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Abstract

We have performed numerical simulations of various vortex configurations in a trapped Bose-

Einstein condensate by solving the two-dimensional Gross-Pitaevskii equation in the presence of a

simple model of interaction between the condensate and the finite temperature thermal cloud that

surrounds it. In that interaction the non-condensed thermal cloud acts as a source of dissipation

with a damping effect of excitations. In the case of a single vortex and a vortex - anti vortex pair,

we have found that the path of the vortices depends on the initial position, the initial separation

distance if the case of two vortices and dissipation.

This motion is periodic and it was found that sound waves are created by vortex motion; the

intensity was stronger when the initial vortex separation distance was smaller. We have calculated

the sound energy as the difference between the kinetic energy and the vortex energy.

With no dissipation the vortices followed the same path with a slight oscillation due to the sound

waves. We found that the smaller the initial vortex separation distance d0 is, the larger the sound

production.

The period, frequency, translation speed, sound energy and vortex energy were measured for

different initial separation distances d0 and for different dissipation parameters γ. In the case of

motion of one vortex, the connection between the dissipation γ and the friction coefficients, α and

α′ was studied as well.

To create a simple turbulent state, we put eight pairs of vortex - anti vortex at random positions in

the condensate with initial separation distance d0 = 1.8 between them. We have studied the decay

rate of the total energy, kinetic energy, quantum energy, trap energy and the z − component of

the angular momentum together with the increase rate of the internal energy. Finally, we finished

our investigation by putting randomly vortex - anti vortex pairs and studied the decrease of the

number of vortices with time t. We found that the decrease is exponential.
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Chapter 1

Introduction

1.1 Bose-Einstein Condensation and Superfluidity

Below Tλ = 2.17K, 4He is known as He II. In that case the superfluid part of Helium has no

thermal resistance and viscosity. London (London, 1938) connected these superfluid properties

with Bose and Einstein’s works on the quantum statistics of bosons.

Atoms at ultralow temperatures behave as indistinguishable particles. At low temperatures,

bosons prefer to occupy the same quantum mechanical state. This behaviour is governed by the

laws of quantum mechanics. For T < Tc, bosons have a tendency to be together in a single state

forming a BEC. This theory was later expanded by Tisza (Tisza, 1938) and Landau (Landau, 1941)

in the two-fluid model containing non − condensed or normal fluid of quasi-particle excitations.

According to Landau, the elementary excitations are sources of viscosity in a quantum fluid.

The phenomenon of BEC has been studied in different domains like astrophysics, particle

physics, condensed matter, atomic physics together with two and one dimensional systems, mul-

ticondensates, non-linear and linear atom optics, superfluidity and vortices (discovery of vortices

in JILA and Paris, solitons in Hannover and NIST, Freschbach resonances at MIT, JILA, Orsay

and Texas.)

1.1.1 Bose-Einstein Condensates

A Bose-Einstein condensate (BEC) is a state of matter of a system of bosons confined in an

external potential. The atoms are cooled to temperatures very near to absolute zero. Under this

condition quantum effects become evident on a macroscopic scale. This follows from the fact that

a large fraction of the atoms collapse into the lowest quantum state of the external potential.

The history of BEC has its origin in Satyendra Nath Bose’s (Bose, 1924) and Albert Einstein’s

(Einstein, 1925) works in the 1920s on the quantum statistics of particles with integer spin.

The first weakly-interacting atomic Bose-Einstein condensate was produced by Eric Cornell

and Carl Wieman in 1995, at the University of Colorado at Boulder NIST-JILA lab, (Cornell &

Wieman, 1995, 1998). They used a gas of rubidium atoms cooled to 170 nanokelvin (nK). A dilute
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weakly-interacting Bose-Einstein condensate (BEC) was also obtained in a confined ultracold gas

of sodium and lithium atoms (Davis et al., 1995; Bradley et al., 1995) with the help of cooling and

trapping techniques (Chu et al., 2003). Cornell, Wieman and Wolfgang Ketterle were awarded

the 2001 Nobel Prize in Physics for this achievement. One can create a cloud of dilute BEC by

confining in a magneto-optical trap about 109 atoms with the help of laser beams and magnetic

fields. In that state, the temperature is T ≈ 10−5K and the number density is n ≈ 1010cm−3. To

obtain BEC, the temperature of the cloud is reduced (T ≈ 10−6K and n ≈ 1014cm−3) by radio-

frequency pulses to evaporate higher energy atoms in magnetic trap with a harmonic confinement

(Hess, 1986). The particle interactions are low-energy, two-body collisions described by the atomic

s-wave scattering length, a. More than 99% of atoms are condensed at zero temperature. The

interactions are weak due to the scattering cross-section is much less than the mean space between

particles (n1/3a≪ 1).

Dilute BECs, regulated and managed by electromagnetic and optical means, have been pro-

duced with Rubidium (Anderson et al., 1995), Lithium (Bradley et al., 1995), Sodium (Davis

et al., 1995), spin-polarised Hydrogen (Fried, 1998), meta-stable Helium (Santos, 2001), Potassium

(Modugno, 2001), Caesium (Weber et al., 2003) and Ytterbium (Takasu, 2003). Combination of

experimental and theoretical informations of BEC give us a good insight in fundamental concepts

of condensed matter physics.

There are various envisaged applications of the BEC theory. The stimulated transfer of bosonic

atoms into a given state of an optical or magnetic trap was demonstrated in (Holland et al., 1996).

This is a model for an atom laser, which are beams of coherent atoms, (Anderson & Kasevich, 2003;

Hansch & Esslinger, 1999; Hagley, 1999). Atom chips (Ott et al., 2001; Hansel et al., 2001) enable

coherent atom optics with reduced dimensionality (one dimension) by suitable trap geometries.

1.1.2 Vortices

The most striking properties of superfluids are the creation and observation of quantum vortices.

Solving an equation, which describes the bosons at very low temperatures (the Gross-Pitaevskii

equation), we can see that it allows solutions which are topologically non-trivial e.g. vortices with

zero density and non-zero fluid circulation. A vortex is manifested as a density hole within the

condensate. In superfluids, vortices are characterised by quantised circulations. They can decay

under collision, at the boundary of the condensate or due to other dissipative mechanism.

The conditions for vortex creation depend upon the shape of the condensate and the form of

the trapping potential. The standard method of generating quantised vortices in a superfluid is by

rotation about a fixed axis when quantised vortex lines appear aligned with the axis of rotation.

At low rotation frequencies the superfluid remains stationary. Provided that the rotation is greater

than a critical value, one or more vortices form (Baym & Pethick, 1996) at the edge and enter the

condensate. Their presence reduces the free energy of the system, and they become energetically

favourable, above a certain critical rotation frequency (Fetter & Svidzinsky, 2001).

2



Chapter 1. Introduction

Experiments with Vortices in Cold Gases

JILA researchers have observed vortices in BEC of Rubidium atoms due to the developments of

new methods of generation and control of macroscopic matter waves. As the system rotates, the

condensate surface modes become excited. These modes transfer energy and angular momentum

to vortex structures, which enter from the edge of the condensate.

So, in dilute BECs creation of quantised vortices can be achieved in many ways: by rotation

of the cloud applying an anisotropic perturbation in single-component condensate (Madison et al.,

2000; Haljan et al., 2001), by optical phase-imprinting (Leanhardt, 2002), by a dynamical phase-

imprinting method in a two-component BEC (Matthews, 1999) et cetera. Vortex structures

have been observed in different forms like single vortices (Matthews, 1999; Madison et al., 2000;

Anderson et al., 2000), vortex lattices (Madison et al., 2000; Abo-Shaeer et al., 2001; Hodby et al.,

2003) and vortex rings (Anderson et al., 2001). Regular vortex lattices have been investigated

from a few vortices (Madison et al., 2000) to several vortices (Abo-Shaeer et al., 2001). Also,

numerous vortices tend to form a vortex lattice.

The dynamics of a vortex line have been studied experimentally in precessional motion in trap

(Anderson et al., 2000), by bending (Rosenbusch et al., 2002), by Kelvin wave excitation (Bretin

et al., 2003), gyroscopic oscillations (Hodby et al., 2003) and splitting of multi-charged vortices

(Shin, 2004).

Quantisation of Circulation

Any rotation of the fluid must be in the form of vortex lines, which introduce quantum circulation.

The macroscopic wavefunction can be represented in terms of the fluid density and the macroscopic

phase: ψ(r, t) =
√
ρ(r, t)eiS(r,t) The phase around any closed contour, K1 is 2πq, where q =

0,±1,±2, ..

∫

K1

∇S · dl = 2πq. (1.1)

We know that the gradient of the phase describes the local velocity flow, vs = (~/m)∇S. The

superfluid velocity around the vortex line has a fixed circulation. So, the superfluid rotation

induced by a vortex line can be expressed in terms of circulation about a contour, K, which is an

arbitrary closed loop in the superfluid:

Γ =

∮

K

vs · dl = q

(
h

m

)
= κ, (1.2)

where, Γ is the circulation, h is Planck’s constant and m is the mass of the BEC atom. The

circulation of the fluid possesses multiple values of h/m, which shows that is quantised in units of

κ = q (h/m). For q > 1 the system is unstable.

Also from Eq. (1.2) it follows that the velocity around a single vortex is:

vs =
Γ

2πr
ψ̂, (1.3)
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Chapter 1. Introduction

where, vs is the superfluid velocity around a single vortex at a point r, and ψ̂ is the unit of angle.

There is an energy barrier between non-vortex and vortex states. The superfluid has 0 vorticity

(∇ S = 0) in every place excluding singular points in 2D or lines in 3D, which are the centre of

point vortices or vortex lines. These leads to the expression of the tangential velocity:

vt =
n~

mr⊥
, (1.4)

here, r⊥ is the distance from the vortex axis. The minimum density grows to the bulk value over

a length-scale of order the healing length (Baym & Pethick, 1996). As we move away from the

vortex the velocity slowly decreases. If we move towards the vortices then the superfluid density

tends to zero.

Let us finish this section with the definition of the healing length, ξ. This is the distance over

which the density changes from its bulk value to zero and is the vortex core parameter. So, ξ is

the distance over which the fluid density can react to perturbations.

1.2 Gross-Pitaevskii Equation

Due to the low temperature of the BECs, many of the physical properties of the system are

understood within the so called mean-field approximation. A characteristic feature of the mean-

field approach comes from the dilute nature of the bose gases.

We can write the Bose field operator as a sum of the condensate wavefunction and an operator

describing the non-condensed bosons:

Ψ̂(r, t) = Ψ(r, t) + Ψ̂ ′(r, t), (1.5)

where Ψ(r, t) ≡ 〈Ψ̂(r, t)〉 is the average value of Ψ̂(r, t) and Ψ̂ ′(r, t) represents fluctuations. r and

t are position and time respectively. The single-particle density matrix is written as:

ρ1(r, r
′) = 〈Ψ̂ †(r)Ψ̂ (r′)〉, (1.6)

where Ψ̂ †(r) is the field operator creating a particle at a point r and Ψ̂(r′) is the field operator

annihilating a particle at r′. In dilute Bose gases close to T = 0 temperatures, we can neglect

the non-condensed bosons Ψ̂ ′(r, t). In that case the mean-field order parameter precisely coincides

with the classical field Ψ(r, t) with well defined phase.

If we treat the system like a classical object, the wave function of the condensate behaves

like a complex order parameter with a modulus and a phase and contains all relevant infor-

mation about the system and satisfies a nonlinear Schroedinger equation (NLSE), called the

Gross-Pitaevskii equation (GPE), which was obtained independently by Gross (Gross, 1957) and

Pitaevskii (Ginzburg & Pitaevskii, 1958).

So, the zero temperature dynamics of weakly interacting particles of confined and dilute BECs

are described by a mean-field macroscopic wavefunction, Ψ . Note, that the condensate density is

4



Chapter 1. Introduction

ρ(r, t) = |Ψ(r, t)|2 and its phase is defined by S = tan−1(Im(Ψ)/Re(Ψ)). With the help of them

we can define the Madelung transformation:

Ψ(r, t) =
√
ρ(r, t)eiS(r,t) = |Ψ(r, t)|eiS(r,t), (1.7)

The inter-atomic collisions are described by the s-wave scattering length, a. Since the condensate

is dilute, the atomic interactions are binary collisions and are expressed by a contact potential

Vint(r, r
′) = gδ(r− r′), (1.8)

where, g is the scattering coefficient, r and r′ are positions. The coupling constant, g is given by

g =
4π~

2Na

m
, (1.9)

where, m is the atomic mass, N is the number of atoms and ~ is the reduced Planck constant

~ ≡ h/2π. If g < 0, we have effectively attractive interactions and for g > 0, we have effectively

repulsive interactions. Heisenberg’s relation i~∂Ψ̂/∂t =
[
Ψ̂ , Ĥ

]
for the field operator yields the

equation of motion of the macroscopic mean-field wave function:

i~
∂Ψ(r, t)

∂t
=

(
− ~

2

2m
∇2 + Vtr(r, t) + g|Ψ(r, t)|2

)
Ψ(r, t), (1.10)

which is the time-dependent equation, known as the Gross-Pitaevskii equation. This is a non-

linear time dependent Schroedinger equation (NLSE) because of the nonlinear term |Ψ(r, t)|2. We

normalise Ψ(r, t) by:

∫
|Ψ(r, t)|2d3r = N. (1.11)

For a thermodynamic system, the chemical potential is defined as the amount by which the energy

of the system would change by introducing an additional particle, assuming that, the entropy and

volume are held fixed. The chemical potential is an important parameter and is defined as the

partial derivative, µ = ∂E/∂N , where, E is the internal energy.

The GPE is a zero temperature model and describes numerous static and dynamic properties

at temperatures much less than the transition temperature. In a frame of reference rotating with

angular velocity Ω and for Ψ(r, t) = e−iµt/~ψ(r), the GPE has the form:

i~
∂ψ(r, t)

∂t
=

[
− ~

2

2m
∇2 + Vtr + g|ψ(r, t)|2 − µ−ΩLz

]
ψ(r, t), (1.12)

So, the term −ΩLz = i~Ω(x∂y − y∂x) is due to the rotation of the system about z axis with a

frequency Ω.

1.2.1 Harmonic Oscillator Units

It is suitable to use the GPE in dimensionless form. Associated with harmonically-confined BEC,

we use harmonic oscillator units (h.o.u) in the whole thesis, (Ruprecht et al., 1995). That means

that in our case the units of length, time and energy are:
√

~

2mω⊥

, ω−1
⊥ and ~ω⊥. Here, ω⊥ is the

5
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radial trapping frequency. So,

x̃HO =
x√

~

2mω⊥

, t̃HO = tω⊥ , ε̃HO =
ε

(~ω⊥)
(1.13)

where, ε̃HO, x̃HO and t̃HO stand for energy, length and time. The normalisation of the wavefunc-

tion is changed via:

∫ ∞

−∞

|ψ(r, t)|2d3r =

∫ ∞

−∞

|ψ̃HO(r̃HO , t̃HO)|2d3r̃HO = 1, (1.14)

where, ψ̃HO(r̃HO , t̃HO) = l1/2ψ(r, t) and l =
√

~/2mω⊥.

1.2.2 Trapped and Dissipative Condensate

Harmonic Trap

The achievement and studies of BECs require cooling of metastable atomic samples. In a trapped

gas, the BEC can be regarded as a coherent standing matter wave. The harmonic confinement

of the 2D BECs is described by the trapping potential, Vtr . Let us begin with the dimensional

geometry in 3D, which has a cylindrical symmetry about the z-axis:

Vtr(z, r) =
m

2
(ω2
zz

2 + ω2
rr

2). (1.15)

Under a transverse confinement, the dynamics of the system become quasi-2D and the vortex

line becomes rectilinear (Aftalion & Jerrard, 2002). In this system, the 2D GPE yields a good

description of the condensate. In our simulation, we use a 2D dimensionless form:

Vtr(r) =
1

2

(
ω2
rr

2
)
, (1.16)

where, r =
√

(1 + ǫx)x2 + (1 + ǫy)y2, with ǫx = 0.03, ǫy = 0.09 and ωr = 2π × 219 Hz, corre-

sponding to the ENS experiment, see (Madison et al., 2000). Here, ǫx and ǫy, describe small

deviations of the trap from the axi-symmetry. So, the condensate is elongated along the x-axis

due to this small anisotropy and the boundary surface of the condensate becomes unstable. This

phenomenon plays a key role in the formation of the vortices.

Dissipative Regime

To understand several experiments with vortices (Rosenbusch et al., 2002; Abo-Shaeer et al., 2002)

and solitons, it is helpful to include the dynamical coupling of the condensate to the thermal cloud,

the effect of dimensionality and the role of quantum fluctuations (Proukakis, 2007).

In superfluid helium the problem of quantised vortices and mutual friction force on the vortex

were well described at finite temperature (Barenghi et al., 2001), when on account of the presence

of a thermal cloud, dissipation arises. This non-condensed part acts as a source of dissipation,

having as a result, the damping of excitations like collective modes (Jin et al., 1997; Chevy et al.,

2002).
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The mean-field (Fedichev & Shlyapnikov, 1999) and collisional (Duine et al., 2004) damping

with uniform densities were well understood. Mean field coupling between the condensate and

thermal cloud leads to a lower frequency oscillation. In that case for example, a soliton loses

energy (Burger et al., 1999) to the thermal cloud (Jackson et al., 2007). At non-zero temperature,

the evolution and dissipation of vortex rings in a condensate was studied in the relation of the

classical field approximation (Berloff & Youd, 2007a).

The decay of a vortex at finite temperatures was investigated with the help of the GPE and a

Boltzmann kinetic equation for the thermal cloud (Zaremba et al., 1999). In a trapped Bose gas,

the two-fluid hydrodynamics of the condensate and non-condensate was described by including

the dissipation, associated with viscosity and thermal conduction, see (Zaremba et al., 1999).

Inclusion of a damping term γ into the GPE (Choi et al., 1998), models dissipative losses that

occur in real environments. Collective damped oscillations was noticed due to some dissipative

mechanism (Ensher et al., 1996). We can state that the dynamical dissipation factor γ, plays a

significant role in condensates, which in our equation:

(i− γ) ~
∂ψ(r, t)

∂t
=

[
− ~

2

2m
∇2 + Vtr(r, t) + g|ψ(r, t)|2 − µ−ΩLz

]
ψ(r, t), (1.17)

is the γ-term.

Pitaevskii developed a method of phenomenological damping (Pitaevskii, 1958, 1959) for

superfluidity near the λ point. The added phenomenological dissipation parameter, γ, models

the interaction of the condensate with the thermal cloud (Tsubota et al., 2002; Abo-Shaeer et al.,

2002). We can compare its microscopic justification with the help of (Penckwitt et al., 2002;

Gardiner et al., 2002) and (Choi et al., 1998; Tsubota et al., 2002).

In accordance with Penckwitt et al (Penckwitt et al., 2002) and Gardiner et al (Gardiner et al.,

2002) in a simple unified theory of vortex nucleation and vortex lattice formation the condensate

grows due to a rotating thermal cloud. This was derived from a growth equation by using a simple

form for the transition probability:

W+(N) ≈ g
4m(akT )2

π~3
, (1.18)

which originally comes from (Gardiner et al., 1997) having a form as:

W+(N) =
4m(akT )2

π~3e2µ/kT

[µN
kT

K1

(µN
kT

)]
, (1.19)

and which describes the net rate of atom transfer, where k is the Boltzmanns constant, T is the

temperature of the noncondensate, a is the s-wave scattering length, N is the number of atoms

each of mass m, K1 is a modified Bessel function and the correction factor, g ≈ 3 (is different from

the parameter g used throughoutthis thesis, which describes interatomic collisions). The chemical

potential of the Thomas-Fermi approximation is described by:

µN =
(
15Ngωxωyωzm

3/2/16π
√

2
)2/5

, (1.20)
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So, their final equation, which is the vortex growth equation becomes:

(i−γ)~∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t)+Vtr(r, t)ψ(r, t)+g|ψ(r, t)|2ψ(r, t)−ΩLzψ(r, t)+ iγµNCψ(r, t),

(1.21)

where, ψ(r, t) is the field operator, the nonlinear interaction term is g = 4πa~2/m, Vtr is the

harmonic trap potential, Ω is the angular velocity, µNC is the noncondensate chemical potential, Lz

is the angular momentum operator. A microscopic expression for the phenomenological dissipation

parameter γ is given in terms of temperature and scattering length:

γ ≡ 4mga2kT

π~2
≡ ~W+

kT
≈ 0.01, (1.22)

The physics described here is the growth of a condensate in a frame rotating with angular velocity

Ω about the z-axis from a vapour cloud, which is itself stationary in the rotating frame.

This is analogous with vortex nucleation from a rotating vapour cloud performed by the JILA

group (Haljan et al., 2001). For a ≈ 10−8m and g = 3, they find, γ ≈ 0.01.

Our dimensionless equation:

(i− γ)
∂ψ(r, t)

∂t
=

(
−1

2
∇2 + Vtr + C|ψ|2 − µ−ΩLz

)
ψ(r, t), (1.23)

is the same as presented by (Choi et al., 1998) and (Tsubota et al., 2002), where a phenomenological

model of the process of vortex lattice formation was suggested. To deduce this equation one begins

with the standard GPE, which describes the motion of the mean field, ψ(r, t):

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + Vtr(r, t)ψ(r, t) + g|ψ(r, t)|2ψ(r, t), (1.24)

where, g = 4π~
2a/m. The GPE contains no term which describes damping. A relaxation process

can be described by:

i~
∂ψ(r, t)

∂t
= L̂ψ(r, t), (1.25)

The operator L̂ cannot be Hermitian. The anti-Hermitian part of L̂ is associated with the processes

by which equilibrium is approached and have the form:

iγ

(
~

2

2m
∇2ψ(r, t) + Vtr(r, t)ψ(r, t) + g|ψ(r, t)|2ψ(r, t) − µψ(r, t)

)
, (1.26)

where γ is a dimensionless factor and is inversely proportional to the relaxation time. The final

equation including relaxation to equilibrium is:

i~
∂ψ(r, t)

∂t
= (1 + iγ)

{
− ~

2

2m
∇2 + Vtr(r, t) + g|ψ(r, t)|2 − µ

}
ψ(r, t), (1.27)

This equation is the same as our equation, see Eq. 1.17. As a consequence, γ leads to a dissipation

of energy from the system in such a way that it transforms towards the ground state, preserving

particle number. Unlike Eq. 1.21-Eq. 1.22, here γ < 0 for damping to take place due to the
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different way the equation is written. Now, consider the mean field, ψ(r, t) to be expressed by two

components:

ψ = e−iµt (ψg + δ) . (1.28)

Evolution in Eq. 1.27 results in the damping of δ toward zero.

Physically, γ represents the rate at which the excited components turn into the condensate

and is approximated by the transition probability W+(N) estimated in (Gardiner et al., 1997).

Using the quantum kinetic theory, W+(N) gives the rate at which the thermal particles above

the condensate band enter the condensate due to collisions. The condensate does not act back on

the thermal component to change its temperature. This assumption is valid in quasiequilibrium

situations.

According to MIT experiment (Mewes et al., 1996) and using their reported values together

with the expression of Eq. 1.19 for γ, it was found:

| γ |≈ |W
+(N)

ω
| ≈ 0.03, (1.29)

for T ≈ Tc/10 and a ≈ 3.45nm. Here, ω is the trap frequency and ω = 2π × 19 Hz. The

corresponding damping time is ≈ 200 ms and is of the same order of magnitude as the experimental

damping time of 250 ms (of the MIT experiment).

1.2.3 Hydrodynamic Equation

For a homogeneous system with Ω = 0, is valid:

(i− γ)~
∂ψ(r, t)

∂t
=

(
− ~

2

2m
∇2 + g|ψ(r, t)|2 − µ

)
ψ(r, t). (1.30)

Now, we introduce the fundamental connection between the GPE and the equations of classical

fluid mechanics. For this purpose, we recast the GPE by the Madelung transformation, which is

defined by Eq. 1.7. The phase (S(r, t)) can be related to the velocity by:

v(r, t) =
~

m
∇S(r, t). (1.31)

Substituting (1.7) and (1.31) into the (1.30), we obtain the real part and the imaginary part of

the GPE. So, the real part is:

−~

(
R
∂S

∂t
+ γ

∂R

∂t

)
= − ~

2

2m

(
∇2R−R(∇S)2

)
+ gR3 − µR (1.32)

and then the imaginary part becomes:

~

(
∂R

∂t
− γR

∂S

∂t

)
= − ~

2

2m

(
2∇S · ∇R+R∇2S

)
. (1.33)

Also, we put the GPE in fluid dynamics form with the help of the real and imaginary parts of the

GPE. After some arrangements, (see Appendix B for more details), we obtain two equations:
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∂ρ

∂t
(1 + γ2) + ∇ · (ρv) +

2γρ

~

(
mv2

2
+
gρ

m
− µ

)
− γ~

√
ρ

m

∂2
√

ρ
m

∂xj∂xj
= 0. (1.34)

The first one is similar to the Classical Equation of Continuity orEquation of Mass Conservation

plus some extra terms due to the dissipation γ. For γ = 0, this equation becomes the Classical

Equation of Continuity. In our notation, xi is the ith Cartesian component (i = 1,2,3) of the

position and

p =
gρ2

2m2
, σij =

~
2

2m2

[
ρ1/2 ∂

2ρ1/2

∂xi∂xj
− ∂ρ1/2

∂xi

∂ρ1/2

∂xj

]
, (1.35)

where, p is a pressure and σij are the quantum stresses. Furthermore,

σij =
~

2

2m
ρ

(
∂2 ln ρ1/2

∂xi∂xj

)
=

~
2

4m2
ρ
∂2 ln ρ

∂xi∂xj
. (1.36)

Finally, we obtain our second equation:

ρ

(
∂vi
∂t

+ vj
∂vj
∂xi

)
= − ∂p

∂xi
+
∂σij
∂xj

− γ~

2m

(
−1

ρ

∂ρ

∂xi

∂ρ

∂t
+

∂2ρ

∂xi∂t

)
, (1.37)

which is similar to the Classical Euler Equation plus some extra terms due to the dissipation

γ. This is the unintegrated form of the Momentum Equation. For γ = 0, this equation becomes

the classical Conservation of Momentum. We interpret every term, which involves γ as being

to do with the exchange of momentum and atoms between the normal fluid and the superfluid.

For example, for the exchange of momentum, the terms involving gamma and velocity and for the

exchange of atoms the terms including gamma and density.

1.2.4 Thomas-Fermi Solution

The Thomas-Fermi (TF) solution represents an approximation of the density profile. In the case

of comparatively strong interactions, we can neglect the kinetic energy term (∇2 terms) in the

GPE. In that situation, we have a dominant interaction and potential. Assuming a steady state

(∂/∂t = 0), the solution of Eq. 1.17 and Eq. 1.30 is Eq. 1.38. The dimensionless form of the

density for the Thomas-Fermi approximation (TFA) (Baym & Pethick, 1996) becomes:

ρ(r) =
µ− Vtr(r, t)

C
for µ ≥ V (r) (1.38)

and

ρ(r) = 0, elsewhere, (1.39)

where C = 4πNa/L is the dimensionless form of the coupling constant g, N is the number of

atoms, a is the scattering length and L is the extension of the condensate in the z - direction. The

Thomas-Fermi radius, is limited as 0 6 rTF 6
√

2µ.
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1.3 Energies

Introduction of the γ parameter changes the nature of GPE, so the total energy now is not

conserved. The vortex is thermodynamically unstable (Rokhsar, 1997; Svidzinsky & Fetter, 2000a;

Jackson et al., 2000). At the centre of the trap, a vortex has maximum energy, because of the

locally homogeneous density. In order to perform our analysis, we decompose the total energy,

Etot, into kinetic, internal, quantum and trap contributions,

Etot = Ekin + Eint + Eq + Etrap, (1.40)

where

Ekin(t) =

∫
~

2

2m

(√
ρ(x, t)v(x, t)

)2

d2r, (1.41)

Eint(t) =

∫
g (ρ(x, t))2 d2r, (1.42)

Eq(t) =

∫
~

2

2m

(
∇

√
ρ(x, t)

)2

d2r, (1.43)

Etrap(t) =

∫
ρ(x, t)Vtrd

2r. (1.44)

Notice that, the kinetic energy (Ekin) is related with the velocity field. The internal energy (Eint)

represents the internal energy of the fluid. The quantum energy (Eq) comes from the gradient of

the condensate and the trap energy (Etrap) has its origin from the applied trap potential.

Furthermore, we decompose the kinetic energy, Ekin, into a part due to the sound field, Esound,

and a part due to vortices, Evortex (Ogawa et al., 2001; Parker & Adams, 2005):

Ekin = Esound + Evortex. (1.45)

The compressible part of the kinetic energy is concerned with the acoustic emission, (Ogawa

et al., 2001). To approximate Evortex, firstly, we take the real-time vortex distribution. At a

given time t, the vortex energy, Evortex, is obtained by propagating the GPE in imaginary time,

which yields the lowest energy state for a given vortex configuration (with the same potential

and number of particles), but without sound, (Parker & Adams, 2005). At this point the sound

energy is recovered from Esound = Ekin − Evortex. The excited sound has a propagation speed

cs =
√

0.5C|ψ|2 = 3.8124 at the peak density of an unperturbed condensate, where C is the

dimensionless form of the coupling constant g.

The imaginary time propagation minimises the chemical potential, µ, because in that case we

obtain the lowest energy state of the system. It can be initially estimated as µ = 2~
√
a/m and in

dimensionless form as:

µ =
1

2

√
4C

π
, (1.46)
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from the Thomas-Fermi solution. By the single-step integration is found:

µ = −
ln 〈|ψ(t)|2〉

〈|ψ(t+∆t)|2〉

2∆t
, (1.47)

after the initial Thomas-Fermi solution has relaxed to a time - independent solution in the harmonic

trap, where 〈...〉 denotes spatial average. The dimensionless form of the energy contributors are:

Ekin(t) =

∫
1

2

(√
ρ(x, t)v(x, t)

)2

d2r, (1.48)

Eint(t) =

∫
C (ρ(x, t))2 d2r, (1.49)

Eq = (t)

∫
1

2

(
∇

√
ρ(x, t)

)2

d2r, (1.50)

and

Etrap(t) =

∫
ρ(x, t)Vtrd

2r. (1.51)

1.4 Numerical Simulations

To explore the dynamical instabilities and the relaxation to the equilibrium of the system, we

perform numerical simulations using the time-dependent Gross-Pitaevskii equation. We describe

in Appendix E a technique for creating a single vortex and vortex - anti vortex pairs. We solve

the GPE numerically due to the non-linear term, C|ψ(r)|2. In our case, this is performed using

the Crank −Nicholson numerical method.

In imaginary time, excitations are damped exponentially. Also, µ and ψ converge to a station-

ary solution. In a frame rotating about the z-axis with angular velocity Ω, the dimensionless 2D

GPE becomes:

(i− γ)
∂ψ

∂t
=

(
−1

2
∇2 + Vtr + C|ψ|2 − µ−ΩLz

)
ψ, (1.52)

where, the angular momentum operator is given by Lz = i(x∂y − y∂x). The trapping potential is

expressed by Eq. 1.16. The dissipation is represented by γ. Unless stated otherwise, we set C =

2000 in the whole thesis. So, C corresponds to a large number of particles and µ is almost constant

for the vortex initial positions close to the centre of the condensate. Positive C corresponds to

repulsive interactions and for large C, the interaction term in the chemical potential dominates.

To model the thermal cloud in our simulation, we use generally γ = 0.03 or different values.

The calculation is performed in a square box of size D, divided into a grid of 300 × 300 points.

We choose D so that it is larger than the trapped condensate, and impose boundary conditions ψ

= 0 at x = ±D/2 and y = ±D/2. Typically, D = 13, see our discussion of a typical condensate

without any vortices in Chapter 4. The error in locating the vortex is of the order of ± 0.01.
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Figure 1.1: (a):Trajectory of a single vortex initially located at: (x0, y0) = (1, 0). (b): Trajectory of the
left vortex of vortex-antivortex pair initially located at (x0, y0) = (±1, 0).

During an orbit, the relative size of the oscillations are respectively: ∆Ekin/Ekin ≃ 0.125,

∆Eq/Eq ≃ 0.097, ∆Eint/Eint ≃ 0.029 and ∆Etrap/Etrap ≃ 0.031, where ∆Ekin, ∆Eq, ∆Eint and

∆Etrap are the amplitudes of these oscillations, see (Madarassy & Barenghi, 2008a). The reason of

these oscillations is that, as the vortex precesses, it generates sound waves, which, unable to escape

the trap, are reabsorbed by the vortex and explains the orbital wiggles apparent in Figure 1.1(a)

and in Figure 1.1(b) (the other reason is that the centre of mass of a condensate containing a

relative large vortex hole oscillates).

Let us denote by U , the quantity:

U = C|ψ|2 + Vtr − µ (1.53)

and by f , the fraction

f =
γ + i

γ2 + 1
(1.54)
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Chapter 1. Introduction

Then, we solve the simple equation:

∂ψ

∂t
= f

(
−1

2
∇2 + U −ΩLz

)
ψ (1.55)

To avoid the formation of vortices due to the rotation of the trapping potential, in the case of

a single vortex, vortex - anti vortex pairs and selection of randomly placed vortex - anti vortex

pairs, in this thesis, Ω = 0. In Chapter 5 its value is different from zero.

In order to imprint a vortex at location (x0, y0), we take for initial condition ψ, the Thomas-

Fermi approximation, multiplied times a suitable function which is proportional to (x − x0) +

i(y − y0) and vanishes at (x0, y0). So, in these cases due to our method of creation of vortices

the vortex/vortices have a determined position/positions (see for more details the Appendix D).

Their presence and origin do not depend on the trap rotating frequency, Ω.

In this thesis the simulation of vortex motion is performed in two-dimensions (2D).

14



Chapter 2

Motion of a Single Vortex

2.1 Introduction

In the trapped, dilute BEC, an off-centre vortex follows a trajectory of constant potential: in

other words, it displays precession about the trap centre (Rokhsar, 1997; Svidzinsky & Fetter,

2000a). A straight-line vortex moving through the thermal cloud causes dissipation via scattering

of thermal excitations of the vortex core. The result is a movement towards a local minimum

of the energy; a motion from the trap centre to the edge of the condensate. The vortex spirals

outward (Rokhsar, 1997). In the centre, a vortex line is stationary. Because of the thermal and

quantum fluctuations, a vortex positioned off-centre is made to spiral outwards and has a finite

lifetime (Duine et al., 2004).

We made our simulations with special emphasis on comparing the case of no dissipation with

the case of dissipation. In this chapter, we are concerned with the dynamics of a single vortex.

At finite temperatures thr vortex loses energy and moves radially towards the condensate edge.

The radial position of the vortex as a function of time is an exponential function. We give more

description about this behaviour in the next chapter. Our off-centre vortex accelerates from its

initial condition, gaining an almost constant angular velocity around the trap centre. Single

vortices with one quantum of circulation have been produced (Matthews, 1999; Madison et al.,

2000) and observed (Matthews, 1999; Madison et al., 2000; Anderson et al., 2000; Hodby et al.,

2003).

2.2 Single Vortex Motion with Different γ’s

Without dissipation the vortex has a circle-like trajectory with an almost constant radius and

with more fluctuations, see the centre trajectory in Figure 2.2(a) and Figure 2.3(a). The difference

between these two figures is the vortex initial position.

In this chapter, we present the dissipative dynamics of single vortices with (x0, y0) = (0.9, 0)

in a BEC. First, we put for γ the following values: 0; 0.01; 0.07 and 0.1 and later 0; 0.001; 0.003;

0.01 and 0.03. First, we prepare a condensate without vortices. From Figure( 2.1(a) - 2.1(b)),
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Figure 2.1: (a): The 3D density plot of the condensate without vortices (γ = 0). (b): Equilibrium
condensate for C = 2000. The density contours correspond respectively to 17%, 33%, 50%, 60% and 83%
of the maximum density at the centre..

we can see that the maximum level of density is equal to 0.012. Later, we put vortices in the

condensate, (see Appendix D) at different initial positions on the line y0 = 0.

We consider a vortex motion according to a phenomenological dissipative model of a BEC.

Since, the vortex is a stationary solution, it will remain at the centre. At that place, the vortex

arrangement is unstable to infinitesimal displacements (Jackson et al., 2000). Experimentally, one

has observed the precession of the vortex around the trap centre (Madison et al., 2000). This tell

us that an off-centre vortex follows a path of constant potential. Dissipation transfers energy from

a moving vortex to the sound (thermal cloud). This decay causes the vortex to move towards

a local minimum (lower densities and larger radii). As a result of the cyclical motion and the

inhomogeneity of the condensate the compressibility changes, so the moving vortex pair produce

acoustic emission.

An off-axis vortex will follow a path of constant energy being equivalent to precession around

the trap centre. With dissipation (γ 6= 0), the vortex will spiral out of the condensate (Fedichev

& Shlyapnikov, 1999) and this is due to the dissipative drift towards lower energies.

With dissipation the total energy decreases, (see Figure 2.4(a)). There are similarities between

the kinetic energy and the total energy (see Figure 2.5(b) and Figure 2.5(a)). In Figure 2.4(j),

Figure 2.5(b) , Figure 2.6(a) and Figure 2.6(b) the final values of Lz and kinetic energy are zero

because the vortex left the condensate. Figure 2.6(b) shows the variation of the kinetic energy

as a function of time for a single vortex wih different initial positions for the same dissipation,

γ = 0.003

Without dissipation, the average values of these energies are constant. On the other hand,

with dissipation the small fluctuations become damped as we can see from Figure 2.4. For small

dissipations the energy functions follow a modulation from the vortex cyclical motions. With

larger values of γ these fluctuations disappear. The decrease/increase of different energies and Lz

with time for different γ’s is presented in Figure 2.4, where, we compare the case of no dissipation

with the case of different dissipations.
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Figure 2.2: (a): Trajectories, (b): x−components vs. time and (c): y− components vs. time corresponding
to Figure 2.2 (a) of a single vortex initially located at (x0, y0) = (0.9, 0) for γ = 0 (purple/dotted line);
γ = 0.01 (red/solid line); γ = 0.07 (green/dashed line) and γ = 0.1 (blue/small dashed line).
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Figure 2.3: (a): Trajectories, (b): x−components vs. time and (c): y− components vs. time corresponding
to Figure 2.3 (a) of a single vortex initially located at (x0, y0) = (1.3, 0) and for γ = 0 (purple/dotted
line); γ = 0.01 (red/solid line); γ = 0.07 (green/dashed line) and γ = 0.1 (blue/small dashed line)
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Figure 2.4: For a single vortex with (x0, y0) = (0.9, 0): (a,b): total energy and kinetic energy for γ = 0
(green/upper horizontal line); γ = 0.01 (red line); γ = 0.07 (blue line) and γ = 0.1 (purple/shortest line).
For (left): γ = 0 and for (right): γ = 0.01 (red/solid line); γ = 0.07 (green/dashed line) and γ = 0.1
(blue/small dashed line) for (c,d): internal energy, (e,f): quantum energy, (g,h): trap energy and (i,j):
z−component of the angular momentum.
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Figure 2.5: (a): Total energy and (b): kinetic energy corresponding to Figure 2.4 for γ = 0.003 (red/upper
line) and for γ = 0.01 (green/lower line).
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Figure 2.6: Kinetic energy for a single vortex with (a): (x0, y0) = (0.9, 0) and for γ = 0.01 (green/lower
line) and =0.003 (red/upper line) and with (b): (x0, y0) = (0.7, 0) (blue/lower line); = (0.9, 0) (red/middle
line) and = (1.1, 0) (green/upper line) for the same γ = 0.003.

Our single vortex in this section has (x0, y0) = (0.9, 0) and (x0, y0) = (2, 0). Let us continue

this section with some plots of different energies and also of different trajectories with dissipations.

Larger dissipation means shorter trajectory and shorter time, that the vortex needs to leave the

condensate. As we increase γ, the paths become shorter and shorter, see Figure( 2.7(a) - 2.7(d)),

Figure( 2.9(a) - 2.9(f)) and Figure( 2.8(a) - 2.8(b)).

We sum up our conclusions with the help of Figure 2.10(a) and Figure 2.10(b), where, we see

that with larger γ, the radius of trajectory becomes larger more quickly than with small γ, when

r is almost unchanged.
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Figure 2.7: Trajectories for a single vortex with (x0, y0) = (−0.9, 0) for (a,b): (left): γ = 0.03 and for
(right): γ = 0.01 for (c,d): (left): γ = 0.003 and for (right): γ = 0.001.
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Figure 2.8: Trajectories for a single vortex with x0 = -2.0 (a): for γ = 0 (red line/solid line) and γ =
0.003 (green line/dashed line) and for (b): γ = 0.03 (green line/dashed line. We can see that the vortex
have left the condensate.) and γ = 0.01 (red line/solid line).
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Figure 2.9: (left): x−component and (right): y−component of trajectories for a single vortex with (a,b):
(x0, y0) = (−0.9, 0) and for γ = 0.03 (red line/shortest time scale); γ = 0.01 (green line) and γ = 0.001
(blue line/longest time scale) and for (c,d): γ = 0.003 and with (x0, y0) = −0.9, 0) (red line/longest time
scale) and = (−2, 0) (green line/shortest time scale) and with (e,f): (x0, y0) = (−2, 0) and γ = 0.03 (green
line/shortest time scale); γ = 0.01 (purple line); γ = 0.003 (blue line); γ = 0.001 (aquamarine line/longest
time scale); γ = 0 (red line/same amplitude).
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Figure 2.10: Radius of trajectory for a single vortex with (a): (x0, y0) = (−0.9, 0) and for γ = 0.03
(red/last vertical wavey line); γ = 0.01 (purple line); γ = 0.003 (blue line) and γ = 0.001 (green/first
horisonlal wavey line) and with (b): (x0, y0) = (−2, 0) and for γ = 0.03 (green/last vertical wavey line);
γ = 0.01 (purple line); γ = 0.003 (blue line); γ = 0.001 (aquamarine line) and γ = 0 (red/first horisontal
wavey line).
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Chapter 3

Connection Between γ and the

Friction Coefficients, α and α′

3.1 Introduction

In this chapter by fitting the finite-temperature trajectories, we found connections between the

phenomenological damping parameter γ and friction coefficients α and α′. We present these

friction coefficients as a function of the vortex initial position together with the vortex precession

frequency and period as a function of dissipation and the vortex initial position.

3.2 Schwarz Equation

A mathematical model for the motion of a quantised vortex line was presented by Schwarz

(Schwarz, 1982, 1988). To obtain the Schwarz equation, we have to define the Magnus force

together with a drag force. They play a key part in describing the motion of a line vortex.

Magnus Force and Drag Force

In Figure 3.1 a quantised vortex filament is represented as s = s(ξ, t), where ξ is the arc length

and t is the time. The vectors s
′

, s
′′

and s
′ ×s

′′

, are perpendicular to each other and have tangent,

normal and binormal directions. In this notation, prime denotes derivative with respect to ξ.

Using the Magnus force, which is a lift force, we derive the velocity, vL of the curve of vortex

line at the point s. When the vortex line moves in the flow on one side of the filament, the

circulation creates an increased velocity, which causes the pressure to decrease. On the other

side of the filament, the velocity decreases and the pressure increases, which corresponds to the

opposite situation. As a consequence of the Magnus force, the direction of motion is reversed.

This force per unit length on a vortex filament is

FM = ρsΓ s
′ × (vL − vs) , (3.1)
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Figure 3.2: If a body moves in a fluid (or vice versa) circulation around the body forms. On one side of
the body the total velocity is higher (hence the pressure is lower/ Bernoulli’s Theorem) than the other
side. The pressure difference causes the force transverse to the motion. So, for a body with circulation,
the direction of motion is changed by the Magnus force.
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where, the circulation Γ is defined by Eq. (1.2). If a vortex line moves through a normal fluid

the absorption and scattering of phonons and rotons appears as a drag force

FD = −αρsΓ s
′ ×

[
s
′ × (vn − vs)

]
− α′ρsΓ s

′ × (vn − vs) , (3.2)

where α and α′ are known (Hall & Vinen, 1956; Barenghi et al., 1983) as temperature dependent

mutual friction coefficients.

Equation of Motion

To develop the equation of motion, we use Newton’s second law: F = ma. The vortex mass is

zero, due to its very small core size. So,

F = FM + FD = ρsΓ s
′ × (vL − vs) − αρsΓ s

′ ×
[
s
′ × (vn − vs)

]
+ α′ρsΓ s

′ × (vn − vs) , (3.3)

F = ρsΓ s
′ ×

[
(vL − vs) − αs

′ × (vn − vs) + α′(vn − vs)
]

= 0. (3.4)

The term in the square brackets, has the direction of s
′

or is zero, then

vL =
ds

dt
= vs + αs

′ × (vn − vs) − α′s
′ ×

[
s
′ × (vn − vs)

]
. (3.5)

3.3 Motion of Single Vortices with no Dissipation and with

Different Dissipations

Our aim is to find a connection between the dissipation, γ and the friction coefficients α and α′.

From the motion of single vortices (in our case, with initial positions: (x0, y0) = (0.9, 0) and (2, 0),

where, x0 is the distance from the centre) and their interactions with the normal fluid component,

dissipation develops. The condensate is a quantum fluid and can absorb energy in quantised units

corresponding to the excitations of the system.

Dissipation and viscosity/friction can arise just as a consequence of the creation of phonons.

Let us, introduce our studied subject with the corresponding theory. The velocity of a vortex line

at position S is vL = dS/dt. In the vortex filament model of Schwarz (Schwarz, 1982, 1988) the

motion of a quantised vortex in superfluid helium is determined by the balance of Magnus and

drag forces. The resulting equation for the vortex position, s = s(t), is the Schwarz’s equation:

vL = vs + vsi + αs
′ × (vN − vs − vsi) − α′s

′ × [s
′ × (vN − vs − vsi)]. (3.6)

where, vN is the externally applied normal fluid velocity, vs is the externally applied superfluid

velocity, vsi is the self-induced velocity of the vortex line due to its own curvature and s
′

is the

unit vector along the vortex line at s.

Let, vN = vs = 0, and consider a point vortex on the plane (x,y). Let vsi = ωrθ̂, where, ω is

measured in a trap at temperature, T = 0 for γ = 0. So we have:
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Figure 3.3: A single vortex rotation and the self-induced velocity of the line due to its own curvature.

vL = vsi + αẑ × (−vsi) − α′ẑ × [ẑ× (−vsi)] . (3.7)

To obtain the vortex line velocity, we use cylindrical coordinates, s = (r, θ, z = 0) and due to

the fact that the vortex spins around with angular velocity, ω, our final formula becomes:

vL = ωrθ̂ + αωrẑ × θ̂ − α′ωrẑ × [ẑ × θ̂]. (3.8)

Rearranging, we find:

vL = ωrθ̂ + αωrr̂ − α′ωrθ̂. (3.9)

or

vL = ωr(1 − α′)θ̂ + αωrr̂. (3.10)

Since

vL = (ṙ, rθ̇, 0) =

(
dr

dt
, r
dθ

dt
, 0

)
, (3.11)

we obtain:

dr

dt
= αωr, r

dθ

dt
= ωr(1 − α′) =>

dθ

dt
= ω(1 − α′). (3.12)

So the exact solutions are:

r(t) = r(0)e−αωt, θ(t) = θ(0) + ω(1 − α′)t. (3.13)
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Figure 3.4: Friction coefficient α (circles) and α′ (triangles) as a function of initial position (x0,y0 = 0)
for γ = 0.003.

In two - dimensions, s = (x,y) and s
′

= ẑ, where ẑ is the unit vector along the z axes. In our

case, vself is the precessing velocity of the vortex in trap in the absence of thermal cloud.

So, assuming vs = 0 and vn = 0 (stationary thermal cloud) and using cylindrical coordinates

(r, θ), the solution to the Schwarz’s equation becomes:

r(t) = r(0)e−αωt, θ(t) = θ(0) + ω(1 − α′)t. (3.14)

By fitting the calculated vortex position (at given value of γ) to Eqs. 3.14, we deduce the friction

coefficients α and α′. The results slightly depends on the initial position of the vortex because the

condensate is not homogeneous near the edge.

Figure 3.4, see also the values of α in Appendix C (Table C.2 and Table C.3), show that the

deduced values of α is approximately constant for x0 < 2 (centre part of the condensate) and

decreases more rapidly for x0 > 2 (outer part of the condensate).

For initial condition sufficiently close to the centre of the condensate, we find that α is propor-

tional to the dissipation parameter γ, as shown in Figure 3.12(a).

The transverse friction coefficient, α′, is much smaller than α, thus more difficult to determine.

Figure 3.12(b) shows that α′ is approximately proportional to γ only for small values of γ.
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3.4 Motion of Single Vortices Having Different Initial Po-

sitions for γ = 0.003

With the help of a numerical Condor software development (Condor method), we run simultane-

ously many programs; here 20. Actually, we use this method, when we calculate the sound and

vortex energy for the case of no dissipation and with dissipation as well. However, at that time,

there are 4340 programs running simultaneously. The utility of this method can be explained with

the fact that we can study how α and α′ vary with different x0 for a chosen γ.

We can do different combinations as well with these data to understand more factors describing

α, α′, γ, x0, τ and ω. These are discussed in more detail in Appendix C. (See for example Table C.3,

Table C.4, Table C.5, Table C.6 and Table C.7).

So, now let us begin with a study about the time variation of α and α′ for different x0. The

system is unstable in the beginning with large fluctuations, so it needs some relaxation time, up

to about t = 50. (In Chapter 1., we pointed out that, the reason of these oscillations is that, when

the vortex precesses, it generates sound waves, which, unable to escape the trap, are reabsorbed

by the vortex). After that, the α and α′ functions follow the modulation of the vortex cyclical

motion, (see Figure 3.5(a)-Figure 3.5(f), and for the case of α′, see Figure 3.6(a)-Figure 3.6(c)).

As we increase x0, the fluctuation becomes more pronounced (compare Figure 3.5(b) with

Figure 3.5(c)). Increasing x0 further, we observe more significant modulations from the vortex

periodical movements.

For the case of α′, we find that, close to the centre of the condensate where the system is more

dense, α′ is constant with small fluctuations ; see Figure 3.6(a). For larger x0, the α′ function

has a trend to increase with time, until the vortex leaves the condensate, (see Figure 3.6(b) and

Figure 3.6(c)).
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Figure 3.5: Friction coefficient α as a function of time for a single vortex for γ = 0.003 and for x0 = 0.9
(a); 1.5 (b); 1.8 (c); 2.4 (d); 3.9 (e) and 4.5 (f).
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Figure 3.6: Friction coefficient α′ as a function of time for a single vortex for γ = 0.003 and for x0 = 0.6
(a); 0.9 (b) and 1.5 (c).
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Figure 3.7: (a): Precession frequency, ω0 as a function of initial positions, (x0, 0) for a vortex, which orbits
the trap in absence of dissipation for C = 2000. (b,c): (left): period and (right): frequency of the first
circle of motion as a function of initial positions, (x0, 0) for a single vortex for γ = 0.003.

First of all, to see the effect of dissipation on the vortex precession frequency, our strategy

is to compare a plot of ω0 vs x0 without dissipation (see Figure 3.7(a)) with a plot of ω vs x0

with dissipation (see Figure 3.7(c)). The frequency is calculated from ω = 2π/τ , which means an

inverse relation between the period and frequency (see Figure 3.7(b) and Figure 3.7(c) together

with Table C.6 and Table C.7).

The variation of ω0 with γ is investigated in Figure 3.8. The precession frequency can be

compared to the expression obtained by Svidzinsky and Fetter, see (Svidzinsky & Fetter, 2000b),

using a time-dependent variational analysis.

|ω| =
3~ω2

x

4µ
ln

(
R⊥

ξ

)
, (3.15)

where ωx is the x-component of the trap frequency, µ is the chemical potential, R2
⊥ = 2µ/mω2

x

and here ξ = ~/(2mµ)1/2, is the coherence length in the center of the condensate. This expression

is valid for small initial position of the vortex.

In our calculations, we have used the first significant circle-like trajectory to calculate the
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Figure 3.8: Vortex precession frequency, ω0 for a single vortex with (x0, y0) = (0.9, 0) (circle) and (1.45, 0)
(triangle) as a function of γ.

γ α′ (for x0 = 0.9) α′ (for x0 = 1.45)
0 0.018604 0.024306

0.004 0.018527 0.024092
0.008 0.018610 0.024320
0.012 0.018602 0.024314
0.016 0.018617 0.024364
0.02 0.018001 0.024323
0.024 0.018613 0.024313
0.028 0.018905 0.024683
0.032 0.018982 0.024624

Table 3.1: Friction coefficient α′ as a function of dissipation,γ corresponding to Figure 3.8.
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Figure 3.9: Friction coefficients α′ for a single vortex vs initial positions x0 = 0.6 (0.1098); 2.4 (0.132); 3.6
(0.2038); 4.2 (0.226); 4.8 (0.25); 5.4 (0.2855). (We have the frequency of motion in the bracket), (y0 = 0)
and for γ = 0.003. Here, we compare the values of α′ for different initial positions but for almost the same
times, (which vary between 313.61 and 401.63).

period and frequency. Our conclusion is that, in the beginning with small dissipation, the vortex

moves similarly to the case of without dissipation.

Our observation is that, α decreases linearly with x0 (see Figure 3.4, Table C.2 and Table C.3).

Here again, we would like to point out that, the density is not constant in the whole condensate.

Keeping the period of motion of the single vortex nearly constant, α′ varies similarly with x0

as ω varies with x0 (compare Figure 3.7(c) with Figure 3.9). This variation is an exponential

behaviour. So, close to the centre of the condensate, α′ is small and close to the border, the

values of α′ increase as an exponential function (see Figure 3.9), where in paranthesis we note the

corresponding frequency of vortex motion for each initial position).

3.5 Motion of Single Vortices with Different γ’s

Now, our vortices have as initial positions: (x0, y0) = (0.9, 0) and (1.45, 0). As one can see, we

continue our study of α and α′ vs t with larger dissipation, γ = 0.016 and γ = 0.032. Comparing

Figure 3.10(c) with Figure 3.10(d), we note that for larger dissipation, the modulation from

the vortex cyclical motion is more significant close to the centre. In conclusion, increasing the

dissipation, for example to γ = 0.032 and for x0 = 1.45, the modulation disappears.

We notice that for every γ, the α function tends to decrease with time and later to be constant,

(see Figure 3.10(e)).

Let us see the effect of larger γ on the other friction coefficient, α′. After a short initial

instability, until about t = 20 (this time is shorter than the time for smaller dissipation), α′

increases until the vortex leaves the condensate (see Figure 3.11(c), Figure 3.11(d), Figure 3.11(e)

and Figure 3.11(f)). Further, we note that for γ = 0.016 and x0 = 1.45, the function α′ begins

its steeper increase earlier. If we increase the dissipation further, say γ = 0.032, we observe that

the fluctuations due to the instability in the beginning are weaker and α′ increases from larger
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negative values to its positive final value. This last value depends on the time at which the vortex

leaves the system.

Finally, let us finish our study about α and α′ with the case of no dissipation, γ = 0. Both α and

α′ oscillate in the beginning with large fluctuations, which later transform to small fluctuations.

For α, our observation is that for (x0, y0) = (0.9, 0), the function becomes constant at an earlier

time with a value of α = 0.0064, (see Figure 3.10(a)), than in the case of (x0, y0) = (1.45, 0), when

this constant is α = 0.0035, (see Figure 3.10(b)). In the beginning, the second friction coefficient,

after some impulsive oscillations both with negative and positive values, become constant too, for

t ≈ 50. For x0 = 0.9, α′ = 0.01194 and for x0 = 1.45, α′ = -0.02431, with a very weak, similar

modulation pattern. When γ = 0, it is always true that the system is dominated by short time

fluctuations.

The friction coefficient, α increases linearly with γ, (see Figure 3.12(a) and Figure 3.13). Having

more values of γ, we have noticed that for smaller γ’s, α′ increases more rapidly, and from about

γ = 0.0125 (see Figure 3.12(b)) α′ decreases weakly. These observations are valid for both (x0, y0)

= (0.9, 0) with ω = 0.11; 0.115 and (x0, y0) = (1.45, 0) with ω = 0.1171; 0.1125.

As we have indicated earlier, our simulation program is very flexible, so it permits us to study

the variation of α′ with γ using nearly the same frequency of motion; see Figure 3.14. Placing

our vortex in the same initial position (x0, y0) = (0.9, 0) and having almost the same frequency of

motion, ω, we observe that α′ varies linearly with γ. We have created an ideal situation which is

useful in our study and shows us that there is a linear relation between α′ and γ in that case; see

Figure 3.14. This observation is really important due to the fact that α′ is not so easy to study.

Its value is very small and in most studies, one often neglects it, (see Tsubota et al. (2000); Araki

et al. (2003)).

Let us continue our investigation about the motion of a single vortex with different dissipations

γ and examine the connection between ω and γ. So, for smaller values of γ and for about γ = 0.0075

with these conditions, the variation of ω with dissipation increases strongly. We are interested to

see the development of frequency with dissipation. The first step is to examine our understanding

about the period of motion τ vs γ; see Figure 3.15. With dissipation, the trajectory permanently

changes, so we have used the data from the first significant circle-like trajectory. Our plot shows

that τ decreases with dissipation in two steps; see Figure 3.15. Until γ ≈ 0.03 it decreases slightly,

but above this value, its change has a more inclined character. The same comment is valid for the

frequency of motion of the trajectory vs dissipation, but in that case the function ω increases due

to the fact that ω = 1/τ (see Figure 3.15(b)).

3.5.1 Radial Position of Single Vortices as a Function of Time

Connection between dissipation and vortex initial position

In our simulations, with the help of x− and y−coordinates of the trajectory, we also have infor-

mation about the radius, r of the path, r =
√
x2 + y2. From our plots we have observed that

r = r0e
Γ1t, where Γ1 is an exponential coefficient. In the following plots, we show a connection
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Figure 3.10: Friction coefficient α as a function of time for a single vortex for (left): (x0, y0) = (0.9, 0)
and (right): (x0, y0) = (1.45, 0). for (a,b): γ = 0 and for (c,d): γ = 0.016 and for (e): γ = 0.032 and for
(x0, y0) = (1.45, 0).
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Figure 3.11: Friction coefficient α′ as a function of time for (left): (x0, y0) = (0.9, 0) and for (right):
(x0, y0) = (1.45, 0) for (a,b): γ = 0, for (c,d): γ = 0.016 and for (e,f): γ = 0.032.
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Figure 3.12: (a): Friction coefficient α for a single vortex with initial position (x0, y0) = (0.9, 0) (triangles)
and (x0, y0) = (2, 0) (circles) as a function of γ. The linear fit for α is: α = c1 + c2γ, where c1=0.007 and
c2=5.092. (b): Friction coefficient α′ corresponding to Figure. 3.11(a).
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Figure 3.13: Friction coefficients α as a function of γ for a single vortex with initial positions, (x0, y0) =
(0.9, 0) and (1.45, 0). Triangles represent the case when (x0, y0) = (1.45, 0) and circles represent the case
for (x0, y0) = (0.9, 0). The linear fit for α is: α = c1 + c2γ, where c1=0.007 and c2=4.44.
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Figure 3.14: Friction coefficients α′ for a single vortex with (x0, y0) = (0.9, 0) and for dissipations, γ =
0.008 (0.1459); 0.012 (0.1459); 0.016 (0.1465); 0.02 (0.1416); 0.024 (0.1453); 0.028 (0.1413).The numbers
in the paranthesis are the frequencies of motion, ω.
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Figure 3.15: (a): Period, τ and (b): frequency, ω of the first circle like trajectory of motion for a single
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Figure 3.16: Trajectory for a single vortex with (x0, y0) = (0.9, 0) and for γ = 0.032. We can see that in
the end of its motion the vortex moves out to the border of the condensate.
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Figure 3.17: Radius of the trajectories as a function of time for a single vortex with initial positions, from
bottom to top x0 = 0.6; 0.9; 1.2; 1.5; 1.8; 2.1; 2.4; 2.7; 3.0; 3.3; 3.6; 3.9; 4.2; 4.5; 4.8; 5.1; 5.4; 5.7; 6.0, y0
= 0 and for γ = 0.003.

between this exponential coefficient Γ1, the dissipations and also the vortex initial positions, x0

(for y0 = 0). From the plots of r vs t, we have calculated ln(r) vs t and the exponential constant,

Γ1. So, from the plots we remark that r is an exponential function of time, t (see Figure 3.18(a)

- Figure 3.18(d) and Figure 3.17).

For γ = 0, r does not exhibit an exponential behaviour in time. As we increase γ, the expo-

nential function r = r0e
Γ1t, describes a steeper curve. Similar behaviour can be observed with the

lines of ln(r), (see Figure 3.19(a) - Figure 3.20(d) and Figure 3.21(a) - Figure 3.21(d).)

From ln(r), we have calculated Γ1 = (ln(r)− ln(r0))/t. A linear increase of Γ1 with dissipation

γ is observed for both (x0, y0) = (0.9, 0) and (x0, y0) = (1.45, 0), (see Figure 3.22(a) and Fig-

ure 3.22(b) together with the corresponding values of the exponential constant, Γ1 as a function

of γ in Appendix C, Table C.8 and Table C.9). There are no significant differences between these

two plots. Finally, we are interested to see the variation of Γ1 in the whole condensate area, for

the same dissipation γ = 0.003. For that purpose, we increase the initial position of the vortex

from (x0, y0) = (0.3, 0) to (x0, y0) = (6, 0). The increase is very weak. On the contrary, close

to the centre and the edge of the condensate, there are considerable changes, (see Figure 3.22(c)

and the corresponding values of the exponential constant, Γ1 as a function of x0 in Appendix C,

Table C.10).
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Figure 3.18: Radius of trajectories for a single vortex as a function of time with (a,b): (x0, y0)= (0.9, 0)
and with (c,d): (x0, y0)= (1.45, 0) for dissipations (left): from the green(a)/red(c) horizontal line to the
green curved line γ= 0 ; 0.004 ; 0.008 ;0.012 ; 0.016 ; 0.02 ; 0.024 ; 0.028 ; 0.032 ; 0.036 ; 0.04 and (right):
from the right red curved line to the left red curved line γ= 0.044; 0.048; 0.052; 0.056; 0.06; 0.064; 0.068;
0.072; 0.076; 0.08.
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Figure 3.19: Log of radius of trajectories as a function of time for a single vortex with (x0, y0) = (0.9, 0)
and for dissipations from bottom red to top: (a): γ = 0; 0.004; 0.008; 0.012 and 0.016 and (b): γ = 0.02;
0.028; 0.032 and 0.04 and (c): γ = 0.044; 0.048; 0.052; 0.056 and 0.06 and (d): γ = 0.068; 0.072 and 0.076.
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Figure 3.20: Log of radius of trajectories as a function of time for a single vortex with (x0, y0) = (1.45, 0)
and for dissipations from bottom red to top: (a): γ = 0; 0.004; 0.008 and 0.012 and (b): γ = 0.028; 0.032
and 0.036 and (c) γ = 0.044; 0.048; 0.056 and 0.06 and (d): γ = 0.068; 0.072 and 0.076.
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Figure 3.21: Log of radius of trajectories as a function of time for a single vortex for γ = 0.003 and with
initial positions x0, from bottom red to top: (a): 0.6; 0.9; 1.2; 1.5; 1.8 and (b): 2.1; 2.4; 2.7; 3.0; 3.3; 3.6
and (c): 3.9; 4.2; 4.5; 4.8 and (d): 5.1; 5.4; 5.7; 6.0. (y0 = 0 in every cases).
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Figure 3.22: Exponential constant, Γ1 of the radius of vortex trajectory as a function of γ for a single
vortex with (a,b): (left): (x0, y0) = (0.9, 0) and (right): (x0, y0) = (1.45, 0) and (c) as a function of x0 for
γ = 0.003.

45



Chapter 4

Motion of Vortex - Anti Vortex

Pair in a Trapped BEC

4.1 Introduction

Vortex -anti vortex pair is the 2D analogy of 3D vortex ring, which was observed by Anderson et al.

(2001) and Dutton et al. (2001). The vortex ring motion is complicated due to the inhomogeneity

of the condensate and the curvature of the vortex line, which contribute to the dynamics of the

ring. A vortex structure displays both a dynamical instability of the vortices and the interactions

that can happen between the vortices and fluid excitations, e.g. the sound field in the condensate,

an induction from the anti-vortex et cetera.

Due to the dynamical instabilities, co-rotating vortex pairs and in homogeneous 2D superfluids,

single vortices execute circular motions (Lundh & Ao, 2000; Vinen, 2001). They are considered

to decay by way of sound wave emissions. With long-wavelength oscillatory modes, excitations

can occur as Kelvin waves, which in superfluid dynamics, is a long scale perturbation mode of the

vortex.

In this chapter among others, we study the sound energy together with other energies and

show the anticorrelation between the sound and vortex energy. We calculate the vortex pair

velocity with two methods. We investigate the period and frequency of motion for pair of vortices

as a function of initial separation distance between vortices. We present the decay rate of the

total energy as a function of time for a single vortex. Furthermore, we show that this decay rate

decreases linearly with dissipation. We finish this chapter by presenting a connection between the

fluid and vortex velocity.

4.2 Motion without Dissipation

Theoretically, we can estimate the precession frequency with an analytical approximation (Jackson,

1999). In our case, we use two methods to calculate the frequency of motion for a single vortex

or for a vortex - anti vortex pair.
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We put a pair of vortices in the condensate, (see Appendix D) at different initial separation

distances on the line y0 = 0. A vortex - anti vortex pair initially is located at (±x0, 0). The initial

separation distance is d0 = x0 − (−x0) = 2x0, where x0 is the vortex initial position. The first

vortex in the vortex pair has a positive sign (it is a vortex) and moves from left to right, while

the second one has a negative sign (it is an anti-vortex) and moves in the opposite direction, from

right to left; see the snapshots of Figure 4.1(a) - Figure 4.1(f) for d0 = 0.8.

It is also remarkable, that the pair follows a definite path periodically, which depends on the

initial separation distance. From Figure( 4.2(a) - 4.2(d)), where d0 = 2.86, we note that the

vortices are at the same place after t = 35 ∗ 36.648 (which is a period) ≈ 1284 (in dimensionless

units) seconds later, or when d0 = 0.8, after t = 28.8 (which is one period) (in dimensionless units)

seconds later; see Figure( 4.3(a) - 4.3(b)).

Smaller initial separation distance causes the pair to translate faster. When the vortices meet

the wall, they become forced to separate. There is some minimum distance at which the vortices

can avoid annihilation. However, to be in the right domain and to have a large enough initial

separation distance, we have chosen for the minimum distance to be 12h = 0.8, and for the

maximum distance, we have set 32h = 2.86, where h is the space step, (h = 0.0867 h.o.u.).

Without dissipation the trajectory is almost the same as in the beginning (see Figure 2.8(a) (the

red/centre path)). So, the vortices follow the same paths and have almost the same positions after

a few periods have elapsed (see Figure 4.4(a) and Figure 4.4(b)), which demonstrate that the vortex

- anti vortex pair (here one of them) has almost the same amplitude for the x− and y−component

of the trajectory. We can see another example with d0 = 1.0 and 1.43, see Figure( 4.6(a) - 4.6(d)).

Observe the relation between the initial separation distance d0 and the influence of the condensate

edge, especially when d0 = 1.43. When the vortices change their direction or meet each other,

fluctuations appear, which are sound waves due to the density fluctuations.

It is instructive to compare the trajectory of one vortex with the trajectory of one of the vortices

from the vortex pair, see Figure 4.5(a). So, we put the vortices in the vortex - anti vortex pair

symmetrically to the Origin on the same position, where our one vortex was. Comparing their

trajectories, we observe that, the pair moves together on a longer path, (compare Figure 4.5(a)

withFigure 2.2(a)). The single vortex needs more times and more cyclical motions to go out to

the edge of the condensate, see Figure 2.2(a) and Figure 2.3(a).

So, we observe that for a single vortex, the path has a more circular shape. Actually, from

Figure( 1.1(a) - 1.1(b)), we can see the influence of the antivortex as well. In that case, the

trajectory becomes larger in the y−direction. Another important feature exhibited by the two

vortices is that in the beginning, they move in parallell because of the opposite signs they possess.

So, initially, the pair moves across the condensate. When the pair approaches the edge of the

condensate, the two vortices separate, and move back toward the opposite side of the condensate,

thus making a closed orbit before returning to the initial position, as showed in Figure 1.1(b).

As a result of the cyclical motion and the inhomogeneity of the condensate, the compressibility

is changed, and so the moving vortex pair produce acoustic emission. Let us now study the sound
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Figure 4.1: Contourplot of the density for a vortex - antivortex pair for d0 = 0.8, ρmax = 0.012, and with
levels: 0.01, 0.008, 0.006, 0.004, 0.002, (the levels decrease as you move outwards) at times: (a): t = 87.2,
(b): t = 93, (c): t = 98.8, (d): t = 104.4, (e): t = 110.2 and (f): t = 116.
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Figure 4.2: Contourplot of the density for a vortex - antivortex pair for d0 = 2.86, ρmax = 0.012, and with
levels: 0.01, 0.008, 0.006, 0.004, 0.002, (the levels decrease as you move outwards) at times: (a): t = 50,
(b): t = 1334, (c): t = 750 and (d): t = 2034.
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Figure 4.3: Contourplot of the density for the vortex - antivortex pair corresponding to Figure 4.2 at time
(a): t = 0.2 and at time (b): t = 29.
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Figure 4.4: (a): x−component and (b) y-component of the trajectory as a function of time for one of the
vortices in the vortex pair for d0 = 1.8.
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Figure 4.5: (a): Trajectories of one of the vortices from the vortex pair with d0 = 1.8, (b): x−components
and (c): y− components of trajectories vs. time corresponding to Figure 2.9(a) for γ = 0 (purple/dotted
line); γ = 0.01 (red/solid line); γ = 0.07 (green/dashed line) and γ = 0.1 (blue/small dashed line).
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Figure 4.6: (left): x-component and (right): y-component of the trajectories as a function of time for one
of the vortices in the vortex pair for d0 (a,b): = 1 and (c,d): = 1.43.
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energy together with other energies. The sound energy is the difference between the kinetic energy

and the vortex energy: Ekin = Esound + Evortex, so Esound = Ekin − Evortex (see Figure 4.8(f)

and Figure 4.8(g)). These plots show a significant anticorrelation between the sound energy and

the vortex energy, with correlation coefficient cc = −0.844.

The correlation coefficient, cc between two sets of random variables X and Y with expected

values, µX and µY and standard deviations, σX and σY is given by: cc = cov(X,Y )
σXσY

, where cov(X,Y )

denotes the covariance. The covariance between two real-valued random variables X and Y , with

expected values, E(X) = µX and E(Y ) = µY is defined as cov(X,Y ) = E((X − µX)(Y − µY )),

where E is the expected value operator. The expected value of a random variable is the sum

of the probability of each possible outcome of the experiment multiplied by the outcome value:

E(X) =
∑N

i=1 piXi. The standard deviation of a random variable is a measure of the spread of

its values: σ =
√

1
N

∑N
i=1(Xi −X)2, where X = 1

N

∑N
i=1Xi.

The correlation is 1 in the case of an increasing linear relationship and is -1 in the case of a

decreasing linear relationship. For other correlations, cc takes some value in between and is zero

when the two variables are not related to one another. The closer the coefficient is to either -1

or 1, the stronger is the correlation between the variables. In this definition, we let X denote the

sound energy and Y denote the vortex energy.

A direct visualisation can be seen in Figure 4.7. We notice that where the sound energy has a

maximum, the vortex energy has a minimum. It is more clear that the sound is re-absorbed, see

again Figure 4.8(f) and Figure 4.8(g). Generally, in the case of internal- and trap - energy, the

oscillation amplitude of these functions is almost constant (see Figure 4.8(a) and Figure 4.8(b)).

On the other hand, for quantum energy, these fluctuations have different values (see Figure 4.8(c)).

From Figure 4.8(d), we can see that the average of the total energy is constant, though it displays

a time modulation.

By this modulation, we mean harmonic oscillations of the vortex cyclical motions. The same

modulation appears in the case of kinetic energy too, (see Figure 4.8(e)). For a vortex pair

initially located at (± 1.43,0), we find Etot ≃ 17.47. Because of the numerical resolution, Etot

is not constant, but varies of a typical amount ± 0.015 over t = 140, which corresponds to four

orbits of the pair. That indicates a relative accuracy of ± 0.09 % in conserving the total energy.

According to the density plots, we observe that for smaller initial separation distance d0 =

0.793 ≈ 0.8, the sound production is more intensive with a rapidly varying density; compare

Figure 4.3(b) with Figure 4.2(a). On the contrary, for larger values of d0 (d0 = 2.86), we have

a nearly uniform density (See Figure 4.2(a) and Figure 4.2(b) together with Figure 4.2(c) and

Figure 4.2(d)). Also, we have seen that without dissipation, the density fluctuation is more

pronounced, than with dissipation, (compare Figure 4.9 with Figure 4.25).

It is well known that, in the absence of dissipation, a vortex-antivortex pair set at (± x0,

0) in an infinite homogeneous condensate moves with (dimensionless) translational speed v∞ =

1/(2x0) = 1/d0, where d0 is the initial separation distance between the vortices. We define vpair ,
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Figure 4.7: Correlation between vortex energy and sound energy for the vortex - anti vortex pair when d0

= 2.86 and γ = 0. The correlation coefficient is cc = −0.844.

the measured velocity of the vortex pair, when it moves near the centre parallel to the y-axis and

compare vpair with v∞ in Figure 4.10. We can see that our values agree well with v∞.

So, we calculate the translation speed with two methods and compare them in Figure 4.10. For

the first method we use the y−component of the trajectory vs time, t. From the tangent to this

curve, we calculate, v
′

y = vtrans = ∆y/∆t. We call it the calculated values. (see v′y in Table. 4.1).

As we mentioned earlier the motion and the velocity of the pair of vortices depend on the

initial separation distance, d0, between them. However, from Eq. (1.2) it follows that the velocity

around a single vortex is:

vs =
Γ

2πr
φ̂, (4.1)

where vs is the superfluid velocity at a point r, r is the radius and φ̂ is the unit of angle of the

vortex pair.

In our case of a vortex - anti vortex pair, the translation speed is expressed by vpair = vy =

1/2x0 = 1/d0. Actually, this formula has its origin in Eq. 4.1, which is valid for vortex points

in an infinite fluid. In this expression, if Γ = 1 and d = 2r, represents the distance between the

vortex and anti-vortex, this formula become similar with our (see the circle symbols in Figure 4.10

and v
′

y in Table 4.1).

From Table 4.1, we observe that the difference between these two methods is significantly small.

Table 4.2 contains more data for the second method, using vy ∼ 1/d0.

It is worth stressing, that the motion of the vortex pair is periodic with a period of τp. The

value of this period is measured from the x−coordinate and the y−coordinate vs t of the trajectory-
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Figure 4.8: For a vortex - anti vortex pair with d0 = 2.86 and γ = 0 (a): Internal energy, (b): Trap energy,
(c): Quantum energy, (d): Total energy, (e): Kinetic energy, (f): Sound energy and (g): Vortex energy.
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Figure 4.9: Sound waves on the density plot for the vortex - anti vortex pair for d0 = 2 at t = 2.6 (for
γ = 0).
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Figure 4.10: Vortex pair velocity as a function of d0 (circle) measured at the centre of the condensate and
compared to vortex pair velocity, v∞ in homogeneous condensate (green/dashed line), for γ = 0.

x0 d0 v
′

y = tgα = ∆y/∆t v∞ ∼ 1/d0 diff = v
′

y − vy
+/−1.00 2.00 0.459559 0.50000 0.040441
+/−1.30 2.60 0.287586 0.384615 0.097029
+/−1.81 3.62 0.181481 0.276243 0.094762
+/−2.86 5.72 0.192308 0.174825 0.017483

Table 4.1: The y−component of the velocity calculated with v
′

y = tgα = ∆y/∆t and with the form
vy ∼ 1/d0.
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d v∞ ∼
1
d

0.80 1.250000
1.80 0.555556
2.00 0.500000
2.60 0.384615
2.86 0.349650
3.00 0.333333
4.00 0.250000
5.72 0.174825

Table 4.2: Translation speed, v∞ for the vortex pair.
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Figure 4.11: Period of motion for one of the vortices in the vortex - anti vortex pair for γ = 0.

plots; see Figure 4.11 and Table 4.3. Figure 4.11 and Figure 4.12 show that there is a symmetry

about d0 = 4. The explanation is that the vortices follow the same path if one were to put them

close to the centre or close to the edge of the condensate. Due to the fact that they have the same

path, they will have the same period and frequency as well. The peak at about d0 = 4 appears

due to the fact that for this initial separation distance, the pair has the largest period and the

smallest frequency of motion.

In order to establish the frequency of motion, we use two methods: Firstly from ωpair = 1/τpair

and secondly with the help of the period of a single vortex, which has its initial position at the

centre of the path of one of the vortex pair. So, ω
′

pair ∽
√

2ωsingle (see Appendix A), where

ωsingle = 1/τsingle and τsingle are the frequency and the period of orbit for the single vortex (see

Figure 4.12). Analogously, in Table 4.4, we have some values of the frequency of motion for a

single vortex without dissipation. Figure 3.7(a) contains more data for the case of a single vortex,

where x0 is the distance from the centre. We can note that ω0, the frequency of motion for a

single vortex, is almost constant near the centre of the condensate, and increases exponentially as

we put the vortices close to the edge of the condensate see (Jackson et al., 2000).
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x0 y0 d0 Period τ
0.40 0.00 0.80 28.800000
0.90 0.00 1.80 34.118880
1.00 0.00 2.00 35.042370
1.30 0.00 2.60 36.497570
1.43 0.00 2.86 36.684470
1.50 0.00 3.00 36.954320
2.00 0.00 4.00 38.673370
2.50 0.00 5.00 37.587970
2.70 0.00 5.40 35.50412
2.86 0.00 5.72 34.744530

Table 4.3: Period, τ of motion of the vortex pair.
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Figure 4.12: Frequency of one vortex in the vortex pair calculated with two methods. Triangle symbols
represent the value obtained from ωpair = 1/τpair and circle symbols represent the value which was

calculated with the help of the corresponding single vortex frequency ω
′

pair ∽
√

2ωsingle.

x0 y0 d0 x0s τpair ωpair τsingle ωsingle ω
′

pair diff

1.00 0.0 2.00 1.9200 35.04237 0.179302 54.23782 0.115845 0.163829 -0.015473
1.30 0.0 2.60 1.9384 36.49757 0.172153 53.72410 0.116953 0.165396 -0.006757
1.50 0.0 3.00 1.8373 36.95432 0.170026 54.65859 0.114953 0.162568 -0.007457
2.00 0.0 4.00 1.8050 38.67337 0.162471 54.85648 0.114538 0.161982 -0.000486
2.50 0.0 5.00 1.8444 37.58797 0.167159 54.02893 0.116293 0.164463 0.002696
2.86 0.0 5.72 1.9000 34.74453 0.180839 53.78207 0.116826 0.165218 -0.156215

Table 4.4: This table presents the initial position (x0, y0) of one vortex in the vortex pair, the initial
separation distance between the vortices, d0, the initial position for the single vortex, which was placed in
the centre of the trajectory of the vortex/anti-vortex, x0s, the period and frequency of motion for the pair
of vortices, τpair and ωpair, the period and frequency of motion for the single vortex, τsingle and ωsingle,

the frequency of motion of the vortex pair (calculated with the help of ωsingle) ω
′

pair and the difference

between the two frequencies ωpair and ω
′

pair.
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Figure 4.13: Kinetic energy for the vortex - anti vortex pair for γ = 0.003 with (a): d0 = 2.86 and with
(b): d0 = 1.5.
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Figure 4.14: Total energy corresponding to Figure( 4.13(a) - 4.13(b)). In (b) We can see that about t =
220, the vortex leave the condensate.

4.3 Motion with Small Dissipation

In this section, we apply dissipation with special emphasis on the case of γ = 0.003. That

means that the relaxation of the condensate towards equilibrium is slow. We have introduced the

dissipation term on purpose to remove short wavelength excitations in the scales smaller than the

healing length.

It is useful to study the kinetic energy, the total energy, the internal energy, the quantum

energy and the trap energy with the help of figures: Figure( 4.13(a) - 4.13(b)), Figure( 4.14(a) -

4.14(b)), Figure( 4.15(a) - 4.15(b)), Figure( 4.16(a) - 4.16(b)) and Figure( 4.17(a) - 4.17(b)).

Let us begin with examination of different energies for the case of initial separation distances

d0 = 1.5 and d0 = 2.86. As expected, the different energy-plots show a decrease in energy levels

due to the dissipation. We compare these energies, the sound and the vortex energy with the case

of no dissipation, (γ = 0). In both cases, we observe the anti-correlation phenomenon between

the vortex energy and the sound energy. To have four periods of modulation with time due to the
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Figure 4.15: Internal energy corresponding to Figure( 4.13(a) - 4.13(b)).
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Figure 4.16: Quantum energy corresponding to Figure( 4.13(a) - 4.13(b)).
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Figure 4.17: Trap energy corresponding to Figure( 4.13(a) - 4.13(b)).
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cyclical motion, it needs about t = 140 in both cases for the following energies: kinetic energy,

total energy, sound energy and vortex energy.

For the case of d0 = 2.86, the maximum value of the vortex energy without dissipation is about

0.019, almost twice as large as with the case of dissipation (γ = 0.003), where this value is about

0.01. For the sound energy, we note that without dissipation the oscillation varies between about

0.085 and about 0.105 and with γ = 0.003, the first oscillation varies between 0.087 and 0.103 and

later it decrease with time. The modulation on these different energies, as already pointed out, is

a result of the cyclical motion of the vortex.

Now, we compare the first four period-times of the total energy and of the kinetic energy (with

dissipation γ = 0.003) for the case of d0 = 2.86 and d0 = 1.5, (see Figure 4.18(g); Figure 4.18(h)

and Figure 4.18(e); Figure 4.18(f)). The maximum values of the sound and vortex energies are:

Ekin = Esound+Evortex = 0.101+0.0175 = 0.1185. We compare this sum (of the maximum values)

with the maximum value of the kinetic energy: Ekin = 0.113. The difference is Diff = 0.0055

Notice that for larger d0, when the vortex is closer both to the edge of the condensate and to each

other, more noise is formed, especially when they move together in the centre of the condensate or

they meet the edge of the condensate, see Figure( 4.19(a) - 4.19(b)). In particular, from the plot of

kinetic energy, total energy and sound energy, we remark that the system loses more energy (much

quicker) at the end of the vortex motion, (see Figure 4.19(a), Figure 4.13(a) and Figure 4.14(a)).

With respect to Figure 4.21, we can note an out-lying point, with coordinates (Esound =

0.1027, Evortex = 0.0024). The explanation is that in the case of dissipation (γ = 0.003), the

correlation is different from the case of no dissipation, when cc = −0.844 is a constant. With

dissipation, the correlation coefficient (cc) varies with time. Until t = 150, cc = −0.841, when

t = 300, cc = −0.601 and at t = 400 the correlation coefficient has reduced its magnitude to

cc = −0.215. The above discussion is the ground for our opinion that this out-lying point is due to

these changes. Furthermore, the condensate needs time for relaxation, in order to be stable. This

can be checked from, for example internal energy and trap energy, see Figure( 4.15(a) - 4.15(b))

and Figure( 4.17(a) - 4.17(b)). As expected, in the beginning they are unstable but after some

short time oscillations, whose amplitude decreases with time, these energy functions take up the

cyclical-motion modulations at about t = 150 for d0 = 2.86.

However, the trap energy, see Figure( 4.23(a) - 4.23(b)) shows a similar tendency as the

internal energy, see Figure( 4.22(a) - 4.22(b)). The only difference between them is that the

internal energy increases from about 8.54 to about 8.64 and the trap energy decreases from about

8.8 to about 8.7 in their values with time. The average values of these energies are the same for

both γ = 0 and for γ = 0.003, when d0 = 2.86. So, there is a similarity between the case of no

dissipation with the case of small dissipation.

In fact, we can compare the average values of the quantum energy without dissipation, Eq =

1.94 × 10−5, with the case of γ = 0.003 (for d0 = 2.86), when Eq = 4 × 10−6 in the beginning

and decreases later; see Figure 4.8(c) and Figure 4.16(a). The periodic modulation of the vortex

motion is present here as well.
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Figure 4.18: Energies corresponding to Figure( 4.13(a) - 4.13(b)): (a,b): Sound energy for shorter time
(compare with Figure 4.19(a) and Figure 4.19(b)), (c,d): Vortex energy for shorter time (compare with
Figure 4.20(a) and Figure 4.20(b)), (e,f): Kinetic energy for shorter time (compare with Figure 4.13(a) and
Figure 4.13(b)) and (g,h): Total energy for shorter time (compare with Figure 4.14(a) and Figure 4.14(b)).
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Figure 4.19: Sound energy corresponding to Figure( 4.13(a) - 4.13(b)).
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Figure 4.20: Vortex energy corresponding to Figure( 4.13(a) - 4.13(b)).

Figure 4.21: Correlation between vortex energy and sound energy for the vortex - anti vortex pair with
d0 = 2.86 and γ = 0.003. The correlation coefficient is cc = −0.841.
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Figure 4.22: Internal energy corresponding to Figure( 4.13(a) - 4.13(b)) for shorter time (compare with
Figure 4.15(a) and Figure 4.15(b)).
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Figure 4.23: Trap energy corresponding to Figure( 4.13(a) - 4.13(b)) for shorter time (compare with
Figure 4.17(a) and Figure 4.17(b)).
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Figure 4.24: Quantum energy corresponding to Figure( 4.13(a) - 4.13(b)) for shorter time (compare with
Figure 4.16(a) and Figure 4.16(b)).

Let us conclude this section by discussing the behaviour of the strange shape of the quantum

energy, in the case of dissipation. We believe that, this figure, see Figure( 4.16(a) - 4.16(b)), can

be explained by the fact that in the centre of the system the density is higher and the vortex has

a smaller diameter than at the edge, where the density is more dilute. So, on the border of the

system, the vortex becomes larger because of the dilute nature of the fluid. Notice that the vortex

always comes back to the centre of the condensate, where the density is higher.

4.4 Motion with d0 = 1.8 and Different γ’s

In this section we continue our investigation with dissipation, applying more values for γ. One

can see that, when the dissipation, γ is different from 0, for example γ = 0.01, the density

fluctuation is much smoother than without dissipation (see Figure 4.25). It is worth noticing that

with dissipation, the total energy decreases from the same initial value as without dissipation

(≈ 17.525) to its final value of approximately 17.32 (see Figure 4.26(a)).

Note, that in the case of no dissipation, for d0 = 2.86, the average value of the total energy is

17.47. It is worth pointing out that, with larger dissipation, the vortices travel towards the edge of

the condensate earlier and the different energies reach their final values earlier as well. The same

observation is valid for the kinetic energy, quantum energy, internal energy and trap energy, (see

Figure 4.26(b), Figure 4.27(a), Figure 4.27(b), Figure 4.28(a), Figure 4.28(b), Figure 4.29(a) and

Figure 4.29(b)).

In particular, by increasing the dissipation, we note that the initial short time fluctuations

become fewer in the case of internal energy and trap energy. In general, for smaller γ, (which

value is close to the case of no dissipation) the short time fluctuations are the same as with γ =

0. The only difference is that with small dissipations, the amplitude of these oscillations decreases

exponentially in time (see Figure 4.29(a)). Our conclusions, from the case of dissipation with γ

= 0.003 and separation distances d0 = 2.86 and 1.5 are partially valid here as well, in the case of

small dissipation, like γ = 0.01. With time the internal energy increases and whilst the trap energy
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Figure 4.25: Sound waves on the density plot for the vortex - anti vortex pair with d0 = 1 and γ = 0.01
at time, t = 2.4.
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Figure 4.26: (a): Total energies and (b): Kinetic energies for the vortex - anti vortex pair with d0 = 1.8
and γ = 0 (red line/solid line); γ = 0.01 (green line/dashed line); γ = 0.07 (purple line/dotted line); γ =
0.1 (blue line/small dashed line)
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Figure 4.27: (a): Quantum energies for the vortex - anti vortex pair with d0 = 1.8 for (a): γ = 0 (red
line/solid line) and γ = 0.01 (green line/dashed line) and for (b): γ = 0.07 (green line/dashed line) and
γ = 0.1 (red line/solid line).
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Figure 4.28: Internal energies for the vortex - anti vortex pair with d0 = 1.8 for (a): γ = 0 (red line/solid
line) and γ = 0.01 (green line/dashed line) and for (b): γ = 0.07 (green line/dashed line) and γ = 0.1
(red line/solid line).
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Figure 4.29: Trap energies for the vortex - anti vortex pair with d0 = 1.8 for (a): γ = 0 (red line/solid
line) and γ = 0.01 (green line/dashed line) and for (b): γ = 0.07 (green line/dashed line) and γ = 0.1
(red line/solid line).
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decreases; but as we can see from Figure 4.28(a) and Figure 4.29(a), the trap energy decreases a

bit more than the internal energy increase, thus there is a net loss of energy.

4.4.1 Energy Balance

From the energy plots we see that the internal energy behaves inversely than the other energies.

To understand this phenomenon, we do the energy balance for a vortex - anti vortex pair with

dissipations γ: 0.003; 0.03 and 0.01 and for the case of a single vortex for γ = 0.01.

Let us begin our study with the case of small dissipation, γ = 0.003 and d0 = 2.86. The quantum

energy in every case is neglected because it is too small. Its initial value is about 4 ∗ 10−6. Due

to the dissipation, the energies decrease; ∆Etot = -0.14, ∆Ekin = -0.106, ∆Etrap = -0.113 and

∆Eint = +0.08. So for the change in the total energy, we have ∆Etot = ∆Ekin +∆Etrap+∆Eint,

which gives −0.140 = −0.106 − 0.113 + 0.08, which means −0.14 = −0.139. So, we have a good

balance. That explains why the internal energy increases.

We do a similar thing for the case of the same dissipation γ = 0.003 but with smaller initial

separation distance, d0 = 1.5. For ∆Etot = ∆Ekin+∆Etrap+∆Eint, we have −0.105 = −0.0725−
0.08 + 0.05, which gives −0.105 = −0.1025. This is not bad but is not as accurate as in the first

example and similarly our vortex energy function is not as good as for d0 = 2.86. One of the

explanation is that the vortices in the second example are more close to each other, so they have

more influence upon each other and the system uses a smaller energy resource. Our purpose now

is to compare the energy balance for the case of a vortex - anti vortex pair with the case of a single

vortex.

Let us continue our investigation by putting our single vortex at initial position (x0, y0) =

(0.9, 0) and compare it with the case of vortex - anti vortex pair for d0 = 1.8. For the vortex pair,

∆Etot = ∆Ekin +∆Etrap +∆Eint, which gives −0.2 = −0.13− 0.09 + 0.04, i.e. −0.2 = −0.18. A

different scenario takes place for a single vortex: We have ∆Etot = ∆Ekin +∆Etrap +∆Eint, so

−0.1 = −0.075− 0.075 + 0.055, which means −0.1 = −0.095.

Also, in this section among other things, we have discussed the problem of the energy balance

and we summarise it with our conclusions in Table 4.5 with two remarks. The first one is that

for γ = 0.01 our energy balance is better for a single vortex than for the case of a vortex - anti

vortex pair, where the condensate uses less energy. The second remark is that we have the best

energy balance for the case of small dissipation, γ = 0.003 and large initial separation distance,

d0 = 2.86, which is valid for the case of vortex - anti vortex pair.

4.5 Motion of a Single Vortex and Vortex - Anti Vortex

Pair with Different Dissipations

It is well known that in a dissipative environment the total energy is not conserved. So, in this

short chapter, we discuss the question about whether or not the decrease of the total energy with
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γ d0 ∆Etot ∆Ekin ∆Etrap ∆Eint ∆Ekin +∆Etrap +∆Eint Diff
0.003 2.86 -0.140 -0.1060 -0.113 +0.08 -0.1390 0.0010
0.003 1.50 -0.105 -0.0725 -0.080 +0.05 -0.1025 0.0025
0.010 1.80 -0.200 -0.1300 -0.090 +0.04 -0.1800 0.0200
γ x0 ∆Etot ∆Ekin ∆Etrap ∆Eint ∆Ekin +∆Etrap +∆Eint Diff

0.01 0.9 -0.1 -0.075 -0.075 +0.055 -0.095 0.005

Table 4.5: Energy balance for the case of vortex - anti vortex pairs with initial separation distance, d0 =
2.86, 1.5 and 1.8 and for the case of a single vortex with initial position, x0 = 0.9.

γ β1 β2 β3

0.003 -0.00000177 -0.00000964 -0.00002123
0.010 -0.00001456 -0.00003135 -0.00012980
0.030 -0.00003955 -0.00008946 -0.00048760
0.070 -0.00008791 -0.00018650 -0.00125300
0.100 -0.00012570 -0.00025730 -0.00179100

Table 4.6: Decay rate of the total energy for a single vortex with initial positions, x0 = 0.9 (β1); 2.86 (β2),
y0 = 0 and for vortex - anti vortex pair with initial separation distance, d0 = 1.8 (β3) as a function of γ.

time depends on the vortex initial position (for different dissipations). We give for the dissipations

the following values, γ: 0.003; 0.01; 0.03; 0.07 and 0.1 and the vortices have as initial positions,

x0 = 0.9; 2.86 and y0 = 0. In order to calculate the decay rate of the total energy, β for different

dissipations, we put first a single vortex at initial position (x0, y0) = (0.9, 0) (see the result in

Figure 4.30(a)).

We repeat the same procedure for x0 = 2.86 (see the result in Figure 4.30(c)). In this respect,

our first conclusion is that the decay rate, β of the total energy depends on the vortex initial

position x0. We continue systematically our investigation with a vortex - anti vortex pair too. Now,

we put one of the vortices from the vortex pair at the same position where the single vortex was

but symmetrically about the Origo ((x0, y0) = (0, 0)), x0 = ±0.9 (see the result in Figure 4.30(b)).

Notice that, we have again different values for β. As expected, we have an exponential decrease of

the total energy with time in these three cases, with different decay rates, β (see Table 4.6). So,

our second conclusion is that the variation of the decay rate β with dissipation γ is linear, that is

to say, if we increase γ, β decreases linearly.

Also, after some oscillations in the beginning the internal energy decreases and at the same

time the trap energy decreases (see the result in Figure 4.31(c) and Figure 4.31(d)).

Now, we turn our attention to the connection between the fluid and the vortex velocity. We

wish to describe the velocity field at those positions, where the vortex pair was located originally.

The initial positions of the vortices are: x0 = ±2.99 and ±0.65 for y0 = 0. The considered

dissipations are: γ = 0 and 0.03.

We place two vortices symmetrically about the Origo at (x0, y0) = (±2.99, 0). In the following,

we will consider only the short time decrease of the fluid velocity. Consequently, we omit the

periodic motions of the vortices.
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Figure 4.30: Decay rate of the total energy, β = dE/dt as a function of γ (a,b): (left): for a single vortex
with (x0, y0) = (0.9, 0) and (right): for a vortex - anti vortex pair with d0 = 1.8 and (c): for a single
vortex with (x0, y0) = (2.86, 0).
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Figure 4.31: For a vortex - anti vortex pair with d0 = 5.98 and γ = 0.03 the decrease of (a,b): (left): the
total energy and (right): of the kinetic energy and the (c,d): (left): the increase of the internal energy
and (right): the decrease of the trap energy.
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Figure 4.32: For γ = 0, the red/solid line stands for the function, f(t) = a/t and (a): (+) represents

the fluid velocity, v1 =
p

v2
x + v2

y , at the position, where the first vortex from the vortex - anti vortex

pair was placed originally, (x0, y0) = (2.99, 0) and (b) (+) represents the fluid velocity, v2 =
p

v2
x + v2

y , at
the position, where the second vortex from the vortex - anti vortex pair was placed originally, (x0, y0) =
(−2.99, 0).

In the first case γ = 0, and the vortices move without dissipation. In that case the fluid velocity

vf ∝ 1/r, where r is the radius of the circle having its centre at that point where the vortex was

originally located. Since r = vvort ∗ t, vf ∝ 1/vvort ∗ t. So, the fluid velocity, vf , varies as an

inverse function with t, vf=a/t, where a is a constant, a≃1/vvort. By fitting vf with an inverse

function we obtain a and with the help of a, we have vvort.

In Figure 4.32(a) and Figure 4.32(b), the red/solid line represents the function, f(t) = a/t,

where a = 5.89 and (+) represents, in Figure 4.32(a), the fluid velocity at the position, where the

vortex was placed originally (x0 = 2.99) and in Figure 4.32(b), the fluid velocity at the position,

where the anti-vortex was placed originally (x0 = −2.99), calculated using the following equations:

vx = − i

2
|ψ|2

(
ψ∗ ∂ψ

∂x
− ψ

∂ψ∗

∂x

)
, (4.2)

and

vy = − i

2
|ψ|2

(
ψ∗ ∂ψ

∂y
− ψ

∂ψ∗

∂y

)
. (4.3)

These are evaluated at the points: x0 = ±2.99 and y0 = 0 and we use them in calculation of the

fluid velocity, v1 and v2.

So, if a≃1/vvort, the vortex velocity is approximated by 1/a = 1/5.89 = 0.169779. We compare

this value with the vortex velocity using our earlier method (see Table. 4.1). Then, the translation

speed of the vortices is, vy ∼ 1/d0, that is to say, vy∼ 1/2 ∗ 2.99 = 0.169779. Putting the two

vortices on the line y0 = 0, they will move first in the y direction. So vy (= 0.16977) and vvort (=

0.1698) coincide! That is a proof that our two methods to calculate the vortex velocity are quite

accurate. In both cases our two different methods agree very well.

Let us continue our investigation by putting the vortex - antivortex pair at the same initial

positions as before, x0 =±2.99, but now with γ = 0.03 (see Figure 4.34(a) and Figure 4.34(b)).
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Figure 4.33: 3D plot of the density for two vortex - antivortex pairs with d0 = 1.3 and 5.98 (x0 = ±2.99
and ±0.65) for no dissipation at t = 0.

We can see, that when the program is switched from imaginary time to real time, the decrease of

the fluid velocity begins from a larger value. In the presence of dissipation ( γ 6= 0), the decrease

of the fluid velocity is less than with no dissipation (γ = 0). So, in a dissipative fluid the decrease

of the fluid velocity is slower than without dissipation.

4.5.1 Additional Vortices

Finally, we are interested to see the influence of additional vortices, which we placed in the

condensate. So, we put two additional vortex - anti vortex pairs at x0 = ±0.65; y0 = 0, as

it is shown in Figure 4.33.

The velocities were taken at the points, x0 = ±2.99. From the way the fluid velocity decreases,

we can infer how the four vortices move. The fluid velocity at these particular points is always the

result of the sum of four vector velocities. Notice also that, the difference in that last case is that

we have a peak in the decrease of the velocity (see Figure 4.34(c) and Figure 4.34(d)). This is due

to the fact that the fluid has received an impulse from the neighbouring vortex. Our explanation

is that the two vortices, which are closer to the centre of the condensate move faster and upwards

than the others having their initial positions at the measured points and moving downwards.

Accordingly, the other two vortex pairs begin their motion parallel with the first ones, but in

opposite directions. However, in the chosen points the velocity first decreases as the vortices move,

but after a short time, they are influenced by the other vortices moving in opposite directions with

higher velocities. This influence becomes weaker and the velocity continues to decrease as in the

two other cases presented earlier.

It is worthwhile also, to compare the initial values of the fluid velocity for these three cases.

We choose, for the first and second cases, t = 0.371 and for the third case, two times close to that

time (see Table. 4.7).
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Figure 4.34: For a vortex - anti vortex pair with initial positions, x0 = ±2.99; y0 = 0 and for γ = 0.03,
the fluid velocity at position where (a): the vortex of the vortex -anti vortex pair was placed originally,
x0 = 2.99; y0 = 0 and where (b): the anti vortex of the vortex -anti vortex pair was placed originally,
x0 = −2.99; (y0 = 0). For two vortex - anti vortex pairs with initial positions, x0 = ±0.65; ±2.99 (y0 = 0)
and for γ = 0, the fluid velocity at position where (a): the vortex of the vortex -anti vortex pair was
placed originally, x0 = 2.99; y0 = 0 and where (b): the anti vortex of the vortex -anti vortex pair was
placed originally, x0 = −2.99; (y0 = 0).

γ No of vort t v1 v2
0 2 0.371 37.2422 37.2444

0.03 2 0.371 40.3349 40.3259
0 4 0.247 14.2484 14.2482
0 4 0.447 10.3824 10.3796

Table 4.7: Fluid initial velocity at the same position, where the firts vortex - antivortex pair were placed
originally as a function of γ for two and four vortices.
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Figure 4.35: For two vortex - antivortex pairs with d0 = 1.3 and 5.98 (x0 = ±2.99 and ±0.65), and for
γ = 0 (a,b): (left): the total energy and (right): the kinetic energy and (c,d): (left): the internal energy
and (right): the trap energy.

In this part of the thesis, we have examined for the vortex and anti-vortex pair, the decrease

with time of the fluid/condensate velocity, with its x− and y-components, v1 and v2 in three

different environments, at those points, where the vortex pair began to move. In the case of two

vortex - antivortex pairs for that short time, when the data was taken, we investigate the total

energy, (Etot), kinetic energy (Ekin), internal energy (Eint) and trap energy (Etrap) with the help

of figures: Figure( 4.35(a) - 4.35(d)).
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Chapter 5

Motion of Random Vortex - Anti

Vortex Pairs and Vortex Lattice

Formation

5.1 Introduction

In this chapter, we present for an array of vortices the increase/decrease rate of different energies

and Lz with time as a function of dissipation (for the time corresponding to the entering of the

vortices in the condensate).

In different dissipative environments, for the case of randomly placed vortex - anti vortex

pairs, we study the decrease/increase rate of different energies and Lz together with the number

of vortices with time and find exponential behaviours.

5.2 Motion of an Array of Vortices

Before beginning with the random case, let us study the variation of different energies and the

z− component of the angular momentum with time and different dissipations for an array of

vortices (see Figure 5.1).

Now, Ω 6= 0. So, for Ω = 0.75 the vortices come in automatically in the condensate. To have

the right shape and initial conditions (the Thomas-Fermi approximation), the GPE first runs in

imaginary time. Then the program is switched to real time with suitable values for Ω and γ. For

small values of dissipation, like γ = 0.003, the decrease of different energies and Lz with time is

not so significant (see the saturated values in Figure 5.2(a) and Figure 5.2(b)). These plots show

the development of Etot and Lz. When the vortices enter the condensate, Lz icreases and Etot

oscillates (Observe, that the y-axis of Lz begins from 0, but for the case of Etot, its value begins

from larger value!), which is in accordance with both experiments (see Madison et al. (2001)) and

with other simulations (see Tsubota et al. (2002)).
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Figure 5.1: Contour plot of density with an array of vortices in case of γ = 0.03 and for Ω = 0.75.
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Figure 5.2: For an array of vortices with γ = 0.003 and for Ω = 0.75 (a): the total energy as a function of
time and b): the z−component of the angular momentum as a function of time. (With small dissipation
the decay of the saturated values due to γ is not so significant.
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Figure 5.3: For an array of vortices with γ = 0.003 the increase of the total energy until its saturated
value for (a): Ω = 0.7 and (b): Ω = 0.85.

For small γ, we have a considerable change only in that time when the vortices come in (see

Figure 5.3(a) and Figure 5.3(b) for C = 1400). That was the reason to study for larger value of

dissipation, like γ = 0.03 the increase of different energies and Lz, in the above-mentioned case.

We are only interested to see the maximum values, the saturated values and the difference

between them.(see Table C.11 for the case of γ = 0.03 and Ω = 0.75 and Table C.12 for the case

of γ = 0.07 and Ω = 0.75).

A more detailed study of increase/decrease of energies/Lz with time was done with the help of

their corresponding values in Appendix C (see Table C.13) together with Figure( 5.5(a) - 5.5(l))

and Figure( 5.6(a) - 5.6(c)).

In contrast to the case of γ = 0.03, increasing the dissipation, for example to γ = 0.07, we

observe that the decrease of the saturated values become exponential again (see Figure 5.4(a)).

We obtain for the decay rate, β = -0.002084 as one can see in Figure 5.4(c).

So, for larger values of γ, the fluctuations of these functions dissapear (compare Figure 5.2(a)

or Figure 5.2(b) with Figure 5.4(a) and Figure 5.4(b)). Notice that, in the case of γ = 0.07, the

decrease became smoother as well with an exponential decrease (see Figure 5.4(c)).

5.3 Randomly Placed Vortex - Anti Vortex Pairs

We place randomly vortex pairs in the condensate and in that way we create turbulence. Eight

pairs of vortex - anti vortex with initial separation distance, d0 = 1.8 between them were estab-

lished (for details ,see Table. C.14).

Our program chooses randomly a pair of numbers, nrx and nry, together with nrr between

0 and 1. Then with the help of α = nrr ∗ 2π, we obtain random angles. In the beginning our

vortex, will move in that direction. From the random points, nrx and nry, we have obtained the

coordinates x and y by: (nrx− 0.5) ∗ 16 and (nry− 0.5) ∗ 16. Having for all (now) 16 vortex pairs
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Figure 5.4: For an array of vortices with γ = 0.07 and Ω = 0.75 (a,b): (left): the total energy as a function
of time and (right): the z−component of the angular momentum as a function of time and the (c): log
(base e) of the total energy as a function of time compared with f(x) = a + bx, where a = 3.1211 and
b = -0.002084. We can see that with dissipation the total energy decreases. For larger values of γ, this
decrease is more significant.
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Figure 5.5: For an array of vortices with γ = 0.03 and Ω = 0.75, (left): the different energies/Lz of the
(a): total energy, (c): kinetic energy, (e): trap energy, (g): internal energy, (i): quantum energy, (k): Lz

and (right): the corresponding log (base e) values as a function of time (compared with f(x) = a + bx),
where (b): a = 2.5832 and b = 0.016962, (d): a = -3.9922 and b = 0.179224, (f): a = 1.7665 and b =
0.025185, (h): a = 2.6821 and b = -0.027926, (j): a = -13.0613 and b = 0.126919 and (l): a = -2.7013 and
b = 0.192771. 79
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Figure 5.6: For an array of vortices for Ω = 0.75 (a,b): (left): the increase rate of the total energy (red
circles/lower circles) and kinetic energy (green circles/upper circles) and (right): the increase rate of the
trap energy (blue circles/upper circles) and the decay rate of the internal energy (purple circles/lower
circles) and (c): the increase rate of the quantum energy (blue circles/lower circles) and the z−component
of the angular momentum (purple circles/upper circles) as a function of γ.
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the right starting-points, x and y, we put our vortex and anti-vortex pairs on the ±π/2 directions,

on ±r0 = 0.9 locations, so the initial distance between every vortex - anti vortex pair becomes,

d0 = 1.8.

Also, in the case of random vortex - anti vortex pairs, the different energies (except of the

internal energy, Eint and Lz, which increase) decrease exponentially, see Figure( 5.7(a) - 5.7(f)).

Notice that, we have calculated with the help of f(x) = α + βx, the decay rate β, see Figure( 5.8(a)

- 5.8(c)). The proper values of β, can be seen in Appendix C (see Table. C.15 and Table. C.16).

So, as we mentioned earlier, we place eight pairs of random vortex - anti vortex pairs in the

condensate. Finally, we obtain eight vortices due to the loss in the case, when the program is

running in imaginary time and due to the fact that some of the vortices have their initial position

outside of the system. The decrease of the number of these eight vortices divided by the initial

vortex - number vs. time for dissipations γ = 0.003; 0.048; 0.07 and 0.1 can be seen in Figure( 5.9(a)

- 5.9(e)). These functions are exponential functions and by that, we illustrate the behaviour of

the number of randomly placed vortices with time.

Our first conclusion is that the decay rate of number of the vortices vs. time varies linearly

with dissipation, γ (see Figure 5.9(f) and Table. C.17). Our second conclusion is that with smaller

γ the exponential function of number of vortices vs. time needs more time to decrease and for

larger γ’s, these exponential functions becomes steeper.

5.4 Motion of Vortex - Anti Vortex Pairs and Formation of

a Mini Turbulent System

For Ω = 0 and γ = 0.003, we show with the help of some density plots, the parallel motion of a

vortex-anti vortex pair with time, see Figure( 5.10(a) - 5.10(d)) and also the development of anni-

hilation scenario, see Figure( 5.10(e) - 5.11(d)), with sound wave production (see Figure 5.11(a),

Figure 5.11(b) and Figure 5.11(e)), that transform the condensate into a turbulent system, see

Figure 5.11(f).

5.5 Vortex Lattice Formation in a Rotating Bose-Einstein

Condensate

According to our original equation (see Eq. 1.52), we solve numerically the Gross-Pitaevskii equa-

tion. This form is prepared for our Fortran codes, (see Eq. 1.55). In this case, first we have an

equilibrium condensate (with stationary potential, Ω = 0) with a circular shape, (see Figure 5.12(a)

and Figure 5.12(b)).

The dynamics of the condensate density |Ψ |2 is investigated with the help of some contour-plots

of the density (see plots (a)), and of the phase (see plots (b)). This method is a direct proof of

a test of our computer code. We stress that this result is not new; (Tsubota et al., 2002) has

obtained similar results.
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Figure 5.7: For randomly placed vortex - anti vortex pairs and for dissipations: γ = 0.03; 0.032; 0.036;
0.04; 0.048; 0.056; 0.07; 0.072; 0.076 and 0.084 (from the red upper line to the red lower line) (a,b): (left):
the total energy and (right): the kinetic energy and (c,d): (left): the quantum energy and (right): the
internal energy and (e,f): (left): the trap energy and (right): the z-component of the angular momentum
as a function of time.
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Figure 5.8: For random vortex - anti vortex pairs with d0 = 1.8 (a,b): (left): the decay/increase rate, β of
the total energy (purple filled circles/middle filled circles), of the trap energy (blue circles/lower circles)
and of the internal energy (red filled squares/ upper filled squares) and (right): the increase rate, β of
the kinetic energy (purple circles/upper circles) and of the z−component of the angular momentum (blue
circles/lower circles) and (c): the increase rate, β of the quantum energy (purple circles) as a function of
γ.
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Figure 5.9: Number of vortices divided by the number of vortices at t = 0 as a function of time, for random
vortex - anti vortex pairs with d0 = 1.8 compared with f(x) = exp(βt) for (a):γ = 0.003 and β = −0.0089,
(b): γ = 0.048 and β = −0.0837, (c): γ = 0.07 and β = −0.1437, (d): γ = 0.1 and β = −0.184, (e): γ =
0.003; 0.048; 0.07; 0.1 (from top to bottom) and the corresponding β’s: -0.0089; -0.0837; -0.1437; -0.184,
(f): Decay rate, β of the number of vortices as a function of γ, corresponding to Figure( 5.9(a) - 5.9(d))

.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Density profile of the condensate for a vortex-anti vortex pair at (a): t1 = 15 and (b) t2 = 21.
(A vortex-anti vortex pair begins to move together.) and at (c): t1 = 25 and (d) t2 = 33. (The pair stops
to move together.) and at (e): t1 = 175 and (f) t2 = 176. (A vortex-anti vortex pair begins to destroy
each other).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Density profile of the condensate for a vortex-anti vortex pair at (a): t1 = 182 and (b)
t2 = 185. (We can see the annihilation and the sound wave production.) and at (c): t1 = 208 and (d)
t2 = 212. (Two vortices annihilate each other.) and at (e): t1 = 215 and (f) t2 = 222. (Two big sound
waves cross the condensate (e) and the system becomes turbulent (f)).
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As a consequence of setting for Ω = 0.85, the trapping potential begins to rotate. Because of

the small anisotropy of the trapping potential, Vtr, the condensate is elongated, (see Figure 5.12(c)

together with Figure 5.12(d)).

Later, since the boundary surface is unstable, the surface with low curvature becomes host to

surface waves, (see Figure 5.12(e) and Figure 5.12(f)). These ripples make themselves visible at

vortex cores, (see Figure 5.12(g) and Figure 5.12(h)).

More and more vortices enter the condensate, (see Figure 5.13(a); Figure 5.13(b); Figure 5.13(c)

and Figure 5.13(d)), and form a vortex lattice, (see Figure 5.13(e) and Figure 5.13(f)). At that

point, the angular momentum is transferred into quantised vortices and the condensate recovers

its circular like form.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.12: Density profile (left) and phase profile (right) of the condensate for Ω = 0.85 at (a,b) t =
0.2, (c,d) t = 11, (e,f) t = 16.4, (g,h) t = 20.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Density profile (left) and phase profile (right) of the condensate for Ω = 0.85 at (a,b) t =
22.4, (c,d) t = 26.8, (e,f) t = 54.8.
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Chapter 6

Summary - Future Work

6.1 Conclusions

We performed numerical simulations of vortex motion in a trapped Bose-Einstein condensate by

solving the two-dimensional Gross-Pitaevskii Equation in the presence of a simple phenomenolog-

ical model of interaction between the condensate and the finite temperature thermal cloud.

At zero temperature, the trajectories of a single, off - centred vortex precessing in the con-

densate, and of a vortex - antivortex pair orbiting within the trap, excite acoustic emission. At

finite temperatures the vortices move to the edge of the condensate and vanish. Our calculation

showed that, some features of the motion of vortices in a Bose-Einstein condensate can be mod-

elled relatively well using Schwarz’s vortex dynamics. In particular, we had been able to relate

our phenomenological damping parameter, γ, to friction coefficients α and α′.

So, by fitting the calculated vortex position (at given value of γ) to the solution of Schwarz’s

equation, we deduced the friction coefficients α and α′. The results slightly depends on the initial

position of the vortex because the condensate is not homogeneous near the edge. For initial

condition sufficiently close to the centre of the condensate, we found that, α is proportional to

the dissipation parameter γ. The transverse friction coefficient, α′, is much smaller than α, thus

more difficult to determine it. We found that, α′ is approximately proportional to γ only for small

values of γ.

It is well known that, in the absence of dissipation, a vortex - antivortex pair set at (± x0,

0) in an infinite homogeneous condensate moves with (dimensionless) translational speed v∞ =

1/(2x0) = 1/d0, where d0 is the initial separation distance between the vortices. We defined vpair ,

which is the measured velocity of the vortex pair when it moves near the centre parallel to the

y-axis. Then, we compared vpair with v∞.

Our result was compared to the classical velocity of a pair of point vortices, which was studied

by (Jones & Roberts, 1982). For larger initial separation distance, our result,vo was similar to the

authors’ result, va. For example, for d0 = 3.5, vo = 0.29 and va = 0.3. For smaller distance, our

result was different from their. For example, for d0 = 1.78, vo = 0.56 and va = 0.4.
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The natural question which arised was then, the relation between γ and the temperature

ratio T/Tc, where Tc is the critical temperature. To answer this question we used results of

unpublished preliminary investigations (Jackson et al., 2008) using the Zaremba-Nikuni-Griffin

(ZNG) finite-temperature theory Zaremba et al. (1999), which showed that, for C = 500 and

for a single vortex initially located at (x0,y0) = (1.3,0), the effective friction coefficient is α ≈
0.0018 at T/Tc = 0.15 and α = 0.0025 at T/Tc = 0.267. Similar results were found for (x0,y0) =

(0.65,0). Setting C = 500, we reran our calculations of single - vortex trajectories with the same

initial condition (x0,y0) = (1.3,0) and found, that we needed to set γ = 0.044 to obtain the same

value α = 0.0020 of ref Jackson et al. (2008), and γ = 0.08 to obtain α = 0.0025. We concluded

(Madarassy & Barenghi, 2008a) that γ = 0.044 and 0.08 correspond respectively to T/Tc = 0.15

and 0.27. The effective friction coefficient, α from unpublished investigations of Jackson et al.

(2008) quantitatively agreed with that found in (Berloff & Youd, 2007b,a): α = 0.1(T/Tc)
2, which

gave α = 0.0022 for T/Tc = 0.15 and α = 0.007 for T/Tc = 0.267 (compared with 0.0018 and

0.0025 respectively).Finally, our small values of α′ were consistent with the result of the ZNG

theory (Jackson et al., 2008) and with Berloff’s model (Berloff & Youd, 2007b,a).

In the presence of dissipation, the total energy, Etot, of the vortex - antivortex pair decreases

with time, and so do the contributions Ekin, Eint, Eq and Etrap to Etot. We observed, that the

energy decay was faster if the vortices of the pair had smaller initial separation distances. Our

study, in regard to the system’s energy balance showed, that we had the best values for the case

of small dissipation and large initial separation distance between the vortices.

We studied the sound production with the help of sound energy and found an anti-correlation

between the sound energy and vortex energy. We observed that for different dissipations, the

radial position of the vortex vs time behaved as an exponential function. The same was valid for

random vortex - anti vortex pairs, when we investigated the number of vortices as a function of

time for different γ’s.

We suggested a method to create turbulence in a Bose-Einstein condensate. Our aim was to

show that the phase imprinting method could be used to study the formation of rotating turbulence

accompanied by acoustic emissions in a simple 2-dimensional condensate. This method consisted

firstly, in creation of an ordered vortex array, and, secondly, in imprinting a phase difference in

different regions of the condensate. By solving the two-dimensional Gross-Pitaevskii equation, we

showed that the motion of the resulting positive and negative vortices was disordered (Madarassy

& Barenghi, 2008b).
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6.2 Decay of Soliton - like Perturbations into Vortices.

Creation of a Mini Turbulent Vortex System

Finally, we suggest a method to create turbulence in a Bose-Einstein condensate. The method

consists in, firstly, creation of an ordered vortex array, and, secondly, imprinting a phase difference

in different regions of the condensate in the case of no vortices and a vortex array.

The study of the turbulence in superfluids - atomic Bose-Einstein condensates and liquid

helium II. (Barenghi et al., 2001) - help us to understand better issues of classical Euler fluid

dynamics. The large scale turbulence of quantised vortices, was well studied in superfluid helium

II and He− 4 (Tsubota et al. (2004); Araki et al. (2003)). Many remarkable similarities between

classical turbulence and superfluid turbulence have been noticed. For example the classical k−5/3

Kolmogorov energy spectrum (where k is the wavenumber) was observed in helium II, when

agitated by rotating propellers (Maurer & Tabeling, 1998). The same spectrum was apparent in

the numerical simulations of Nore et al (Nore et al., 1997) and of Tsubota and collaborators (Araki

et al., 2002; Kobayashi & Tsubota, 2005). Another example is the classical t−3/2 temporal decay

of turbulence (where t is time) which was measured in helium II behind a towed grid (Smith et al.,

1993).

The disadvantage of studying turbulence in BEC is that the system is small with few vortices.

On the other hand, such a system can aid the study of turbulence, for example there is a relatively

good visualisation of individual vortices with more details. Particularly, we can study details of

transformations of the kinetic energy into acoustic energy due to the vortex reconnection and

vortex acceleration.

With the Phase Imprinting Method ψ → ψeiπ, we produce dark soliton-like perturbations in

two ways. In the Case I (initially no vortices in the condensate), in the upper two quadrants:

ψ
′

= ψ for y < 0 and ψ
′

= ψeiπ for y > 0 (see Figure 6.1(b)). In the Case II, we use this method

in the upper left quadrant, x < 0 and y > 0 and bottom right quadrant, x > 0 and y < 0 (see

Figure 6.4(b), Figure 6.5(a) and Figure 6.5(b)).

Dark solitons, in matter waves are characterised by a particular local density minimum and a

sharp phase gradient of the wave function at the position of the minimum. Dark solitons are 1D

objects and in 2D and 3D systems are characterised to be unstable. They decay into more stable

vortex structures. This phenomenon is known as the snake-instability and it was observed first in

nonlinear optics (Mamaev et al., 1996).

In the Case I, a plot of the density profile, for Ω = 0 and γ = 0, shows that the perturbation

starts to move and bends due to the difference in the density (see Figure 6.2(a)). Its velocity is

larger in the centre and three pairs of vortices go into the boundary, therefore finally we have only

two vortex - anti vortex pairs (see Figure 6.2(b)).
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(a) (b)

Figure 6.1: (a): Density of the condensate at the beginning without perturbations/vortices. (b): Pertur-
bation created from the phase change. An original sound wave forms and propagates.

(a) (b)

Figure 6.2: (a): Perturbation decays into vortex pairs and simultaneously sound waves appear. (b): From
originally five pairs of vortices, only two pairs have survived.

(a) (b)

Figure 6.3: (a): Phase of the condensate for Case I. At the edge of the condensate both Imag(ψ) and
Real(ψ) → 0. Clearly, the phase, which is: Phase = tan−1 (Imagψ/Realψ) 9 0. We note the large
fluctuations of the phase on the outer part of the condensate. (b): We can see the different phase in the
two regions: y > 0 and y < 0.
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We define the phase as: Phase = tan−1 (Imψ/Reψ) (see Figure 6.3(a), where the different

colours describe the phase change, ∆Φ which is π and vary from 0 to π. In Figure 6.3(b), we

present a 3D description of the phase function.

I the Case II, following Leadbeater et al. (2001), at t = 0 we start with a non-rotating conden-

sate to have our initial Thomas -Fermi condition. Later, we put Ω = 0.85 and we create a stable

lattice of 20 vortices. Density and phase profiles of the condensate are shown in Figure 6.4(a) and

Figure 6.4(b). At t = 200 (see Figure 6.4(b)), we suddenly perform the following phase imprinting

as we explained before:

ψ → ψ for x < 0, y < 0 and x > 0, y > 0, (6.1)

ψ → eiπψ for x < 0, y > 0 and x > 0, y < 0. (6.2)

Figure 6.5(a) and Figure 6.5(b) show the condensate after the phase imprinting. Positive and

negative vortices interact and move due the velocity field which they induce on each other. Fig-

ure 6.6(a) and Figure 6.6(b) show density and phase profiles at t = 201.95 and reveal that large

density oscillations (sound waves) are present in the condensate.

Also, in the Case II, by applying twice the Phase Imprinting method we create mini turbulence

in the BEC, (see Figure 6.6(a) and Figure 6.6(b)).

So, the development of the turbulence is visualised by the snapshots of the density and phase

profile, (see Figure 6.4(a), Figure 6.4(b), Figure 6.5(a), Figure 6.5(b), Figure 6.6(a) and Fig-

ure 6.6(b)).

On account of the confined and finite size of the condensate, the sound waves are reflected

from the edge of the condensate and reinteract with the vortex pairs. When Esound is approaching

its maximum, Evortex is approaching its minimum. As we know, Ekin = Esound + Evortex, (see

Figure 6.7). The interaction of positive and negative vortices leads to a disordered motion of the

vortices, see (Madarassy & Barenghi, 2008b).

In our future work, we plan to examine the formation of patterns of the same type of vortices

in the case of vortex - anti vortex pairs placed randomly in the condensate. In order to observe

this phenomenon, we need a larger condensate with more vortex - anti vortex pairs.
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(a) (b)

Figure 6.4: Stable condensate with N = 20 vortices for Ω = 0.85 (a): at t = 199.8 before the phase
imprinting. The vortices are visible as holes in the density profile or (b): as discontinuities from 0 to 2π
of the phase profile at t = 200.

(a) (b)

Figure 6.5: (a): Density and (b): phase profiles at t = 200.4 corresponding to Figure 6.4.

(a) (b)

Figure 6.6: (a): Density and (b): phase profiles at t = 201.95 corresponding to Figure 6.4.(mini turbu-

lence).
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Figure 6.7: Kinetic energy (solid curve, top), vortex energy (dashed curve, middle) and sound energy
(dotted curve, bottom).
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Appendix A

Connection Between the

Precession Frequency of a Single

Vortex and Vortex Pair

We would like to find a connection between the vortex precession frequency in the case of a single

vortex and in the case of vortex - anti vortex pairs. Let us use vt, for the tangential velocity and

vi, for the velocity induced by the other vortex from the vortex pair.

In the beginning, the vortex-anti vortex pair move parallely in the y-direction, having as initial

positions x1, x2 and y1 = y2 = 0; the separation distance between them is 2x. These two velocities

act on both vortices, but for simplicity let us study only one of them. So, we have,

vt =
~

2mx
ŷ =

~

2m
(0, x) (A.1)

and

vi = −ωrΦ̂ = ω(y,−x). (A.2)

The velocity vi is arising from the inhomogeneous density in the condensate, and is the velocity

a single vortex would have at that point. At some point, on a line parallel with the y-axis, the

following is true:

dx

dt
= ωy (A.3)

and

dy

dt
=

~

2mx
− ωx. (A.4)

Form:

d2x

dt2
= ω

dy

dt
. (A.5)
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vi

r
Φ

x

y

r

v
t

vi

Φ

z

x

y

Figure A.1: .The velocities acting on both vortex and anti-vortex. Here, we choose one of them. Upper
plot: The velocity induced by the neighbour vortex being on a distance of r. Lower plot: The vortex-anti
vortex move parallely on the y-direction (because of their initial positions) with a tangential velocity, vt.
We can see the relation between vt and vi.

Substituting Eq.( A.4) in Eq.( A.5) and putting ~ = 1 and m = 1,

d2x

dt2
=

ω

2x
− ω2x. (A.6)

To find the equilibrium state, x0 for a single vortex we write:

d2x

dt2
= 0, ⇒ ω

2x0
= ω2x0. (A.7)

This condition gives:

x0 =
1√
2ω
, or ω =

1

2x2
0

. (A.8)

Here, x0 is the equilibrium position and ω is the frequency of motion for a single vortex. Introduce

a small deviation, δ

δ =
x− x0

x0
≤ 1, (A.9)

or

δ =
x

x0
− 1 ≤ 1, (A.10)

from which,

x = x0(δ + 1),
x

x0
= δ + 1. (A.11)
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Substitute ω from Eq.( A.8) into Eq.( A.6) to find

d2x

dt2
=

1

4xx2
0

− x

4x2
0

=
1

4x3

(
x2

x2
0

− x4

x4
0

)
, (A.12)

from which we can remark that:

d2x

dt2
= x0

d2δ

dt2
. (A.13)

Substitute Eq.( A.11) into Eq.( A.12). The strategy then consists of writing x/x0 = δ + 1 and

(A.13) and then substituting these in (A.12). By using (1+ δ)2 ≃ (1+2δ) and (1+ δ)4 ≃ (1+4δ),

after some arrangements we obtain:

x0
d2δ

dt2
=

1
[
(1 + δ)2 − (1 + δ)4

]

4x3
0(1 + δ)3

(A.14)

or

d2δ

dt2
=

(1 − 3δ)

4x4
0

[(1 + 2δ) − (1 + 4δ)] , (A.15)

which becomes

d2δ

dt2
=

1 − 3δ

4x4
0

(−2δ). (A.16)

So, finally we get

d2δ

dt2
≈ −2δ

4x4
0

≈ −1

2x4
0

δ. (A.17)

Now, define the Harmonic Oscillator Equation:

d2δ

dt2
= −ω2

vδ, (A.18)

with solution:

δ = Asin(ωvt). (A.19)

Here A is the amplitude of the oscillator and ωv the frequency of motion for a vortex-anti vortex

pair. Under these conditions, from (A.18) and (A.17) we conclude:

ω2
v =

1

2x4
0

, ⇒ ωv =

√
1

2x4
0

. (A.20)

We know from Eq.( A.8), that

x2
0 =

1

2
ω, (A.21)

so finally, the frequency of the vortex pair become:

ωv =

√
1

2x4
0

=

√
1

2 1
4ω2

=
√

2ω2. (A.22)
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From here, the desired expression for the frequency of motion of the vortex-anti vortex pair with

the help of the frequency of motion for a single vortex is:

ωv ≃
√

2ω. (A.23)

Here, ωv is the frequency of motion for the vortex-anti vortex pair and ω is the frequency of motion

for a single vortex.
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Appendix B

Detailed Calculations of the

Hydrodynamic Equations

Firstly, we calculate:

∇ψ = ∇ReiS + i∇SReiS = eiS(∇R+ iR∇S), (B.1)

and then

∇ · ∇ψ = eiS [∇2R+ 2i∇S∇R+ i∇2SR−R(∇S)2]. (B.2)

Secondly, we calculate the time derivative of ψ:

∂ψ

∂t
=

(
∂R

∂t
+ i

∂S

∂t
R

)
eiS . (B.3)

We substitute equations B.2 and B.3 into the NLSE, (see Eq.( 1.30)), and hence

(i− γ)~

(
∂R

∂t
+ i

∂S

∂t

)
eiS = − ~

2

2m
eiS

[
∇2R+ 2i∇S · ∇R+ iR∇2S −R(∇S)2

]
+ gR3eiS −µReiS .

(B.4)

Consider now, the real and imaginary parts of the NLSE. The real part is expressed as:

−~

(
R
∂S

∂t
+ γ

∂R

∂t

)
= − ~

2

2m

(
∇2R −R(∇S)2

)
+ gR3 − µR, (B.5)

and the imaginary part is given by:

~

(
∂R

∂t
− γR

∂S

∂t

)
= − ~

2

2m

(
2∇S · ∇R+R∇2S

)
. (B.6)

Using ρ = mR2, v = (~/m)∇S, and (∂R/∂t) = (1/2mR)(∂ρ/∂t), divide Eq.( B.5) by mR and

rearrange for ∂S/∂t, to obtain:

∂S

∂t
= − γ

R

∂R

∂t
+

~

2mR

(
∇2R−R(∇S)2

)
− gR2

~
+
µ

~
. (B.7)
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Substitute ∂S/∂t into the imaginary part of the NLSE, Eq.( B.6). So that,

~

{
∂R

∂t
− γR

[
− γ

R

∂R

∂t
+

~

2mR

(
∇2R−R(∇S)2

)
− gR2

~
+
µ

~

]}
= − ~

2

2m

(
2∇S · ∇R+R∇2S

)
.

(B.8)

and

~
∂R

∂t
+
γ2R~

R

∂R

∂t
−~

2γR

2mR
(∇2R−R

(
∇S)2

)
+

~γR3g

~
−~γRµ

~
= − ~

2

2m

(
2∇S · ∇R +R∇2S

)
. (B.9)

Multiply both sides of Eq.( B.9) by 2mR/~.

We form:

∇ · (ρv) = ∇ ·
(
mR2 ~

m
∇S

)
= ~∇ · (R2∇S) = ~(2∇R∇S) +R∇2S)R. (B.10)

Note, the first and last two terms. Use them together with substitution of R =
√
ρ/m, R2 = ρ/m,

∇S = vm/~ and ∂R/∂t=(1/2mR)(∂ρ/∂t) into the Eq.( B.9).

∂ρ

∂t
(1+γ2)−~γ

√
ρ

m

(
∇2

√
ρ

m
−

√
ρ

m

(
v2m2

~2

))
+

2mγ

~
g
ρ2

m2
−γ2m

~

ρ

m
µ = −~(2∇R∇S)+R∇2S)R.

(B.11)

Then, the imaginary part of the NLSE becomes:

∂ρ

∂t
(1 + γ2) − γ~

√
ρ

m
∇2

√
ρ

m
+
γv2m2

~

ρ

m
+

2γg

m~
ρ2 − 2γρ

~
µ+ ∇ · (ρv) = 0 (B.12)

and after rearranging, we obtain the final form of the imaginary part of the NLSE:

∂ρ

∂t
(1 + γ2) + ∇ · (ρv) +

2γρ

~

(
mv2

2
+
gρ

m
− µ

)
− γ~

√
ρ

m

∂2
√

ρ
m

∂xj∂xj
= 0. (B.13)

This equation is a continuity equation modified by extra terms due to the dissipation γ.

Let us now continue our calculations with the real part of the NLSE, Eq.( B.5). Divide it,

by mR and substitute R by ρ and ∇S by v with the help of ρ = mR2, v = (~/m)∇S and

(∂R/∂t) = (1/2mR)(∂ρ/∂t).

We therefore obtain:

− ~

mR

(
R
∂S

∂t
+ γ

1

2mR

∂ρ

∂t

)
= − ~

2

2m2R

(
∇2R −R

v2m2

~2

)
+ gR3 − µR, (B.14)

and

− ~

m

∂S

∂t
=

γ~m

2m2ρ

∂ρ

∂t
− ~

2

2m2

√
m

ρ
∇2

√
ρ

m
+

1

2
v2 +

g

m

ρ

m
− µ

m
, (B.15)

or
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− ~

m

∂S

∂t
=

γ~

2mρ

∂ρ

∂t
− ~

2

2m2

m1/2

ρ1/2m1/2
∇2ρ1/2 +

1

2
v2 +

gρ

m2
− µ

m
, (B.16)

− ~

m

∂S

∂t
=

γ~

2mρ

∂ρ

∂t
− ~

2

2m2
ρ−1/2 ∂

2ρ1/2

∂xj∂xj
+

1

2
vjvj +

gρ

m2
− µ

m
. (B.17)

Apply ∂/∂xi to Eq.( B.17), so that:

− ~

m

∂

∂t

∂S

∂xi
=
γ~

2m

(
−ρ−2 ∂ρ

∂xi

∂ρ

∂t
+ ρ−1 ∂2ρ

∂xi∂t

)
− ~

2

2m2

∂

∂xi

(
ρ−1/2 ∂

2ρ1/2

∂xj∂xj

)
+

1

2

(
∂vj
∂xi

vj + vj
∂vj
∂xi

)
+

g

m2

∂ρ

∂xi
.

(B.18)

Then ∂S/∂xi = (vim)/~, using v = (~/m)∇S = (~/m)∂S/∂xi and so:

− ~

m

∂

∂t

vim

~
= − γ~

2m

(
− 1

ρ2

∂ρ

∂xi

∂ρ

∂t
+

1

ρ

∂2ρ

∂xi∂t

)
− ~

2

2m2

∂

∂xi

(
ρ−1/2 ∂

2ρ1/2

∂xj∂xj

)
+ vj

∂vj
∂xi

+
g

m2

∂ρ

∂xi
.

(B.19)

Multiply both parts by −ρ,

ρ

(
∂vi
∂t

+ vj
∂vj
∂xi

)
=

−g
m2

ρ
∂ρ

∂xi
− γ~

2m

(
−1

ρ

∂ρ

∂xi

∂ρ

∂t
+

∂2ρ

∂xi∂t

)
+

~
2

2m2

[
ρ1/2 ∂

∂xi

(
∂2ρ1/2

∂xj∂xj

)
− ∂ρ1/2

∂xi

∂2ρ1/2

∂xj∂xj

]
.

(B.20)

Consider the final term in the [..] bracket, on the right hand side of Eq.( B.20):

ρ1/2 ∂

∂xi

(
∂2ρ1/2

∂xj∂xj

)
− ∂ρ1/2

∂xi

∂2ρ1/2

∂xj∂xj
, (B.21)

and note that

∂

∂xj

[
ρ1/2 ∂

2ρ1/2

∂xi∂xj
− ∂ρ1/2

∂xi

∂ρ1/2

∂xj

]
= ρ1/2 ∂

∂xi

(
∂2ρ1/2

∂xj∂xj

)
− ∂ρ1/2

∂xi

∂2ρ1/2

∂xj∂xj
, (B.22)

were, we have used ρ1/2(∂/∂xj)(∂
2ρ1/2∂xi∂xj) = ρ1/2(∂/∂xi)(∂

2ρ1/2∂xj∂xj)

Thus,

ρ

(
∂vi
∂t

+ vj
∂vj
∂xi

)
= − g

m2
ρ
∂ρ

∂xi
+

~
2

2m2

∂

∂xj

[
ρ1/2 ∂

2ρ1/2

∂xi∂xj
− ∂ρ1/2

∂xi

∂ρ1/2

∂xj

]
− γ~

2m

(
−1

ρ

∂ρ

∂xi

∂ρ

∂t
+

∂2ρ

∂xi∂t

)
,

(B.23)

where: ρ(∂ρ/∂xi) = (1/2)(∂ρ2/∂xi).

Define:

p =
gρ2

2m2
, σij =

~
2

2m2

[
ρ1/2 ∂

2ρ1/2

∂xi∂xj
− ∂ρ1/2

∂xi

∂ρ1/2

∂xj

]
, (B.24)

where p is a pressure and σij are the quantum stresses, and note that:
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ρ
∂2

∂xi∂xj

(
ln ρ1/2

)
= ρ

∂

∂xi

(
1

ρ1/2

∂ρ1/2

∂xj

)
= −∂ρ

1/2

∂xi

∂ρ1/2

∂xj
+ ρ1/2 ∂

2ρ1/2

∂xi∂xj
. (B.25)

Also, σij finally become:

σij =
~

2

2m
ρ

(
∂2 ln ρ1/2

∂xi∂xj

)
=

~
2

4m2
ρ
∂2 ln ρ

∂xi∂xj
. (B.26)

Thus, the real part of the NLSE has the form:

ρ
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∂ρ
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∂2ρ

∂xi∂t

)
. (B.27)
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Appendix C

Tables

C.1 Tables Relating Connections Between α, α′, γ, x0, ω, τ

and the Exponential Constant of the Radial Position

of the Vortex, Γ1

See, Tables: C.1; C.2; C.3; C.4; C.5; C.6; C.7; C.8; C.9 and C.10.

C.2 Tables Relating Different Energies, Lz, the Initial Posi-

tions of Eight Vortex Pairs and the Decay Rate of the

Number of Vortices

See, Tables: C.11; C.12; C.13; C.14; C.15; C.16 and C.17.

x0 γ α α′

0.9 0.001 0.00477379 0.00219247
0.9 0.003 0.01518787 0.00292205
0.9 0.010 0.04895356 0.01398204
0.9 0.030 0.14171156 0.03371915
2.0 0.001 0.00454510 0.00135894
2.0 0.003 0.01449282 0.00187937
2.0 0.010 0.04747512 0.00498293
2.0 0.030 0.13704750 0.01673209

Table C.1: Friction coefficients, α and α′ as a function of γ for initial positions: (x0, y0) = 0.9 and 2.
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γ x0 α α′

0.003 0.7 0.01544760 0.00385565
0.003 0.9 0.01518787 0.00292205
0.003 1.1 0.01499830 0.00253312
0.003 2.0 0.01449282 0.00187938

Table C.2: Friction coefficients, α and α′ as a function of initial position, (x0, 0) for a single vortex
(γ = 0.003).

α x0

0.014493 0.6
0.014493 0.9
0.015884 1.2
0.015019 1.5
0.014740 1.8
0.014740 2.1
0.013906 2.4
0.014141 2.7
0.014462 3.0
0.013628 3.3
0.010445 3.6
0.012361 3.9
0.014141 4.2
0.011372 4.5
0.011496 4.8
0.010939 5.1
0.009827 5.4
0.009831 5.7

Table C.3: Friction coefficient α as a function of initial position (x0, 0) for a single vortexo (γ = 0.003).

α′ ω x0

0.003956 0.1098 0.6
0.005737 0.1199 1.8
0.004203 0.1320 2.4
0.004821 0.1321 3.0
0.004079 0.2038 3.6
0.004149 0.2260 4.2
0.004493 0.2500 4.8
0.005074 0.2855 5.4

Table C.4: Friction coefficient α′ as a function of ω and (x0, 0) for a single vortex (γ = 0.003).
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τ ω = 2π
τ x0

58.3990 0.107591 0.3
56.8400 0.110542 0.6
55.7295 0.112744 0.9
54.0147 0.116324 1.2
53.8500 0.116679 1.5
52.9200 0.118729 1.8
51.4800 0.122051 2.1
49.9200 0.125865 2.4
48.3600 0.129925 2.7
47.6400 0.131889 3.0
45.2400 0.138885 3.3
42.9600 0.146256 3.6
40.9603 0.153397 3.9
38.8267 0.161826 4.2
36.8800 0.170368 4.5
33.2666 0.188873 4.8
30.4000 0.206683 5.1
26.4534 0.237519 5.4
22.5334 0.278838 5.7
19.0267 0.330229 6.0

Table C.5: Period τ and frequency ω of motion for a single vortex as a function of (x0, 0) (γ = 0.003).

γ τ ω = 2π
τ

0.000 57.9040 0.108510
0.004 56.4643 0.111277
0.008 56.0934 0.112013
0.012 56.0534 0.112093
0.016 55.8667 0.112467
0.020 55.6200 0.112966
0.024 55.4266 0.113360
0.028 55.4040 0.113406
0.032 55.3400 0.113538
0.036 54.8320 0.114589
0.040 53.6640 0.117084
0.044 53.0933 0.118342
0.048 51.9360 0.120979
0.052 50.8320 0.123607
0.056 48.8960 0.128501
0.060 47.5307 0.132192
0.064 41.5707 0.151144

Table C.6: Period τ and frequency ω of motion for a single vortex as a function of γ for (x0, y0) = (0.9, 0).
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γ τ ω = 2π
τ

0.000 54.8721 0.114506
0.004 54.6000 0.115076
0.008 53.7600 0.116875
0.012 53.4617 0.117527
0.016 53.0400 0.118461
0.020 51.8858 0.121096
0.024 51.6235 0.121712
0.028 51.2797 0.122527
0.032 49.9200 0.125865
0.036 48.9763 0.128290
0.040 45.5210 0.138028
0.044 44.9758 0.139701
0.048 43.3998 0.144774

Table C.7: Period, τ and frequency, ω of motion for one vortex as a function of γ for (x0, y0) = (1.45, 0).

γ Γ1

0.004 0.00216
0.008 0.00434
0.016 0.00872
0.020 0.01084
0.024 0.01300
0.028 0.01510
0.032 0.01713
0.036 0.01918
0.044 0.02302
0.048 0.02482
0.052 0.02670
0.056 0.02851
0.060 0.03014
0.064 0.03187
0.068 0.03329
0.076 0.03647
0.080 0.03807

Table C.8: Exponential constant, Γ1 of the radius of vortex trajectory as a function of γ for a single vortex
with (x0, y0) = (0.9, 0).
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γ Γ1

0.004 0.002167
0.008 0.004385
0.012 0.006599
0.020 0.010957
0.028 0.015196
0.032 0.017208
0.036 0.019254
0.044 0.023206
0.052 0.027095
0.056 0.028609
0.060 0.030421
0.064 0.031647
0.068 0.033803
0.072 0.035269
0.076 0.036695
0.080 0.038559

Table C.9: Exponential constant, Γ1 of the radius of vortex trajectory as a function of γ for a single vortex
with (x0, y0) = (1.45, 0).

x0 Γ1

0.3 0.001508
0.9 0.001616
1.2 0.001629
1.5 0.001644
2.7 0.001650
3.0 0.001653
3.6 0.001673
4.2 0.001691
4.8 0.001717
5.1 0.001753
5.4 0.001801
5.7 0.001948
6.0 0.003012

Table C.10: Exponential constant, Γ1 of the radius of vortex trajectory as a function of x0 for a single
vortex with γ = 0.003.

Energies/Lz Max value Sat value Difference
Etot 21.947500 21.797700 0.1498000
Ekin 3.257800 3.177700 0.0801000
Etrap 12.381300 12.267600 0.1137000
Eint 6.294800 6.328200 -0.0334000
Eq 0.000054 0.000052 0.0000015
Lz 14.714500 14.526600 0.1879000

Table C.11: Maximum values, saturated values and difference between them for Etot, Ekin, Etrap, Eint,
Eq and Lz for an array of vortices with γ = 0.03 and Ω = 0.75.
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Energies/Lz Max value Sat value Difference
Etot 21.8639000 21.647200 0.2167000
Ekin 3.1772000 3.084700 0.0925000
Etrap 12.3721000 12.160700 0.2114000
Eint 6.3203000 6.378200 -0.0579000
Eq 0.0000526 0.000051 0.0000016
Lz 14.5624000 14.257900 0.3045000

Table C.12: Maximum values, saturated values and difference between them for Etot, Ekin, Etrap, Eint,
Eq and Lz for an array of vortices with γ = 0.07 and Ω = 0.75.

γ β:Etot β:Ekin β:Etrap β:Eint β:Eq β:Lz
0.003 0.001366 0.013760 0.001912 -0.002646 0.009497 0.009496
0.030 0.016962 0.179224 0.025185 -0.027926 0.126919 0.192771
0.070 0.047666 0.835296 0.060384 -0.051805 0.216713 0.825842

Table C.13: Increase rate of Etot, Ekin, Etrap, Eint (decay rate), Eq and Lz (when the vortices come in
in the condensate) as a function of γ = 0.003; 0.03 and 0.07 for Ω = 0.75.

x0 y0 Sign
-5.6011 -5.7908 -1.0
-10.3988 -9.3938 1.0
0.1205 5.8287 -1.0
5.2207 8.9890 1.0
-5.5100 5.7926 -1.0
0.2419 7.4978 1.0
3.1515 -4.5491 -1.0
7.4946 -0.4094 1.0
-9.4201 7.1220 -1.0
-3.7025 5.3030 1.0
4.6748 -6.0519 -1.0
2.8308 -0.3423 1.0
7.2828 -9.3417 -1.0
5.7792 -3.5332 1.0
-7.9771 -1.7442 -1.0
-5.3021 3.6264 1.0

Table C.14: Initial positions of eight pairs of vortex - anti vortex (totally 16) with a proper sign.

γ βEtot
βEtrap

βEint
βEquant

0.028 -0.00003674 -0.00005850 0.00003614 -0.0013059
0.036 -0.00003296 -0.00005168 0.00003293 -0.0011646
0.040 -0.00003052 -0.00004775 0.00003053 -0.0010795
0.048 -0.00002705 -0.00004202 0.00002694 -0.0009597
0.056 -0.00002454 -0.00003782 0.00002428 -0.0008722
0.072 -0.00002119 -0.00003197 0.00002041 -0.0007512
0.076 -0.00002054 -0.00003081 0.00001961 -0.0007274
0.084 -0.00001931 -0.00002863 0.00001815 -0.0006860

Table C.15: Decay rate of total energy, trap energy and quantum energy and increase rate of internal
energy for different γ’s.
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γ βEkin
βLz

0.020 -0.120567 -0.129676
0.028 -0.110014 -0.118706
0.030 -0.106843 -0.117571
0.032 -0.103876 -0.113986
0.036 -0.098008 -0.107535
0.040 -0.091974 -0.101411
0.048 -0.082159 -0.092014
0.056 -0.073988 -0.084387
0.070 -0.063253 -0.071122
0.072 -0.061965 -0.071133
0.076 -0.059595 -0.070027
0.084 -0.055184 -0.063537

Table C.16: Decay rate of kinetic energy and z−component of the angular momentum for different γ’s.

γ β
0.003 -0.0089
0.048 -0.0837
0.070 -0.1437
0.100 -0.1840

Table C.17: Decay rate β of number of vortices and the corresponding γ when the random vortex - anti
vortex pairs were placed in the condensate with d0 = 1.8.
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Parts of the Numerical Code

We have a main program and modules (global, solve, subs...), which are connected to the main pro-

gram. For example, information about the vortex trajectory is included in subroutine: get trajectory

which is in module: subs. From the main program we can always call the trajectory.

After compiling the program in the vortex init.dat, we choose the case of one vortex, vor-

tex - anti vortex pair(s), vortex - vortex pair(s) and random vortex - anti vortex pairs. So,in

vortex init.dat, we choose the desired number with the proper signs and positions of the vortices.

2.............sign

−1.3..0.......1.

1.3.....0....−1.

Later, we use it in the vortex/vortices initial state(s). If the first number, which describe the

number of vortices is a negative number, the program knows that we have chosen the Random

Method. So,

!*********************************************************

module initial

private

real, allocatable :: vortex(:, :)

integer :: vortex count

contains

subroutine vortex init(psi, dx, dy)

use parameters

implicit none

!First, we define the variables complex, dimension(0 : nx, 0 : ny) :: psi

real, dimension(0 : nx, 0 : ny) :: density

complex :: psi local, eye

real, intent(in) :: dx, dy

real, dimension(0 : nx) :: xp

real, dimension(0 : ny) :: yp
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real :: c1 = −0.7, c2 = 1.15

real :: rr, amp, xpos, ypos,my small radius, v sign, r number, i k, x number, y number

integer :: i, j, k

logical :: read vortices, lrandom = .false., lcheck = .true.

my small radius = 1e− 3

eye = (0.0, 1.0)

!The code needs to know if the file ′vortex init.dat′ exists. So, if it does, we can use it

to initiallise the vortices.

INQUIRE(FILE =′ vortex init.dat′, EXIST = read vortices)

k = 0

!If ′read vortices′ is ′true′

if(read vortices) then

!′vortex init.dat′ is opened

open(81, f ile =′ vortex init.dat′)

!The number of vortices is read

read(81, fmt =′ (i5)′)vortex count

! If the inserted number is negative, we have the random case.

if(vortex count < 0) then

!We take its absolute value, so that this number is compatible with other cases.

vortex count = abs(vortex count)

! Here, we decide to use the random case

lrandom = .true.

endif

allocate(vortex(vortex − count, 3))

!’lcheck’ can be opened or not

if(lcheck)open(85, f ile=′ locations.dat′)

!A do− loop, where ′vortex count′ is the total number of vortices.

do k = 1, vortex count

! Here, we define the sign of each vortex

i k = (−1.) ∗ ∗k
! The random case

if(lrandom) then

! The pair wise case

if(lpairwise) then

! For anti-vortices is valid

if(i k < 0) then

!We call the first random number

call random number(x− number)

!We call the second random number

call random number(y − number)
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!We create the first random number, which is compatible with the condensate size

x number = ((x number − 0.5) ∗ 16)

!We create the second random number, which is compatible with the condensate size

y number = ((y number− 0.5) ∗ 16)

!We call the third random number

call random number(r number)

!We form a random angle, in which direction the vortex/vortex-pair will move (in the beginning )

r number = r number ∗ 2 ∗ pi
print∗,′ vortex trajectory angle′, r number ∗ 360./(2. ∗ pi)
!The x-position of the anti-vortex

vortex(k, 1) = x number + r0 ∗ cos(r number− (0.5 ∗ pi))
!The y-position of the anti-vortex

vortex(k, 2) = y number + r0 ∗ sin(r number − (0.5 ∗ pi))
else

!The x-position of the vortex

vortex(k, 1) = x number + r0 ∗ cos(r number+ (0.5 ∗ pi))
!The y-position of the vortex

vortex(k, 2) = y number + r0 ∗ sin(r number + (0.5 ∗ pi))
endif

else

! We call the first random number for the case of ’no’ pair wise and form the x-position

call random number(r number)

vortex(k, 1) = ((r numb r − 0.5) ∗ 16)

! We call the second random number for the case of ’no’ pair wise and form the y-position

call random number(r number)

vortex(k, 2) = ((r number − 0.5) ∗ 16) endif

!Here, we choose the sign for the vortices

vortex(k, 3) = i k

if(lcheck)write(85, ∗)vortex(k, 1), vortex(k, 2), vortex(k, 3)

else

! This is the case of ’no’ randomly placed vortices, the program read the file ′vortex init.dat′

read(81, ∗, end = 123)vortex(k, 1), vortex(k, 2), vortex(k, 3)

! We have on the screen: the number, the x-, the y-position(s) and the sign of the vortices

print∗,′ vortex′, k,′ :′, vortex(k, 1), vortex(k, 2), sign(1., vortex(k, 3))

endif

enddo

if(lcheck)close(85)

close(81)

do j = 0, Ny

!We form a square with y-coordinates

yp(j) = yl+ j ∗ dy
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do i = 0, Nx

!We form a square with x-coordinates

xp(i) = xl + i ∗ dx
! add the vortices

do k = 1, vortex count

!Distance between the vortex and points on the x-directions xpos = xp(i) − vortex(k, 1)

!Distance between the vortex and points on the x-directions ypos = yp(j) − vortex(k, 2)

!The radius with the help of ’xpos’ and ’ypos’ ! We calculate the distance of the current point

from the last known vortex location.

rr = sqrt(xpos ∗ ∗2 + ypos ∗ ∗2)

! Here, we form the vortex/antivortex depending on the sign

psi local = xpos+ eye ∗ sign(1., vortex(k, 3)) ∗ ypos

if(rr > my small radius) then

! This is the final form of the vortex/vortices

psi(i, j) = psi(i, j) ∗ psi local ∗ (1.0 − exp(c1 ∗ (rr ∗ ∗c2)))/rr

else

psi(i, j) = 0.

endif

end do

enddo

enddo

! otherwise there are no vortices

else

print∗,′ no vortex init.dat found!′
stop

end if

!the definition of the density

density = psi ∗ conjg(psi) !the definition of thedensity

open(73, f ile =′ density test.dat′, form =′ unformatted′)

write(73)density

close(73)

open(73, f ile =′ vortex count.dat′, form =′ unformatted′)

!Thenumberofvortices

write(73)vortex count

write(73)vortex

close(73)

deallocate(vortex)

return

!not enough vortices to read

123 print∗,′ end of vortex locations!′
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print∗,′ expected :′, vortex count

print∗,′ found :′, k − 1

print∗,′ Please check vortex init.dat or′
print∗,′ change your initial condition.′
stop

end subroutine vortex init

!********************************************************

end module initial

!*********************************************************

!*********************************************************

!*********************************************************

module subs

private

interface get trajectory

module procedure get trajectory 1

module procedure get trajectory 2

end interface

!*********************************************************

subroutine get trajectory 1(density, t)

use parameters

use global

implicit none

!First, we define the variables integer :: i, j, k, i1, i2, i3, i4, j1, j2, j3, j4

integer, dimension(vortex count) :: my i,my j

real :: density(0 : Nx, 0 : Ny)

real, dimension(vortex count) :: dmin, xmin, ymin

real :: t, dx, dy, rr, ddd = 1e− 9

real :: d1, d2, d3, d0, x1, x2, x3, x0, a1, a2, a3, x4, d4

logical :: three point

! update ’iwrite’

iwrite = iwrite+ 1

! Here, we choose the three point case

three point = .true.

!Here, we define the initial value of the density minimum

dmin = 9999.
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!xmin become the vortex x-coordinate

xmin(:) = vortex(:, 1)

!ymin become the vortex y-coordinate

ymin(:) = vortex(:, 2)

! the size of the space step in the x direction

dx = (xr − xl)/Nx

! the size of the space step in the y direction

dy = (yr − yl)/Ny

!Initial conditions for ′my i′ and ′my j′

my i = 0

my j = 0

!loop over all points in the box

do j = 0, ny

y(j) = yl+ j ∗ dy
do i = 0, nx

x(i) = xl + i ∗ dx
do k = 1, vortex count

! We define a radius in finding the trajectory with the last known position of the vortex

! We calculate the distance of the current point from the last known vortex location.

rr = (vortex(k, 1) − x(i)) ∗ ∗2 + (vortex(k, 2) − y(j)) ∗ ∗2
! We put a criterion for this radius

if(rr < 0.13) then

! We put a criterion for the density

! If we are within some distance of the previous vortex location, check the value of the density

if(density(i, j) < dmin(k)) then

! If our if-criterion is true, the following definitions are valid, we update the minimum known

density and its location

dmin(k) = density(i, j)

xmin(k) = x(i)

ymin(k) = y(j)

my i(k) = i

my j(k) = j

endif

endif

enddo

enddo

enddo

! The density minimum is defined with the help of three points both in x- and y- directions.

! We construct the Lagrange’s formula for polynomial interpolation. Through any three points

there is a unique quadratic. The interpolating polinomial of degree two through the three points is

given below. We have three terms, each of them are a polinomial of degree two and each are con-
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structed to be zero at all of the x i except one at which it is constructed to be y i. !Here begin the

three points definition and search for the vortex coordinates (three points with the corresponding

densities.)

if(three point) then

k = 1

i = my i(k); j = my j(k)

x1 = x(i);x0 = x(i− 1);x2 = x(i+ 1)

d1 = density(i, j); d0 = density(i− 1, j); d2 = density(i+ 1, j)

xmin(k) = (−2 ∗ d1 ∗ (x0 + x2) + d0 ∗ (x2 + x1) + d2 ∗ (x1 + x0))/(2 ∗ d0 − 4 ∗ d1 + 2 ∗ d2)

x1 = y(j);x0 = y(j − 1);x2 = y(j + 1)

d1 = density(i, j); d0 = density(i, j − 1); d2 = density(i, j + 1)

ymin(k) = (−2 ∗ d1 ∗ (x0 + x2) + d0 ∗ (x2 + x1) + d2 ∗ (x1 + x0))/(2 ∗ d0 − 4 ∗ d1 + 2 ∗ d2)

else

! We use every alternative of the points to calculate with the help of them ’xmin(k)’ and ’ymin(k)’

k = 1

if(density(i+ 1, j) > density(i− 1, j)) then

x2 = x(i− 1); d2 = density(i− 1, j)

x1 = x(i− 2); d1 = density(i− 2, j)

x3 = x(i); d3 = density(i, j)

x4 = x(i+ 1); d4 = density(i+ 1, j)

else

x2 = x(i); d2 = density(i, j)

x1 = x(i− 1); d1 = density(i− 1, j)

x3 = x(i+ 1); d3 = density(i+ 1, j)

x4 = x(i+ 2); d4 = density(i+ 2, j)

endif

a1 = d2 − d1

a2 = d4 − d3

a3 = d1 − d3

xmin(k) = (dx ∗ a3 − x1 ∗ a1 + x3 ∗ a2)/(a2 − a1)

if(density(i, j + 1) > density(i, j − 1)) then

x2 = y(j − 1); d2 = density(i, j − 1)

x1 = y(j − 2); d1 = density(i, j − 2)

x3 = y(j); d3 = density(i, j)

x4 = y(j + 1); d4 = density(i, j + 1)

else

x2 = y(j); d2 = density(i, j)

x1 = y(j − 1); d1 = density(i, j − 1)

x3 = y(j + 1); d3 = density(i, j + 1)

x4 = y(j + 2); d4 = density(i, j + 2)

endif
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a1 = d2 − d1

a2 = d4 − d3

a3 = d1 − d3

ymin(k) = (dy ∗ a3 − x1 ∗ a1 + x3 ∗ a2)/(a2 − a1)

endif

! Here, we write the time, the x- and the y-coordinates of the vortices

if(mod(iwrite, 8) == 0)write(18, ∗)t, xmin(1), ymin(1)

! We define the vortices x-, y-coordinates and the time

vortex(:, 1) = xmin(:)

vortex(:, 2) = ymin(:)

vortex(:, 3) = t

end subroutine get trajectory 1

!*****************************************

end module subs

!*****************************************

!*****************************************
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