squares instead of parallelograms. The boundary of ∆ is
defined as before, using π

2
-angled sectors. The condition (H1) is a consequence of [M1, Theorem

3.2] and the irreducibility condition (H2) follows from [M2, Proposition 3].
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(1987), 297-315.

[Bl] B. Blackadar, K-theory for Operator Algebras, Second Edition, MSRI Publications 5, Cambridge University
Press, Cambridge, 1998.

[BM] M. Burger and S. Mozes, Finitely presented groups and products of trees, C. R. Acad. Sci. Paris, Sér. 1
324 (1997), 747–752.

[Br1] K. Brown, Buildings, Springer-Verlag, New York, 1989.
[Br2] K. Brown, Five lectures on buildings, Group Theory from a Geometrical Viewpoint (Trieste 1990), 254–295,

World Sci. Publishing, River Edge, N.J., 1991.
[Ca] D. I. Cartwright, A brief introduction to buildings, Harmonic Functions on Trees and Buildings (New York

1995), 45–77, Contemp. Math. 206, Amer. Math. Soc., 1997.
[C1] J. Cuntz, A class of C∗-algebras and topological Markov chains: Reducible chains and the Ext-functor for

C∗-algebras, Invent. Math. 63 (1981), 23-50.
[C2] J. Cuntz, K-theory for certain C∗-algebras, Ann. of Math. 113 (1981), 181-197.
[CK] J. Cuntz and W. Krieger, A class of C∗-algebras and topological Markov chains, Invent. Math. 56 (1980),

251-268.
[CMS] D. I. Cartwright, W. M lotkowski and T. Steger, Property (T) and Ã2 groups, Ann. Inst. Fourier 44 (1993),
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of a building of type Ã2, I and II, Geom. Ded. 47 (1993), 143–166 and 167–223.
[G] P. Garrett, Buildings and Classical Groups, Chapman & Hall, London, 1997.
[K1] E. Kirchberg, Exact C∗-algebras, tensor products, and the classification of purely infinite algebras, Proceed-

ings of the International Congress of Mathematicians (Zürich, 1994), Vol. 2, 943–954, Birkhäuser, Basel,
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