
INVARIANT DISTRIBUTIONS ON PROJECTIVE SPACES OVER
LOCAL FIELDS

GUYAN ROBERTSON

Abstract. Let Γ be an Ãn subgroup of PGLn+1(K), with n ≥ 2, where K
is a local field with residue field of order q and let Pn

K be projective n-space

over K. The module of coinvariants H0(Γ; C(Pn
K, Z)) is shown to be finite.

Consequently there is no nonzero Γ-invariant Z-valued distribution on Pn
K.

1. Introduction

Let K be a nonarchimedean local field with residue field k of order q and uni-
formizer π. Denote by PnK the set of one dimensional subspaces of the vector space
Kn+1, i.e. the set of points in projective n-space over K. Then PnK is a compact
totally disconnected space with the quotient topology inherited from Kn+1, and
there is a continuous action of G = PGLn+1(K) on PnK.

Let Γ be a lattice subgroup of G. The abelian group C(PnK,Z) of continuous
integer-valued functions on PnK has the structure of a Γ-module and the module
of coinvariants C(PnK,Z)Γ = H0(Γ;C(PnK,Z)) is a finitely generated group. Now
suppose that Γ is an Ãn group [3, 4], i.e. Γ acts freely and transitively on the
vertex set of the Bruhat-Tits building of G, which has type Ãn. A free group is an
Ã1 group since it acts freely and transitively on the vertex set of a tree, which is a
building of type Ã1. For n ≥ 2, the Ãn groups are unlike free groups. This article
proves the following.

Theorem 1.1. If Γ is an Ãn subgroup of PGLn+1(K), where n ≥ 2, then C(PnK,Z)Γ

is a finite group.

The proof depends upon the fact that Γ has Kazhdan’s property (T). A distribu-
tion on PnK is a finitely additive Z-valued measure µ defined on the clopen subsets
of PnK.

Corollary 1.2. If Γ is an Ãn subgroup of PGLn+1(K), where n ≥ 2, then there is
no nonzero Γ-invariant Z-valued distribution on PnK.

This contrasts strongly with the main result of [8] concerning boundary distribu-
tions associated with finite graphs. A torsion free lattice subgroup Γ of PGL2(K)
is a free group, of rank r say. It was shown in [8] that in this case the group of
Γ-invariant Z-valued distributions on P1

K is isomorphic to Zr. In particular, there
are many such distributions.
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2 PROJECTIVE SPACES OVER LOCAL FIELDS

2. Background

2.1. The Bruhat-Tits building. If K is a local field, with discrete valuation v :
K× → Z, let O = {x ∈ K : v(x) ≥ 0} and let π ∈ K satisfy v(π) = 1. A lattice L is
an O-submodule of Kn+1 of rank n+1. In other words L = Oe1+Oe2+· · ·+Oen+1,
for some basis {e1, e2, . . . , en+1} of Kn+1. Two lattices L1 and L2 are equivalent
if L1 = αL2 for some α ∈ K×. The Bruhat-Tits building of PGLn+1(K) is a two
dimensional simplicial complex ∆ whose vertices are equivalence classes of lattices
in Kn+1 [9]. Two lattice classes [L0], [L1] are adjacent if, for suitable representatives
L1, L2, we have L0 ⊂ L1 ⊂ π−1L0. A simplex is a set of pairwise adjacent lattice
classes. The maximal simplices (chambers) are the sets {[L0], [L1], . . . , [Ln]} where
L0 ⊂ L1 ⊂ · · · ⊂ Ln ⊂ π−1L0. These inclusions determine a canonical ordering of
the vertices in a chamber, up to cyclic permutation. Each vertex v of ∆ has a type
τ(v) ∈ Z/(n + 1)Z, and each chamber of ∆ has exactly one vertex of each type.
If the Haar measure on Kn+1 is normalized so that On+1 has measure 1 then the
type map may be defined by τ([L]) = logq(vol(L)) + (n+ 1)Z. The cyclic ordering
of the vertices of a chamber coincides with the natural ordering given by the vertex
types (Figure 1). Let E1 denote the set of directed edges e = (x, y) of ∆ such that
τ(y) = τ(x) + 1. Write o(e) = x and t(e) = y. The subgraph of the 1-skeleton of ∆
with edge set E1 is studied in [5, 7].
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Figure 1. Ã3 case: Cyclic ordering of the vertices of a chamber

Lemma 2.1. Let C be a chamber of ∆. Then C contains n + 1 directed edges
e ∈ E1.

Proof. By [9, Chapter 9.2], there is a basis (e1, . . . , en+1) of Kn+1 such that the
vertices of C are the classes of the lattices

L0 = πOe1 + πOe2 + πOe3 + · · ·+ πOen+1

L1 = Oe1 + πOe2 + πOe3 + · · ·+ πOen+1

L2 = Oe1 +Oe2 + πOe3 + · · ·+ πOen+1

. . . . . .

Ln = Oe1 +Oe2 +Oe3 + · · ·+ πOen+1.

Define Ln+1 = L0. Then the edges C which lie in E1 are ([Lk], [Lk+1]), where
0 ≤ k ≤ n. �
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The building ∆ is of type Ãn and the action of GLn+1(K) on the set of lattices
induces an action of PGLn+1(K) on ∆ which is transitive on the vertex set. The ac-
tion of PGLn+1(K) on ∆ is type rotating in the sense that, for each g ∈ PGLn+1(K),
there exists i ∈ Z/(n+ 1)Z such that τ(gv) = τ(v) + i for all vertices v ∈ ∆.

Fix a vertex v0 ∈ ∆ of type 0, and let Π(v0) be the set of vertices adjacent to v0.
Then Π(v0) has a natural incidence structure: if u, v ∈ Π(v0) are distinct, then u
and v are incident if u, v and v0 lie in a common chamber of ∆. If v0 is the lattice
class [L0], then Π(v0) consists of the classes [L] where L0 ⊂ L ⊂ π−1L0, and one
can associate to [L] ∈ Π(v0) the subspace v = L/L0 of π−1L0/L0

∼= kn+1. Thus
we may identify Π(v0) with the flag complex of subspaces of the vector space kn+1.
Under this identification, a vertex v ∈ Π(v0) has type τ(v) = dim(v) + Z/(n+ 1)Z
where dim(v) is the dimension of v over k. A chamber C of ∆ which contains v0

has vertices v0, v1, . . . , vn where (0) = v0 ⊂ v1 ⊂ · · · ⊂ vn ⊂ kn+1 is a complete
flag. For brevity, write C = {v0 ⊂ v1 ⊂ · · · ⊂ vn}.

Definition 2.2. If e = ([L0], [L1]) ∈ E1, where L0 ⊂ L1 ⊂ π−1L0 and τ([L1]) =
τ([L0]) + 1, then define Ω(e) to be the set of lines ` ∈ PnK such that L1 = L0 +
(` ∩ π−1L0). The sets Ω(e), e ∈ E1, form a basis for the topology on PnK (c.f. [10,
Ch.II.1.1], [1, 1.6]).

Lemma 2.3. If e ∈ E1, then Ω(e) may be expressed as a disjoint union of qn sets

(1) Ω(e) =
⊔

o(e′)=t(e)
Ω(e′)⊂Ω(e)

Ω(e′) .

Proof. Let e = ([L0], [L1]) ∈ E1, where L0 ⊂ L1 ⊂ π−1L0 and τ([L1]) = τ([L0])+1.
If ` ∈ Ω(e) then L1 = L0 + (` ∩ π−1L0). Choose e′ = ([L1], [L2]) where L2 =
L0 + (` ∩ π−2L0). Now L0 ⊂ L1 ⊂ L2 ⊂ π−1L1 and L2/L1 is a 1-dimensional
subspace of π−1L1/L1

∼= kn+1. Moreover, L2/L1 is not incident with the n-
dimensional subspace π−1L0/L1 of π−1L1/L1

∼= kn+1. There are precisely qn such
1-dimensional subspaces of kn+1, each of which corresponds to an edge e′ ∈ E1. �

Lemma 2.4. If ξ is a fixed vertex of ∆, then PnK may be expressed as a disjoint
union

(2) PnK =
⊔

o(e)=ξ

Ω(e) .

Proof. Let ξ = [L0], where L0 is a lattice. If ` ∈ PnK, define the lattice L1 =
L0 + (` ∩ π−1L0). Then L0 ⊂ L1 ⊂ π−1L0 and τ([L1]) = τ([L0]) + 1, since L0 is
maximal in L1. Thus the edge e = ([L0], [L1]) lies in E1, and ` ∈ Ω(e). �

Lemma 2.5. Let C be a chamber of ∆ and denote the directed edges of C ∩E1 by
e0, e1, . . . , en. Then PnK may be expressed as a disjoint union

(3) PnK =
n⊔
i=0

Ω(ei) .

Proof. Let C have vertex set {[L0], [L1], . . . , [Ln]} where L0 ⊂ L1 ⊂ · · · ⊂ Ln ⊂
π−1L0. Let ` = Ka ∈ PnK, where a ∈ Kn+1 is scaled so that a ∈ π−1L0 − L0.
Then a ∈ Li+1 − Li for some i, where Li+1/Li ∼= k and Ln+1 = π−1L0. Thus
` ∈ Ω(ei). �



4 PROJECTIVE SPACES OVER LOCAL FIELDS

2.2. Ãn groups. From now on let Π = Π(v0), the set of neighbours of the fixed
vertex v0 ∈ ∆. Thus Π is isomorphic to the flag complex of subspaces of kn+1 and
a chamber C of ∆ which contains v0 is a complete flag {v0 ⊂ v1 ⊂ · · · ⊂ vn}. For
1 ≤ r ≤ n, let Πr = {u ∈ Π(v0) : dimu = r}.

Now suppose that Γ is an Ãn group i.e. Γ acts freely and transitively on the
vertex set of ∆ [3, 4]. Then for each v ∈ Π(v0), there is a unique element gv ∈ Γ such
that gvv0 = v. If v ∈ Π(v0), then g−1

v v0 also lies in Π(v0), and λ(v) = g−1
v v0 defines

an involution λ : Π(v0) → Π(v0) such that gλ(v) = g−1
v . Let T = {(u, v, w) ∈

Π(v0)3 : gugvgw = 1}. If (u, v, w) ∈ T then w is uniquely determined by (u, v)
and there is a bijective correspondence between triples (u, v, w) ∈ T and directed
triangles (v0, λ(u), v) of ∆ containing v0. By [6, Proposition 2.2], the abstract group
Γ has a presentation with generating set {gv : v ∈ Π(v0)} and relations

gugλ(u) = 1, u ∈ Π(v0);(4a)
gugvgw = 1, (u, v, w) ∈ T .(4b)

If u ∈ Π(v0) then τ(guv0) = τ(u) = τ(u) + τ(v0). Hence τ(gux) = τ(u) + τ(x)
for each vertex x of ∆, since gu is type rotating. In particular, if u, v ∈ Π(v0) then

(5) τ(gugvv0) = τ(u) + τ(v).

It follows from (5) that
τ(λ(u)) = −τ(u)

for each u ∈ Π. Also, if (u, v, w) ∈ T , then

τ(u) + τ(v) + τ(w) = 0.

Let C = {v0 ⊂ v1 ⊂ · · · ⊂ vn} be a chamber of ∆ containing v0. Since the
vertices vi−1 and vi are adjacent, so are the vertices v0 = g−1

vi−1
vi−1 and g−1

vi−1
gviv0 =

g−1
vi−1

vi. Also τ(g−1
vi−1

gvi
v0) = τ(vi) − τ(vi−1) = 1. Therefore g−1

vi−1
gvi

= gai
where

ai ∈ Π1, vn+1 = v0 and gv0 = 1. Thus ga1ga2 . . . gak
= gvk

(1 ≤ k ≤ n) and
ga1ga2 . . . gan+1 = 1.

The (n + 1)-tuple σ(C) = (a1, a2, . . . , an+1) ∈ Πn+1
1 is uniquely determined by

the chamber C containing v0. Denote by S the set of all (n + 1)-tuples σ(C)
associated with such chambers C. If u ∈ Π(v0) with dim(u) = k, then u is a vertex
of a chamber C containing v0. Therefore

(6) gu = ga1ga2 . . . gak
, where ai ∈ Π1, 1 ≤ i ≤ k.

In particular, the set {ga : a ∈ Π1} generates Γ. Since gλ(u) = g−1
u , we have

(7) gλ(u) = gai+1 . . . gan+1 .

Note that the expression (6) for gu is not unique, but depends on the choice of the
chamber C containing u and v0. An edge in E1 has the form (x, gax) where a ∈ Π1.

Lemma 2.6. The Ãn group Γ has a presentation with generating set {ga : a ∈ Π1}
and relations

(8) ga1ga2 . . . gan+1 = 1, (a1, a2, . . . , an+1) ∈ S.

Proof. It is enough to show that the relations (4) follow from the relations (8).
Let (u, v, w) ∈ T with dim(u) = i,dim v = j and dimw = k, where i + j +
k ≡ 0 mod (n + 1). Choose a chamber C = {v0 ⊂ v1 ⊂ · · · ⊂ vn} containing
{v0, guv0, gugvv0}. Let (a1, a2, . . . , an+1) = σ(C) ∈ Πn+1

1 be the element of S
determined by C. Then guv0 is the vertex of C of type i, so gu = ga1ga2 . . . gai

.
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Suppose that j < n + 1 − i. Then gugvv0 is the vertex of C of type i + j
and gugv = ga1ga2 . . . gai+j

. Thus gv = gai+1 . . . gai+j
and gw = gai+j+1 . . . gan+1 .

Therefore
gugvgw = ga1ga2 . . . gan+1 .

Suppose that j > n+ 1− i. Then gugvv0 has type i+ j − n− 1 and

gugv = ga1ga2 . . . gai+j−n−1 = ga1ga2 . . . gan+1ga1 . . . gai+j−n−1 .

Thus gv = gai+1 . . . gan+1ga1 . . . gai+j−n−1 and gw = gai+j−n
. . . gan+1 . Therefore

gugvgw = (ga1ga2 . . . gan+1)2.

In each case the relations (4b) follow from the relations (8). The same is true for
the relations (4a), by equation (7). �

3. The coinvariants

If Γ is an Ãn group acting on ∆, then Γ acts on PnK, and the abelian group
C(PnK,Z) has the structure of a Γ-module, with (g · f)(`) = f(g−1`), g ∈ Γ, ` ∈
PnK. The module of coinvariants, C(PnK,Z)Γ, is the quotient of C(PnK,Z) by the
submodule generated by {g · f − f : g ∈ Γ, f ∈ C(PnK,Z)}. If f ∈ C(PnK,Z) then let
[f ] denote its class in C(PnK,Z)Γ. Also, let 1 denote the constant function defined
by 1(`) = 1 for ` ∈ PnK, and let ε = [1].

If e ∈ E1, let χe be the characteristic function of Ω(e). For each g ∈ Γ, the
functions χe and g · χe = χge project to the same element in C(PnK,Z)Γ. Any edge
e ∈ E1 is in the Γ-orbit of some edge (v0, gav0), where a ∈ Π1 is uniquely determined
by e. Therefore it makes sense to denote by [a] the class of χe in C(PnK,Z)Γ.

Lemma 3.1. The group C(PnK,Z)Γ is finitely generated, with generating set {[a] :
a ∈ Π1}.

Proof. Every clopen set V in PnK may be expressed as a finite disjoint union of sets
of the form Ω(e), e ∈ E1. Any function f ∈ C(PnK,Z) is bounded, by compactness
of PnK, and so takes finitely many values ni ∈ Z. Therefore f may be expressed as a
finite sum f =

∑
j njχej

, with ej ∈ E1. The result follows, since {[χe] : e ∈ E1} =
{[a] : a ∈ Π1}. �

Suppose that e, e′ ∈ E1 with o(e′) = t(e) = x, so that o(e) = gλ(a)x and
t(e′) = gbx for (unique) a, b ∈ Π1. Then, by the proof of Lemma 2.3, Ω(e′) ⊂ Ω(e)
if and only if b ∩ λ(a) = (0).

Equations (1) and (2) imply the following relations in C(PnK,Z)Γ.

ε =
∑
a∈Π1

[a];(9a)

[a] =
∑
b∈Π1

b∩λ(a)=(0)

[b], a ∈ Π1.(9b)

It is easy to see that |Π1| = qn+1−1
q−1 . If a ∈ Π1, then λ(a) ∈ Πn and so the

number of elements b ∈ Π1 which are incident with λ(a) is qn−1
q−1 . Thus there exist

qn elements b ∈ Π1 such that b ∩ λ(a) = (0). In other words, the right side of (9b)
contains qn terms. As a first step towards proving that C(PnK,Z)Γ is finite, we show
that the element ε = [1] has finite order.
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Lemma 3.2. In the group C(PnK,Z)Γ, (qn − 1)ε = 0.

Proof. By (9a) and (9b),

ε =
∑
a∈Π1

[a] =
∑
a∈Π1

 ∑
b∈Π1

b∩λ(a)=(0)

[b]

 =
∑
b∈Π1

qn[b] = qnε.

�

We can now prove Theorem 1.1. It follows from (3) that if (a1, a2, . . . , an+1) ∈ S
then

(10)
n+1∑
i=1

[ai] = ε.

Therefore, by Lemmas 2.6 and 3.1, there is a homomorphism θ from Γ onto the
abelian group C(PnK,Z)Γ/〈ε〉 defined by θ(ga) = [a] + 〈ε〉, for a ∈ Π1.

The Ãn group Γ has Kazhdan’s property (T) [2, Theorems 1.6.1 and 1.7.1]. It
follows that C(PnK,Z)Γ/〈ε〉 is finite [2, Corollary 1.3.5]. Therefore C(PnK,Z)Γ is also
finite, since 〈ε〉 is finite, by Lemma 3.2. �

Distributions. A distribution on PnK is a finitely additive Z-valued measure µ
defined on the clopen subsets of PnK [1, 1.4]. By integration, a distribution may
be regarded as a Z-linear function on the group C(PnK,Z). Therefore a Γ-invariant
distribution defines a homomorphism C(PnK,Z)Γ → Z. This homomorphism is
necessarily trivial, since C(PnK,Z)Γ is finite. This proves Corollary 1.2.
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