IRREDUCIBLE SUBSHIFTS ASSOCIATED WITH A,
BUILDINGS.

GUYAN ROBERTSON AND TIM STEGER

ABSTRACT. Let I be a group of type rotating automorphisms of
a building B of type Ag, and suppose that I' acts freely and tran-
sitively on the vertex set of B. The apartments of B are tiled by
triangles, labelled according to T'-orbits. Associated with these
tilings there is a natural subshift of finite type, which is shown to
be irreducible. The key element in the proof is a combinatorial
result about finite projective planes.

1. INTRODUCTION

Let B be a locally finite thick affine building of type A, [Gar]. Such
a building B is a two dimensional simplicial complex which is a union
of two dimensional subcomplexes, called apartments. The apartments
are Coxeter complexes of type Aa, which may be realized as a tilings
of the Euclidean plane by equilateral triangles. Buildings of type As
are contractible as topological spaces and are natural two dimensional
analogues of homogeneous trees. (A homogeneous tree is a building of
type A;.) Each vertex v of B is labeled with a type 7(v) € Z/3Z, and
each chamber has exactly one vertex of each type. An automorphism
a of B is said to be type rotating if there exists i € Z/3Z such that
T(a(v)) = 7(v) + i for all vertices v € B.

FIGURE 1. Part of an apartment in an A, building,
showing vertex types.
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If B is a building of type A, then the set S, of vertices of B adjacent
to any vertex v may be given the structure of a finite projective plane.
The projective planes corresponding to different vertices v may be non-
isomorphic [RT], but they all have the same order ¢. If a vertex v of B
has type 7 then the set P of vertices of type ¢ + 1 in .S, correspond to
the ¢®> + ¢ + 1 points of the projective plane. The set L of vertices of
type i+2 in S, correspond to the g2 +¢+1 lines of the projective plane.
A point p € P and a line [ € L are incident in the projective plane
if and only if there is an edge connecting them in the building. The
integer ¢ is called the order of the building and each edge in B lies on
q + 1 triangles. The reason for this is that every line in the projective
plane is incident with ¢+ 1 points and every point is incident with ¢+ 1
lines. These facts will be used repeatedly below.

Suppose that B is a building of type As and that I' is a group of type
rotating automorphisms of B which acts freely and transitively on the
vertex set of B. Such groups I' are called Ay groups. In some ways, A
groups are rank two analogues of finitely generated free groups, which
act in a similar way on buildings of type A; (trees). The theory of A,
groups has been developed in detail in [CMSZ]. The A, groups have
a detailed combinatorial structure which makes them an ideal place to
attack problems involving higher rank groups.

An A, group can be described as follows [CMSZ, 1,83]. Let (P, L) be
a projective plane of order gq. Let A : P — L be a bijection (a point—line
correspondence). Let T be a set of triples (x,y, z) where z,y,z € P,
with the following properties.

(i) Given z,y € P, then (z,y,2) € T for some z € P if and only if y
and A\(x) are incident (i.e. y € A(x)).

(i) (z,y,2) € T = (y,2,2) € T.

(iii) Given z,y € P, then (x,y,z) € 7 for at most one z € P.

T is called a triangle presentation compatible with A\. A complete
list is given in [CMSZ] of all triangle presentations for ¢ = 2 and ¢ = 3.

Let {a, : x € P} be ¢> + ¢ + 1 distinct letters and form the group

I'=(a;,z € P|azaya. =1for (z,y,2) €T)

The Cayley graph of I' with respect to the generators a,, z € P is the
1-skeleton of an affine building of type A,. It is convenient to identify
the point x € P with the generator a, € I'. If x € P then the line
A(z) corresponds to the inverse a;! [CMSZ]. We therefore write 27!
for a;' and identify 2! with A(z). From now on the notation z and
A(z) is used to represent a, and ay(,) respectively. Note that, with this
notation,

T ={(z,y,2) :x,y,z € P and xyz = 1}.

This means that if z,y € P then y € A(x) if and only if zyz = 1 for
some 2z € P.
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The Cayley graph of I' will be regarded as a directed graph. Vertices
are identified with elements of I and a directed edge of the form (a, as)
with a € T' is labeled by a generator s € P. Figure 2 illustrates a
typical triangle based at a vertex a € B.

z
az*1 ay

a

FIGURE 2. A chamber based at a vertex a.

If ¢ = 2 there are eight A, groups I, all of which embed as lattices
in the linear group PGL(3,TF) over a local field F. If ¢ = 3 there are 89
possible Zg groups, of which 65 have buildings which are not associated
with linear groups [CMSZ].

Example 1.1. The group C.1 of [CMSZ| has presentation
(2,0 <10 < 6| 2020%6, ToT2Ls, T1T2T6, L1T3Ls5, T1L5Ta, ToLsTs, T3L4Te).

For this group, ¢ = 2, and there are ¢ + ¢ + 1 = 7 generators. Thus
P={xg,...,76} and L = {5", ..., 25'}.

Two triangles lie in the same I'-orbit if and only if they have the same
edge labels, where each edge label is a generator of I'. The combina-
torics of the finite projective plane (P, L) shows that there are precisely
(g +1)(¢*> + g + 1) such labellings, which we refer to as A, triangle la-
bellings. Triangle labellings are in bijective correspondence with the
elements of the triangle presentation 7. In Figure 3 we illustrate a
triangle labelling (one of three) corresponding to the second relation in
Example 1.1.

z3

FiGURE 3. A triangle labelling for the group C.1.

The edge labels (or equivalently the tiles) induce a tiling of the apart-
ments in B, as illustrated in Figure 4.

There is a natural Z? action on the space of tiled apartments, which
gives rise to a so called 2-dimensional subshift of finite type.

Consider the set of all apartments of B, with each triangle labelled
as above. Two matrices My, M, with entries in {0,1} are defined as
follows. If «, f € T, say that M;(«, ) = 1 if and only if the triangle
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xTo T4

T4 5
x0 o
FIGURE 4

labellings a = (aq, as,a3) and 3 = (by, b, b3) lie as shown on the right
of Figure 5. A similar definition applies for My(«,y) = 1, as on the
left of Figure 5.

(VA N/
\/ \/

MQ(a>7) =1 Ml(aaﬁ) =1

FIGURE 5. Definition of the transition matrices.

The commuting matrices My, My are the transition matrices associ-
ated with a 2-dimensional subshift, with alphabet 7. This subshift is
said to be irreducible if for all a, 3 € 7, there exist integers r,s > 0
such that the (a, 3) component of the matrix M7 M5 satisfies

(M M3)(a, B) > 0.

A geometric interpretation of this condition is that any two triangle
labellings «, 3 € 7 can be realized so that (3 lies in some sector with
base labelled triangle «, as in Figure 6.

It is important for the simplicity of the C*-algebras considered in [RS]
that this subshift is irreducible. In this article we prove irreducibility
by showing that we can actually choose r > 0 such that M| («, 5) > 0.
Thus ( lies on the wall of a sector as in Figure 7. A similar statement
is true for the matrix M.

Another way of viewing this is to say that irreducibility is proved
for the one dimensional subshift associated with tilings of strips be-
tween parallel walls in apartments, as illustrated in Figure 8. This is
considerably stronger than irreducibility of the 2-dimensional subshift.

Let I" be an A, group. If I' has the property that the 2-dimensional
subshift described above is irreducible, then the theory developed in
[RS, Section 7] applies. This means that one may construct an asso-
ciated simple C*-algebra whose structure was analyzed in [RS]. The
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\/

F1GURE 6. The condition for irreducibility.

N/

\/

F1GURE 7. Shifting along the wall of a sector.

FIGURE 8. A strip in an apartment.

required irreducibility result was proved in [RS, Theorem 7.10] only for
the case where I' is a lattice in PGL3(K), where K is a local field of
characteristic zero. The argument of [RS, Theorem 7.10] does not ap-
ply if B is the building of PGL3(K), where K is a local field of positive
characteristic, which is the case for the group C.1 of Example 1.1. Nei-
ther does it apply to many examples constructed in [CMSZ], for which
B is not the Bruhat-Tits building of a linear group. The purpose of
the present article is to show that irreducibility holds for all A, groups.
This means that the theory of [RS] now applies to any such group.
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Remark 1.2. The subshift studied in [RS] was defined in terms of
labelled parallelograms formed by a union of two labelled triangles of
the following form.

However, irreducibility of that subshift is an easy consequence of the
result presented here.

We now state our main result.
Theorem 1.3. Given any two AVQ triangle labellings, these labellings

can be realized as the initial and final triangles of a sequence of triangles
arranged along some wall in B as follows:

Ficure 10. Labelled triangles along a wall
The rest of the article is devoted to the proof of Theorem 1.3.

2. PROOF OF IRREDUCIBILITY OF THE 1-DIMENSIONAL SUBSHIFT

Fix once and for all the triangle labellings I and F. Consider a
triangle labelling of the form below (which we refer to as %)

b3 b
b

A triangle labelling of the form %

Call such a labelling % reachable from the left if it is the final triangle

labelling in some sequence with initial triangle 1.

A

b

Similarly define reachable from the right.
Note that for each edge labelling b there are ¢ + 1 triangles of the
form % Therefore if we can show that there exists b such that % is
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AN

b

reachable from the left for more than (¢+1)/2 values of the pair (by, b3)
and reachable from the right for more that (¢ + 1)/2 values of (bs, b3),
then there exists a labelling (b, s, b3) which is reachable both ways.
This will prove Theorem 1.3.

b3 ba
/1 A v

b

In subsequent arguments, we will need to use a criterion for a triangle
labelling of the form A to be reachable in one step from a triangle

labelling of the form %i as in Figure 11.

FIGURE 11

Lemma 2.1. Figure 11 is possible in an apartment of B if and only if
c & ADb).

Proof. Fix a vertex v € B. Since the 1-skeleton of B is the Cayley
graph of (I', P), the vertex v may be considered as an element of T'.
The choice of v is irrelevant, by transitivity of the action of I.

As explained in the introduction, the set S, of vertices adjacent to
v has the structure of a finite projective plane. The points of this
projective plane are {vx; x € P} and the lines are {vA(z); z € P}.
Recall that A(x) = x ™! in the group I'. Figure 11 is therefore equivalent
to Figure 12.

vA(b) v ve
FIGURE 12

If ¢ € A(), then there is an edge in B between vA(b) and ve. Figure
12 is therefore impossible, by contractibility of the building B.

On the other hand, if ¢ ¢ \(b) then vA(b) and vec are not adjacent in
Sy. Now vA(b) and ve lie in a hexagon H whose vertices belong to S,.
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This is because the projective plane .S, has the structure of a spherical
building, whose apartments are hexagons. The vertices of the hexagon
H are alternately points and lines of the projective plane S,,. The only
way in which the line vA(b) and the point ve can fail to be adjacent in
the hexagon H is if they are opposite vertices of the hexagon, as shown
in Figure 13.

vA(b) ve

FIGURE 13

This means that Figure 12 is possible in B, where each labelled
triangle has one edge on the hexagon H.
O

Lemma 2.2. Ifb € P then the numbers
L(b) = #{(ba, b3) : (b, b, bs) is reachable from the left},
R(b) = #{(ba, b3) : (b, ba, bs) is reachable from the right}
are independent of b.

Proof. 1t is clearly enough to prove the assertion for £(b). Givend’ € P,
we must show that £(b) = L(b'). Now the diagram in Figure 14 can
be completed by choosing ¢ such that ¢ € A(b) and " & A(c¢). This is
possible, since there exist ¢ + 1 elements ¢ € A(b), there exist ¢ + 1
elements ¢ such that & € A\(c), and 2(¢+ 1) < ¢* + q+ 1 = #(P).

/N JAVAVAN

b ¢ v’

FIGURE 14

Choose and fix such an element ¢ € P. Then each labelling of %
uniquely determines the labelling of %, and vice versa. That is, for
fixed b, c,b’, the number of labellings of % is the same as the number
of labellings of % It follows that L£(b) < L(V'). By symmetry, £(b) =
L(). O

It follows from Lemma 2.2 that, in order to prove Theorem 1.3, it is
enough to find an elements by, by € P such that

(1a) L(b) > (¢+1)/2,
(1b) R(bs) > (¢ +1)/2.
It is clearly enough to verify (1a).
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Given the initial triangle labelling I, denote by D the set of all d € P
for which Figure 15 is possible. Thus D contains precisely ¢ elements.
For each d € D let S; denote the set of f € P such that Figure 15 is
possible. Therefore #(S4) = q.

FIGURE 15

Lemma 2.3. If di,ds € D and dy # da, then Sq, N Sy, contains at
most one element.

Proof. If f € Sy, N Sy, then dy, dy € A(f). The two points d;, dy in
the projective plane determine the line A\(f) uniquely. That is, f is
uniquely determined. 0

Let S = U Sq. Then S is the set of elements f € P such that a

deD
diagram like Figure 15 is possible, for the given initial triangle I. There

are q(q—1)/2 sets of the form Sy, N Sy;, each of which contains at most
one element. It follows from the exclusion-inclusion principle that
gl¢—1) _¢*+gq
) #(5) > qq - WD T H0
2 2
This gives a lower bound on the number of possible edge labels f in

Figure 15. Now let f € S be such an edge label. Then f € S; for some
d € P. Consider diagrams of the form illustrated in Figure 16.

FIGURE 16

In the projective plane of nearest neighbours of = label the points
pf, Dy and lines Iy, [, as in Figure 17. (By duality, the words ‘point’
and ‘line’ could be interchanged here. The specified choice makes the
wording of a later argument easier.)

Then (g, h, k) is reachable from f, (i. e. the diagram is possible), if
and only if I, # Iy, py # py and p, € [,Nly. That is p, = (l—{ps})Nix,
where lh 7& lf.
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FIGURE 17

For h € P the set of possible g is in bijective correspondence with
the set

o= U Al —{phHni}

fesS—{h}

= uwn J -1}
fes—{n}
If we can show that #(T},) > %+ for some h, then (1a) is satisfied
with by = h.
The proof of Theorem 1.3 therefore reduces to the following combina-
torial result about projective planes. Recall from (2) that #(S) > @.

Lemma 2.4. In a projective plane of order q, let {lj 1<y < L;q}

be a family of distinct lines. For each j, let p; be a point on l; and let
l; =1; —{p;}. Then there exists a line m such that
1
#(mﬂU{l;:lj#m}) > %

Proof. This divides into 3 separate cases, which are dealt with in in-
creasing order of difficulty.
Case 1: ¢ = 2. Here qu = 3, and so there are three distinct lines
ly, I, l3, each containing three points. Each set l;- therefore contains
exactly two points.

Choose a line m which meets a point of [{ — I3 and a point of I; — ;.
Then m N (I{ Uly) contains 2 > 2 elements.

ll\ . /l2

Case 2: ¢ > 4.
Each line contains q + 1 points, so #(/;) = ¢. Two distinct lines meet
in exactly one point. Hence

(3) #(l Ul Ulg) = 3¢ —3.
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Assume that ghe conclusion of the Lemma is false. Then we claim that
for 3<k< qTﬂ,
qg—1

(1) HGULU-UL) > (30— 3)+ (-3,

where [t] denotes the ceiling of ¢, the least integer not less than ¢.

We prove the claim by induction. If k& = 3 then it is true, by (3).
Assume that (4) holds for a given value of k. Since we are assuming
that the conclusion of the Lemma fails,

+1
#(lp N U UL)) S #(lepa N U---ULL)) < q?
Hence,
+1 -1
#lr = (U UG)) 2 g = = = T
Therefore

#U UGB U UL ULL) > (3¢—3) + (k—3)[42] + [52]
=(@B¢—-3)+((k+1)—3)[5].

Thus we have established (4).
In particular, since (4) holds for k = (¢*+¢)/2, and there are ¢*+¢g+1
points in the projective plane, we have

(5) q2+q+1z<3q—3>+(q2;q—3> [‘1;—11.

Now (5) has been derived from the assumption that the conclusion of
the Lemma was false. Therefore all that is required now is to show
that (5) is false. Now (5) fails when ¢ = 4, since in that case

2 2
On the other hand, if ¢ > 5, write ¢ =r + 5, r > 0. Then

2
+ -1
4<3q—3+(q 5 q—3) (qT)—(q2+q+1)> = ¢ —d¢* +q 10
= 4+ 11r2 +36r + 20
> 20.

2
+ —1
q2+q+1:21223:(3q—3)+<q q—3)(q—}.

Therefore (5) also fails when ¢ > 5. This proves Case 2.
Case 3: ¢ = 3. This requires separate treatment. Here qui = 6,
ol =2,

Given distinct lines 1,15 . . ., lg we delete a point from each to obtain
sets 1, ...,l5. We must find a line m such that

(6) #(mﬂU{l;:lj#m}>>2.
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It is known that there is a unique projective plane of order 3, namely
the Desarguesian plane arising from a 3-dimensional vector space over
F5 [Bl, Theorem 2.3.1].

There are thirteen points and thirteen lines in the projective plane.
Label the points 0,1,2,...,12 and label the lines (0), (1), (2), ..., (12),
as indicated in the table below [Bl, Section 1.4]. For example, line (8)
contains the points 5,6, 8, 1.

(12) | (11) | (10) [ (9) | (8) | (7) | (6) | (5) | (4) | (3) | (2) | (1) | (0)
1 2 3 4 |56 | 7|89 ]10[11]12] 0
2 3 4 516 | 7|89 1011120 |1
4 5 6 71891011120 1|23
1011 12,0123 |4|5|6|7|8]9
By permuting the lines 1, 15 . . ., lg, if necessary, we may suppose that

[y Nl is not equal to either of the excluded points p; or ps.

To check this assertion, suppose that it does not already hold for the
given choice of [1,l5. Since each point is incident at most four of the
lines Iy, 15 ..., lg, we may assume that [ Nly = p; but that [y N5 # p;
and l; Nlg # p1. If [y N5 # ps or [y Nlg # pg we are done. On the other
hand, if [ N5 = ps, [1 Nlg = pg and ps # pe then I5 N g is not equal to
either ps or pg. It remains to consider the case 1 N5 = ps, [1 Nl = pg
with D5 = De- In that case, lg N l5 §£ D5, l2 N lﬁ # De (since ll N lg = pl)
and either lg N l5 7é P2 Or lg N l6 7é P2.

Having verified this assertion, we can assume that {; N[y, p; and po
are three noncollinear points. Now the automorphism group PGL3(IF3)
acts transitively on triples of noncollinear points. Map these three
points to the points 2,10, 11 respectively We may therefore suppose
that Iy, Iy are lines (12), (11) respectively with excluded points 10, 11
(underlined in the table). Thus

I ={1,2,4} 1,=1{235}.
Now for j = 3,4,5,6, the set [’ contains a point not in Iy or [z, namely
one of the points 0,6,7,8,9,12. Let j € {3,4,5,6}.
(a) If 0 € I then
0)N (LUl ul;) ={1,3,0},
and
(9) N Ul ull) ={4,5,0}.
One can choose as line m to satisfy inequality (6) whichever of
(0), (9) is not equal to [;. Both choices of m may be possible.
(b) If 6 € I’ then
(8)N (UL UL) = {L5.6}
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and
(10)N ([ Ul Ul)) = {4,3,6}.

One can choose as line m whichever of (8), (10) is not equal to /;.

(c) If 7 €I’ then
©) N (UL UL = {457},

so if [; # (9) we can choose m = (9).
If 8 € I then

@) N ululy) ={1,58},

so if [; # (8) we can choose m = (8).
If 9 € I then

0)N (Ul Ul ={1,3,9},

so if [; # (0) we can choose m = (0).
If 12 € I’ then

(10) N ([ Ul UlY) = {4,312},
so if [; # (10) we can choose m = (10).

(d) By choosing j = 3,4,5,6 in parts (a), (b) and (c) above that,
we see that we can choose m to satisfy inequality (6) except in
one case. Up to a permutation of the set {3,4, 5,6}, this is the
case where

I3, Iy, 5, lg = (9>7 (8)7 (O), (10)

respectively with
7€ (9),8€ (8),9¢€ (0), 12 € (10)".

We work with the three lines [y = (12), I3 = (9), Il = (10).
There are two possibilities to consider:
If 6 € (10) then (7)N({LULULE) = {2,7,6}; so take m = (7).
If 6 ¢ (10)" then (10) = {3,4,12}, (2) N (I U5 U ;) =
{1,7,12}; so take m = (2).
0

Remark 2.5. Careful examination of the proof of Theorem 1.3 shows
that six steps are enough to get from initial to final triangle, exactly
as indicated in Figure 10.
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